
Adaptive weights smoothing with appliations to image restora-tionJ�org Polzehl 1 and Vladimir G. SpokoinyWeierstrass Institute for Applied Analysis and Stohastis, Berlin, GermanySummary: We propose a new method of nonparametri estimation whih is based on loallyonstant smoothing with an adaptive hoie of weights for every pair of data-points. Sometheoretial properties of the proedure are investigated. Then we demonstrate the performaneof the method on some simulated univariate and bivariate examples and ompare it withother nonparametri methods. Finally we disuss appliations of this proedure to magnetiresonane and satellite imaging.Keywords: adaptive smoothing; image restoration; Change point and edge estimation; magnetiresonane imaging, satellite imaging.1 IntrodutionIn this paper we introdue a new loally adaptive method for two and three dimensional imageproessing, i.e. image denoising and image enhanement. This method an be applied if theunderlying struture an be well approximated by a loal onstant funtion. Suh images meetin several �elds, e.g. from satellite imaging, x-rays, ultrasound or magneti resonane imag-ing. Usually these images will su�er from distortions, leading to the problem of reovering theunderlying struture of the image. Often interesting strutures orrespond to disontinuitiesin the image, i.e. proedures used in this ontext should both redue distortions as well aspreserve disontinuities. Classial nonparametri regression proedures are based on smooth-ness assumptions about the underlying funtion whih are not ful�lled in the neighborhoodof disontinuities. This leads to so alled oversmoothing of the funtion in suh regions. Inunivariate situations several proposals exist how to overome this problem, see e.g. M�uller(1992), Spekman (1994), Wu and Chu (1993) for proedures based on hange point detetion,or Banerjee and Rosenfeld (1993) for maximum a posteriori estimation.The generalization of this idea to the multidimensional ase leads to the edge estimationproblem. This problem is studied in details in Korostelev and Tsybakov (1993) where theoptimal rate of edge estimation is established for the ase of an image with the struture of a1Address for orrespondene: Weierstrass Institute for Applied Analysis and Stohastis, Mohrenstr. 39,10117 Berlin, Germany. E-mail: polzehl�wias-berlin.de1



boundary fragment. The reader an �nd further referenes there. Unfortunately the proposedproedures are based on some quite restritive assumptions like the struture of a boundaryfragment. Another inonveniene is that the methods and results apply only to the ase of arandom or jittered design whih rarely meets in pratie.A large lass of methods ommonly used in this ontext is based on Markov random �eldmodels (MRF), see e.g. Besag (1986), Geman (1990) or Winkler (1995). A onurrent ap-proah, used espeially in image segmentation, is based on reursive partitioning and mergingproedures. This lass ontains CART, see Breiman et al. (1984), or the region based seg-mentation method of Bose and O'Sullivan (1997). Wu (1993) disussed similar ideas based ontesting homogeneity for subimages.There exist other methods whih estimate the image diretly without estimating edgesbut whih still pay speial attention to the quality of estimation near edges. We mentionmodal regression, see e.g. Sott (1992), the nonlinear Gaussian �lter, see Godtliebsen et al.(1997), the M-smoother of Chu et al. (1998) and di�erent proposals based on wavelets, see e.g.Nason and Silverman (1994), Engel (1994) or Donoho (1997) and referenes there. One moreapproah in this diretion was proposed reently in Polzehl and Spokoiny (1998). The methodan be viewed as a multidimensional analog of the proedure from Spokoiny (1998) assignedto estimation of a univariate funtion allowing jumps or jumps of derivatives. The idea is toestimate the regression funtion separately at eah design point using a loally onstant (orloally polynomial) modeling with an adaptive hoie of a neighborhood (a window) from a largelass of neighborhoods in whih the applied model �ts well the data. An inonveniene of thisapproah is that the lass of onsidered windows has to be really large to get a reasonable qualityof estimation. This makes the proedure diÆult to realize and omputationally intensive.In this paper we modify this idea. Namely we do not speify the lass of onsideredwindows but we determine in a data-driven way the form of the neighborhood around thepoint of interest x in whih the funtion f an be well approximated by a onstant. A similaridea was disussed in Tsybakov (1989) but the proposed method uses essentially some priorinformation about the struture of the image and about the image values within eah region.Our method, whih in the sequel will be referred to as adaptive weights smoothing (AWS),is fully adaptive, that is, no prior information is required. It is important to remark that themethod does not depend on the dimensionality of the image and an be applied to smooththree and even higher dimensional images as well.The AWS proedure is assigned for image estimation and an in general be applied to anarbitrary image. However, suessful appliations of the proposed method an be expeted insituations when the image ontains large homogeneous regions, not neessary onneted and2



