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IMAGE DENOISING: POINTWISE ADAPTIVE APPROACH

BY JÖRG POLZEHL AND VLADIMIR SPOKOINY

Weierstrass Institute

A new method of pointwise adaptation has been proposed and studied in
Spokoiny [(1998) Ann. Statist. 26 1356–1378] in the context of estimation
of piecewise smooth univariate functions. The present paper extends that
method to estimation of bivariate grey-scale images composed of large
homogeneous regions with smooth edges and observed with noise on a
gridded design. The proposed estimator f̂ (x) at a point x is simply the
average of observations over a window Û(x) selected in a data-driven
way. The theoretical properties of the procedure are studied for the case
of piecewise constant images. We present a nonasymptotic bound for the
accuracy of estimation at a specific grid point x as a function of the number
of pixels n, of the distance from the point of estimation to the closest
boundary and of smoothness properties and orientation of this boundary.
It is also shown that the proposed method provides a near-optimal rate of
estimation near edges and inside homogeneous regions. We briefly discuss
algorithmic aspects and the complexity of the procedure. The numerical
examples demonstrate a reasonable performance of the method and they are
in agreement with the theoretical issues. An example from satellite (SAR)
imaging illustrates the applicability of the method.

1. Introduction. One typical problem of image analysis is the reconstruction
of an image from noisy data. It has been intensively studied within the last
years; see, for example, the books of Pratt (1978), Grenander (1976, 1978, 1981),
Rosenfeld and Kak (1982), Blake and Zisserman (1987) and Korostelev and
Tsybakov (1993). There are two special features related to this problem. First,
the data is two-dimensional (or multidimensional). Second, images are often
composed of several regions with rather sharp edges. Within each region the image
preserves a certain degree of uniformity while on the boundaries between the
regions it has considerable changes. This leads to the edge estimation problem.

A large variety of methods have been proposed for solving the image and edge
estimation problem in different contexts. The most popular methods of image
estimation are based on the Bayesian or Markov random field approach; see
Haralick (1980), Geman and Geman (1984), Ripley (1988) and Winkler (1995),
among others. Nonparametric methods based on penalization and regularization
have been developed in Titterington (1985), Mumford and Shah (1989) and Girard
(1990).

Edge detection methods mostly do not assume any underlying parametric
model. Methods based on kernel smoothing with a special choice of kernels have
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been discussed in Pratt (1978), Marr (1982), Lee (1983), Huang and Tseng (1988)
and Müller and Song (1994). There are a number of proposals for nonparametric
smoothing of images which allow for preserving the sharp edge structure. We
mention: modal regression [see, e.g., Scott (1992)] the nonlinear Gaussian filter
[see Godtliebsen, Spjøtvoll and Marron (1997)] the M-smoother of Chu, Glad,
Godtliebsen and Marron (1998), the adaptive weights smoother from Polzehl and
Spokoiny (2000) and different proposals based on wavelets [see, e.g., Nason and
Silverman (1994), Engel (1994) or Donoho (1999) and references therein].

Tsybakov (1989) proposed a two-step procedure with the first step a prelimi-
nary image classification while the second step performs the usual kernel smooth-
ing over the classified regions; for some extensions in this direction see also
Qiu (1998). The method from Tsybakov (1989) leads to the near-optimal rate
(n−1 logn)1/2 of nonparametric estimation of piecewise constant images com-
posed from several connected regions with piecewise-Lipschitz boundaries, n−1/2

being the grid step. Unfortunately, this method leads only to a suboptimal qual-
ity of edge estimation for the case of images with smooth edges. It also requires
some prior information about the image structure, such as the number of regions
in the image and image contrasts. This motivates the further study of the problem
of optimal edge estimation.

A general asymptotic minimax theory of edge estimation has been developed
in Korostelev and Tsybakov (1993), mostly for images composed of two
homogeneous regions with a prespecified edge orientation (boundary fragment).
In particular, they showed that linear methods are not optimal for images with
sharp edges. Imposing some smoothness restrictions on the boundary, they found
the minimax rate n−γ /(γ+1) of edge estimation, γ being the degree of edge
smoothness, and constructed rate-optimal estimators for images with the structure
of a boundary fragment. The proposed methods are essentially nonlinear and they
involve a local change-point analysis as a building block. For the most interesting
case when γ > 1, both the methods and results apply only under a random or
“jittered” design. Barron, Birgé and Massart (1999) extended their results to edges
from Sobolev-type classes, applying a general theory of adaptive estimation on
sieves. Hall and Raimondo (1998) and Donoho (1999) studied the quality of edge
estimation under gridded design. They showed an essential difference in studying
the edge estimation problem under a random and gridded design and established
the global rate of edge estimation for the boundary fragment case.

In the present paper, we also restrict ourselves to the deterministic equispaced
design, focusing on the problem of image estimation at design points. Our results
are stated for the case of piecewise constant images with smooth edges, and
they show that the estimation quality depends strongly on the distance from the
point of estimation x to the closest edge and on edge smoothness and orientation.
Our method is based on direct image estimation without any preliminary edge
recovering. We apply a simple linear estimator which is the average of observations
over a window selected in a data-driven way. In spite of the fact that linear methods
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are only suboptimal in edge estimation, the results of this paper show that a
nonlinearity which is incorporated in the linear method by an adaptive choice of
an averaging window allows getting a near-optimal quality of image and edge
recovery.

The approach presented can be viewed as one more application of the idea
of pointwise adaptive estimation; see Lepski (1990, 1992), Lepski, Mammen
and Spokoiny (1997), Lepski and Spokoiny (1997) and Spokoiny (1998). The
first three papers mentioned consider the problem of an adaptive choice of one
estimator from a family of estimators which can be ordered by their variances.
A typical example is given by kernel estimators with a fixed kernel and different
bandwidths. Spokoiny (1998) discussed an adaptive choice of an asymmetric
averaging window for local polynomial estimation including different one-sided
windows. The corresponding family is only partially ordered (i.e., there could be
many estimators with the same or similar variance) and the original idea from
Lepski (1990) does not apply. The main idea of the approach in Spokoiny (1998)
can be expressed very easily: the procedure searches for a largest local vicinity of
the point of estimation where the simple structural assumption fits well to the data.

We now apply this idea to the problem of image estimation. We focus on
the case of piecewise constant images, that is, we assume that the image is
composed of a finite number of regions and the image value is constant within
each region. The number of regions, the difference between values of the image
function f for different regions and the regularity of edges are unknown and may
be different for different parts of the image. Therefore, our structural assumption
is not very restrictive and allows reasonable fitting of a large class of images.
Moreover, our method can be extended to estimation of any function that can be
well approximated by a constant function in a local vicinity of each point.

The pointwise approach has the obvious advantage of being able to express
the quality of estimation in one specific grid point depending on local image
characteristics such as the distance to the closest edge, orientation and smoothness
of this edge, image contrast and noise level. For the case of an image fragment, the
method leads immediately to rate near-optimal estimation in any global (integral)
norm as studied in Hall and Raimondo (1998) or Donoho (1999). But the inverse
is not generally true: a global rate optimality does not guarantee a good local
quality of estimation. A well-known example is given by the so-called Gibbs
effect, which is encountered in many methods that are asymptotically optimal in
a global norm. An estimator has strong fluctuations near points of discontinuities.
We therefore focus on pointwise estimation quality and refer to Lepski, Mammen
and Spokoiny (1997) for relations between local and global accuracy of estimation
in the univariate regression.

In what follows we consider the regression model

Yi = f (Xi) + ξi, i = 1, . . . , n,(1.1)
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where Xi ∈ [0,1]d , i = 1, . . . , n, are given design points and ξi are individual
independent random errors. Below we will suppose that ξi , i = 1, . . . , n, are i.i.d.
N (0, σ 2) with a given noise level σ . The procedure and the general “oracle” result
from Section 3 apply for an arbitrary fixed design. In Section 4 and our numeric
examples we assume the design points need to form an equidistant grid in the
square [0,1]2. Next we suppose that the cube [0,1]d is split into M regions Am,
m = 1, . . . ,M , each of them a connected set with an edge (boundary) Gm. The
function f is assumed constant within each region Am,

f (x) =
M∑

m=1

am1(x ∈ Am),(1.2)

where a1, . . . , aM are unknown constants. The problem is to estimate the image
function f (x) or, equivalently, to estimate the values a1, . . . , aM and to decide for
each point Xi what the corresponding region is.

