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We propose a new method of effective dimension reduction for a multi-
index model which is based on iterative improvement of the family of aver-
age derivative estimates. The procedure is computationally straightforward
and does not require any prior information about the structure of the
underlying model. We show that in the case when the effective dimen-
sion m of the index space does not exceed 3, this space can be estimated
with the rate n−1/2 under rather mild assumptions on the model.

1. Introduction. Suppose that the observations �Yi�Xi�� i = 1� � � � � n,
are generated by the regression model

Yi = f�Xi� + εi�(1.1)

where the Yi are scalar response variables, Xi ∈ �−1�1�d are d-dimensional
explanatory variables, εi are random errors and f�·� is an unknown d-dimen-
sional function f
 �d → �. We assume that f�x� has the specific structure

f�x� = g0�Tx��(1.2)

Here g0�·� is an unknown m-dimensional link function and T is a linear
orthonormal mapping from the high-dimensional space �d onto the space �m

with an essentially smaller dimension m, satisfying the condition TTT = Im,
where TT stands for the transpose of T. In the statistical literature, relations
as in (1.1) and (1.2) are referred to as multi-index regression models. Model
(1.2) is a rather general expression of the hypothesis that all the information
about f�x� is “concentrated” in a low-dimensional projection Tx. If we adopt
such a model, our intention can be both to find the effective dimension m and
to describe the index space � = ImTT which is also referred to as the effec-
tive dimension space or the space of effective dimension reduction in Li (1991,
1992, 2000) and Cook (1998). In the present paper we propose an algorithm
to estimate the index space when the effective dimension m is known a priori.
Some extensions are discussed in Section 6.
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Note first that the representation (1.2) is not unique. For instance, if Um

is an orthogonal transform in �m, then the function f can be rewritten in the
form f�x� = g1�T1x� with g1�z� = g0�Umz� and T1 = UT

mT. Nevertheless,
the index space � is defined uniquely by (1.2) and it contains very important
information about the model. As soon as the operator T which maps �d onto
�m is fixed, the link function g0 can be estimated in a nonparametric way.
Various methods for dimension reduction have been proposed in the liter-

ature. Classical theory of principal component analysis considers mostly the
case of multiple linear regression. Brillinger (1983) extended the method to
the so-called “generalized linear model” with normally distributed regressors.
The underlying idea is to make some data transformation and then to proceed
as if the model were linear. Under a similar assumption on the distribution of
regressors, Li (1991) offered the so-called “sliced inverse regression” approach.
A modification of this method (principal Hessian directions) is explored in Li
(1992) and Cook (1998). Samarov (1993) discussed an approach relying on
average derivative estimation of some linear functionals of the gradient of the
regression function f. However, the conditions for this method to work appear
to be quite restrictive in application to real data. The main problem here is
that, for large d, the data in the high-dimensional space �d is very sparse (the
so-called “curse of dimensionality” problem).
Our approach can be seen as an iterative improvement of the average

derivative estimator and can be used under weak assumptions on the model.
The proposed procedure can be regarded as an extension of the method devel-
oped in Hristache, Juditsky and Spokoiny [(2001); henceforth HJS01] for the
single-index model to the multi-index situation. In the sequel the latter paper
is referred to as HJS01.
The paper is organized as follows: in the next section we discuss the heuris-

tics behind the proposed approach. Then in Section 3 the estimation procedure
is presented. The performance of the method is tested for some simulated
datasets in Section 4. The theoretic properties of procedure are discussed in
Section 5. In particular, it is shown that the procedure leads to root-n con-
sistent estimation of the index space if m ≤ 3. Section 6 briefly summarizes
main results and discusses possible extensions and open problems. Finally,
the proofs are collected in the Appendix.

2. Basic ideas. Since the gradient F�Xi� = ∇f�Xi� of the regression
function f at every point Xi belongs to the index space � , it seems quite
natural to apply the principal component analysis for estimating this space:
one can compute the matrix � ∗ = 1

n

∑n
i=1F�Xi�FT�Xi� and then use the

eigenvalue decomposition of � ∗�� ∗ = OT
d�Od. Here Od is an orthonormal

matrix and � is a diagonal matrix with decreasing eigenvalues. These matri-
ces deliver important information about model (1.2): the firstm columns ofOd

(i.e., the first m eigenvectors of � ∗) provide an orthonormal basis of the index
space � ; the corresponding eigenvalues show how much the function f varies
in each direction. In particular, the first eigenvector of � ∗ is the direction
in which f varies most [cf. Samarov (1993)]. This leads to the natural idea
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to first estimate � ∗ from the data Y1� � � � �Yn and then to recover the index
space � using this estimate [see, e.g., Fan and Gijbels (1996), page 295 and
references therein, or King (1997)]. Note that the matrix � ∗ is a quadratic
functional of the gradient of the regression function f. There exists some
literature on estimation of such functionals in the framework of nonparamet-
ric regression. Various estimation algorithms and results on their optimality
can be found in Ibragimov, Nemirovskii and Khasmiskii (1986), Donoho and
Nussbaum (1990), Fan (1991). The estimators in Samarov (1993) and Doksum
and Samarov (1995) are based on kernel estimators of the regression function
f. Huang and Fan (1998) applied the local polynomial fit. The procedure from
Ibragimov, Nemirovskii and Khasmiskii (1986) is based on the Fourier expan-
sion of the gradient F of the function f. Let us see how this latter idea applies
to our problem.
Suppose that we are given a collection �ψ�� � = 1� � � � �L� of functions

ψ�
 �d → � which satisfy
n∑

i=1
ψ��Xi�ψ�′ �Xi� = δ��′�

where δ�� = 1 and δ��′ = 0 for � �= �′. Now, let β∗
� ,

β∗
� =

1
n

n∑
i=1

F�Xi�ψ��Xi��(2.1)

be the �th Fourier coefficient of F with respect to the basis system �ψ��. Note
that each d-vector β∗

� is a linear functional of the gradient and hence belongs
to � . Thus if the dimension of the space spanned by β∗

1� � � � � β
∗
L equals m,

this set of vectors completely characterizes the index space � , and one can
identify the space � by looking for the first m principal components of the set
β∗
1� � � � � β

∗
L.

In order to estimate � ∗, one can first construct an estimate β̂� of each
Fourier coefficient β∗

� , for example,

β̂� =
1
n

n∑
i=1

F̂�Xi�ψ��Xi�(2.2)

on the basis of a pilot estimate F̂ of the gradient, and then compose the
estimate

�̂L =
L∑

�=1
β̂�β̂

T
�

of � ∗. Note that in order to ensure �̂L to be a consistent estimate of the
matrix� ∗ the number L of basis functions ψ� should be taken growing with n.
Otherwise �̂L estimates the matrix � ∗

L with

� ∗
L =

L∑
�=1

β∗
�β

∗T
� �
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On the other hand, recall that it is the index space � we are interested in and
not the estimation of � ∗. It would be sufficient for our purposes to point out a
fixed (possibly small) number of “test functions” ψ� such that rank�� ∗

L� = m
and the value �M∗ − M∗

L� (that is, the maximal eigenvalue of M∗ − M∗
L) is

not too large. The choice of a proper set of test functions ψ�� � = 1� � � � �L is
discussed in more details in Section 3.4.

2.1. Equivalent representation. As we have already noticed, the model rep-
resentation (1.2) is not unique. It is more convenient for our purposes to
work with another one, which is distinctly defined by the set of test functions
ψ�� � = 1� � � � �L and the regression function f.
Let us denote by �∗ the d × L matrix with the columns β∗

�� � = 1� � � � �L,
where the vectors β∗

� are as in (2.1). Obviously, each vector β∗
� belongs to �

and hence rank��∗� ≤ m. We additionally suppose that rank��∗� = m which
means that this matrix completely describes the index space � .
Let λ1 ≥ λ2 ≥ · · · ≥ λd be the ordered set of eigenvalues of the symmetric

d×d-matrix� ∗
L = �∗��∗�T. Since rank�� ∗

L� = m, only the firstm of them are
positive and the remaining ones are equal to zero. Without loss of generality
we assume that all eigenvalues are different; that is, λ1 > λ2 > · · · > λm

which ensures that the corresponding eigenvectors of unit length e1� � � � � em are
uniquely defined (up to a sign). These vectors belong to the index space � and
can be used as a natural basis in it. We also denote θk = √

λkek� k = 1� � � � �m.
Since λk = 0 for k > m, it also holds that θk = 0 for those k.
We now represent the model (1.1), (1.2) in the form

f�x� = g
(
θT
1x� � � � � θ

T
mx
)
�(2.3)

where the new link function g is uniquely defined as soon as the vectors
θ1� � � � � θm are fixed. Usually a similar representation with vectors ek = θk/�θk�
in place of θk is used:

f�x� = g1
(
eT
1x� � � � � e

T
mx
)
�(2.4)

However, the value λk characterizes the variability of the function f in the
direction ek. Thus the function g1 in (2.4) inherits the inhomogeneity of f in
different directions. The benefit of using (2.3) is that the corresponding link
function g is homogeneous w.r.t. its variables.
Let �∗ be a m×d-matrix such that its transpose ��∗�T = �θ1� � � � � θm� has

vectors θ1� � � � � θm as columns. Then (2.3) can be rewritten as f�x� = g��∗x�.
The matrix�∗ maps �d onto �m and determines the required effective dimen-
sion space. In what follows we refer to �∗ as the effective dimension reduction
matrix, or simply the e.d.r.
The following well-known matrix result offers an explicit representation of

the matrix�∗ via the eigenvalue decomposition of the symmetric L×L-matrix
��∗�T�∗.