of may be ompliated shape.The further disussion and the preise desription of the proedure are plaed in Setion 2.In Setion 3 we study some theoretial properties of our method. Setion 4 provides a simulativeomparison with several alternative proedures for univariate and bivariate situations. FinallySetion 5 desribes an appliation of our method to Magneti Resonane Imaging and SatelliteImaging.1.1 ModelThe model an be desribed asYi = f(Xi) + "i Xi 2 IRd; E"i = 0; Var "i = �2: (1)Here X1; : : : ;Xn are design points whih are usually assumed to be equispaed in the unitube [0; 1℄d . E and Var denote expetation and variane, respetively. At eah point Xi weobserve the regression funtion f(Xi) with some additive error "i . We suppose the errors "i tobe independent identially distributed zero mean random variables with unknown distribution.The regression funtion f is supposed pieewise onstant. This means that the unit ube[0; 1℄d an be split into disjoint regions A1; : : : ; AM andf(x) = MXm=1 am1(x 2 Am) (2)where a1; : : : ; aM are some numbers, e.g. gray levels in an image, and 1 stands for the indiatorfuntion. Obviously the funtion f is onstant within eah region Am . The regions Am , thevalues am and even the total number of regions M are unknown. Clearly suh an assumptionon the underlying struture is valid for an arbitrary image, sine eah region Am may onsistof one point. However, an appliation of the proedure proposed below seems to be reasonablefor situations where the underlying image really ontains large homogeneous regions. Whenstudying theoretial properties of the method proposed we impose some additional assumptionson the size of these regions.2 Adaptive weights smoothingIn this setion we present our estimation proedure.We start with some heuristi explanation.2.1 PreliminariesThe problem of estimating the funtion f of the form (2) an be treated as follows: to reoverthe values a1; : : : ; aM and to deide for eah point Xi in whih region Am it is.3



To explain the idea of the method, we imagine for a moment that the regions A1; : : : ; AMare known and only the values am are to be estimated. This leads to obvious estimatesbam = 1NAm XXi2Am Yiwhere NAm denotes the number of design points in Am , m = 1; : : : ;M . Then we simply setbf(Xi) equal to the mean bam of Yj 's over the region Am ontaining Xi . Therefore, given apartition A1; : : : ; AM , we an easily estimate the underlying funtion f .Next we onsider the inverse situation when the partition A1; : : : ; AM is unknown but weare given a pilot estimate bf0 of the regression funtion f . It is natural to use this estimate toreover for every point Xi the orresponding region Am . Namely, for eah pair of points Xiand Xj , we know, if the value j bf0(Xi)� bf0(Xj)j is large ompared with its standard deviationthen these two points are almost de�nitely in di�erent regions. We therefore, for every designpoint Xi , estimate the region Am ontaining Xi bybA(Xi) = fXj : j bf0(Xi)� bf0(Xj)j � �b�0(Xi)gwhere b�0(Xi) is the standard deviation of bf0(Xi) and � is some number.Using these estimated regions, we de�ne a new estimate bf1 bybf1(Xi) = PXj2 bA(Xi)YjN bA(Xi) = Pj w1(Xi;Xj)YjPj w1(Xi;Xj)with w1(Xi;Xj) = 1�j bf0(Xi)� bf0(Xj)j � �b�0(Xi)� : (3)We an repeat this alulation using bf1 in plae of bf0 and so on.Our adaptive proedure mostly realizes this idea with two modi�ations. First of all, ateah iteration k , we restrit the estimated region bA(Xi) to some loal neighborhood Uk(Xi)of the point Xi suh that the size of Uk(Xi) grows with k . Seondly we use ontinuousweights wk(Xi;Xj) instead of zero-one weights in (3).Finally, to stabilize the proedure, we also add a ontrol step, omparing the new estimatewith the estimates from preeding iterations.Now we present a formal explanation of the method starting with a desription of the inputparameters of the algorithm. Our reommendations for a default hoie of these parametersand for a data-driven seletion are given in Setion 3.3 and 3.4.2.2 Parameters of the proedureThe most important element of the proedure is an inreasing sequene of neighborhoodsaround eah design point. 4