The idea of the proposed method is quite simple. We search for a window U ,
containing x0, of maximal size, in which the function f is well approximated by
a constant. Further, this constant is taken as the resulting estimate. Of course, the
choice of the class of candidate windows plays the key role for such an approach.
We will discuss this problem later. We suppose for a moment that we are given
a class U of windows U , each of them being a subset of the unit cube [0,1]d
containing the point of interest x0. By NU we denote the number of design points
in U . The assumption that f is constant in U leads to the obvious estimator f̂U of
f (x0) which is the mean of observations Yi over U .

To characterize the quality of the window U we compute the residuals εU,i =
Yi − f̂U and test the hypothesis that these residuals εU,i can, within the window U ,
be treated as pure noise. Finally, the procedure selects the maximal (in number of
points NU ) window for which this hypothesis is not rejected.

The paper is organized as follows. In the next section we present the procedure,
and Section 3 contains the results on the quality of this procedure. In Section 4 we
specify the general results to the case of d = 2 and discuss the problem of edge
estimation in this context. Section 5 contains simulated examples and applications.
Some possible extensions of the method and theory are listed in Section 6. The
proofs are mostly deferred to Section 7.

2. Estimation procedure. Let data Yi,Xi , i = 1, . . . , n, obey model (1.1).
We will estimate f (x0) for a given x0. Typically x0 is a design point; that is, the
image is recovered at the same point where it is observed.

Given a family of windows U and U ∈ U, set NU for the number of points Xi

in U ,

NU = #{Xi ∈ U }.
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We will suppose that NU ≥ 2 for each U ∈ U. We assign to each U ∈ U the
estimator f̂U of f (x0) by

f̂U = 1

NU

∑
U

Yi.

Here the sum over U means the sum over design points in U .
Our adaptation method is based on the analysis of the residuals εU,i = Yi − f̂U .

We introduce another family V(U) of windows V , each of them a subwindow
of U ; that is, V ⊂ U . One example for the choice of the families U and V(U) in the
two-dimensional case is presented in Section 4. By CU we denote the cardinality
of V(U), CU = #V(U).

For each V ∈ V(U) set

TU,V = 1

σU,V NV

∑
V

εU,i = 1

σU,V NV

∑
V

(Yi − f̂U ) = f̂V − f̂U

σU,V

,

where
∑

V means summation over the index set {i :Xi ∈ V } and σU,V is the
standard deviation of the difference f̂V − f̂U ,

σ 2
U,V = σ 2 NU − NV

NUNV

= σ 2(N−1
V − N−1

U ).

Define now

ρU,V = 1(|TU,V | > tU ),(2.1)

where tU is a threshold which may depend on U that determines the probability of
a wrong classification.

We say that U is rejected if ρU,V = 1 for at least one V ∈ V(U), that is, if
ρU = 1 with

ρU = sup
V ∈V(U)

ρU,V = 1
(

sup
V ∈V(U)

|TU,V | > tU

)
.

The adaptive procedure selects among all nonrejected U ’s one which maxi-
mizes NU ,

Û = arg max
U∈U

{NU :ρU,V = 0 for all V ∈ V(U)}.

If there is more than one nonrejected set U attaining the maximum, then any of
them can be taken. Finally we set

f̂ (x0) = f̂Û (x0) = f̂Û .

The algorithm involves a multiple testing procedure, and the choice of
thresholds tU is important. Particular examples of this choice will be given in
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Section 4. For further exposition we keep this choice free. Our theoretical results
only require the following two conditions to be fulfilled: for given α > 0,∑

V ∈V(U)

e−t2
U/2 = CUe−t2

U/2 ≤ α ∀U ∈ U,(2.2)

∑
U∈U

e−t2
U/2 ≤ α.(2.3)

3. One “oracle” result. Below we describe some properties of the proposed
estimation procedure and state the result about the corresponding accuracy of
estimation.

Let x0 be a given point. Our target is the image value f (x0). In the sequel we
assume that x0 is from region A that coincides with some Am for m ≤ M .

Let also a family U of windows containing x0 and for each U ∈ U a family of
test subwindows V(U) be fixed. Our result is stated using the notion of an “ideal”
(or “oracle”) window U∗ from U. Namely, let U∗ stand for a “good” window from
U in the sense that U∗ is contained in A and it is reasonably large (in the number
of design points).

If this window U∗ were known from an “oracle” then one would apply the
corresponding estimate f̂U∗ for recovering f (x0). Our first result claims that the
accuracy of the adaptive estimator is essentially as good as the accuracy of the
“oracle” estimator.

Similar results can be found in Lepski (1990) and Lepski and Spokoiny (1997)
but only for the case when the considered family of estimators can be ordered by
their standard deviation. For instance, Lepski and Spokoiny (1997) considered a
family of kernel estimators f̃h(x) with a fixed kernel and variable bandwidth h.
This family is naturally ordered by the corresponding variance σ 2

h (x) = Var f̃h(x)

(which typically decreases as bandwidth increases). Here the considered family
of estimators is only partially ordered and there may exist many estimators f̂U

(corresponding to different windows U ) with the same variance vU = Var f̂U =
σ 2N−1

U .
To our knowledge, the first paper treating a pointwise adaptive estimation for

a partially ordered family of estimators is Spokoiny (1998) where a univariate re-
gression problem was considered but left- and right-sided kernels were admissible.
The multivariate situation is even more complicated and requires a more careful
definition of the considered set of windows U and V(U), U ∈ U.

Namely, we require that the sets U and V(U) fulfill the following conditions:

(U.1) Every set U from U contains x0.
(U.2) For any U∗ ∈ U, there is an integer number K = K(U∗) such that for every

U ∈ U with NU > NU∗ , the intersection U ∩ U∗ contains a testing window
V ∈ V(U) with NV ≥ K .
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Conditions (U.1) and (U.2) rely only on the sets U and V. To state the result we
need one more condition which also relies on the region A the point of estimation
x0 belongs to. Namely, it concerns windows U from U that are not “good” in the
sense that they have a nontrivial part outside of A. We first introduce a subclass
U′ = U′(U∗,A) of “bad” windows U such that U\A contains a “massive” testing
window V from V(U),

U′(U∗,A) = {U ∈ U :NU > NU∗ and ∃V ∈ V(U)

with V ⊂ U\A and NV ≥ K}(3.1)

with K from condition (U.2). We will see (Lemma 7.2 below) that the procedure
can select a “bad” window only with a small probability. However, selection of
any “nonbad” window U is possible. Our last condition relies exactly on such
windows, U /∈ U′, with NU > NU∗ and it requires that the intersection U ∩ A is
“massive.”

(U.3) For any U∗ ∈ U and for every U ∈ U with NU > NU∗ and U /∈ U′(U∗,A),
there is a V ∈ V(U) such that V ⊆ A and NV ≥ νNU∗ with some fixed
number ν > 0.

Now we are in a position to state the main result. For an “ideal” window U∗,
define

t∗ = max
U /∈U′(U∗,A)

tU(3.2)

with U′(U∗,A) from (3.1) and tU from the definition of the procedure; see (2.1).

THEOREM 3.1. Let the image function f (x) be piecewise constant; see (1.2).
Let U∗ be an “ideal ” window and conditions (U.1) through (U.3) be satisfied
for this U∗ with some K > 0 and ν > 0. Let also the thresholds tU fulfill (2.2)
and (2.3). If x0 ∈ Am and

|am − am′ | ≥ 6σ t∗K−1/2 ∀m′ �= m,(3.3)

then

Pf

(∣∣f̂ (x0) − f (x0)
∣∣ > 2σ(νNU∗)−1/2t∗

) ≤ 3α.