Lemma 2.1. Let ��∗�T�∗ = O�LO
T be the eigenvalue decomposition of

��∗�T�∗ where O is an orthogonal L×L-matrix and �L is a diagonal matrix
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with nonincreasing eigenvalues λ′
1 ≥ λ′

2 ≥ · · · ≥ λ′
L. Let also Om be the block of

the first m columns of O. Then λ′
k = λk for k ≤ d and

�∗ = ��∗Om�T�(2.5)

Due to this lemma, the model (2.3) can be now rewritten in the form

f�x� = g��∗x� = g
(��∗Om�Tx

)
(2.6)

which is used in the sequel.

2.2. Gradient estimation. Next we discuss the problem of estimating each
linear functional β∗

� using a nonparametric estimate F̂ of the gradient F; see
(2.2). A standard way to estimate both f�Xi� and F�Xi� is to apply the local
linear least squares approach,(

f̂�Xi�
F̂�Xi�

)
= arg inf

c∈�� b∈�d

n∑
j=1

[
Yj − c− bT�Xj −Xi�

]2
K

( �Xj −Xi�2
h2

)
�(2.7)

where �·� means Euclidean norm in �d and a kernel K�·� is positive and
supported on �0�1�, so that the weights of all points Xj outside a spheri-
cal neighborhood Uh�Xi� of diameter h around Xi vanish. The solution to
this quadratic optimization problem can be represented as

(
f̂�Xi�
F̂�Xi�

)
=
{

n∑
j=1

(
1

Xij

)(
1

Xij

)T

K

( �Xij�2
h2

)}−1
n∑

j=1
Yj

(
1

Xij

)
K

( �Xij�2
h2

)
�

where Xij = Xj −Xi. As many other nonparametric estimates, the estimate
(2.7) suffers from the data sparseness for large d. This phenomenon is often
referred to as curse of dimensionality. Indeed, one has to select the bandwidth
h in a way to provide at least d + 1 design points in every (or almost every)
spherical neighborhood Uh�Xi�. For the case of a random design with a pos-
itive density, this implies that a bandwidth h of order n−1/d or even larger
should be taken. For large d this leads to a very poor rate n−1/d in estimation
of F, and the same applies to the estimation of the vectors β∗

� (see Proposition
5.1 below).
At the same time, suppose for a moment that we know the mappingT
 �d →

�m. Then we could use this information for estimating them-dimensional link
function g0 and its gradient ∇g0. This also provides an estimate of the gra-
dient F�x� = TT∇g0�Tx� of much better accuracy, which corresponds to an
m-dimensional nonparametric problem on the “true” index space, instead of
the original d-dimensional nonparametric estimate F̂�x�. More specifically, a
function f�x� of the form (2.6) remains constant when x varies in any direc-
tion orthogonal to the m-dimensional subspace � . The above considerations
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leads to another estimate,(
f̂�Xi�
F̂�Xi�

)
= arg inf

c∈�� b∈�d

n∑
j=1

[
Yj − c− bT�Xj −Xi�

]2
K

( �T�Xj −Xi��2
h2

)

=
{

n∑
j=1

(
1

Xij

)(
1

Xij

)T

K

( �TXij�2
h2

)}−1
n∑

j=1
Yj

(
1

Xij

)
K

( �TXij�2
h2

)
�

The latter estimate of F�Xi� is based on averaging over a narrow cylinder
�x
 �T�x−Xi�� ≤ h�, centered at Xi, which spans � ⊥. For this estimate one
can apply an essentially smaller bandwidth h and still have enough design
points in every such neighborhood. On the other hand, the smaller band-
width would decrease drastically the bias of estimation. Unfortunately this
“ideal” estimate cannot be implemented in practice since it requires explicit
knowledge of the target index space � . A natural idea is to substitute the
mapping T by its pilot estimate. This leads to the following structural adap-
tation approach. We proceed iteratively starting with the estimates β̂� =
1
n

∑n
i=1 F̂�Xi�ψ��Xi�� � = 1� � � � �L based on the fully nonparametric gradi-

ent estimate F̂ with some h = h1; see (2.7). Although this estimate is very
rough, it contains some information about the structure of the model function
f and, in particular, about the mapping T: all vectors β̂� up to the estima-
tion error, belong to the index space � . This information can be used for
producing another, more careful estimate of the gradient function and hence,
of the vectors β∗

� . More precisely, let �̂1 be the matrix composed from the
vectors β̂�� � = 1� � � � �L. We define the gradient estimate F̂2�Xi� at Xi by a
local linear fit using the elliptic neighborhood �x
 �S2�x − Xi�� ≤ h2�, with
S2 = �I+ ρ−2

2 �̂1�̂
T
1 �1/2 for some ρ2 < 1 and h2 > h1 (instead of the spherical

windows �x
 �x−Xi� ≤ h1�). In other words, we shrink the original windows
in all the directions β̂� (since ρ2 < 1) and stretch them in all the orthogonal
directions (since h2 > h1),(

f̂2�Xi�
F̂2�Xi�

)
= arg inf

c∈�� b∈�d

n∑
j=1

[
Yj − c− bT�Xj −Xi�

]2
K

( �S2�Xj −Xi��2
h22

)

=
{

n∑
j=1

(
1

Xij

)(
1

Xij

)T

K

( �S2Xij�2
h22

)}−1

×
n∑

j=1
Yj

(
1

Xij

)
K

( �S2Xij�2
h22

)
�

This leads to the estimates β̂2� � = 1
n

∑n
i=1 F̂2�Xi�ψ��Xi� of β∗

� producing the
matrix �̂2. We continue this way each time compressing the averaging win-
dows in the direction of the current estimate �̂k and expanding them in
orthogonal directions.
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The results presented below show that this procedure allows estimating the
index space � at the rate n−1/2 provided that m < 4.

3. Estimation procedure. We now present the description of the
method. The whole estimation procedure is carried out in two basic steps:
estimation of the vectors β∗

� and estimation of the e.d.r. matrix �∗. Below we
discuss each step separately.

3.1. Estimation of β∗
� ’s. The procedure involves input parameters h1 <

hmax and ρmin < ρ1, so that ρ decreases geometrically from ρ1 to ρmin by the
factor aρ < 1 and h increases geometrically from h1 to hmax by the factor
ah > 1 during iterations. The choice of these parameters as well as the set of
basis functions �ψ�� will be discussed in the next section. The algorithm reads
as follows:

1. Initialization: specify parameters ρ1� ρmin� aρ� h1� hmax� ah and the set

of functions �ψ��; set k = 1� �̂0 = 0;
2. Compute Sk = �I+ ρ−2

k �̂k−1�̂
T
k−1�1/2;

3. For every i = 1� � � � � n, compute F̂k�Xi� from the expression:(
f̂k�Xi�
F̂k�Xi�

)
= V−1

k �Xi�
n∑

j=1
Yj

(
1

Xij

)
K

( �SkXij�2
h2k

)
�

where Xij = Xj −Xi and Vk�Xi� =
∑n

j=1
( 1
Xij

)( 1
Xij

)T
K
( �SkXij�2

h2k

)
;

4. Compute the vectors β̂k� � = 1
n

∑n
i=1 F̂k�Xi�ψ��Xi�, � = 1� � � � �L and com-

pose the matrix �̂k with columns β̂k�1� � � � � β̂k�L;
5. Set hk+1 = ahhk� ρk+1 = aρρk. If ρk+1 ≥ ρmin, then set k = k + 1 and

continue with Step 2; otherwise terminate.

By k�n� we denote the total number of iterations. The estimates β̂k�n�� � from
the last iteration are used as the final estimates of β∗

� .