For eah design point x , we assume to be given a sequene of neighborhoods Uk(x); k =0; 1; : : : ;1 with Uk(x) � Uk+1(x) ontaining x. One reasonable hoie of these neighborhoodsUk(x) is Uk(x) = fXi : jXi � xj � dkg with dk being a sequene of inreasing radii. Anotherpossibility is to de�ne Uk(x) as the set of the Nk nearest neighbors of x, where Nk is aninreasing sequene of integers. In the sequel, Nk(x) denotes the number of design points Xiin Uk(x) , Nk(x) = #fXi 2 Uk(x)g:Parameter k� denotes the maximal index of neighborhoods used.The proedure involves numerial parameters � and � whih are used as ritial valuesfor tests entering in the adaptation and the ontrol steps.The role of these parameters andreommendations for their hoie are disussed in Setion 3.3 and 3.4.We �x a univariate kernel K satisfying usual onditions: it is a symmetri smooth funtionwith the maximum at zero and noninreasing on the positive semiaxis. We assume the kernelto be integrable, i.e. R10 K(x)dx <1.In most appliations the noise variane �2 is unknown and an estimate b�2 an be obtainedfrom the data, see e.g. Gasser et al. (1986) or Wu and Chu (1993) for di�erent proposals. Ageneral form of suh estimates is b�2 = 1n nXi=1 be2iwhere pseudo-residuals bei are de�ned on the base of the di�erene Yi� bf(Xi) with a loal re-gression estimate bf(Xi) . Pseudo-residuals an also be de�ned using di�erenes of observations.In the univariate ase one an use either bei = p2(Yi � Yi�1) or bei = p6 (�Yi�1 + 2Yi � Yi+1)and in the two-dimensional asebei1;i2 = p6 f2Yi1;i2 � Yi1+1;i2 � Yi1;i2+1g orbei1;i2 = p20 f4Yi1;i2 � (Yi1+1;i2 + Yi1�1;i2 + Yi1;i2+1 + Yi1;i2�1)g :In ase of a ompliated underlying image struture, an estimate based on the inter-quartile-range b� = (t75% � t25%)=1:35, with t25% and t75% being the :25- and :75-quantile of theempirial distribution of the pseudo-residuals, is preferable.For some further disussion onerning the variane estimation, see Setion 3.4.2.3 The proedureWe begin with an initialization. 5



Initialization: For eah point Xi , we alulate initial estimates of f(Xi) and Var bf(Xi) asbf0(Xi) = 1N0(Xi) XXj2U0(Xi) Yjbs20(Xi) = b�2N0(Xi)and set k = 1. Here b�2 is the variane estimate de�ned previously.Adaptation: Compute weights wk(Xi;Xj) aswk(Xi;Xj) = K  bfk�1(Xi)� bfk�1(Xj)�bsk�1(Xi) ! (4)for all points Xj in Uk(Xi) and ompute new estimates of fk(Xi) and Var bfk(Xi) asbfk(Xi) = PXj2Uk(Xi)wk(Xi;Xj)YjPXj2Uk(Xi)wk(Xi;Xj) ; (5)bs2k(Xi) = b�2 PXj2Uk(Xi)w2k(Xi;Xj) PXj2Uk(Xi)wk(Xi;Xj)!2 (6)for all Xi.Control: After the estimate bfk(Xi) is omputed, we ompare it with the previous estimatesbfk0(Xi) at the same point Xi for all k0 < k . If there is at least one index k0 < k suh that��� bfk(Xi)� bfk0(Xi)��� > �bsk0(Xi)then we do not aept bfk(Xi) and keep the estimates bfk�1(Xi) from the preeding iteration.This means that in suh a situation we replae bfk(Xi) and bsk(Xi) by bfk�1(Xi) and bsk�1(Xi),respetively. It is worth mentioning that this ontrol step alone an be used to onstrut anadaptive estimate, see Lepski, Mammen and Spokoiny (1997) or Lepski and Spokoiny (1997).Stopping: Stop if k = k� or if bfk(Xi) = bfk�1(Xi) for all i , otherwise inrease k by 1 andontinue with the adaptation step.3 Properties and omputational detailsBeause of the iterative and omplex nature of the algorithm theoretial properties are ex-tremely diÆult to obtain in a general situation. We onsider two spei� ases whih are ofthe most interest. The �rst situation orresponds to estimation inside a large homogeneousregion and the seond one to estimation near an edge.6