DISCUSSION. Here we briefly comment on the result of Theorem 3.1. Note
first that the “oracle” estimator f̂U∗ has the accuracy of order N

−1/2
U∗ . Due to the

above result, the adaptive estimator f̂ (x0) has the same accuracy up to some fixed
factor t∗ provided that conditions (U.1), (U.2), (U.3) and (3.3) are fulfilled. The
value t∗ is typically of order

√
logn; see examples in Section 4.1. This factor can

be viewed as a payment for pointwise adaptation and it necessarily appears even
in a simple one-dimensional situation [Lepski (1990) and Lepski and Spokoiny
(1997)].



ADAPTIVE IMAGE DENOISING 37

If the region A is large (i.e., A is comparable in size to the whole square) and
if x0 is an internal point of A, then typically there are large windows U with of
order n points inside, that is, NU∗  n. Therefore, inside each “large” region, the
proposed procedure estimates the image value with the rate n−1/2 up to a log-
factor. If x0 lies near the boundary of the region A, then the size of U∗ depends on
the distance of x0 to the boundary of A and on the smoothness properties of this
boundary. The same is valid for the quality of estimation. More detailed discussion
can be found in Section 4.3.

4. Two-dimensional images with gridded design. In this section we specify
our procedure and results to the two-dimensional case with the regular equidistant
design in the unit square [0,1]2. We also discuss the problem of edge estimation.

Suppose we are given n design points X1, . . . ,Xn with Xi = (Xi,1,Xi,2) ∈
[0,1]2. Without loss of generality we may assume that

√
n is an integer and denote

δ = n−1/2. Now each design (or grid) point Xi can be represented in the form
Xi = (k1δ, k2δ) with nonnegative integers k1, k2.

As previously, we consider the problem of estimating the image value at a
point x0 by observations Y1, . . . , Yn described by the model equation (1.1). In
this section we restrict ourselves to estimation on the grid; that is, we suppose
additionally that x0 is a grid point.

We begin by describing one possible choice of the set of windows U. Then
we specify the result of Theorem 3.1 to this case and consider the problem of
edge estimation. Finally, we discuss the accuracy of estimation near an edge as
a function of the noise level, image contrast and edge orientation and state the
asymptotic optimality of the proposed method.

4.1. An example of a set of windows. Our construction involves two external
integer parameters, D and s, which control the complexity of the algorithm.

For a fixed number d ≤ D, let Qd be the axis-parallel square with centre
at x0 and with side length 2dδ, δ being n−1/2. Obviously Qd contains exactly
Nd = (2d + 1)2 design points. First we describe the set Ud of all windows U

associated with this square. In words, this set contains the whole square Qd and
all its parts defined by linear splits with different orientations. Each orientation is
determined by a pair of integers p,q such that the fraction p/q is unreducible.
Define

Rs = {(p, q) : |p| ≤ s, |q| ≤ s,p/q is unreducible, (p, q) �= (0,0)}
and put rs = #Rs . Note that (p, q) and (−p,−q) are two different orientations.
In particular, r1 = 8, r2 = 16, r3 = 32, r4 = 80, r5 = 112. It is obvious that
rs ≤ 4s(s + 1).

For every (p, q) ∈ Rs , we define a subset Ud,(p,q) of Qq by the linear split with
the orientation (p, q),

Ud,(p,q) = {
x = (x1, x2) ∈ Qq :p(x1 − x0

1) − q(x2 − x0
2) ≥ −ρd,(p,q)

}
,(4.1)
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where the constant ρd,(p,q) is introduced to ensure condition (U.2). We define the
value ρd,(p,q) by the condition

NU ≥ NQd
/2 + Kd = d(2d + 1) + Kd(4.2)

with U = Ud,(p,q) and Kd = 1 + [log(2d + 1)]. In the typical situation with
d/Kd ≥ max{|p|, |q|}, there exist at least 2Kd + 1 grid points within Qd lying
on the line p(x1 − x0

1) − q(x2 − x0
2) = 0 and thus ρd,(p,q) = 0. In that case, the set

Ud,(p,q) is defined by the linear split with the orientation (p, q) passing through x0.
A general bound for ρd,(p,q) is given in Lemma 7.6 below.

Let Ud be the set of all such windows Ud,(p,q) plus the whole square Qd ,

Ud = Qd + {Ud,(p,q) : (p, q) ∈ Rs}.
We identify here every two windows which contain the same collection of grid
points. It is obvious that every Ud contains at most rd + 1 different windows,
rd being #Rd . Moreover, it is easy to check that #Ud = rd + 1 if s > 2d . The set
of all candidate windows U is composed of all Ud for d ≤ D,

U = U0 ∪ U1 ∪ · · · ∪ UD.

This construction can be viewed as a local version of the wedgelets proposed by
Donoho (1999).

Let also Vd be the set of intersections of two windows from Ud ,

Vd = {U ∩ U ′ :U,U ′ ∈ Ud}.
Now, for U from Ud we define a family of testing windows V(U) by taking all
windows V from Vd ′ with d ′ ≤ d and V ⊂ U ,

V(U) =
d⋃

d ′=0

{V ∈ Vd ′ :V ⊂ U }.

For the above defined set U, condition (U.1) is fulfilled by construction. Let U∗
be a window from Ud . One can easily check that condition (U.2) for this U∗ and
K = Kd is fulfilled as well.

It is obvious that #Vd ≤ rd(rd + 1)/2 and hence, the total number CU of
windows in V(U) for U ∈ Ud is bounded by drd(rd + 1)/2.

We finally define

tU = td =
√

2λ + 2µ log(d + 1), U ∈ Ud ,(4.3)

with some fixed positive constants λ,µ. The bound rd ≤ 4d(d + 1) easily yields

CUe−t2
U/2 ≤ drd(rd + 1)e−λ(d + 1)−µ ≤ e−λ ∀U ∈ Ud ,

∑
U∈U

e−t2
U/2 ≤

D∑
d=1

(rd + 1)e−t2
d /2 ≤ e−λ,
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if, for example, µ ≥ 5, so that the thresholds (4.3) with properly selected λ,µ

fulfill conditions (2.2) and (2.3).
Further we discuss the properties of the estimate f̂ (x0) corresponding to the

previously described sets U and V(U), U ∈ U and the thresholds tU from (4.3).

4.2. Accuracy of estimation inside a homogeneous region. We begin with the
very simple situation when the point of interest x0 lies inside a homogeneous
region A = Am for some m ≤ M . We will see that in such a case the value f (x0)

is estimated at the rate n−1/2 up to a logarithmic factor.

THEOREM 4.1. Let the point x0 belong to a homogeneous region A = Am

together with the square {x :‖x − x0‖∞ ≤ ε} with some ε > δ. Let also the image
contrast b = max{|am − am′ |,m′ �= m} satisfy the condition

b ≥ 4t∗σ/
√

K∗(4.4)

with t∗ from (3.2) and K∗ = maxd≤D Kd = KD . If D ≥ n1/2ε, then

Pf

(∣∣f̂ (x0) − f (x0)
∣∣ ≥ 2σ t∗(n1/2ε)−1) ≤ 3e−λ.

This result is a straightforward corollary of Theorem 3.1. It suffices to note
that the window U∗ coinciding with the square QD belongs to the family U and
it is contained in A. Hence, NU∗ ≥ 4D2. The condition (U.3) is fulfilled in this
situation with ν = 0.5.

4.3. Accuracy of estimation near an edge. Now we apply Theorem 3.1 to the
case when the point of interest x0 lies near an edge of the corresponding region. We
first illustrate the importance of a careful estimation near an edge by the following
example.

