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Summary . We consider the problem of statistical inference for functional and dynamic Mag-
netic Resonance Imaging (MRI). A new approach is proposed which extends the adaptive
weights smoothing (AWS) procedure from Polzehl and Spokoiny (2000) originally designed for
image denoising. We demonstrate how the AWS method can be applied for time series of
images, which typically occur in functional and dynamic MRI. It is shown how signal detection
in functional MRI and analysis of dynamic MRI can benefit from spatially adaptive smoothing.
The performance of the procedure is illustrated using real and simulated data.

1. Introduction

Polzehl and Spokoiny (2000) introduced a new locally adaptive method for two and three
dimensional image processing which we refer to as adaptive weights smoothing (AWS). This
method is especially fruitful in situations when the underlying image contains large homoge-
neous regions with sharp edges. We show how this idea can be applied to more complicated
problems. We especially consider experiments in which several images of the same object
are obtained. This is e.g. the case if time series of images are recorded or if images are
observed with different multispectral characteristics. We present a description of two classes
of such problems arising in Magnetic Resonance Imaging (MRI): functional and dynamic
MRI. A detailed description of two fMRI and dMRI examples is given. Section 2 discusses
an extension of the original AWS procedure which is referred to as vector AWS and which
allows for multi-image data. In Section 3 we present the results obtained by the vector AWS
procedures for the examples given in Section 1. We also test the performance of vector AWS
for simulated data and illustrate its properties by comparison with other methods.

1.1. Signal identification in functional MRI

Functional Magnetic Resonance Imaging (fMRI) is a relatively new non-invasive technique
used to study human brain function. The experiments conducted in this context have
usually the following design. A time series of two or three dimensional MR images is recorded
while a patient is exposed to some activating signal. This may be a series of visual or acoustic
stimuli depending on the problem studied. This stimulation causes neural activity in some
regions of the brain. Identification of these ’activated’ regions is an important step in the
evaluation of the experiment. For an excellent introduction into fMRI see e.g. Lange (1996)
or Lange and Zeger (1997).

The fMRI methodology is based on the following physical phenomenon. Neural activity
is expected to cause both a deoxygenation of blood and an increase of blood flow in vessels
within the activated regions of the cortex. This results in a change of the concentration
of paramagnetic deoxyhaemoglobin in this regions. This change can be observed as an
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increase of the MR signal providing the necessary contrast in the experiment. The effect is
called ’Blood Oxygenation Level Dependent Contrast’ (BOLD). See again Lange and Zeger
(1997) for details. Due to the indirect method of measurement we can expect the observed
signal to be related to the activation by some transformation involving smooth changes in
shape (convolution with the Hemodynamic response function) and a delay in time, see e.g.
Rajapakse et al. (1998) or Genovese (2000).

Typical experiments give series of 60 - 1000 images with a spatial resolution of 2–4 mm.
Simple situations involve periodic activation with about 8-20 images in one period and
several periods observed. More involved problems often require experiments based on an
irregular design of the stimulus. Images are recorded at equidistant times, with typical time
differences between images of some seconds. The data, for one slice of the brain, therefore
have the following structure: for every voxel i with coordinate Xi , we observe the gray
value Yi,t which can be represented as a sum of the induced signal ft(Xi) and the random
error εi,t , that is,

Yi,t = ft(Xi) + εi,t t = 1, . . . , T (1)

with Eεi,t = 0 and Var εi,t = σ2
i , E and Var standing for expectation and variance,

respectively. Often random errors are assumed to be independent and approximately Gaus-
sian. Short time correlation of errors are to be expected in case of short time intervals.
Error variance may be assumed homogeneous over time, but seems to be inhomogeneous in
space due to the underlying anatomic structure, blood flow or properties of the MR device.

Example 1 (Periodic functional MRI). We will use an example based on a data
set kindly provided by F. Kruggel from the Max-Plank-Institute of Cognitive Neuroscience
at Leipzig, Germany to illustrate and discuss our approach. The data consist of time series
of 912 Magnetic Resonance images of four slices of the brain recorded every two seconds.
Data are given as integer gray values ranging from 0 to 19611. The fMRI series have been
corrected for artifacts and body movement. Additionally high resolution MRI of the same
slices are given.

Fig. 1. Functional MRI data

The left plot in Figure 1 shows the 100th image of the time series from the third slice.
Spatial resolution is about 2mm × 4mm. The patient is exposed to a periodic acoustic
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signal, with no activation for the first 48 time intervals (upper right plot). The lower right
of Figure 1 shows characteristic observed time series for voxel from both activated and non-
activated regions. The data are generated using simple periodic experimental conditions.