3.2. Modified estimator. In the above algorithm, at each step, we use a lin-
ear combination of the estimated gradient vectors F̂�Xi� as the estimate of the
vector β∗

� . To guarantee some useful properties of this procedure, the estimates
F̂�Xi� should be well defined, which in turn requires some local regularity of
the design in the corresponding neighborhood of the pointXi; see Assumption
5 in Section 5. If such a condition is not satisfied even at a few points, then
the corresponding gradient estimates would have a very large standard devia-
tion which may deteriorate the quality of the index estimates β̂�. We can avoid
this problem by weighting each summand in the expression for β̂k� � with some
coefficients which express the degree of local regularity of the design.
Define w̄ as the square root of the minimal eigenvalue of the matrix �� with

�� = 1
EK�ζTζ�E

(
1
ζ

)(
1
ζ

)T

K�ζTζ��
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where ζ is random and uniformly distributed over the ball B1 = �x ∈ �d

�x� ≤ 1�, w̄2 = λmin� �� �; set k = 1� �̂0 = 0.
Let also Cw be a positive number. Steps 2–4 of the above algorithm are

modified as follows:

2′. Compute �̂k = �̂k−1�̂
T
k−1. If ��̂k� > 1, then normalize it by its maximal

eigenvalue: �̂k 
= �̂k/��̂k�; Set Sk = �I+ ρ−2
k �̂k�1/2;

3′. For every i = 1� � � � � n, compute the matrix �̂k�Xi� with

�̂k�Xi� =
1∑n

j=1K�WT
ij� kWij�k�

n∑
j=1

(
1

Wij�k

)(
1

Wij�k

)T

K
(
WT

ij� kWij�k

)
�

where Wij�k = h−1
k Sk�Xj −Xi� and define wi as the square root of the

minimal eigenvalue of �̂k�Xi�
 w2
i = λmin��̂k�Xi��; If the condition

n−1�w1 + · · · +wn� ≥ Cww̄

is fulfilled then compute(
f̂k�Xi�
F̂k�Xi�

)
= V−1

k �Xi�
n∑

j=1
Yj

(
1

Xij

)
K

( �SkXij�2
h2k

)
�

otherwise increase hk by the factor ah, that is, hk 
= ahhk. If hk >
hmax, then terminate, otherwise repeat this step;

4′. For every � = 1� � � � �L, compute the vector β̂k� �

β̂k� � =
(

n∑
i=1

wi

)−1
n∑

i=1
F̂k�Xi�ψ��Xi�wi

with the previously obtained wi’s. Compose the matrix �̂k with columns
β̂k� �� � = 1� � � � �L.

3.3. Computing the effective dimension reduction matrix. Let �̂ be an esti-
mate of the matrix �∗ obtained by the previously described iterative proce-
dure. We will see (Theorem 5.3) that this matrix estimates the target matrix
�∗ with a reasonable accuracy but it is typically of the rank d and hence, it
does not provide any dimension reduction. We estimate the effective dimen-
sion reduction matrix�∗ using the singular value decomposition of �̂ in place
of �∗; compare (2.5). Namely, the product �̂ T�̂, being symmetric and non-
negative, can be represented in the form �̂ T�̂ = Ô �̂ÔT with the orthogonal
L × L-matrix Ô and the diagonal matrix �̂
 �̂ = diag�λ̂1� � � � � λ̂L� with non-
increasing eigenvalues λ̂1 ≥ · · · ≥ λ̂L ≥ 0 (the squared singular values of �̂).
The estimate �̂m of the true e.d.r. matrix �∗ from (2.5) is defined by

�̂m = ��̂Ôm�T(3.1)

where Ôm is the submatrix of Ô composed of its first m columns.
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3.4. Choice of parameters of the algorithm. It is obvious that the quality
of estimation by the proposed method strongly depends on the rule for chang-
ing the parameters h and ρ, and, in particular, on their values at the initial
and final iteration. Some related discussion about this choice can be found in
HJS01. The general approach is to provide that at every iteration k there exist
enough design points in every or almost every local ellipsoidal neighborhoods
Ek�Xi� = �x
 �Sk�x−Xi�� ≤ hk�.
Note also that assuming the structure of the matrix �̂k−1�̂

T
k−1 to follow

the structure of the target matrix � ∗, neighborhood Ek�Xi� is stretched at
each iteration step by factor ah in all directions and is shrunk by factor aρ

in directions of the m-dimensional index space � . Therefore, the Lebesgue
measure of every such neighborhood is changed each time by the factor ad

ha
m
ρ .

This leads to the constraint ad
ha

m
ρ > 1; compare Assumption 4 in Section 5

below. Under the assumption of a random design with a positive density, this
would result in an increase of the mean number of design points inside each
Ek�Xi�.
The main constraint on the set �ψ�� is that the matrix �∗ is of the same

rank as T and that the function g from the equivalent representation (2.6) is
sufficiently smooth; see Assumption 3 below. It can be easily shown that the
“ideal” choice of the set �ψ�� can be obtained by orthogonalization of the com-
ponents Fj = ∂f/∂xj, j = 1� � � � � d of the gradient F. This “ideal” collection of
functions ψ� would contain only m elements. Of course, this choice cannot be
realized since it involves the unknown regression function f.
Note next that the functions (vectors) ψ1� � � � � ψL form an orthonormal sys-

tem in �n and β∗
� is the scalar product of the gradient F and the basis func-

tion ψ�. The sum

FL =
L∑

�=1
β∗

�ψ�

is the projection of the gradient F on the linear subspace in �n spanned
by �ψ��. One can easily check that � ∗

L = ∑n
i=1FL�Xi�FL�Xi�T. Thus to pre-

vent the loss of information due to the substitution of � ∗ for � ∗
L, the set �ψ��

should be selected rich enough. Our proposals is to define �ψ�� by orthogonal-
izing the set of all polynomials x�1

· · ·x�q
of the coordinate functions for some

q ≥ 1 and all 1 ≤ �1 ≤ · · · ≤ �q. The procedure from HJS01 corresponds to the
family of all linear coordinate functions (i.e., q = 1). The simulation results
are overall in favor of a larger q, for example, q = 2.
A suitable alternative, especially for large d, is a basis system constructed

by orthogonalizing a fully nonparametric estimate of the gradient.

4. Implementation and simulated results. In this section we illus-
trate the performance of the proposed algorithm on some simulated examples.
In our simulation study we apply the modified procedure with the following
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parameter setting:

ρ1 = 1� ρmin = n−1/3� aρ = e−1/6�
h1 = n−1/�4∨d�� hmax = 2

√
d� ah = e1/2�4∨d��

Since ed/2�4∨d�−�m/6� > 1 for all m ≤ 3 and d > m, the condition ad
ha

m
ρ > 1 is

fulfilled; see Section 3.4 or Assumption 4 in Section 5 below.
We also set Cw = 4−1. In case of high dimensionality, that is, d > 20, a

smaller value of Cw was necessary to guarantee the existence of valid band-
widths hk. The basis system �ψ�� is obtained by orthogonalization of the set
of functions �1� xj� xjxk� j� k = 1� � � � � d�. This setting leads to the number of
iterations k�n� ≈ log�ρ1/ρmin�

log aρ
= 2 log n.

The performance of the method is illustrated by means of the following
examples. We consider the model Yi = g�XT

i θ1� � � � �X
T
i θm� for m between 1

and 3. The design X1� � � � �Xn is modeled randomly with independent com-
ponents so that every component of �Xi + 1�/2 follows B�1� τ�-distribution.
The parameter τ controls the skewness of the beta-distribution with τ = 1
corresponding to the uniform design. We also set:

m = 1: g�u� = u sin�√5u� and θ = �1�2�0� � � � �0�T/
√
5.

m = 2: g�u1� u2� = �u3
1 + u2��u1 − u3

2� and θ1 = �1�1�0� � � � �0�T/
√
2� θ2 =

�1�−1�0� � � � �0�T/
√
2.

m = 3: g�u1� u2� u3�= �u3
1 + u2��u1 − u3

2� + u3 and θ1=�1�1�1�0� � � � �0�T/
√
3,

θ2 = �1�−1�0� � � � �0�T/
√
2� θ3 = �1�1�−2� � � � �0�T/

√
6.

The first situation corresponds essentially to Example 8.2 from Li (1992). The
procedure utilizes the biweight kernel K�x� = �1− �x�2�2+. The quality of esti-
mation is measured using the criterion ��∗�I − �̂m��2 with �A�22 = trAAT,
where �̂m is the projector on the estimated index space �̂ ; see Section 5.2 for
more details.
Our objective is to illustrate the following features of the procedure:

How the quality of estimation improves during iteration.
Dependence on the sample size n and the dimensionality d.
How the results depend on skewness of the design and the error variance σ2.
Relative performance of the method.

For the latter, we compare the performance of our iterative procedure with
sliced inverse regression II (SIR II), principal Hessian directions (PHD) [see,
e.g., Li (1991, 1992, 2000)], and the estimate coming from the first step of
our algorithm, which is actually a version of the usual average derivative
estimator (ADE); compare King (1997). The parameters of all the competitors
were selected to optimize the criterion at hand while our procedure was imple-
mented with the default parameter choice. Note that for our examples SIR I,
which is based on means over different slices, fails to recover the dimension
reduction space. We do not report results for SIR and PHD for the third case
(m = 3) since both methods only recover a two-dimensional subspace.
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Fig. 1. Best view for a one-step estimate (left) and view from the last iteration (right) for g�u� =
u sin�√5u��m = 1� d = 10� n = 200 and σ = 0�1. Values of y and f�x� are indicated by ◦ and •,
respectively.