EXAMPLE 4.1. Let A be a circle inside the unit square with radius r > 0. We
do not suppose that the center of this circle is at a grid point. The radius r may
be also arbitrary. We set ρ = C/n with some constant C > 1 and consider a band
of width ρ near the edge of A. Note that this width is essentially smaller than the
grid step δ = n−1/2, if C is not too large. The Lebesgue measure of this band is
about 2πrρ, so, for the uniform random design, the mean number of design points
inside this band would be about 2πrρn = 2πrC. It can be shown by using the
arguments from the theory of continuous fractions, see Hall and Raimondo (1998)
or Lemma 7.5 below, that under the equidistant design, we have essentially the
same (in order) number of design points inside this band. This is illustrated in the
left of Figure 1. On the other side, it is well known that the quality of estimation
near an edge is especially important by visualization. Even single errors in image
segmentation are visible and they lead to a significant deterioration of the image.
Therefore, a desirable property of the estimation procedure would be to recover
precisely the image value for all points separated from the edge with a distance of
a smaller order than n−1/2.
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FIG. 1. Left: Band of width ρ = 0.4δ around a dislocated circle of radius 5.5δ. The band contains
10 points (2πrρn ≈ 13.8). Right: Sets Qd and Ud,(p,q) for two points x0.

Let x0 belong to a region Am and lie near the edge G with another region Am′ .
We assume also that this edge is regular in the sense that it can be well
approximated by a straight line in some small vicinity of the point x0.

Without loss of generality we may assume that the edge G can be paramet-
rized in a neighborhood of the point x0 by the equation x2 = g(x1) with some
differentiable function g and that |g′(x0

1)| ≤ 1. [Otherwise another parametrization
of the form x1 = g(x2) is to be used.] Now the image function f can, at least in a
neighborhood of the point x0, be represented in the form

f (x) =
{

am′, x ∈ Am′ = {x2 > g(x1)},
am, x ∈ Am = {x2 ≤ g(x1)}.(4.5)

The distance from x0 to the edge G of Am can be characterized by the value
g(x0

1) − x0
2 .

In the next result we suppose that the edge function g is smooth in the sense
that it belongs to the Hölder class �(γ,P ) with some parameters γ ∈ (1,2] and
P > 0. This means that g satisfies the condition

|g′(s) − g′(t)| ≤ P |s − t|γ ∀ s, t.

This setup is essentially as in Korostelev and Tsybakov (1993) with the only
difference in the assumption of a gridded design and of γ ≤ 2. Korostelev
and Tsybakov (1993) proposed a polynomial approximation of the edge within
a vertical strip of the width of order h∗ = (nP )−1/(γ+1) around the point of
estimation which leads to the optimal estimation rate n−γ /(γ+1)P 1/(γ+1). It
follows from the next theorem that the estimate f̂ (x0) delivers essentially the
same quality of estimation. Moreover, our method for this special setup can also
be reduced to local approximation of the boundary by a linear function.
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We first describe the “ideal” window for this situation. Define d∗ as the minimal
value d satisfying d ≥ n(γ−1)/2(γ+1)(4K∗/P )1/(γ+1). For ease of exposition we
assume an equality in this relation for d = d∗, that is,

d∗ = n(γ−1)/2(γ+1)(4K∗/P )1/(γ+1).(4.6)

The square Qd∗ has the side length d∗δ which is of order h∗. Let z = g′(x0
1) be the

slope of the edge near the point of estimation, and let (p, q) be a pair from Rd∗
minimizing the value |z−p/q| over Rd∗ . The next result shows that if the distance
g(x0

1) − x0
2 is sufficiently large (of order n−γ /(γ+1)) then the smoothness of the

edge ensures that the window U∗ = Ud∗,(p,q) belongs to the region A.

THEOREM 4.2. Let the image function f (x) be of the form (4.5) in a neigh-
borhood Qε(x

0) of the point x0 with some positive ε > 0 and let a grid point x0

belong to A. The function g describing the edge G is supposed to be in the Hölder
class �(γ,P ) with γ ∈ (1,2]. Let the image contrast b satisfy condition (4.4). Let
also the parameters D,s of the adaptive procedure satisfy D ≥ d∗ and s > 2d∗
with d∗ from (4.6). If d∗ ≤ εn1/2 and if the distance g(x0

1) − x0
2 satisfies

g(x0
1) − x0

2 ≥ 2P 1/(γ+1)(4K∗/n
)γ /(γ+1)

,

then

Pf

(∣∣f̂ (x0) − f (x0)
∣∣ ≥ 2σ t∗/d∗) ≤ 3e−λ.

DISCUSSION. The statement of Theorem 4.2 is essentially nonasymptotic,
that is, it applies for a fixed image f and a fixed n. However, this result delivers
some clear information about dependence of estimation accuracy on n. For our
construction, it obviously holds that t∗ ≤ maxU tU ≤ C

√
log n and condition (4.4)

on K∗ implies K∗ ≥ (4t∗σ/b)2 = Cσ 2b−2 log n for some fixed constant C.
Therefore, if we define the class of images which satisfy the conditions of
Theorem 4.2 [i.e., the class of images with the structure of a boundary fragment
in a vicinity of the point x0 and with the edge function g from �(γ,P )] then the
proposed procedure provides a reasonable quality of estimation uniformly over this
class for all points x0 which are separated away from the edge with the distance of
order ψγ (n) = (n/ logn)−γ /(γ+1).

Points lying on the edge or very close to the edge can be misclassified by the
procedure. The width of the “band of insensitivity” around the edge, that is, the
minimal distance between the point x0 and the edge G which is sufficient for
estimation of f (x0) with a small estimation error can be regarded as the accuracy
of edge estimation. Korostelev and Tsybakov (1993) described the quality of
recovering the edge function g which belongs to a Hölder class �(γ,1), and
showed that the optimal rate of edge estimation, being measured in the Hausdorff
metric, is (n/logn)−γ /(γ+1) which formally coincides in order with the accuracy
delivered by our procedure. Note meanwhile, that Korostelev and Tsybakov (1993)
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stated their results for γ > 1 only under a random or “jittered” design; see page 92
there. Under the regular (gridded) design, the rate of edge estimation is equal to the
grid step δ = n−1/2 [Korostelev and Tsybakov (1993), page 99]. We proceed under
the equispaced (gridded) design focusing on estimating the value of the image at
a grid point. The gridded structure of the design is essential for our results and
the proofs are based on number-theoretical arguments similar to those in Hall and
Raimondo (1998).

The result of Theorem 4.2 delivers some additional information about depen-
dence of the quality of estimation near an edge on the noise level σ , the image
contrast b and the orientation of the edge G described by the value z = g′(x0

1).

4.3.1. Accuracy versus noise level and image contrast. It follows from
Theorem 4.2 that the image value f (x0) can be recovered with a sufficient
precision if the point of interest x0 is separated from the edge G with the
distance of order (n−1K∗P )−γ /(γ+1). This expression depends on the noise
level σ only through K∗ which must satisfy K∗ ≥ Cσ 2b−2 logn with some
constant C; see (4.4). We see that when the noise level increases, the quality of
edge recognition decreases by the factor σ 2γ /(γ+1).

All this remains valid for dependence of the quality of estimation on the value
of image contrast b = max{|am − am′ |, m′ �= m}. The only difference is that
this dependence is with another sign; when the contrast increases the quality
increases as well, and vice versa. Both these issues are in accordance with the one-
dimensional case [Spokoiny (1998)] and with similar results for a random design
[Mammen and Tsybakov (1995)].

4.3.2. Accuracy versus edge orientation. We now discuss a problem which
appears only for the regular design. The issue is dependence of the quality of
edge estimation on the edge orientation. This orientation is characterized by the
edge slope z = g′(x0

1). By inspecting the proof of Theorem 4.2 one can see
that the quality of estimation depends critically on the quality of approximation
of z by rational numbers with bounded denominators. It follows from the result
that the worst case edge orientation leads just to the above indicated quality of
estimation near an edge. At the same time, if z is a rational number, z = p/q , with
a bounded q , or if z is very close to such a rational number, then a stronger result
can be stated. Similar assertions can be found in Hall and Raimondo (1998) and
Donoho (1999).