For simpliity we assume homogeneous Gaussian noise with known variane �2 . We alsoonsider the uniform kernel K(x) = 1(jxj � 1) . All properties an be easily extended to thease of a ontinuous kernel K .3.1 Estimation inside a homogeneous regionWe study an idealized situation where the underlying image funtion is onstant, f(x) � a .For simpliity we also assume that eah neighborhood Uk(Xi) ontains exatly Nk designpoints where Nk is a presribed inreasing sequene. We aim to show that in this situationour estimate is, with a very large probability, also a onstant and the deviations bf(Xi)�a areof order n�1=2 .In the next statement we need an estimate for the sum N1+ : : :+Nk� . Sine the sequeneNk typially grows exponentially, this sum is of order Nk� . Also we assume that Nk� = n ,that is, we stop when the largest possible neighborhood is taken. This leads to the boundN1 + : : :+Nk� � Cn (7)with some C > 0 .Proposition 3.1 Let f(x) � a and �2 � (2 + Æ) log(n) with some Æ > 0 . Then for allk � k� and all pairs Xi and Xj 2 UP (wk(Xi;Xj) = 0 for some k � k� and i 6= j) � k�with k� = expf��2=4gn2C=2 + expf��2=2gnk�(k� + 1)=2and C is from (7).We defer the proof of this and the next proposition to the appendix.The quantity k� is small provided that �2 � (8+Æ) log n and �2 � (2+Æ) log n with someonstant Æ > 0 . Then with a probability of at least 1 � k� all estimates bfk�(Xi) oinidewith the mean values of all observations Yj .3.2 The ase of many regionsNow we disuss the situation when there are more than one regions. To simplify the presenta-tion, we suppose that there are only two large regions A1 and A2 in the image and hene thefuntion f has only two values a1 and a2 . The result allows straightforward generalizationto the ase of many regions. 7



By � = ja1 � a2j we denote the image ontrast. We also denote by AÆm the set of pointsXi in eah region Am for whih the initial neighborhood U0(Xi) belongs ompletely to Am ,AÆm = fXi : U0(Xi) � Amg; m = 1; 2:We intend to show that if the image ontrast is suÆiently large ompared to the noise levelthen we typially get wk(Xi1 ;Xi2) = 0 for all pairs (Xi1 ;Xi2) with Xi1 2 AÆ1 and Xi2 2 AÆ2and for all k � 1 .Proposition 3.2 Let f(x) = a11(x 2 A1) + a21(x 2 A2) . Then it holdswk(Xi;Xj) = 0; 8Xi 2 AÆ1; Xj 2 AÆ2; and 8k � k�;with a probability greater or equal to1� 0:5Cn2 exp�����1N1=20 ja1 � a2j � 2��2 =4�where C is from (7) and N0 is the number of points in the initial neighborhood.We know from Proposition 3.1 that a proper hoie of �2 is (2 + Æ) log(n) . Therefore, if��1N1=20 ja1 � a2j > 4�the probability of wk(Xi;Xj) = 0 for any two points Xi;Xj from the same region an bebounded by n2 expf��2g . If n suÆiently large, this probability is again very small.The results of Propositions 3.1 and 3.2 lead to the following onlusion. Let a point Xilie inside a large region and let for all j 2 Uk+1(Xi) the neighborhood Uk(Xj) belong to thesame region. Then aording to Proposition 3.1 all weights wk+1(Xi;Xj) are 1 and hene theestimate efk+1(Xi) is very lose to the mean of observations over Uk+1(Xi) . Suh an estimate isunbiased and its variane is of order �2=Nk+1(Xi) . Moreover, the ontrol step guarantees thatfurther iterations do not lead to an essential derease of the auray of estimation. Therefore,inside every large region, the estimate should perform quite well.At the same time, for points near an edge, the probability to assign a weight w(Xi;Xj)of 1 for two points Xi;Xj from di�erent regions ould be quite high. This leads to a largerbias in estimating the image funtion espeially when the image ontrast is small omparedto the standard deviation of the errors, see Proposition 3.2. It an be also shown that theproedure delivers the rate optimal quality of edge reognition in the sense disussed in Polzehland Spokoiny (1998). This issue is also in agreement with simulation results, see the nextsetions.For weights equal 0 or 1 and for a partiular iteration k the estimated regions of homogeneitybA(Xi) are restrited to a loal neighborhood Uk(Xi). Therefore these regions strongly depend8