Figure 1 illustrates the quality of estimation of the index space for m = 1,
d = 10, n = 200 and σ = 0�1, providing the view obtained by a one-step esti-
mate with optimized bandwidth (left) and the view gained from our procedure
(right). Simulation results for different dimensionality d and sample size n
are given in Tables 1, 2 and 3.
All results show a considerable gain using the proposed iterative method.

This gain increases drastically as the dimensionality d grows. The results
from Table 2 for d = 10 and different σ-values clearly illustrate the bias-
variance trade-off. For the first step estimate as well as for the “best” such
estimate with the optimal bandwidth, the bias dominates and the quality of
estimation only weakly depends on the noise variance while for our procedure
the bias is essentially reduced during iteration and the final quality of estima-
tion is proportional to the standard deviation σ . We also observe a very stable
performance of the procedure in case of moderate error variance and design
asymmetry. The results are also uniformly (and essentially) better than for
the other considered methods like SIR II or PHD. One reason could be that
the assumption on the design required for the SIR or PHD to work is not
fulfilled in our example.
The box plots in Figure 2 provide some information about the distribution

of the criterion
√
n��∗�I−�̂m��2 for the “best” one-step estimate and after the

first, second, fourth, eighth and final iteration for d = 10�m = 2 and different
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Table 1

Case m = 1: mean loss ��∗�I − �̂m��2/��∗�2 for the first, second, fourth, eighth and final iter-
ation, the “best” one step estimate (ADE), SIR II and PHD. Results are obtained from N = 250

simulations. The interquartile range of the losses is given in parentheses

d n � 	 1st 2nd 4th 8th Final ADE SIR II PHD

3 200 0.1 1 0.0508 0.0419 0.0359 0.0271 0.0236 0.0442 0.106 0.113
(0.038) (0.031) (0.026) (0.019) (0.014) (0.032) (0.050) (0.072)

4 200 0.1 1 0.0606 0.0484 0.0417 0.0339 0.0309 0.0558 0.121 0.122
(0.033) (0.024) (0.025) (0.02) (0.018) (0.034) (0.061) (0.066)

6 200 0.1 1 0.0829 0.0631 0.0536 0.0437 0.0389 0.0807 0.150 0.159
(0.034) (0.024) (0.024) (0.02) (0.018) (0.036) (0.059) (0.066)

10 100 0.1 1 0.341 0.208 0.146 0.105 0.0903 0.341 0.283 0.323
(0.14) (0.083) (0.067) (0.047) (0.04) (0.14) (0.107) (0.121)

10 200 0.1 1 0.173 0.109 0.0854 0.0646 0.0537 0.172 0.205 0.220
(0.065) (0.036) (0.026) (0.02) (0.017) (0.066) (0.058) (0.067)

10 400 0.1 1 0.103 0.0698 0.0573 0.0438 0.0369 0.101 0.150 0.158
(0.031) (0.024) (0.019) (0.015) (0.012) (0.029) (0.045) (0.046)

10 800 0.1 1 0.0642 0.0479 0.0409 0.032 0.0271 0.0619 0.122 0.122
(0.019) (0.015) (0.013) (0.011) (0.0084) (0.019) (0.031) (0.033)

sample sizes n. Results displayed are obtained from N = 250 simulations.
The results confirm the root-n consistence of the final estimate as claimed by
Theorem 5.1 from Section 5. Note that the losses even being multiplied by

√
n

are still slightly improved with growing n.

5. Main results. In this section we present some results describing the
properties of the previously introduced basic procedure. The modified proce-
dure can be considered similarly.

5.1. Assumptions. We consider the following assumptions.

Assumption 1 (Kernel). The kernel K�·� is a continuously differentiable,
monotonously decreasing function on �+ with K�0� = 1 and K�x� = 0 for all
�x� ≥ 1.

Assumption 2 (Errors). The random variables εi in (1.1) are independent
and normally distributed with zero mean and variance σ2.

Assumption 3 (Link function). The function g from (2.6) is two times dif-
ferentiable with a bounded second derivative, so that, for some constants Cg

and for all u� v ∈ �m,

�g�v� − g�u� − �v− u�g′�u�� ≤ Cg�u− v�2�

Assumption 4 (Range of parameters hk� ρk). The parameters of the pro-
cedure satisfy ρ1 = 1� ρmin = n−1/3� h1 = C0n

−1/�4∨d� with a constant C0 ≥
1� hmax ≥ 1 and ad

ha
m
ρ ≥ 1.
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Table 2

Casem = 2: mean loss ��∗�I−�̂m��2/��∗�2 for the first, second, fourth, eighth and final iteration,
the “best” one step estimate (ADE), SIR II and PHD. Results are obtained from 250 simulations

(100 for d > 10). The interquartile range of the losses is given in parentheses

d n � 	 1st 2nd 4th 8th Final ADE SIR II PHD

3 200 0.1 1 0.0207 0.0142 0.0124 0.0116 0.0114 0.0203 0.0647 0.0728
(0.016) (0.01) (0.0085) (0.0074) (0.0076) (0.015) (0.042) (0.056)

4 200 0.1 1 0.0398 0.0273 0.0224 0.0203 0.0208 0.0398 0.102 0.11
(0.019) (0.013) (0.011) (0.01) (0.0099) (0.019) (0.045) (0.055)

6 200 0.1 1 0.0837 0.058 0.048 0.037 0.0313 0.0832 0.14 0.162
(0.034) (0.021) (0.019) (0.016) (0.014) (0.033) (0.049) (0.052)

10 100 0.1 1 0.33 0.223 0.189 0.181 0.182 0.327 0.315 0.37
(0.095) (0.072) (0.062) (0.08) (0.087) (0.092) (0.083) (0.093)

10 200 0.1 1 0.18 0.11 0.0897 0.0616 0.0472 0.18 0.209 0.246
(0.046) (0.033) (0.027) (0.019) (0.016) (0.046) (0.051) (0.06)

10 400 0.1 1 0.109 0.0617 0.0484 0.0289 0.0216 0.109 0.146 0.169
(0.025) (0.016) (0.014) (0.009) (0.0062) (0.025) (0.038) (0.039)

10 800 0.1 1 0.0636 0.0404 0.0325 0.0192 0.012 0.0636 0.105 0.114
(0.014) (0.0092) (0.0083) (0.0056) (0.0033) (0.014) (0.023) (0.026)

20 800 0.1 1 0.166 0.107 0.0821 0.0462 0.0227 0.162 0.157 0.18
(0.021) (0.013) (0.014) (0.0088) (0.0047) (0.022) (0.027) (0.03)

50 800 0.1 1 0.617 0.349 0.252 0.146 0.0623 0.617 0.265 0.324
(0.15) (0.056) (0.03) (0.033) (0.011) (0.15) (0.031) (0.033)

10 400 0.05 1 0.107 0.0577 0.0444 0.0237 0.0141 0.107 0.141 0.168
(0.024) (0.015) (0.014) (0.0075) (0.004) (0.024) (0.036) (0.037)

10 400 0.2 1 0.117 0.0766 0.0622 0.0444 0.0397 0.117 0.161 0.172
(0.028) (0.02) (0.016) (0.012) (0.01) (0.028) (0.04) (0.041)

10 400 0.1 0.75 0.102 0.0628 0.0531 0.0306 0.0191 0.102 0.153 0.165
(0.025) (0.019) (0.018) (0.012) (0.0054) (0.023) (0.037) (0.039)

10 400 0.1 1.5 0.115 0.0784 0.0789 0.0662 0.0424 0.11 0.19 0.197
(0.027) (0.024) (0.031) (0.039) (0.018) (0.029) (0.048) (0.055)

Our last assumption concerns the design properties. In what follows we
assume a deterministic design, that is, X1� � � � �Xn are nonrandom points in
�d. Note however that the case of a random design can be considered as well,
supposing thatX1� � � � �Xn are i.i.d. random points in �d with a design density
p�x�. Then all the results should be understood to hold conditionally on the
design.
In order for the algorithm to work, we have to suppose that the design

points �Xi� are “well diffused” and, as a consequence, all the matrices Vk�Xi�
are well defined.
The estimation procedure utilizes the matrices Sk with

S2
k = I+ ρ−2

k �̂k−1�̂
T
k−1

where �̂k−1 is the estimate of the matrix �∗ constructed at the preceding
iteration step. We also introduce an “ideal” matrix S∗

k = �I + ρ−2
k �∗��∗�T�1/2
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Table 3

Case m = 3: mean loss ��∗�I− �̂m��2/��∗�2 for the first, second, fourth, eighth and final
iteration. Results are obtained from N = 250 simulations. The interquartile range of the

losses is given in parentheses

d n � 	 1st 2nd 4th 8th Final ADE

10 800 0.1 1 0.0614 0.0454 0.036 0.0229 0.017 0.0614
(0.013) (0.01) (0.0084) (0.0061) (0.0036) (0.012)