THEOREM 4.3. Let the image function f (x) be of the form (4.5) in a
neighborhood {x :‖x − x0‖∞ ≤ ε} of the point x0 with some positive ε > 0 and let
the grid point x0 belong to A. The function g describing the edge G is supposed
to be in the Hölder class �(γ,P ) with γ ∈ (1,2] and additionally z := g′(x0

1)

satisfies

|z − p/q| ≤ 1

q(q + 1)
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for some integer numbers p ≤ q . Let condition (4.4) hold true. If D ≥ qKq and
also εn1/2 ≥ qKq , and if the distance g(x0

1) − x0
2 satisfies

g(x0
1 ) − x0

2 ≥ 2P (qKqn
−1/2)γ ,(4.7)

then

Pf

(∣∣f̂ (x0) − f (x0)
∣∣ ≥ 2σ t∗(qKq)

−1) ≤ 3e−λ.

As a corollary of this result we conclude that for an edge with a rational
(e.g., with horizontal or vertical) orientation, the band of insensitivity is of order
(n−1 logn)γ/2 which approaches n−1 for γ = 2.

4.3.3. Rate optimality. The next natural question is about the optimality of
the previous results on estimation near an edge. The next assertion shows that the
accuracy ψγ (n) = (n/ logn)−γ /(γ+1) cannot be essentially improved uniformly
over the class of all boundary fragments.

From Theorem 4.3 we know that some improvement in the accuracy of
estimation near an edge is still possible for images with a special edge orientation.
We will see that the accuracy delivered by our procedure is at least near optimal in
this situation too.

Let some grid point x0 be fixed and let the underlying image have the structure
of a smooth boundary fragment with an edge G determined by a function
g = g(x1) from the Hölder ball �(γ,1) with γ ∈ (1,2]. The function g determines
the image function fg with fg(x) = 1(x2 ≥ g(x1)) for x = (x1, x2). We use
G = Gg for the corresponding edge, that is, G = {x :x2 = g(x1)}.

We are interested in the minimal distance between the point x0 and the edge G

which allows for a sufficiently precise estimation of f (x0) if the image function f

is of the form fg with g from �(γ,1).

THEOREM 4.4. Let K,D be integers and let z = p/q be an unreducible
rational number with 0 ≤ p ≤ q . Let then ψn stand for

ψn = min
{
n−1/2q−1, (qKn−1/2)γ

}
.

Then there exists a constant κ > 0 depending only on γ and two functions g0
and g1 from �(γ,1) such that g′

0(x
0
1) = z, g′

1(x
0
1) = z,

g0(x
0
1) ≥ x0

2 + κψn, g1(x
0
1) ≤ x0

2 − κψn,(4.8)

and such that for any estimator f̃ ,

Pg0

(∣∣f̃ (x0) − fg0(x
0)

∣∣ > 1/2
) + Pg1

(∣∣f̃ (x0) − fg1(x
0)

∣∣ > 1/2
) ≥ c,(4.9)

where c is some positive number depending only on K .

REMARK 4.1. If we apply this theorem with a small q , then we get the lower
bound for the result of Theorem 4.3. Maximizing ψn with respect to q leads to the
choice q ≈ K−γ /(γ+1)n(γ−1)/(2γ+2) and to the lower bound ψn ≈ (K/n)γ/(γ+1)

coinciding in order with the upper bound from Theorem 4.2.
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5. Implementation, simulation results and applications. This section dis-
cusses some numerical properties of the presented method.

5.1. Algorithmic complexity. Here we give some hints about the implementa-
tion of the proposed method and present an upper bound for its numerical com-
plexity.

Since the method is pointwise, the whole procedure is to be repeated at every
design point. Hence, the whole complexity is roughly n times the complexity of the
basic one-point procedure. The basic procedure requires one to compute the mean
of observations Yi over every window U ∈ Ud and V ∈ Vd , d ≤ D. To reduce
the numerical effort, it is reasonable to perform the following preprocessing step.
First, for each orientation (p, q) from Rs , define φ = φp,q = (−p,q)� and

eφ =
{

(signq,0)�, for |p| ≤ |q|,
(0,− signp)�, otherwise.

Next, compute a family of two-dimensional “distribution” functions Fφ(t, ρ) and
Nφ(t, ρ) for φ = φp,q , (p, q) ∈ Rs , with

Nφ(t, ρ) =
n∑

i=1

1(e�
φ Xi ≤ t, φ�Xi ≤ ρ),

Fφ(t, ρ) =
n∑

i=1

1(e�
φ Xi ≤ t, φ�Xi ≤ ρ)Yi.

It is easy to see that every such function can be computed by O(n) operations,
that is, the preprocessing step requires O(rsn) operations. As soon as all these
functions have been computed, for every central point x0, the mean of observations
over every U = Ud,(p,q) ∈ Ud can be found by a finite number of arithmetic
operations: with φ = φp,q ,

NU = Nφ(e�
φ x0 + dδ,φ�x0) − Nφ

(
e�
φ x0 − (d + 1)δ,φ�x0) − Seφ

,

where Seφ
= N−eφ

(e�−eφ
x0 − (d + 1)δ, e�

φ x0 + dδ) − N−eφ
(e�−eφ

x0 − (d + 1)δ,

e�
φ x0 − (d + 1)δ). The formulas for the sums

∑
U Yi can be obtained in the same

manner by replacing N(�)·,· with F (�)·,· .
Next, for every fixed U ∈ Ud , one can compute the mean of observations over

every subwindow V = U ∩ U ′ with U ′ ∈ Ud . Again, each subwindow requires
only a few arithmetic operations. Since we have at most D(rs + 1) windows in U
and Drs(rs +1)/2 testing windows in all the Vd ’s, the complexity of the procedure
at one point is O(Dr2

s ) leading to the complexity O(nDr2
s ) for the whole method.
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5.2. Parameter specification. The construction of the sets U and V(U)

depends upon two parameters, s and D. These parameters are introduced only
to control the complexity of the method and should be sufficiently large while still
providing computational feasibility. Our experience indicates that the procedure
delivers a reasonable quality of restoration with s ≥ 3 and D ≥ 8.

The adaptive procedure (more precisely, the test of homogeneity for a particular
V ⊂ U ) relies on the thresholds tU [see (2.1)] which are defined in (4.3) using two
further parameters, λ,µ. These parameters are similar to usual wavelet thresholds.
In particular, the choice of large λ or µ would lead to oversmoothing of the image
and a small value of λ + µ results in keeping too much noise in the restored
image. Our theoretical results only require that λ,µ fulfill the conditions (2.2)
and (2.3). For a practical data-driven choice some cross-validation technique can
be applied. Our experience with different artificial images indicates that the rule
λ + µ log (D + 1) ≈ 2.5 leads to a reasonable quality of estimation in almost all
cases with µ going to zero as the signal-to-noise ratio decreases.

5.3. Simulated results. The simulation results presented in this section are
based on an implementation of the above proposal. The artificial image shown
on the left side of Figure 2 possesses different image contrasts and varying
smoothness of edges. Using this image of 40 × 80 pixels we conducted a small
simulation study of size nsim = 250. Distorted images are generated by adding
i.i.d. standard white noise. This provides us with signal-to-noise ratios of 1, 2, 3
and 4 along the different edges. Smoothness of the boundaries varies along the
boundary of the ellipse in the center of the image.

We use the parameters s = 3 and D = 8. This means that we consider 32
possible orientations and the largest considered windows for each point contain
17 × 17 = 289 design points. The thresholds tU are taken due to (4.3) with λ = 2.5
and µ = 0. The central image in Figure 2 displays the pointwise mean absolute
error (MAE) estimated from the 250 simulations. The right image illustrates the
mean number of points in the sets Û (x) for each pixel x.