1.2. Dynamic MRI

Dynamic MRI is used to study tissue perfusion within different organs of the body. A
contrast agent (CA) is given to the patient and a temporal series of images is acquired
using fast MR imaging techniques. The images are recorded over a suitable time interval
starting before the injection of the CA and covering the expected impact of the CA. Each
image is obtained using the same MR parameters and focusing on the same object (location).
We therefore have at each voxel a time series of MR intensities reflecting the effect of the
CA over time at the given location. See e.g. Sebastiani (1997) or Sebastiani et. al. (1996)
for a more detailed presentation. Due to the short acquisition times of some hundreds of
milliseconds spatial resolution is low and the observed noise level is high.

Example 2 (Dynamic MRI). Sebastiani et. al. (1996) use a data set consisting of 30
images of a slice of the brain of a rat recorded in intervals of 0.6 seconds. A part of the
brain is known to be damaged. The effect of the contrast agent can be observed starting
with the 7th image.

Fig. 2. Central part of first image from a dMRI series of the brain of a rat (upper plot) and character-
istic time series from both normal and pathologic areas (lower plot)

Figure 2 displays the central part of the 10th image (left) together with characteristic
time series (right) from both pathologic (dotted) areas and normal (dashed) tissue. In
regions with full functionality the observed time series are expected to show a sharp decrease
in MR intensity from image 7 to 10 and to nearly return to the initial values at the end of
the observation period, i.e. possessing a distinguished minimum. In pathologic areas the
minimum, or peak, is either inferior or not observed. This means that both peak delay,
i.e. the location of the minimum, and peak intensity, i.e. the difference between the size
of the minimum and the end value of the time series, can be used to discriminate between
pathologic and normal tissue.
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1.3. Traditional approaches

Traditional approaches to analyze functional neuroimaging data involve three steps. The
first consists of several preprocessing tasks, including e.g. correction for body movement,
artifact detection and removal. In a second step a Statistical Parametric Map (SPM) is
constructed. This simply means that at each voxel a regression of the observed time series
with an expected signal is performed. See e.g. Lange and Zeger (1997) or Genovese (2000)
on how to model the expected signal. Specifying time delay and shape of the hemodynamic
response this leads to a linear model, corresponding to the experimental design, and there-
fore provides a value of an F-statistic, indicating the significance of the observed signal. In
a third step the theory of maxima of random fields, see e.g. Adler (1981), is used to deter-
mine significant signals. The simplest procedure of this sort is to test the hypothesis of no
signal at each voxel independently. This corresponds to a multiple comparison problem and
requires high thresholds which leads to a low sensitivity in detecting an activated region.

Better methods for detecting the presence of a signal in a specified region use the fact
that the spatial extent of the regions of interest is often significantly larger than the spatial
resolution. Therefore spatial smoothing, using e.g. a Gaussian kernel, of the images can be
used to improve the sensitivity of the analysis. Adaptive approaches, e.g. the scale-space
approach of Siegmund and Worsley (1995), use the maximum of a smoothed random field
and different scales to detect the presence of an activation. Related techniques are based
on the expected Euler characteristic of excursion sets of random fields, see e.g. Worsley
(1994) and Worsley (1995). These methods focus on the decision whether there is a signal
of a predefined shape in a certain region or not, and they are very well designed to answer
just this question. Another method using Markov Random Fields (MRF) to model spatial
connectivity is proposed e.g. in Descombes and Kruggel (1999).

Standard techniques in dynamic MRI again focus on voxel by voxel analysis of the time
series. This includes computation of characteristics of the time series based on parametric
regression, see e.g. Rosen et.al. (1990), or the analysis of temporal correlation to an
expected time series, see e.g. Rogowska and Wolf (1992). Sebastiani et. al. (1996) propose
to use nonparametric smoothing in time to estimate some parameters of the time series
like location of the minimum or extend of the minimum which then can be used for voxel
characterization. Here we meet the same problem as in functional MRI: multiple testing
approaches require high thresholds which leads to a poor quality of decisions. Sebastiani
et. al. (1996) suggested to use spatial filtering of the single images in a preprocessing step
for an additional noise reduction.

2. Adaptive spatio-temporal smoothing

In contrast to the traditional approaches the method proposed in this paper will not concen-
trate on detecting a signal of a given form, but on generating a spatial structure correspond-
ing to similarities and significant differences between time series in neighboring locations.
This will provide information on both identification of the shape of signals and of the shape
and spatial extend of regions the signals can be allocated in.