on the point Xi and do not yield a segmentation of the data domain. But, if the noise is smallompared to the image ontrast, then due to Proposition 3.1 and 3.2, for a point Xi lying in aregion Am , we get with a high probability at k -th iteration bAk(Xi) = Am \ Uk(Xi) . In suhase, for suÆiently large k� , we have Am \ Uk�(Xi) = Am . Hene bAk(Xi) = Am for all Xiin Am . For a large noise, these arguments do not apply. Both issues are again in agreementwith our simulation results, see Setion 4.3.3 Computational issuesNow we disuss how the parameters of the proedure an be seleted and indiate one possibledefault hoie used in our simulations. Although this hoie involves some arbitrariness weobserve that moderate hanges of the parameters lead to essentially similar results. A way fora data-driven parameter hoie, used in our examples, is also presented.Size of U0: The size N0(Xi) is important in the ontext of image reognition and edgeestimation, see Proposition 3.2. For the ases with ontrast-to-noise ratio �=� > 2 , the hoieN0 = 1 an be advised. Here � is the (minimal) image ontrast,� = minfjam � am0 j; m 6= m0; am 6= am0g:For smaller ontrast-to-noise ratio N0 = 5 or N0 = 9 may be desirable.Sequene of neighborhoods Uk: The sequene should satisfy the onditions Xi 2 U0(Xi)and Uk�1(Xi) � Uk(Xi). It an be reommended to selet sequenes Uk(Xi) in a way that thenumbers Nk(Xi) of points in every suh neighborhood grow exponentially with k.In our simulation study and all examples we use neighborhoods Uk(x) = fXi : jXi � xj �dkg with dk 2 f0 : 8; 2 � (5 : 12); 4 � (7 : 12); 8 � (7 : 12); 16 � (7 : 10); 32 � (6 : 8)g, k� = 35 forunivariate situations, and dk 2 f(0 : 8)=2; 4:4; 5 : 10; 2 � (6 : 10)g, k� = 19 for images ((a : b)denotes a sequene of integers from a to b). This hoie gives Nk� = 513 and Nk� = 1257 pointsin the largest neighborhood for univariate and bivariate situations, respetively.k�: The value of k�, and therefore Nk�, is mainly determined by the degree of loality thatone wishes to maintain and the omputational e�ort one is able to spend. Inreasing k� allowsfor additional variane redution in large homogeneous regions but usually does not hangethe estimates where loal struture is present. A data-driven hoie of k� is disussed inSetion 3.4.K: Our default hoie for the kernel is K(x) = exp (�x2) .�: The hoie of this parameter mostly determines the properties of the proedure. Inreasingthe parameter redues the probability of detetion of arti�ial jumps in a homogeneous situation9



(error of �rst kind) and inreases the probability not to detet an existing disontinuity (errorof seond kind), see Propositions 3.1 and 3.2 . Our default hoie, for the above K, is � = 3 .A data-driven hoie of � is disussed in Setion 3.4.�: The ontrol step prevents the algorithm from loosing previously deteted disontinuities,see Proposition 3.2. Suitable values for � are between 3 and 4. We use � = 4 in all ases.Remark: There is no magi behind the reommended hoie � � 3 and � � 4 . We illus-trate this on the simplest situation orresponding to the �rst step of the algorithm assumingU0(Xi) = fXig for all i . Then the initial estimates ef0(Xi) oinide with the observationsYi . Therefore, if points Xi and Xj belong to the same region Am , then the di�ereneef0(Xj) � ef0(Xi) oinides with the di�erenes "i � "j of the orresponding stohasti errors,see (1). If these errors are normally N (0; �2) -distributed and independent, then the di�ereneis also normal N (0; 2�2) . Calulating the weight w1(Xi;Xj) we ompare this di�erene with��0(Xi) = �� . The parameter � is hosen to provide an essentially large probability of theevent fj"i�"jj � ��g . The value � = 3 orresponds to the probability 2�(p9=2)�1 � 0:966 ,� being the standard normal CDF (note that similar arguments hold for further iterations as-suming that the neighborhoods Uk(Xi) and Uk(Xj) are still inside the region Am ). Of ourselarger values of � lead to even larger probability of suh an event. But, when � inreases, thequality of estimation near an edge dereases. The hoie � = 3 provides a reasonable om-promise for most ases. However, we keep a possibility to tune this parameter in some spei�situations depending on what is important in eah partiular ase. In many ases (espeiallyfor a large ontrast-to-noise ratio) the hoie of � between 2.8 and 4 does not hange the resultof the proedure signi�antly. If the noise is omparable with the image ontrast this hoiebeomes more ruial: inreasing � dereases the probability to detet a disontinuity andtherefore results in oversmoothing while dereasing � may lead to a random segmentation ofhomogeneous regions. A Bootstrap-based hoie of the parameters � and k� is disussed inSetion 3.4.The iterative algorithm introdued in Setion 2 is omputationally intensive but still fea-sible. The number of operations neessary to proess an image ontaining n pixel is of orderO(nNk�) if the sequene Nk� is exponentially growing. We illustrate the speed of the algorithmgiving the CPU-Time reported for the MR-images analyzed in Setion 5.1. We implementedAWS using Fortran for the time ritial parts of the algorithm and Splus as an user interfae.On a 255 Mhz DEC-Alpha Workstation the CPU-Time (User) taken by our implementationusing the default parameter settings is 87 s for an image of 256�256 pixel and 383 s for animage of 512�512 pixel. For many appliations this an be redued signi�antly by using a10