The simulation results are clearly in agreement with the theory provided in
Sections 3 and 4. Absolute errors decrease and the number of points in the selected
window increases with distance to the boundary. The quality of edge estimation
improves with increasing contrast. The absolute error of the estimate essentially
depends on the size of the ideal window U∗ and therefore on the smoothness
properties of the boundary. Note that large errors only occur in boundary points
inside the ellipse, in points where the boundary is not smooth (corners) and at
boundaries where the image contrast is small. Errors for the first two types of
points are due to high variability because of insufficient points within the ideal
window U∗ while the small image contrast leads to poor edge estimation, that is,
biased estimates, in the third case.

We have conducted the same simulation study with different settings of λ and µ,
finding very similar behavior. Keeping λ + µ log (D) constant we observe slightly
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FIG. 2. Simulation results: artificial image (left), pointwise mean absolute error (center) and mean
size of selected sets Û (right). Obtained from 250 simulations with D = 8, s = 3, λ = 2.5 and µ = 0.

better results near the boundaries for small λ and very marginal losses within large
regions.

We briefly illustrate the feasibility of the approach using a real life exam-
ple. Figure 3 (left) shows a log-transformed C-band, HH-polarization, synthetic
aperture radar (SAR) image of 250 × 250 pixels recorded by Dr. E. Attema

FIG. 3. Synthetic aperture radar (SAR) image (left) and estimate with D = 10, s = 5, λ = 2.5 and
µ = 0 (right).
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at the European Space Research and Technology Centre in Noordwijk, Nether-
lands. This example is also used in Glasbey and Horgan (1995). The image
shows an area near Thetford forest, England. The data can be obtained from
ftp://peipa.essex.ac.uk/ipa/pix/books/glasbey-horgan/.

The reconstruction generated with parameters D = 10, s = 5, λ = 2.5 and µ = 0
is given on the right side of Figure 3. The variance estimate σ̂ 2 = 230 has been
calculated from a residual image.

All structures visible in the original image, with the exception of thin objects in
the upper right, are maintained in the reconstruction. At the same time, efficient
noise reduction is obtained for large homogeneous regions. This clearly shows the
adaptiveness of our procedure.

6. Conclusions and outlook. The present paper offers a new approach
to image denoising based on the idea of pointwise adaptation. The proposed
procedure allows us to estimate a wide class of images. It is fully adaptive; that is,
no prior information about image structure is required to be specified. The results
claim near-optimal accuracy of the method in the sense of estimation near an edge
and inside a large homogeneous region. Reconstruction results for artificial and
real images are in agreement with the theory and illustrate the applicability of the
method.

Below we list some possibilities to extend the method.

Piecewise smooth images and relations with two-dimensional smoothing. The
method we discussed is oriented toward (nearly) piecewise constant images. This
assumption can be restrictive for some applications. Similarly to Spokoiny (1998),
one can handle piecewise smooth images using a local linear (or polynomial)
approximation and show that the resulting procedure provides both a spatially
adaptive estimation of the image function and rate optimal edge recovering.

“Thin” objects and nonsmooth edges. Another important structural assump-
tion for our method and results is that the image is composed of large regions with
smooth edges. It can be seen from our simulations and applications to real data
that the method leads to oversmoothing shape corners on edges and “thin” objects
like lines. Note, however, that the general approach is very flexible and the proce-
dure (more precisely, the set of windows) can be adjusted to detecting any specific
structure in the image like “thin” objects or breakpoints of boundary curves. The
related construction should be, of course, more involved.

Non-Gaussian errors. Our model equation (1.1) assumes Gaussian errors εi .
Since grey level images are usually coded by integers within a specified
range, for example, between 1 and 256, this assumption can be satisfied only
approximately. However, the assumption of Gaussian errors is reasonable in many
real applications, and it is usually confirmed by any model check. Our theoretical
results can easily be extended to sub-Gaussian errors satisfying some moment
conditions.
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Edge estimation and image classification. In many practical applications,
image denoising is used only as a preliminary step for further image analysis, for
example, classification or pattern recognition. This would require edge estimation
and image classification. Our approach can naturally be used for those purposes,
simply basing image classifications on the estimated image function. We consider
this issue to be an important topic for further research.

Relations to adaptive weights smoothing. Polzehl and Spokoiny (2000)
propose another method for image denoising called adaptive weights smoothing
(AWS). The underlying idea of AWS can be viewed as a generalization of the
pointwise adaptive method. For every point Xi the corresponding local model is
described by means of weights ωij assigned to every point Xj . The pointwise
adaptive choice of a window U corresponds to the special case with ωij =
1(Xj ∈ U). The value f (Xi) is estimated from the local model by weighted least
squares

f̂ (Xi) = arg inf
θ

∑
j

ωij |Yj − θ |2 =
∑

j ωijYj∑
j ωij

.(6.1)

The weights ωij are computed iteratively using the idea of structural adaptation.
The AWS procedure provides excellent numerical results. The theoretical proper-
ties of AWS are, because of its iterative nature, very difficult to study. However
one can expect that both methods possess similar optimality properties.

7. Proofs. In this section we present the proofs of Theorems 3.1–4.4.

7.1. Proof of Theorem 3.1. We begin with some preliminary results. The idea
of the proposed procedure is to select adaptively the largest window among the
considered class U which is contained in A. A necessary property of every such
procedure is to accept each window contained in A with a high probability. Our
first result shows that the previously described procedure possesses this property.

LEMMA 7.1. Let x0 ∈ A and let U ∈ U be such that U ⊆ A. If (2.2) holds
then

Pf (ρU = 1) ≤ α.

PROOF. Let some U with the property U ⊆ A be fixed and let V ∈ V(U). The
function f is constant on U and hence on V . Using the model equation (1.1) we
obtain

TU,V = σ−1
U,V

(
1

NV

∑
V

ξi − 1

NU

∑
U

ξi

)
.
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Obviously we have Ef TU,V = 0. Recall now that the factor σU,V was defined as
the standard deviation of the stochastic term of the difference f̂V − f̂U . Hence
Ef T 2

U,V = 1. Since TU,V is a linear combination of Gaussian variables ξi , TU,V

itself is Gaussian with zero mean and the unit variance, that is, standard normal.
Therefore, Pf (|TU,V | > tU) ≤ exp{−t2

U/2}. This and condition (2.2) allow
bounding the probability of rejecting U in the following way:

Pf (ρU = 1) ≤ ∑
V ∈V(U)

Pf (|TU,V | > tU ) ≤ CUe−t2
U/2 ≤ α. �

The next statement can be viewed as a complement to Lemma 7.1. We now
consider the case of a “bad” window containing two nonintersecting subwindows
V1 and V2 with different values of the image function f . The result says that such
a window will be rejected with a high probability.

LEMMA 7.2. Let U ∈ U and let V1,V2 ∈ V(U) be such that the function f is
constant within each Vj ,

f (x) = aj , x ∈ Vj , j = 1,2.

Denote sV1,V2 = σ
√

N−1
V1

+ N−1
V2

. If

|a1 − a2| ≥ (σU,V1 + σU,V2 + sV1,V2)tU(7.1)

with σ 2
U,V = σ 2(N−1

V − N−1
U ), then

Pf (ρU = 0) ≤ e−t2
U/2.

REMARK 7.1. In view of the trivial inequalities σU,V ≤ σN
−1/2
V and√

N−1
V1

+ N−1
V2

≤ N
−1/2
V1

+ N
−1/2
V2

, condition (7.1) holds if

|a1 − a2| ≥ 2σ tU
(
N

−1/2
V1

+ N
−1/2
V2

)
.(7.2)

PROOF OF LEMMA 7.2. By definition

Pf (ρU = 0) ≤ Pf (ρU,V1 = ρU,V2 = 0).

Next, the event {ρU,V = 0} means |TU,V | ≤ tU or equivalently |f̂U − f̂V | ≤
σU,V tU . This yields

|f̂V1 − f̂V2 | ≤ (σU,V1 + σU,V2)tU .