The procedure which will be discussed further originates from Polzehl and Spokoiny
(2000). There a new locally adaptive smoothing procedure was offered which is especially
designed for estimation of a regression function that allows for a reasonable piecewise con-
stant approximation. Our approach to functional and dynamic MRI uses a multivariate
generalization of this method.
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At the first step, as usual in functional and dynamic MRI analysis, some data prepro-
cessing (transformation) is carried out, see e.g. Holmes and Friston (1997), Chapter 3.4,
Lange and Zeger (1997) or Genovese (2000). This transformation will include removal of
anatomic structure and slowly varying trends in time, and an aggregation in time to reduce
the dimensionality of the problem.

After transformation the regions of interest are supposed to have some spatial extension,
showing a similar behavior of the transformed data, e.g. similar shape, time delay and size of
the observed signal, within the region. The adaptive weights approach introduced in Polzehl
and Spokoiny (2000) can now be used to employ these similarities in order to identify the
regions of activation.

2.1. Data aggregation

Adaptive weights smoothing as many other smoothing methods heavily relies to comparing
estimated signals in neighboring locations. It is well known, that tests based on differences
of vectors in high dimensional spaces, i.e. of two time series in neighboring voxels, are highly
inefficient, see e.g. Fan and Lin (1998). If additional information is available, like smooth-
ness of the curves, periodicity or shape of the expected signal, this information can be used
to increase the power of the test. One way to achieve this is to base the test on aggregated
data like wavelet or Fourier coefficients for each curve. Which aggregation method or which
coefficients of an orthogonal series expansion to use mainly depends on the properties of
the curves. Heuristically the method has to be chosen to reduce the dimensionality of the
problem while preserving the main information about the characteristics of the curves.

Let g` = g`(t) , ` = 1, . . . , L , be a set of functions satisfying

1
T

T∑
t=1

g`(t) g`′(t) = δ``′ . (2)

A specific example is produced by a set of Fourier or wavelet basis functions. The corre-
sponding coefficients for every curve ft(Xi) with t = 1, . . . , T are defined by

βi,` =
1
T

T∑
t=1

ft(Xi) g`(t).

Using the observations Yi,t , following the model (1), these values can be estimated by the
empirical coefficients

Bi,` =
1
T

T∑
t=1

Yi,t g`(t).

A reasonable test for the hypothesis that two curves (vectors) f(Xi) and f(Xj) coincide,
can be based on these empirical coefficients. Assuming independent and time homogeneous
noise εi,t in (1), one obviously has

Var Bi,` =
1

T 2

T∑
t=1

σ2
i |g`(t)|2 =

1
T

σ2
i
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so that, if an estimate σ̂i of σi is available, this value can be estimated by σ̂2
i /T . In case

of known correlation in the time series an appropriate adjustment in (3) should be used.
Now a statistic, which is usually referred to as Neyman smooth test, Neyman (1937),

can be defined as

Ti,j = T

L∑
`=1

|Bi,` −Bj,`|2

σ̂2
i

(3)

allowing to compare the time series in voxel Xi and Xj .
The choice of the set of basis functions g` is very important for the quality of the

resulting estimates. For some specific examples prior information is available which helps
to select this set in a reasonable way, see e.g. the examples below.

Alternatively parametric models for the hemodynamic response, see e.g. Lange and
Zeger (1997) or Genovese (2000), can be used for the aggregation step.

2.1.1. Functional MRI (Example 1)
Having in mind the periodic structure of the fMRI experiment we aggregate the data using
a two term Fourier approximation with basis functions

g1(t) =
√

2 sin(2πt/p) and g2(t) =
√

2 cos(2πt/p)

leading to empirical Fourier coefficients Bi,l, l = 1, 2 for each voxel i. This reduces the time
series information to amplitude and time delay of a sine function with appropriate periodic-
ity, i.e. similarity of induced signals is measured in terms of these two characteristics. This
also eliminates information corresponding to anatomic structure and slowly varying trends.

2.1.2. Dynamic MRI Example
For the dynamic MRI example in a preliminary transformation step we remove the effect
of the anatomic structure subtracting a baseline estimate obtained from the first 6 im-
ages. These images do not reflect any effect from the contrast agent. This provides the
transformed time series

Zi,t = Yi,t − 1/6
6∑

s=1

Yi,s, t = 7, . . . , 30.