smaller value of k�.3.4 Bootstrap-based hoie of the parameters of the proedureThe performane of the proposed proedure strongly depends on the hoie of the involvedparameters, espeially on � and k� . Our simulated results and appliations to real data showthat there is no one universal optimal hoie for all situations, and the quality of the proedurean be improved by tuning these parameters.Another important point is onneted to the quality of variane estimation, see Setion 2.2.It turns out that the proposed variane estimator overestimates the true variane in ase ofa ompliated underlying struture, e.g. in MRI appliations. The use of b�2 in plae of �2is learly equivalent to replaing � by �b�=� whih leads again to the question of an optimalhoie of parameter � for eah partiular example. Below we disuss one possibility for adata-driven hoie of these parameters based on the resampling (bootstrap) idea.The underlying idea is that the proper hoie is onneted to the omplexity of the imageand this omplexity is reovered by our estimate with the default hoie of these parameters.Then we an resample the data using the estimate as a referene image and selet a proper setof parameters for this known referene. Finally we apply this bootstrap-based hoie to theoriginal data. This proedure may be iterated by repeating the resampling step with the newestimate. The proedure reads as follows:Run with default parameter set. AWS is used with the default parameters � = 3 , � = 4and k� = 19 . This provides us with an estimate of the image bf(Xi) and two sumsW1(Xi) =Xj w(Xi;Xj); and W2(Xi) =Xj w2(Xi;Xj);based on the weights w(Xi;Xj) used at the last iteration of AWS, all of this for every i =1; : : : ; n . Clearly W1(Xi) =W2(Xi) for the ase of zero-one weights.Variane estimation on the base of bf . Next we realulate the noise variane using theestimate bf . The representation bf(Xi) = 1W1(Xi)Pj w(Xi;Xj)Yj with w(Xi;Xi) = 1 leads tothe variane estimate(��)2 = 1n nXi=1 �Yi � bf(Xi)�2 W 21 (Xi)W2(Xi) +W1(Xi)2 � 2W1(Xi) :Resampling. We draw new bootstrap samples Y �i;m using the model Y �i;m = bf(Xi) + ��"�i;mwhere "�i;m are independent standard normal errors. Here m denotes the number of thebootstrap sample, m = 1; : : : ;M . 11