Now using the fact that V1 ∩ V2 = ∅, we get the following decomposition [cf. the
proof of Lemma 7.1]:

f̂V1 − f̂V2 = a1 − a2 + N−1
V1

∑
V1

ξi − N−1
V2

∑
V2

ξi = a1 − a2 + s1,2ζ1,2,
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where ζ1,2 is a standard normal random variable. Therefore,

Pf (ρU = 0) ≤ P
(|a1 − a2 + s1,2ζ1,2| ≤ (σU,V1 + σU,V2)tU

)
≤ P

(
s1,2|ζ1,2| ≥ |a1 − a2| − (σU,V1 + σU,V2)tU

)
.

Using the condition of the lemma, we obtain

Pf (ρU = 0) ≤ P(|ζ1,2| > tU ) ≤ e−t2
U/2

as required. �

We need one more technical result for the situation when a window U from U
is not entirely contained in A but there is its subwindow V which is in A.

LEMMA 7.3. Let x0 ∈ A, U ∈ U and let V from V(U) be such that V ⊆ A. If
ρU,V = 0, then the difference |f̂U − f (x0)| can be estimated in the following way:
for any z ≥ 1,

P
(|f̂U − f (x0)| > σN

−1/2
V (z + tU ), ρU,V = 0

) ≤ exp{−z2/2}.

PROOF. Let a be the image grey level within A. The event {ρU,V = 0} means
that |f̂U − f̂V | ≤ σU,V tU . Therefore,

|f̂U − a| ≤ |f̂U − f̂V | + |f̂V − a| ≤ σU,V tU + |f̂V − a|.
Next, σU,V ≤ σN

−1/2
V and, since V ⊂ A, ζ = σ−1N

1/2
V (f̂V − a) is a standard

Gaussian random variable; see the proof of Lemma 7.1. This gives

Pf

(|f̂U − f (x0)| > σN
−1/2
V (z + tU ), ρU,V = 0

) ≤ P(|ζ | > z) ≤ exp{−z2/2}
as required. �

Now we turn directly to the proof of Theorem 3.1. First of all, since U∗ is
contained in A, due to Lemma 7.1 the window U∗ will be rejected only with a
very small probability, namely Pf (ρU∗ = 1) ≤ α. This obviously implies

Pf

(∣∣f̂ (x0) − f (x0)
∣∣ > z,ρU∗ = 1

) ≤ Pf (ρU∗ = 1) ≤ α

and it suffices to consider only the situation when U∗ is accepted, that is,
ρU∗ = 0.

Let the window Û be selected by the procedure. Then ρÛ = 0 and, since
ρU∗ = 0, by definition of Û ,

NÛ ≥ NU∗.

Next, due to condition (U.2), there is a subwindow V in Û ∩ U∗ with at least
K design points which is contained in A.
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Let U′ = U′(U∗,A) be the class of all “bad” windows; see (3.1). By Lemma 7.2
(see also Remark 7.1) the probability of accepting a “bad” window Û is very small.
More precisely, Lemma 7.2 and condition (2.3) imply

Pf (Û ∈ U′) ≤ ∑
U∈U′

Pf (ρU = 0) ≤ ∑
U∈U′

e−t2
U/2 ≤ α,

and arguing as above we reduce our consideration to the case when Û is not “bad,”
that is, Û ∈ U′′ = U\U′. By condition (U.3), for each U ∈ U′′ with NU ≥ NU∗ ,
there is a V ∈ V(U) such that V ⊆ Û ∩ A and NV ≥ νNU∗ . We denote this V

by V (U). The definition of Û ensures that ρÛ,V = 0 and we conclude, using
Lemma 7.3 with z = t∗ = maxU /∈U′ tU and (2.3),

Pf

(∣∣f̂Û − f (x0)
∣∣ > 2σ(νNU∗)−1/2t∗

)
≤ 2α + ∑

U∈U′′
Pf

(∣∣f̂U − f (x0)
∣∣ > σN

−1/2
V (U)(tU + t∗), ρU,V (U) = 0

)
≤ 2α + ∑

U∈U′′
e−t2

U/2 ≤ 3α

and the assertion follows.

7.2. Proof of Theorem 4.2. The statement of this theorem is a direct applica-
tion of Theorem 3.1. The main problem is to verify that there is a window U∗
from Ud∗ which is contained in A. Then automatically, NU∗ ≥ Nd∗/2 ≥ 2(d∗)2

and the assertion follows from Theorem 3.1.
Let z = g′(x0

1). We know that |z| ≤ 1. To be more definite we suppose that
0 ≤ z ≤ 1. The case of a negative z can be considered in the same way. We denote
also

� = (4K∗/n)γ/(γ+1)P 1/(γ+1)

so that �d∗ = 4K∗δ; see (4.6).

LEMMA 7.4. For all x1 with |x1 − x0
1 | ≤ δd∗,

x0
2 + � + z(x1 − x0

1) ≤ g(x1).

PROOF. The smoothness condition g ∈ �(γ,P ) implies for all h > 0,

sup
|t|≤h

|g(x0
1 + t) − g(x0

1) − zt| ≤ Phγ .

Therefore,

g(x0
1 + t) ≥ g(x0

1) + zt − Phγ ≥ x0
2 + 2� + zt − Phγ
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for all |t| ≤ h. Now we apply h = δd∗ and the assertion follows because

Phγ = P (δd∗)γ ≤ P 1/(γ+1)(4K∗δ2)γ /γ+1 = �. �

To define the “ideal” window U∗, we utilize the following number-theoretical
result.

LEMMA 7.5. Let z be any number with 0 ≤ z ≤ 1. Then for every integer
number d there is a rational number p/q with 0 ≤ p < q ≤ d such that

|zq − p| ≤ (d + 1)−1.

PROOF. Suppose without loss of generality that z is an irrational number
from the interval [0,1]. Denote by (pk/qk)k≥1 the sequence of rational numbers
which gives the best rational approximation of z; see Khintchine (1949). It can be
defined as a sequence of continued fractions: We begin with r0 = z−1 and define
inductively nk = �rk−1�, rk = (rk−1 − nk)

−1 for k = 1,2, . . . ; then pk/qk can be
described as the following continued fraction:

pk

qk

= 1

n1 + 1
n2+··· 1

nk−1+ 1
nk

.

This approximation has the following properties [Khintchine (1949), Sections 3,4]:∣∣∣∣z − pk

qk

∣∣∣∣ ≤ 1

qkqk+1
.(7.3)

Given a number d , denote

k∗ = max{k :qk ≤ d}
so that qk∗+1 ≥ d + 1. By (7.3), |zqk∗ − pk∗ | ≤ 1/qk∗+1 ≤ 1/(d + 1) and the
assertion follows. �

An application of this lemma with z = g′(x0
1) and d = d∗ leads to a pair

(p, q) ∈ Rd∗ with |zq − p| ≤ 1/(d∗ + 1). We define U∗ = Ud∗,(p,q); see (4.1).
The result of the theorem will follow from Theorem 3.1 if we check that U∗ ⊂ A,
that is, U∗ lies below the curve G. To this end, we have to bound the quantity
ρd,(p,q).

LEMMA 7.6. For every d and each (p, q) ∈ Rs with |p| ≤ |q| ≤ d ,

|ρd,(p,q)| ≤ 4Kdδq/d.

Moreover, if d/|q| ≥ Kd , then ρd,(p,q) = 0.
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PROOF. It suffices to consider the case with 0 ≤ p ≤ q ≤ d and to show that
there exist at least Kd different grid points of the form x = (x0

1 + n1δ, x
0
2 + n2δ)

with 0 < n1 ≤ d , 0 < n2 ≤ d such that

−2qKd/d ≤ pn1 − qn2 ≤ 0.