10 800 0.1 0.75 0.0677 0.054 0.0476 0.0345 0.018 0.0660
(0.015) (0.013) (0.012) (0.011) (0.0054) (0.016)

10 800 0.1 1.5 0.0701 0.0571 0.0532 0.0472 0.0293 0.0697
(0.016) (0.013) (0.011) (0.013) (0.0093) (0.015)

and define the matrix

Uk = (
S∗

k

)−1
S2

k

(
S∗

k

)−1
�

This matrix Uk characterizes the accuracy of estimating the matrix �∗ by
�̂k−1. If �̂k−1 = �∗, then Uk = I. We shall see that these matrices Uk are
typically close to I. Define now, given a matrix U and k ≤ k�n�,

Zij�k = h−1
k S∗

k�Xj −Xi�� i� j = 1� � � � � n�

Ni�k�U� =
n∑

j=1
K
(
ZT

ij� kUZij�k

)
� i = 1� � � � � n�

�i� k�U� =
n∑

j=1

(
1

Zij�k

)(
1

Zij�k

)T

K
(
ZT

ij� kUZij�k

)
� i = 1� � � � � n�

Fig. 2. Simulation results in terms of
√
n��∗�I − �̂m��2/��∗�2 for m = 2, d = 10 and n =

200�400�800 for the estimates obtained by SIR II, the initial estimate, second, fourth, eighth and
final iteration.
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Our design assumption means in particular that the �d+1�×�d+1�-matrices
�i� k�U� are well defined for all U close to I and for all i ≤ n.
We use below the notation �A� for the sup-norm of A
 �A� = supλ �Aλ�/�λ�.

Assumption 5 (Design). There exist constants CV�CK�CK′ and some α >
0, such that for all matrices U satisfying �U− I� ≤ α and for all k ≤ k�n� the
following conditions hold:

1. The inverse matrices �i� k�U�−1 are well defined and

Ni�k�U���i� k�U�−1� ≤ CV� i = 1� � � � � n�
2. For j = 1� � � � � n,

n∑
i=1

1
Ni�k�U�K

(
ZT

ij� kUZij�k

) ≤ CK�

n∑
i=1

1
Ni�k�U�

∣∣K′(ZT
ij� kUZij�k

)∣∣ ≤ CK′ �

Here K′ means the derivative of the kernel K.

Remark 5.1. One can easily check that for the case of a random design
with a continuous positive density, one can fix some constant CV�CK and
CK′ depending on the dimension d and design density only and such that
the conditions from Assumption 5 are fulfilled with a high probability con-
verging exponentially fast to 1 as n grows. Some results on semiparametric
M-estimation in the single-index model only require that the projection of the
design on the e.d.r. space has a continuous density; see, for example, Carroll
(1997). This condition is not sufficient for us since the procedure estimates
the gradient of the regression function which is impossible if, for example, the
design is concentrated on a low-dimensional subspace.

In what follows by C�C1�C2� � � � we denote generic constants depending on
d�Cg�CV�CK�CK′� ψ��L and σ only.

5.2. Loss of information caused by estimated e.d.r. An important charac-
teristic of the estimated e.d.r. �̂m is the loss of information caused by this
reduction. Due to the representation (2.6), the information contained in a unit
vector v ∈ �d can be measured by the value ��∗v�. A loss of information occurs
if ��∗v� > 0 but ��̂mv� = 0. Let <∗ be the projector in �d onto the true index
space � and similarly, �̂m denotes the projector in �d onto the estimated
index space �̂ corresponding to the e.d.r. �̂m; that is, �̂ = Im �̂T

m. Then the
total loss of information by e.d.r. �̂m can be measured by the value

��∗�I− �̂m��2�
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where �A�2 is the Euclidean norm of the matrix A; that is, �A�22 = trAAT =
trATA. In the sequel we use the following obvious inequalities: �A� ≤ �A�2 ≤√
m�A� where m is the rank of A.
The next result claims that the loss of information caused by the e.d.r. �̂m

is of order n−1/2.

Theorem 5.1. Let �̂m be defined by (3.1). Form ≤ 3, there exists a sequence
=n → 0 as n → ∞ such that under Assumptions 1 through 5, for sufficiently
large n and every z ≥ 1,

P
(
��̂m�I−<∗��2 >

2zH1√
n

+Ct2nn
−2/3

)
< ze−�z2−1�/2 + 3k�n�

n
�

P
(
��∗�I− �̂m��2 >

2zH1√
n�1− =n�

+Ct2nn
−2/3

)
< ze−�z2−1�/2 + 3k�n�

n
�

with tn = �1+ 2 log n+ 2 log log n�1/2 and

H1 =
√
2σCVCKψ̄

√
L�

ψ̄ = max
i=1� ���� n

max
�=1� ����L

�ψ��Xi���
(5.1)

5.3. Estimation of the index space. By construction, �∗ is an orthogonal
mapping from �d to �m, that is, �∗��∗�T is a diagonal m×m-matrix with the
diagonal elements λ1� � � � � λm. Moreover, the product<∗ = ��∗�T��∗��∗�T�−1×
�∗ is the projector in �d onto the corresponding index space � . Similarly,
�̂m = �̂ T

m��̂m�̂ T
m�−1�̂m is the projector onto the estimated e.d.r. space. Thus

the quality of the identification of the true index space can be measured by
the error of estimating <∗ with �̂m. We encounter the following identifiability
problem: if, for instance, the last eigenvalue λm is (close to) zero, then the
corresponding eigenvector em is not uniquely defined. The next result states
that if the eigenvalue λm is separated away from zero, the estimated projector
�̂m recovers <∗ at the rate n−1/2.

Theorem 5.2. Let m ≤ 3 and Assumptions 1 through 5 hold. For n suffi-
ciently large,

P
(∥∥<∗ − �̂m

∥∥
2 >

2
√
2λ−1/2

m zH1√
n�1− =n�

+Ct2nn
−2/3

)
≤ ze−�z2−1�/2 + 3k�n�

n

with =n and H1 as in Theorem 5.1.

Remark 5.2. Since λm is the mth eigenvalue of the matrix � ∗
L, the con-

dition λm > 0 relies both on the model function f and on the basis system
ψ1� � � � � ψL. If λ∗

m is the mth eigenvalue of � ∗, then the ratio λm/λ∗
m charac-

terizes the quality of the basis �ψ��. This value typically approaches one as L
grows. Our numerical examples are also in favour of a larger L.
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5.4. Estimation of the matrix �∗. In this section we present some results
describing the quality of estimating the vectors β∗

� by the proposed estimation
procedure. The first result describes the accuracy of the first step estimate,
and the next result describes the quality of the final estimate.
5.4.1. The first-step approximation. Let β̂1� �� � = 1� � � � �L be the family

of the estimates obtained at the first step of the iterative procedure with
ρ1 = 1� S1 = I and some h1.

Proposition 5.1. Under Assumptions 1 through 5, for every � ≤ L,

β̂1� � − β∗
� = C1� �h1 +

ξ1� �

h1
√
n
�

where C1� � is a constant and ξ1� � is a zero mean normal random vector in �d

satisfying

C1� � ≤
√
2CgCVψ̄��

E�ξ1� ��2 ≤ 2σ2C2
VC

2
Kψ̄2

� �

Remark 5.3. The bandwidth h1 should be at least of order n−1/d to provide
at least d+ 1 design points in almost every spherical neighborhood of radius
h1. The optimization of the risk of the first step estimate under the constraint
h1 ≥ Const� h−1/d leads to the following rule for the choice of h1
 h1 = Const�
n−1/�4∨d�. Hence, we get the accuracy for β̂1� �,

�β̂1� � − β∗
� � ≤ Const� n−�1/4∧1/d��

5.4.2. Accuracy of the final estimate. Let β̂�’s be the estimates of β∗
� ’s

obtained at the last iteration, � = 1� � � � �L. As previously, �̂ denotes the
matrix composed by the vectors β̂�. It turns out that the quality of estimation
delivered by �̂ is not homogeneous w.r.t. to the orientation in the space �d.
This heterogeneity is caused by application of elliptic windows for estimating
the gradient vectors F�Xi�. To mimic this property, we introduce for every
k ≤ k�n� an operator (d × d-matrix) P∗

ρk
= �I + ρ−2

k �∗��∗�T�−1/2 = �S∗
k�−1

which, roughly speaking, multiplies by the factor ρk within the index space �
while, being restricted to the orthogonal subspace � ⊥, it coincides with the
identity mapping.