An appropriate set of orthonormal basis functions gl(t) can be chosen recalling the expected
form of the time series and keeping in mind the different behavior within pathologic areas.
We use the following elementary set of basic functions,

g1(t) = 1√
3
It∈(6,9], g2(t) = 1√

3
It∈(9,12], g3(t) = 1√

6
It∈(12,18],

g4(t) = 1√
6
It∈(18,24], g5(t) = 1√

6
It∈(24,30],

with IA denoting the indicator function on set A. This simply means aggregation is done
averaging observations from certain time intervals, giving empirical coefficients

Bi,` =
30∑

t=7

Zi,tg`(t).
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The first two intervals are chosen smaller to reflect the expected higher variation of the
curves at times 7–12. The minimum of the curves is expected within the second interval for
normal tissue, while for pathologic areas the peak will be in one of the last intervals. Peak
intensity can be easily estimated from the aggregated data, see Section 3.2 for more details.

2.2. Variance estimation

The special design of functional and dynamic MRI allows voxelwise variance estimating at
every voxel Xi from the corresponding time series {Yi,t}t∈1,...,T . Below we describe one
possible approach for our fMRI and dMRI examples.

2.2.1. Functional MRI Example
In case of the periodic fMRI experiment it is natural to base the estimate of the error
variance in voxel Xi on residuals with respect to a nonparametric estimate of the periodic
induced signal in Xi:

σ̂2
i = C ∗ IQR2(Yi,t − Si,t), t = 1, . . . , T,

with Si,t being a periodic signal with period length p and

Si,t =
p

T

T/p∑
m=1

Yi,t+(m−1)p, t = 1, . . . , p. (4)

The use of the inter-quartile range (IQR), with constant C = T/(T − p)/1.352, gives a
robust variance estimate.

In general the method of variance estimation has to take account of possible temporal
correlation. We estimated a mean first order correlation of .06 for this example. The bias
of the variance caused by this correlation is relatively small. We therefore did not correct
for this bias, although such a correction could be incorporated into the estimate.

2.2.2. Dynamic MRI Example
A variance estimate can be based on residuals of the Zi,. with respect to a local linear
regression estimate Ẑi,. (bandwidth h = 5), see e.g. Fan and Gijbels (1996), of the time
series in each voxel. It is expected that the contrast agent results in a sharp decrease of the
observed signal in the beginning and then in an increase in a smooth way, see Figure 2. This
means that residuals up to t = 13 may contain a non negligible bias and should not be used
to estimate the variance. We therefore use only the residuals Zi,t − Ẑi,t for t = 14, . . . , 30
for variance estimation which leads to the estimate

σ̂2
i = C ∗Var (Zi,14:30 − Ẑi,14:30),

with a constant C adjusting for the loss in degrees of freedom by local linear regression. (In
our example C = 1.28 .)

Voxelwise variance estimates show no significant variance inhomogeneity. We therefore
assume a homogeneous variance in this example. The resulting variance estimate is

σ̂2 =
1
n

n∑
i=1

σ̂2
i .
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Tests for time correlation based on the residuals Zi,t − Ẑi,t show no significant time corre-
lation in this example.

2.3. Vector adaptive weights smoothing

Adaptive spatial smoothing will be performed using the multivariate regression model

Bi = β(Xi) + εi , i = 1, . . . , n, Xi ∈ IRd, Bi ∈ IRL

which is the result of transformation (preprocessing) of the original data Yi . Here X1, . . . , Xn

are design points which are assumed to be equispaced in the unit cube [0, 1]d . At each point
Xi we observe the IRL -valued transformed regression function β(Xi) with some additive
error εi ∈ IRL . We suppose the errors εi to be independent zero mean random vectors
with unknown distribution which may depend on location and

Eεi = 0 ∈ IRL, Var εi = diag{si , ` = 1, . . . , L}. (5)

In our examples the data Bi,` , i = 1, . . . , n , for fixed ` , correspond to the image of the
`-th empirical coefficients and si = σ2

i /T . The variance si of the errors εi,` is unknown
but its estimate ŝi can be computed, as described in Section 2.2, as ŝi = σ̂2

i /T .
This is exactly the situation one meets in image analysis, i.e. adaptive smoothing meth-

ods for image processing can be applied here. An overview on such methods is fare beyond
the scope of this paper, we refer to Polzehl and Spokoiny (2000) for some discussion.

Our approach is based on the structural assumption that the regression function β is
piecewise constant. This means that the unit cube [0, 1]d can be split into disjoint regions
A1, . . . , AM and

β(x) =
M∑

m=1

bmI{x∈Am} (6)

where b1, . . . , bM ∈ IRL are some vectors and I stands for the indicator function. The
regions Am , the vectors bm and even the total number of regions M are unknown. This
assumption is valid for an arbitrary series of L images, since each region Am may consist
of one point. However, if the structural assumption is approximately valid with an M
essentially smaller than n , i.e. with sufficiently large regions Am , it can be used to get
improved estimates of β(x).