Define k0 = [d/q]. There exist at least 2k0 + 1 grid points on the line Lp,q =
{x :p(x1 − x0

1) − q(x2 − x0
2) = 0} within the square Qd and therefore, the total

number of grid points on and under the line Lp,q is at least k0 + (2d + 1)2/2. If
k0 ≥ Kd , then condition (4.1) is fulfilled with ρd,(p,q) = 0. If k0 < Kd , then set
(p0, q0) = (p, q) and define successfully for k = 1,2, . . . ,

zk = pk−1/qk−1 + 1/(qk−1d),

and (pk, qk) as a pair from Rd with |zkqk − pk| ≤ 1/(d + 1) due to Lemma 7.5.
The equality (pk−1, qk−1) = (pk, qk) is impossible since |zkqk−1 −pk−1| = 1/d >

1/(d + 1). Therefore, pk/qk > pk−1/qk−1, but

pk/qk − pk−1/qk−1 = 1/(qk−1d) + pk/qk − zk < 1/(dqk−1) + 1/(dqk).

We also set mk = [d/qk] and continue as previously until m0 + m1 + · · · +
mk ≥ Kd .

The grid point X(k,�) = (x0
1 + �qkδ, x

0
2 + �pkδ) with � = 1, . . . ,mk lies

inside Qd and it holds that p�qk − q�pk < 0 and

|p�qk − q�pk| ≤ qmkqk|p/q − pk/qk| ≤ qd

k∑
i=1

|pi−1/qi−1 − pi/qi|

≤ q

d

k∑
i=1

(d/qi−1 + d/qi) ≤ q

d

k∑
i=1

(mi−1 + mi + 2) ≤ 4qKd/d.

Therefore, there exist at least m0 +· · ·+md ≥ Kd grid points inside Qd satisfying
the required conditions and the assertion follows. �

Let z = g′(x0
1). Consider the split of the square Qd∗ by the line passing through

the point x0 with the slope z. Since s ≥ 2d∗ + 1, there exists a pair (p, q) ∈ Rs

defining the same split (containing the same collection of the grid points
inside Qd∗ ). Therefore, without loss of generality one may suppose that z = p/q .

Lemmas 7.4 and 7.6 imply for x = (x1, x2) ∈ Ud∗,(p,q) in view of 4Kdδ ≤
4K∗δ = �d∗,

x2 ≤ x0
2 + (x1 − x0

1)p/q + ρd∗,(p,q)/q ≤ x0
2 + (x1 − x0

1)z + 4δKd/d
∗

≤ x0
2 + (x1 − x0

1)z + � ≤ g(x1),

that is, x ∈ A and hence, U∗ ⊂ A.
Since the set A has the structure of a boundary fragment within the square

|x − x0| ≤ ε, condition (U.3) for the above U∗ is clearly satisfied with ν = 0.5.
Since also NU∗ ≥ 2(d∗)2, an application of Theorem 3.1 leads exactly to the
desired statement.
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7.3. Proof of Theorem 4.3. The proof of this result can be derived along the
same line as the proof of Theorem 4.2 and is even simpler. Indeed, we may take
the line L passing through x0 with the angle z = p/q . Then this line passes also
through the design points X(k) = (x0

1 + kq, x0
2 + kp) for all integer k. The interval

between the points X(−K) and X(K) on this line contains at least 2K + 1 design
points and therefore the window Ud,L with d = Kq is in U. The condition (4.7)
provides that this window is also in A and we end similarly to Theorem 4.2.

7.4. Proof of Theorem 4.4. Different methods for obtaining the lower bound
results in edge estimation are presented in Korostelev and Tsybakov (1993). We
cannot apply these methods directly since they are developed for a random design
and we operate with the regular design. However, we follow the same route and we
therefore present only a sketch of the proof, concentrating on the points specific
for our situation.

Let some γ from the interval (1,2] and some integers K,D be fixed. Let also
z = p/q be a unreducible rational number with p ≤ q ≤ D. Set

h = min
{
qKδ, (δ/q)1/γ }

,

where δ = n−1/2.
Let now φ be a smooth function satisfying the conditions:

(a) φ is symmetric and nonnegative;
(b) φ(0) = supt φ(t) and 0 < φ(0) ≤ 1;
(c) φ is compactly supported on [−1,1];
(d) φ belongs to the Hölder ball �(γ,1).

Denote

φh(t) = hγ φ(t/h).

Then (d) ensures that φh ∈ �(γ,1) for all h > 0. Next, set

g1(x1) = (x1 − x0
1)p/q − φh(0)/2,

g2(x2) = (x1 − x0
1)p/q + φh(0)/2 − φh(x1 − x0

1).

Each function gk determines the boundary fragment Ak with the edge Gk ,

Ak = {x = (x1, x2) :x2 ≤ gk(x1)},
Gk = {x = (x1, x2) :x2 = gk(x1)}, k = 1,2.

Set also

B = A2\A1 = {x = (x1, x2) :g1(x1) < x2 ≤ g2(x1)}.
Below we make use of the following technical assertion.

LEMMA 7.7. The following assertions hold:
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(i) g1, g2 ∈ �(γ,1) and g′
1(x

0
1) = g′

2(x
0
1) = q/p;

(ii) |g(x0
1) − x0

2 | ≥ κhγ for some κ > 0 depending on φ only;
(iii) the number N of design points in the set B is at most 2K − 1,

N = #{Xi ∈ B} ≤ 2K − 1.

PROOF. Assertions (i) and (ii) are obvious. We comment on (iii).
Let L be the line passing through x0 with the angle z; that is, L is described by

the equation x2 − x0
2 = z(x1 − x0

1). We fix two points x− = (x0
1 −Kqδ,x0

2 −Kpδ)

and x+ = (x0
1 + Kqδ,x0

2 + Kpδ) on this line. Since h ≤ qKδ, the interval passes
exactly through 2K − 1 design points. We intend to show that there are no other
design points in B , which implies the assertion in view of property (c) of φ.

Let x = (x1, x2) be a design point with coordinates (x0
1 + q ′δ, x0

2 + p′δ) such
that p′/q ′ �= p/q . To verify that x /∈ B , it suffices to check that

|p′δ − q ′δp/q| > |φh(q
′δ) − φh(0)/2|.

Since p′/q ′ �= p/q , then

|p′ − q ′p/q| = q−1|p′q − q ′p| ≥ q−1

and hence |p′δ−q ′δp/q| ≥ δ/q . In view of (b), we have φh(x1 −x0
1 ) ≤ φh(0) ≤ hγ

and by definition of h we have hγ ≤ δ/q and (iii) follows. �

Denote fk(x) = 1(x /∈ Ak) = 1(x2 > gk(x1)) for x = (x1, x2), k = 1,2. Note
that f1(x

0) = 0 and f2(x
0) = 1. Now for any estimator f̃ (x0),

R := P1
(∣∣f̃ (x0)

∣∣ > 1/2
) + P2

(∣∣f̃ (x0) − 1
∣∣ > 1/2

)
,

= E1
{
1
(∣∣f̃ (x0)

∣∣ > 1/2
) + Z1

(∣∣f̃ (x0) − 1
∣∣ > 1/2

)}
,

(7.4)

where Ek stands for Egk
, k = 1,2, and Z = dP2/dP1. It is easy to show that the

optimal decision f̃ (x0) for the latter two-point problem is of the form f̃ (x0) =
1(Z ≥ 1) and hence

R ≥ E11(Z ≥ 1) = P1(Z ≥ 1).

Next, making use of the model equation (1.1) we get the following representation
of the likelihood Z:

Z = exp

{
σ−2

∑
B

ξi − Nσ−2

2

}
,

where the sum over B means the sum over design points Xi falling in B and the
random errors ξi are normal N (0, σ 2). If we set

ζ = 1

σ
√

N

∑
B

ξi,
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then Lemma 7.7(ii) and (iii) implies that ζ is under P1 a standard normal random
variable and

P1(Z > 1) = P1(exp{σ−1
√

Nζ − σ−2N/2} > 1)

= P1(ζ > σ−1
√

N/2)

≤ P1(ζ > σ−1
√

K/2)

= 1 − �(σ−1
√

K/2) > 0,

where � is the standard normal cdf and the required assertion follows.
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