Theorem 5.3. Let m ≤ 3 and Assumptions 1 through 5 hold. There exists
a Gaussian zero mean random d×L-matrix ξ∗ ∈ �dL such that, with ρ = ρk�n�
and n large enough,

P
(∥∥∥P∗

ρ��̂ −�∗� − ξ∗√
n

∥∥∥
2
> C1t

2
nn

−2/3
)
≤ 3k�n� − 1

n
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and

E
∥∥ξ∗∥∥22 ≤ 2σ2ψ̄2LC2

VC
2
K = H2

1�

Corollary 5.1. Under the conditions of Theorem 5.3, for every z ≥ 1,

P
(∥∥P∗

ρ��̂ −�∗�∥∥2 >
zH1√

n
+C1t

2
nn

−2/3
)
≤ ze−�z2−1�/2 + 3k�n� − 1

n
�

6. Conclusions and outlook. We introduce a new method of dimension
reduction based on the idea of structural adaptation. The method applies for
a very broad class of regression models under mild assumptions on the under-
lying regression function and the regression design. The procedure is fully
adaptive and does not require any prior information. The results claim that
the proposed procedure delivers the optimal rate n−1/2 of estimating the index
space provided that the effective dimensionality of the model is not larger
than 3. The simulation results demonstrate an excellent performance of the
procedure for all situations considered. An important feature of the method is
that it is very stable with respect to high dimensionality and for a nonregular
design.
It is worth noting that the basic iterative procedure does not rely onm. This

value is used only for the last step of describing them-dimensional e.d.r. If the
effective dimension m exceeds 4, then the procedure continues to apply and it
allows estimating the index space, but the corresponding accuracy would be
worse than n−1/2. One more open question concerns the case of an unknown
effective dimension. Note first that if we apply some m which is smaller than
the real effective dimension m∗ when describing the e.d.r. space, then the best
m-index approximation of the original model is expected to be obtained. In
practical applications, the following two problems arise: estimation of m and
testing am-index hypothesis. The matrix �̂ from the last step of the algorithm
can be used for answering the above mentioned problems. A detailed study of
this situation is an important topic for further research.
The procedure can be easily extended to the situation with a multivariate

response variable Y ∈ �p with p > 1. The underlying multi-index assumption
remains of the same functional form: E�Y � X� = f�x� = g�XTθ1� � � � �X

Tθm�
where g is a vector function on �m with values in �p. This means that the
gradient Fj = ∇fj of each component fj of f belongs to the index space
spanned by vectors θ1� � � � � θm and one can utilize the same ideas as previ-
ously for estimating the index space � . The only difference is that the basis
functions �ψ�� should also be vectors in �p. A reasonable example corresponds
to the procedure which estimates for every component fj� j = 1� � � � � p, of the
regression function f ∈ �p the vectors β∗

1� j� � � � � β
∗
L�j with

β∗
�� j = 1

n

n∑
i=1

Fj�Xi�ψ��Xi�� � = 1� � � � �L�

and the same ψ�’s and then utilizes the total collections of the vectors �β̂�� j�
with � = 1� � � � �L and j = 1� � � � � p for estimating the index space � .
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Another interesting issue arises when considering multiple time series and
especially financial data. We regard such extensions as topics for further
research.
One more important question is semiparametric efficiency. Our procedure

is shown to be rate optimal, at least for m ≤ 3. In the single-index situation
there are several methods which are also asymptotically efficient in the semi-
parametric sense; see, for example, Carroll, Fan, Gijbels and Wand (1997).
Our procedure is not expected to achieve the semiparametric efficiency in the
single-index model, but it can be used for constructing a semiparametrically
efficient estimator by one-step improvement.

APPENDIX A

Proofs. Here we collect the proofs of the assertions formulated previously.
All our results are based on the following technical assertion describing an
improvement of the estimate �̂ at each iteration step.

A.1. One-step improvement. Suppose that we are given some fixed num-
bers h and ρ (which mean the current values hk and ρk) and a fixed d × L-
matrix B which can be viewed as an approximation �̂k−1 of �∗ obtained at
the previous step. Set also

SB = �I+ ρ−2BBT�1/2�

VB�Xi� =
n∑

j=1

(
1

Xij

)(
1

Xij

)T

K

( �SBXij�2
h2

)
�

(
f̂B�Xi�
F̂B�Xi�

)
= VB�Xi�−1

n∑
j=1

Yj

(
1

Xij

)
K

( �SBXij�2
h2

)
�(A.1)

β̂B� � =
1
n

n∑
i=1

F̂B�Xi�ψ��Xi��(A.2)

where, recall,Xij = Xj−Xi, and define the matrix �̂B with columns β̂B� �� � =
1� � � � �L. We aim to evaluate the estimation errors �̂B −�∗. To describe the
results, we introduce the matrix (linear operator) P∗

ρ = �I+ ρ−2�∗��∗�T�−1/2.
Define also for some positive δ < ρ/4, the set 
δ� ρ by


δ� ρ = {
B
 �P∗

ρ�B−�∗��2 ≤ δ
}
�

Proposition A.1. Let Assumptions 1 through 5 hold. Then there exists
Gaussian random d×L-matrix ξ such that, with α = 2δ/ρ+ δ2/ρ2�

P
(
sup

B∈
δ� ρ

∥∥∥P∗
ρ��̂B −�∗� − ξ

h
√
n

∥∥∥
2

>

√
2CgCVψ̄

√
L

�1− α�3/2 ρ2h+ σψ̄
√
LCα�nα

h
√
n

)
≤ 2

n
�
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where

Cα�n = 1
2

(√
2CVCK′

�1− α�2 + 2
√
2C2

VCK′CK

�1− α�3
)(

2+
√
�3+ dL� log�4n�

)
(A.3)

and

E
∥∥ξ∥∥22 ≤ 2σ2C2

VC
2
Kψ̄2L�(A.4)

Before proving this statement, we present one straightforward corollary.

Corollary A.1. Under Assumptions 1 through 5 for every z ≥ 1,

P
(
sup

B∈
δ� ρ

∥∥P∗
ρ��̂B −�∗�∥∥2 > ψ̄

√
L

(√
2CgCVρ

2h

�1− α�3/2 + z
√
2σCVCK

h
√
n

+ σCα�nα

h
√
n

))
≤ ze−�z2−1�/2 + 2/n�

Indeed, the Gaussian vector ξ ∈ �dL satisfies for every z ≥ 1,

P
(
�ξ�2 ≥ z

√
E
∥∥ξ∥∥22) ≤ ze−�z2−1�/2

(see Lemma 9 in HJS01), and the assertion follows from Proposition A.1.

Proof of Proposition A.1. We follow the line of the proof of Proposition
2 in HJS01 and focus here only on essential points, omitting technical details.
It is useful to define

u = ρ−1P∗
ρB� U = P∗

ρ�I+ ρ−2BBT�P∗
ρ = �P∗

ρ�2 + uuT

and similarly,

u∗ = ρ−1P∗
ρ�

∗� U∗ = P∗
ρ

(
I+ ρ−2�∗��∗�T)P∗

ρ = I

so that u�u∗ are d × L-matrices and U�U∗ are d × d symmetric matrices.
Clearly B = �∗ implies U = I and the condition �B−�∗�2 ≤ δ implies �u−
u∗�2 ≤ δ/ρ, that is, the inclusion B ∈ 
δ�ρ is equivalent to u ∈ �u
 �u−u∗�2 ≤
δ/ρ�. Due to Lemma B.1, it also follows that �U − U∗� = �uuT − u∗�u∗�T� ≤
α = 2δ/ρ+ δ2/ρ2 for all such u.

Next, for every i� j ≤ n, define

Zij = h−1(P∗
ρ

)−1 �Xj −Xi��

�i�U� =
n∑

j=1

(
1
Zij

)(
1
Zij

)T

K
(
ZT

ijUZij

)
�

ŝi�U� = h−1�i�U�−1
n∑

j=1

(
1
Zij

)
YjK

(
ZT

ijUZij

)
�
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It is easy to check that ŝi�U� =
(
h−1f̂B�Xi�
P∗

ρF̂B�Xi�
)
and hence,

P∗
ρβ̂B� � = �dn

−1
n∑

i=1
ŝi�U�ψ��Xi��

where �d denotes the projector from �d+1 onto �d keeping the last d
coordinates.
The model equation (1.2) implies

ŝi�U� = si�U� + ζi�U�
with

si�U� = h−1�i�U�−1
n∑

j=1

(
1
Zij

)
f�Xj�K

(
ZT

ijUZij

)
�

ζi�U� = h−1�i�U�−1
n∑

j=1

(
1
Zij

)
εjK

(
ZT

ijUZij

)
so that

P∗
ρ

(
β̂B� � − β∗

�

) = 1
n

n∑
i=1

{
�dsi�U� −P∗

ρF�Xi�
}
ψ��Xi�

+�dn
−1

n∑
i=1

ζi�U�ψ��Xi��

Clearly ξ��U� = �dn
−1∑n

i=1 ζi�U�ψ��Xi� is for every U a linear combination
of the Gaussian errors εi and therefore it is also a Gaussian vector in �d. We
define ξ�U� to be the d×L matrix with columns ξ��U� and set ξ = ξ�U∗�. It
is easy to see that the following three statements imply the desired result.

sup
u
 �u−u∗�2≤δ/ρ

��dsi�U� −P∗
ρF�Xi�� ≤

√
2CgCV

�1− α�3/2hρ
2� i = 1� � � � � n�(A.5)

P
(

sup
u
 �u−u∗�2≤δ/ρ

�ξ�U� − ξ�U∗��2 >
σCα�nα

h
√
n

)
≤ 2/n(A.6)

with U = �P∗
ρ�2 + uuT and U∗ = I, and for all � = 1� � � � �L,

E�ξ��U∗��2 ≤ 2σ2C2
VC

2
Kψ̄2

�

h2n
�(A.7)

To check these statements, the following lemma will be useful.