Such kind of modeling is reasonable if, e.g., the target of the statistical analysis is a
vector (curve) characterization, i.e. classification into ’activated / non-activated’ regions in
the fMRI example or characterization as ’pathologic / normal’ in the dMRI example.

The problem of estimating the function β of the form (6) can be treated as follows: to
recover the values b1, . . . , bM and to decide for each point Xi in which region Am it is.
To explain the idea of the method, we imagine for a moment that the regions A1, . . . , AM

are known and only the vectors bm are to be estimated. This leads to obvious estimates

b̂m =
1

NAm

∑
Xi∈Am

Bi

where NAm
denotes the number of design points in Am , m = 1, . . . ,M . We can simply

set β̂(Xi) equal to the mean b̂m of Yj ’s over the region Am containing Xi . Therefore,
given a partition A1, . . . , AM , we can easily estimate the underlying function β .
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Next we consider the inverse situation when the partition A1, . . . , AM is unknown but
we are given a pilot estimate β̂(0) of the L -variate regression function β . It is nat-
ural to use this estimate to recover for every point Xi the corresponding region Am .
Namely, for each pair of points Xi and Xj , we may decide on the basis of the estimates
β̂(0)(Xi) and β̂(0)(Xj) whether they are in the same region. If the estimate β̂(0)(Xi)
is significantly different from the estimate β̂(0)(Xj) these two points are almost definitely
in different regions. Significance can be measured by performing a test for the hypothesis
β(Xi) = β(Xj) based on a test statistic Ti,j , see (3). Let λ be an appropriate quantile of
the distribution of Ti,j . For each design point Xi , the set Â(Xi) with

Â(Xi) = {Xj : Ti,j ≤ λ}

estimates the region Am containing Xi . Using these estimated regions, we may define the
new estimate β̂(1) by

β̂(1)(Xi) =

∑
Xj∈Â(Xi)

Bj

NÂ(Xi)

=

∑
j

w
(1)
i,j Bj∑

j

w
(1)
i,j

with

w
(1)
i,j = I (Ti,j ≤ λ) (7)

and NS being the cardinality of the set S . Then we can repeat this calculation using β̂(1)

in place of β̂(0) and so on.
Our adaptive procedure mostly realizes this idea with two modifications. First of all,

at each iteration k , we restrict the estimated region Â(Xi) to some local neighborhood
U (k)(Xi) of the point Xi such that the size of U (k)(Xi) grows with k . This means that
we calculate the initial pilot estimate β̂(0)(Xi) by averaging observations from a small
neighborhood U (0)(Xi) of the point Xi (in many situations it can be the observation Bi

itself). Then we recalculate this estimate by averaging over a larger neighborhood U (1)(Xi)
but now using only data points where there are no essential differences between values of the
initial estimates. We continue in this way, increasing each time the considered neighborhood
U (k)(Xi) , that is, for each k ≥ 1 ,

β̂(k)(Xi) =

∑
Xj∈U(k)(Xi)

w
(k)
i,j Bj∑

Xj∈U(k)(Xi)

w
(k)
i,j

(8)

where the weights w
(k)
i,j are computed by comparison of the estimates β̂(k−1)(Xi) and

β̂(k−1)(Xj) . Secondly we use continuous weights w
(k)
i,j instead of zero-one weights in (7).

For a much more detailed discussion of the basic idea of AWS we refer to Polzehl and
Spokoiny (2000). We now present the formal description of the method.

Using a series of neighborhood U (k)(Xi) , k = 1, k∗ with U (k−1)(Xi) ⊂ U (k)(Xi) and a
threshold value λ we get the following Vector Adaptive Weights Smoothing procedure:
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Initialization: For each voxel Xi , calculate initial estimates β̂i,` of βi,` and its variance
as

β̂
(0)
i,` =

1
N (0)(Xi)

∑
Xj∈U(0)(Xi)

Bj,` and v̂
(0)
i =

1
|N (0)(Xi)|2

∑
Xj∈U(0)(Xi)

ŝj

and set k = 1.
Adaptation: Compute weights w

(k)
i,j as

w
(k)
i,j = K

 1
λ

L∑
`=1

(
β̂

(k−1)
i,` − β̂

(k−1)
j,`

)2

v̂
(k−1)
i


for all points Xj in U (k)(Xi), with K denoting a monotone decreasing function, e.g.
K(x) = exp(−x). Compute new estimates of βi,` and Var βi,` as

β̂
(k)
i,` =

∑
Xj∈U(k)(Xi)

w
(k)
i,j Bj,`∑

Xj∈U(k)(Xi)

w
(k)
i,j

and v̂
(k)
i =

∑
Xj∈U(k)(Xi)

∣∣∣w(k)
i,j

∣∣∣2 ŝj( ∑
Xj∈U(k)(Xi)

w
(k)
i,j

)2

for all Xi.
Control: Under the condition that β̂

(k)
i,` is unbiased we can compute a L -dimensional

confidence region that contains βi with probability 1− α as

CI
(k)
` =

(
β̂

(k)
i,` − η

√
v̂
(k)
i,` , β̂

(k)
i,` + η

√
v̂
(k)
i,`

)
=
(
CL

(k)
` , CU

(k)
`

)
where η2 is an appropriate quantile of the distribution of the maximum of L χ2

1 random
variables.

The new estimate β̂
(k)
i is accepted if, for each m with m < k and every ` ≤ L , the

` -th estimate β̂
(k)
i,` belongs to the interval (CL

(m)
` , CU

(m)
` ) , that is,

|β̂(k)
i,` − β̂

(m)
i,` | ≤ η

√
v̂
(m)
i,`

keeping the previous estimates otherwise.

Stopping: Stop if k = k∗ or if β̂
(k)
i = β̂

(k−1)
i for all i , otherwise increase k by 1 and

continue with the adaptation step.

The parameters of the procedure are chosen using the same considerations as for the
original AWS. The set of neighborhoods U (k)(Xi) should contain an exponentially (in k)
growing number of voxel, see Polzehl and Spokoiny (2000) or Section 3.3 below for a pro-
posal. The parameter λ controlling type I error of a test for the hypothesis of two voxel
to belong to the same region, can be chosen as a quantile of a χ2

L distribution. The tests
have to be performed at a very high significance level, our experience suggesting to use
a 0.995-quantile or an even larger value. A suitable value for η2 is the 0.999-quantile of
the distribution of a maximum of L χ2

1-distributed random variables. For a comprehensive
discussion about the choice of the parameters λ and η see Polzehl and Spokoiny (2000).
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3. Application to the examples and simulations results

We first demonstrate how the AWS procedure described in Section 2 can be applied to the
examples from functional and dynamic MRI:

3.1. Signal detection in fMRI

Let Bi be the transformed data for the fMRI example from Section 1.1. It is natural to
base the signal detection and identification on the results of the previously described AWS
procedure, namely, on the estimates β̂i,` = β̂

(k∗)
i,` obtained at the last iteration of the AWS.

To exclude insignificant signals we can compare the estimates β̂i,` with the correspond-
ing standard deviation v̂

1/2
i,` which leads to the statistic

Qi =
L∑

l=1

β̂2
i,`

v̂i,`
. (9)

The AWS procedure often provides a significant noise reduction so that even very small
differences from a zero mean are detected. These may be due to systematic effects caused
by measuring and preprocessing, making it sometimes reasonable to show only regions where
the activated signal is sufficiently large. For that purpose, we calculate the values

Ri =
L∑

l=1

β̂2
i,`. (10)

A signal will be detected in voxel i if Qi exceeds a given threshold τ and if Ri is larger than
some constant C.

The parameter τ has the same meaning as the parameter λ in the AWS procedure.
We recommend to chose the value of τ as a proper quantile of the χ2

L distribution.
To recover the shape of the induced signal in each voxel where we detect an activation

we perform a spatial smoothing of the mean periodic signal Si,t from (4) using the adaptive
weights wi,j = w

(k∗)
i,j coming from the last step of the AWS procedure.

f̂t(Xi) =
∑

j

wi,jSi,t

/∑
j

wi,j , t = 1, . . . , p (11)

Signal detection is based on the statistics Qi and Ri from (9) and (10). Figure 3 illustrates
the output of our detection procedure. The central plot shows the intensity

√
Ri of all signals

detected using the threshold τ = χ2
2,0.9995 ≈ 15.2 for Qi and meeting Ri > C = 1250. This

choice excludes signals with amplitude smaller than 50 . Our tools allow to select a signal
interactively from the intensity map. The left plot shows all detected signals, possessing a
correlation larger than 0.6 with a signal selected in the central plot, mapped into the high
resolution anatomical image. The right plot contains the graphs of f̂t(Xi)− Ȳi for all voxel
marked in the left plot, Ȳi = T−1

∑T
t=1 Yi,t being the mean of the observations Yi,t at Xi .