Lemma A.1. Let �U − I� ≤ α < 1. Then for all i� j with ZT
ijUZij ≤ 1,

�Zij�2 ≤ �1− α�−1.
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Proof. Note that the inequalities ZT
ijUZij ≤ 1 and �U− I� ≤ α imply∣∣ZT

ijUZij − �Zij�2
∣∣ = ∣∣ZT

ij�U− I�Zij

∣∣ ≤ α�Zij�2

and hence �Zij�2 ≤ �1− α�−1ZT
ijUZij. ✷

First we evaluate the “bias” term �dsi�U� −P∗
ρF�Xi�. Since(

h−1f�Xi�
P∗

ρF�Xi�
)
= �i�U�−1

n∑
j=1

(
1
Zij

)(
1
Zij

)T(
h−1f�Xi�
P∗

ρF�Xi�
)
K
(
ZT

ijUZij

)
= h−1�i�U�−1

n∑
j=1

(
1
Zij

){
f�Xi�+�Xj−Xi�TF�Xi�

}
K
(
ZT

ijUZij

)
it follows that

si�U�−
(
h−1f�Xi�
P∗

ρF�Xi�
)

=h−1�i�U�−1
n∑

j=1

(
1
Zij

){
f�Xj�−f�Xi�−�Xj−Xi�TF�Xi�

}
K
(
ZT

ijUZij

)
=h−1�i�U�−1

n∑
j=1

(
1
Zij

)
rijK

(
ZT

ijUZij

)
�

where in view of (2.6),

rij=g��∗Xj�−g��∗Xi�−��∗Xj−�∗Xi�Tg′��∗Xi��

The use of P∗
ρ�

∗��∗�TP∗
ρ=ρ2�I−�P∗

ρ�2� and �I−�P∗
ρ�2�≤1 yields

���∗�TXj−��∗�TXi�2 = �Xj−Xi�T�∗��∗�T�Xj−Xi�
= (�P∗

ρ�−1�Xj−Xi�
)T
P∗

ρ�
∗��∗�TP∗

ρ�P∗
ρ�−1�Xj−Xi�

= h2ρ2ZT
ij

(
I−�P∗

ρ�2
)
Zij

≤ h2ρ2�Zij�2

which also implies

��∗Xj−�∗Xi�=���∗Om�TXj−��∗Om�TXi�2≤h2ρ2�Zij�2�
This yields by Lemma A.1 and Assumption 3 for every pair �i�j� with
ZT

ijUZij≤1,

�rij�≤
Cgh

2ρ2

1−α
� 1+�Zij�2≤1+

1
1−α

≤ 2
1−α



STRUCTURE ADAPTIVE DIMENSION REDUCTION 1559

and using Assumptions 5 we bound

��dsi�U�−P∗
ρF�Xi�� ≤ h−1

∣∣∣∣∣�i�U�−1
n∑

j=1

(
1
Zij

)
rijK

(
ZT

ijUZij

)∣∣∣∣∣
≤ Cghρ

2

1−α
��i�U��−1

∣∣∣∣∣ n∑
j=1

�1+�Zij�2�1/2K
(
ZT

ijUZij

)∣∣∣∣∣
≤

√
2�1−α�−3/2CgCVhρ

2

and (A.5) follows.
Further, we study the stochastic components ξ��U�. It follows directly from

the definition that there are vector coefficients ci���U� such that

ξ��U�=
n∑

i=1
ci���U�εi�

We now apply the following two technical results from HJS01, see Lemmas 3,
10 there for a particular case with L=1 and ψ�≡1. Extension to general L
and ψ�’s is straightforward.

Lemma A.2.

(i)
n∑

i=1
�ci���U∗��2≤ 2C2

VC
2
Kψ̄2

�

h2n
�

(ii)

sup
U
 �U−I�≤α

n∑
i=1

�ci���U��2≤ 2C2
VC

2
Kψ̄2

�

�1−α�h2n �

(iii) for every unit vector e∈�d,

sup
U
 �U−I�≤α

∥∥∥∥ d

dU
eTci���U�

∥∥∥∥≤ καψ̄�

nh

with

κα=
√
2�1−α�−3/2CVCK′ +2

√
2�1−α�−5/2C2

VCK′CK�
(iv) for every unit vector e∈�d,

sup
u
 �u−u∗�2≤δ/ρ

∥∥∥∥ d

du
eTci���U�

∥∥∥∥≤ κ′
αψ̄�

nh

with U=Uu=�P∗
ρ�2+uuT and

κ′
α=κα�1−α�−1/2=

√
2�1−α�−2CVCK′ +2

√
2�1−α�−3C2

VCK′CK�
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Lemma A.3. Let r≥0 and let vector functions ai�u� with u∈�p obey the
conditions

sup
�u−u∗�≤r

∣∣∣∣ d

du
ai�u�

∣∣∣∣≤κ� i=1�����n�

If εi are independent � �0�σ2�-distributed random variables, then

P
(

sup
�u−u∗�≤r

1√
n

∣∣∣∣ n∑
i=1

�ai�u�−ai�u∗��εi

∣∣∣∣>σκr
(
2+

√
�3+p�log�4n�

))
≤ 2

n
�

Lemma A.2(i) implies (A.7). The statement (A.6) follows from Lemma
A.2(iv), and Lemma A.3 applied to the matrix ξ�U�∈�dL with columns ξ��U�
and with U=Uu=�P∗

ρ�2+uuT; for details see again HJS01. ✷

A.2. Proof of Theorem 5.3. To be able to apply Proposition A.1 to the esti-
mates β̂k�� at step k, we need that the matrix B=�̂k−1 coming as the result
of the preceding iteration belongs to the set 
ρ�δ with ρ=ρk and some δ<ρ/4.
Since the matrix �̂k−1 is random, we have to check that the probability of the
event ��̂k−1∈
ρk�δ

�=�B
 �P∗
ρ�B−�∗��2≤ρ� is sufficiently large. Further we

show that this property is fulfilled if n is large enough.
Let the numbers hk and ρk be as shown in the algorithm description, k=

1�����k�n�. Define successively values δk and αk�k=1�����k�n� by α1=0 and

δk = ψ̄
√
L

( √
2CgCV

�1−αk�3/2
hkρ

2
k+

√
2σCVCKtn
hk

√
n

+ σCαk�n
αk

2hk

√
n

)
�

αk+1 = ρ−2
k+1

(
2δkρk+δ2k

)
�

where tn=�1+2logn+2log logn�1/2.

Lemma A.4. For m≤3 and n sufficiently large, the values αk’s satisfy
maxk≤k�n�αk<1/4. In addition, for the last iteration k�n�,

µn 
= ψ̄
√
L

( √
2CgCV

�1−αk�n��3/2
hk�n�ρ

2
k�n�+

σCαk�n��nαk�n�
hk�n�

√
n

)
≤C1t

2
nn

−2/3�

For the proof, see Lemma 5 in HJS01.
Next, successive application of the results of Proposition A.1 and Corollary

A.1 with tn=�1+2logn+2log logn�1/2 leads to the following.

Lemma A.5. Let n be sufficiently large. There exist random sets 1⊇···⊇
k�n� such that

P�k�≥1−
3k
n

and on k ∥∥P∗
ρk+1��̂k−�∗�∥∥2≤δk� k=1�����k�n�−1�
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For the proof, see Lemma 6 in HJS01.
Now the result of Theorem 5.3 can be proved by one more application of

Proposition A.1 to the last step estimate �̂=�̂k�n� with h=hk�n� ≥1 and ρ=
ρk�n� ≈n−1/3; see again HJS01 for the detailed derivation.

A.3. Proof of Theorem 5.1. Let �̂ be the last step estimate of the matrix�∗.
We know from Theorem 5.3 that, with probability close to 1, �̂ satisfies the
conditions

�P∗
ρ��̂−�∗��2≤τ�(A.8)

with ρ=ρk�n� and some small τ. This implies, by Lemma B.1,∥∥�̂−<∗�̂
∥∥
2≤τ�(A.9)

where <∗ denotes the projector on the index space � .
Recall that �̂ approximates the d×L-matrix �∗ of rank m. However, it is

typically of rank d. It is useful to introduce another d×L-matrix �̂m of rankm

which minimizes the expression
∥∥�̂−�̂m

∥∥
2 over all such matrices. The solu-

tion to this optimization problem can be described explicitly via the eigenvalue
decomposition of the matrix �̂T�̂=Ô�̂LÔ

T with an orthogonal matrix Ô and
a diagonal matrix �̂L with nonincreasing eigenvalues (cf. Lemma 2.1). We
use the notation Im for the diagonal L×L-matrix with the first m diagonal
elements equal to 1 and the remaining ones equal to zero.

Lemma A.6 [Harville (1997), Theorem 21.12.4]. The d×L-matrix �̂m=
�̂ÔImÔT minimizes the norm �B−�̂�2 over all d×L-matrices B of rank m:

�̂m=�̂ÔImÔT =arg inf
B∈
m

��̂−B�2�(A.10)

where 
m denotes the set of d×L-matrices of rank m.

Proof. Let �̂T�̂=Ô�̂LÔ
T. Then, for the d×L-matrix �̃=�̂Ô

�̃T�̃=OT�̂T�̂Ô=ÔTÔ�̂LÔ
TÔ= �̂L�

that is, the columns of the matrix �̃ are orthogonal and they are arranged in
a way that their norms decrease. This clearly implies

arg inf
B∈
m

��̃−B�2=�̃Im

and the assertion of the lemma follows by a change-of-basis argument. ✷
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Recall that we define the e.d.r. matrix �̂m by �̂m=��̂Ôm�T; see (3.1). It
follows from the last lemma that �̂m=��̂mÔm�T. Also, (A.9) and the definition
of �̂m [see (A.10)] imply

��̂−�̂m�2≤��̂−<∗�̂�2≤τ�

and, since �P∗
ρ�≤1,∥∥P∗

ρ

(
�̂m−�∗)∥∥

2≤��̂−�̂m�2+
∥∥P∗

ρ��̂−�∗�∥∥2≤2τ�(A.11)

This implies by Lemma B.2,∥∥Pρ�m��̂m−�∗�∥∥2≤2τ�1−=�−1/2�(A.12)

where Pρ�m=�I+ρ−2�̂m�̂T
m�−1/2 and ==4τ/ρ+4τ2/ρ2. Now the result of

Theorem 5.1 is a straightforward application of Theorem 5.3 and Lemma B.3.

A.4. Proof of Theorem 5.2. Let �̂ be the last step estimate of the matrix�∗.
We know from Theorem 5.3 that, with probability close to one, �̂ satisfies the
condition (A.8) with ρ=ρk�n� and some small τ. Next, let the matrices �̂m, and

�̂m of rank m be defined as in the proof of Theorem 5.1 so that the condition
(A.11) is satisfied. The projectors <∗ and �̂m are defined as

<∗ = ��∗�T(�∗��∗�T)−1�∗�

�̂m = �̂T
m

(
�̂m�̂T

m

)−1
�̂m�

The use of Lemma B.5 provides∥∥<∗−�̂m

∥∥
2≤

√
2λ−1/2

m 2τ�1−4τ/ρ−4τ2/ρ2�−1/2

and we end up as in the proof of Theorem 5.1. ✷

APPENDIX B

Some matrix inequalities. Let B and B1 be two d × L-matrices and ρ
be some positive number. Define the d× d-matrix Pρ as

Pρ = �I+ ρ−2BBT�−1/2�
Here we collect some facts which can be obtained from the inequality∥∥Pρ�B1 −B�∥∥2 ≤ δ(B.1)

with some small δ ≥ 0. Here and in what follows �A�2 denotes the L2-norm
of the matrix A, that is, �A�22 = trAAT, and �A� is the sup-norm: �A� =
supv∈�d �Av�/�v�.

Lemma B.1. Condition (B.1) implies∥∥Pρ

(
BBT −B1B

T
1

)
Pρ

∥∥ ≤ 2ρδ+ δ2�
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Proof. Since

�PρB�2 = �PρBB
TPρ� = ∥∥�I+ ρ−2BBT�−1BBT

∥∥ ≤ ρ2�

(B.1) yields∥∥Pρ

(
B1B

T
1 −BBT)Pρ

∥∥ ≤ 2
∥∥Pρ�B1 −B�BTPρ

∥∥+ ∥∥Pρ�B1 −B��B1 −B�TPρ

∥∥
≤ 2

∥∥Pρ�B1 −B�∥∥2∥∥PρB
∥∥+ ∥∥Pρ�B1 −B�∥∥22

≤ 2δρ+ δ2

as required. ✷

Define also

Pρ�1 =
(
I+ ρ−2B1B

T
1

)−1/2
�

Lemma B.2. Let B and B1 satisfies (B.1) for some δ < ρ/4. Then∥∥Pρ�1�B−B1�
∥∥
2 ≤

δ√
1− 2δ/ρ− δ2/ρ2

�

Proof. Let α = 2δ/ρ+ δ2/ρ2. By Lemma B.1,∥∥PρP
−2
ρ�1Pρ − I

∥∥ = ρ−2∥∥Pρ�BBT −B1B
T
1�Pρ

∥∥ ≤ α

and hence, ∥∥P−1
ρ�1Pρ

∥∥2 = ∥∥PρP
−2
ρ�1Pρ

∥∥ ≤ 1+ α�∥∥Pρ�1P
−1
ρ

∥∥2 = ∥∥�PρP
−2
ρ�1Pρ�−1

∥∥ ≤ �1− α�−1�
Now∥∥Pρ�1�B−B1�

∥∥
2=
∥∥Pρ�1P

−1
ρ Pρ�B−B1�

∥∥
2

≤∥∥Pρ�1P
−1
ρ

∥∥∥∥Pρ�B−B1�
∥∥
2≤

∥∥Pρ�1P
−1
ρ

∥∥δ≤δ�1−α�−1/2� ✷

Next we consider the situation when both matrices B and B1 are of rank
m with some m < d. By < we denote the projector in �d onto the subspace
� = Im B. Similarly <1 is the projector in �d onto the subspace �1 = Im B1.

Lemma B.3. Let d×L-matricesB andB1 of rankm satisfy �Pρ�B−B1��2 ≤
δ. Then

��I−<�B1�2 ≤ δ�

Proof. Since Pρ is the unity operator within the subspace � ⊥ = Im �I−
<�, it easily follows that �I−<�Pρ = I−< (this fact is obvious when BBT and
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hence Pρ is a diagonal matrix, and the general case can be reduced to that
one by an orthogonal transform). Since also �I−<�B = 0, we derive

B1 = �<+ I−<�B1

= <B1 + �I−<��B1 −B�
= <B1 + �I−<�Pρ�B1 −B�

so that ��I−<�B1�2 ≤ �Pρ�B1 −B��2 ≤ δ. ✷

Lemma B.4. Let < and <1 be two projectors in �d of rank m < d. Then

�<1 −<�2 =
√
2�<�I−<1��2�

Proof. Note first that since < and I−< are orthogonal,

�<1 −<�22 = �<1�I−<� − �I−<1�<�22 = �<1�I−<��22 + ��I−<1�<�22�
Now, since �<�22 = �<1�22 = m, we derive

�<1�I−<��22 = �<1�22 − �<1<�22 = m− �<1<�22�
��I−<1�<�22 = �<∥∥22 − �<1<�22 = m− �<1<�22�

so that �<1�I−<��2 = ��I−<1�<�2 and the assertion follows. ✷

Now letBTB = O�OT be the single value decomposition (SVD) of the matrix
B where O is the unitary L × L-matrix and � is the diagonal matrix with
nonincreasing eigenvalues. Then let the m×d matrix R be constructed using
(2.5) with �∗ replaced by B on the base of B; that is, R = �BOm�T where Om

is the block of the first m columns of O. Clearly it holds �Rv� = �vTB� for every
v ∈ �d. Similarly we define R1 via the SVD of B1.
The projector < in �d onto the value space of B, can be represented in the

form < = RT�RRT�−1R. Similarly <1 = RT
1�R1R

T
1�−1R1. Let λm denote the

smallest eigenvalue of RRT.

Lemma B.5. Let the matrices B�B1 of rank m satisfy (B.1) with some δ<
ρ/4. Then the associated projectors < and <1 satisfy

�<−<1�2 ≤
√
2λ1/2m δ1�

where δ1 = δ�1− 2δ/ρ− δ2/ρ2�−1/2.

Proof. Condition (B.1) implies by Lemma B.2
∥∥Pρ�1�B−B1�

∥∥
2 ≤ δ1 which

yields by Lemma B.3,

�R1�I−<��2 = ��I−<�B1�2 ≤ δ1�
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This and Lemma B.4 yields

�<−<1�2 =
√
2�<�I−<1��2 =

√
2
∥∥RT�RRT�−1R�I−<1�

∥∥
2

≤
√
2
∥∥RT�RRT�−1∥∥ �R1�I−<��2 = δ1

√
2
∥∥RT�RRT�−1∥∥�

It remains to note that

∥∥RT�RRT�−1∥∥2 = ∥∥�RRT�−1RRT�RRT�−1∥∥ = ∥∥�RRT�−1∥∥ = λ−1
m

and the assertion follows. ✷
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