An effect often observed in fMRI experiments with many observed periods of activation
is a change in the shape and size of the induced (BOLD) signal over time. This can be
explained e.g. by learning or by getting accustomed to the stimulus. Our approach easily
allows to incorporate this by selecting an appropriate aggregation of the time series. In
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Fig. 3. Signal detection with AWS. Central plot: intensity map of detected signals. Left plot: Position
of selected signals in the corresponding high resolution image. Right plot: mean periodic signals in
selected voxel.

order to test for time inhomogeneity in our example we divide the time series into three
segments of length 288 and compute empirical Fourier coefficients for each part as

Bi,` = 1/288
48+`∗288∑

t=49+(l−1)∗288

Yi,tg1(t) and Bi,`+3 = 1/288
48+`∗288∑

t=49+(l−1)∗288

Yi,tg2(t),

for ` = 1, 2, 3 .

Fig. 4. Signal detection with AWS for possibly inhomogeneous situations. Central plot: intensity map
of detected signals. Left plot: Position of selected signals in the corresponding high resolution image.
Right plot: mean periodic signals (from three segments) in selected voxel.

We now carry out the adaptive weights smoothing based on six Fourier coefficients.
Signal detection based on Qi and Ri with threshold τ = χ2

6,.9995 ≈ 24 and C = 3750 gives
the results shown in Figure 4.
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The curves displayed in the right plot of Figure 4 are now generated stringing the mean
periodic curves f̂t(Xi)− Ȳi from the three segments together. The findings are essentially
the same as in the previous setting indicating no time heterogeneity.

3.2. Analysis of dynamic MRI

We start with data aggregation and variance estimation as suggested in Sections 2.1.2 and
2.2. Next the vector AWS procedure from Section 2.3 is carried out. The final estimates of
the target coefficients βi,` are denoted by β̂i,` .

For the example, a natural characteristic of every curve ft(Xi) at the location Xi are
the peak delay Di and the peak intensity ∆i defined as

Di = arg min
t

ft(Xi), ∆i = min
t

ft(Xi)− fT (Xi).

They can be approximated by the introduced coefficients βi,` :

Di ≈ arg min
`

βi,`

c`
and ∆i ≈ min

`

βi,`

c`
− βi,5

c5
,

with c` =
√

3 for ` = 1, 2, and c` =
√

6 for ` = 3, 4 and 5, respectively.
This naturally leads to the following statistics for curve characterization:

D̂i = arg min
`

β̂i,`

c`
and ∆̂i = min

l

β̂i,`

c`
− β̂i,5

c5
.

Fig. 5. Peak delay (upper row) and peak intensity (lower row) maps obtained from the original time
series (left column) and the AWS estimates (right column).

Figure 5 illustrates the results based either on the D̂i ’s or on the ∆̂i ’s. The left two
images show a peak delay map calculated from the original data and from the AWS estimates
β̂i,`, respectively. The two right images give the corresponding peak intensity maps. Voxel
outside the region of interest are masked (white).

Note that adaptive spatial smoothing using AWS clearly improves the interpretability
of the peak delay map, allowing for a discrimination between pathologic and normal tis-
sue. The peak intensity maps also show the effect of spatial smoothing by AWS. See also
Sebastiani et. al. (1996) for results using other approaches.
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3.3. Simulation

We conducted a small simulation study to illustrate the performance of our approach in
idealized situations. Presenting the results we focus on the following features of the pro-
cedure: probability to estimate a signal in regions with no activation and probability of a
wrong classification near the boundary of the activated regions. The latter can be treated
as the quality of estimating the shape of the region. We also compared our procedure with
three others to illustrate the strengths of our method and the differences to traditional
approaches.

The simulation setup is as follows. We generated a time series of T = 64 images, with
each image containing 50 × 50 voxel. We arranged periodic signals in 9 regions of varying
shape and size. The signal is of the form

ft(Xi) = ci

(
0.45 sin

(2πt

p

)
− 0.6 cos

(2πt

p

))
, t = 1, . . . , 64

with period p = 8 and ci being 1, 2/3 and 4/9 for the different regions and equal to zero
for voxel outside these regions. Figure 6 illustrates the form of the signals (one period) as

Fig. 6. Simulation experiment, periodic signals (left plot) and their location (right image)

well as their location, with the magnitude of signals decreasing from top to bottom and the
size of regions increasing from left to right in the displayed image. We then added standard
Gaussian white noise in each voxel.

We apply our vector AWS algorithm with the following specifications. We use two
Fourier coefficients, i.e. basis functions g1(t) =

√
2 sin(2πt/p) and g2(t) =

√
2 cos(2πt/p) ,

which is appropriate in this situation. AWS is performed with λ = 10.6 corresponding to
a 0.995-quantile of χ2

2, η = 4 and the sequence of neighborhoods Uk specified as circles
with radii {0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.4, 5, 6, 7, 8} ( k∗ = 13 ). Error variances in each voxel
are estimated from the data as described in Section 2.2.

We conducted 200 simulation experiments to estimate the pointwise probability of signal
detection using our AWS approach. A signal is detected solely on the base of the statistics
Qi from (9) with threshold τ = χ2

2,.9995 ≈ 15.2. This provides a mean voxelwise detection
error of 0.0068 for voxel with a distance of more than 2δ from activated regions, with δ
being the distance between neighboring voxel centers, i.e.

P (signal detected in Xi|d(Xi) > 2δ) ≤ 0.0068, (12)
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Table 1. Mean probability of signal detection in activated regions

Method left central right
top central bottom top central bottom top central bottom

AWS .982 .887 .577 .983 .890 .617 .973 .875 .743
Raw data .850 .404 .127 .846 .402 .117 .855 .381 .121

smoothed (0.5δ) .992 .752 .288 .992 .751 .280 .988 .743 .312
smoothed (1δ) 1.000 .983 .734 1.000 .977 .727 .999 .958 .802

Table 2. Mean type I error of signal detection in a neighborhood (distance of ≤ 2δ) of the activated
regions.

Method left central right
top central bottom top central bottom top central bottom

AWS .003 .021 .051 .004 .027 .091 .014 .037 .074
Raw data .008 .011 .007 .008 .007 .006 .004 .006 .007

smoothed (0.5δ) .016 .014 .007 .015 .010 .007 .015 .011 .007
smoothed (1δ) .453 .185 .058 .524 .256 .086 .485 .249 .097

where d(Xi) denotes the distance from Xi to the closest activated region.
For a comparison we give the results for three alternative approaches. The first alter-

native is based on the raw data, i.e. a signal is detected in voxel i if
∑L

`=1 B2
i,`/si exceeds

a threshold C1, with C1 again selected to provide (12). The second and third alternative
involve a preliminary spatial smoothing of the Bi,`/

√
si using a bivariate Gaussian kernel

with bandwidths h = 0.5δ and h = 1δ, respectively. Signal detection is performed as before
with thresholds C2 and C3 chosen in analogy to C1.

All methods we considered have the same type I error outside the regions of activation
and we now look at the performance of each method near the boundary of the activated
regions. We present separately the results describing the probability of detecting an existing
activation (which can be naturally interpreted as the power of the test on the presence of
signal), see Table 1, and the probability of an incorrect detection of a signal in a point
without activation (type I error), see Table 2.

Table 3 provides mean probabilities of an incorrect decision, i.e. either detecting a
signal at a point with no activation or non-detecting a signal from the activated region.
The results are given for 9 subregions, containing 12 × 12 voxel each, of the whole image.
The results clearly show a better overall behaviour of AWS. Signal detection without spatial
smoothing suffers from high threshold values, resulting in problems to detect weak signals.
Non-adaptive spatial smoothing improves signal detection within the activated regions but
reduces regional specificity.

Table 3. Mean probability of incorrect signal detection ( for subregions of 12x12 voxel).

Method left central right over
top central bottom top central bottom top central bottom all

AWS .003 .015 .047 .004 .021 .066 .010 .028 .054 .028
Raw data .017 .048 .067 .022 .069 .097 .024 .092 .128 .063

smoothed (0.5δ) .008 .025 .056 .008 .034 .081 .008 .043 .102 .041
smoothed (1δ) .062 .030 .031 .093 .051 .047 .103 .061 .051 .059
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Fig. 7. Pointwise signal detection probabilities obtained from 200 simulations

Fig. 8. Detected signals for a typical data set from the simulation study using AWS (upper left), raw
data (upper right) and spatial smoothing (lower row) using comparable thresholds.

Figure 7 illustrates the pointwise probabilities of signal detection obtained from 200
simulation runs. Figure 8 provides the detection results for a typical time series of images,
i.e. with a medium number of ill classified voxel for all approaches, from our simulations.

4. Conclusions

The present paper offers a data driven approach to some statistical problems in functional
and dynamic MRI like signal detection, identification of activated regions and characteriza-
tion of curves. Large homogeneous regions with similar curves are in favor of the procedure.
We show how, for functional and dynamic MRI, the original problem can be transformed to
meet such an assumption. The simulated results and the examples demonstrate the capa-
bilities of the proposed procedure allowing both for detecting small signals and for precise
estimation of its location. All these issues are in agreement with theoretical properties
of the AWS procedure introduced in Polzehl and Spokoiny (2000). Theoretical properties
of the method especially for applications to multiple data sets will be subject of further
investigations. Application is not restricted to MRI. We expect the method to be use-
ful whenever series of spatially registered images occur, one example being multispectral
satellite imaging.
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