Parameter optimization. For every onsidered set of parameters �; k� , and for every boot-strap sample Y �1;m; : : : ; Y �n;m , we arry over the AWS proedure resulting in the image estimatef�m and ompute the quality riterion1M MXm=1 nXi=1  � bf(Xi)� f�m(Xi)�where  is some loss funtion, e.g. a quantile funtion, or  (t) = jtj or  (t) = t2 . Parametersare hosen minimizing this riterion w.r.t. � and k�.Sine our riterion is de�ned by summation over all design point, one an expet a degen-erated behavior of the optimized quantity even for one bootstrap sample, that is, for M = 1 .Final run. Finally apply AWS to the original data using the seleted set of parameters.4 SimulationsIn the following subsetions we demonstrate the apabilities of our approah using some uni-and bivariate simulations. We illustrate the behavior of our algorithm for di�erent ontrast-to-noise ratios ranging from easy to handle situations (�=� = 4) to situations where the signalis hardly visible by eye (�=� = 1 and larger) and di�erent size of the homogeneous regions.We ompare our AWS proedure with some established alternative approahes. It shouldbe mentioned that the following list is far from being omplete.4.1 Alternative proeduresGauss �ltering: Here we use an Nadaraya-Watson kernel estimate with Gaussian kernel andsmoothing parameter h bf(Xi) = Pj Yj exp f�(Xj �Xi)2=(2h2)gPj exp f�(Xj �Xi)2=(2h2)g :Nonlinear Gauss �ltering: The Nonlinear Gauss Filter was proposed by Godtliebsen etal. (1997) as a generalization of the Sigma Filter of Lee (1983). It replaes the disontinuous(uniform) weight funtion of the sigma �lter by an Gaussian weight sheme. The �lter is de�nedas bf(Xi) = Pj2U(Xi) Yj exp f�(Yj � Yi)2=(2g2)gPj2U(Xi) exp f�(Yj � Yi)2=(2g2)gwhere the radius of U(x) and g are smoothing parameters.Modal regression: Modal regression is introdued in Sott (1992) as a robust alternativeto nonparametri regression proedures estimating a onditional mean. The modal regressionurve is de�ned as bf(x) = argmaxy bp(y; x)12



with bp(y; x) being an estimate of the joint density of y and x. Although Sott proposes to usemultiple modes simultaneously we onentrate on the mode losest to the observed Y . Theestimate depends on two bandwidths in x and y domain.Change point methods: An alternative in ase of well separated jumps an be based onmethods of hange point estimation. We use the proedures of hange point estimation pro-posed by M�uller (1992). The hange point estimate is only used in the univariate ase.CART: A suitable proedure for the univariate ase an be based on the lassi�ation- andregression trees (CART) introdued by Breiman et al. (1984). We use CART as implementedin Splus with the number of splits determined by CV-pruning. CART is only used in theunivariate simulations sine it is not exible enough to allow for a reasonable reonstrution ofour test image.Wavelets: For our omparisons we use the Wavelet pakage wavethresh of G. P. Nason, seeNason and Silverman (1994) for a desription of the software. We use the Haar basis and thebiorthogonal Haar basis for univariate and bivariate situations, respetively. We suppose thishoie to be the most adequate for loal onstant funtions from the seletion of bases o�ered.Parameters, i.e. threshold value and levels for thresholding, are seleted to provide optimalmean integrated squared error (MISE) for the underlying true struture. We used hard or softthresholding depending on whih method provided better results in terms of MISE. We do notdisuss more sophistiated wavelet proedures like the translation invariant wavelet transform,see Coifman and Donoho (1995), or anisotropi wavelet bases, see Daubehies (1992), Chapter10.1, or Neumann (1998).Markov Random Fields (MRF): Out of the wide range of Markov Random Fields methodsin image analysis we use an Metropolis algorithm, see e.g. Winkler (1995), page 133. We startwith initial values bf(Xi) = Yi. A new proposal y� in a randomly hosen point x is generatedfrom a stritly positive probability distribution G(y�jx) with support on the range of Y . Anew proposal y� in point x is aepted as a new value for bf(x) with probabilitymin(1; exp (H( bf(x)jx; Y )�H(y�jx; Y )=�));otherwise the old value is kept. HereH(y�jXi; Y ) = (Yi � bf(Xi))22�2 � XXj2U(Xi)=fXig �1 + (( bf(Xi)� bf(Xj))=Æ)2is an energy funtion designed for a ontinuous state spae. The temperature � is hosen toslowly derease with the number of iterations. For more disussions see e.g. Winkler (1995)Chapter 10 for the Metropolis algorithm and Chapter 2 for the energy funtion used.13



Exept the Gauss �lter all of the proedures onsidered are designed to handle disontinu-ities. Most of the alternative proedures depend on smoothing parameters. These parametersare hosen to minimize an estimate of MISE in the situation studied.4.2 A univariate simulation exampleIn our �rst univariate example we use a pieewise onstant regression funtion with varyingsize of the homogeneous region. The left olumn of Figure 1 presents three data sets generatedfor di�erent values of �. The entral plots show the true funtion together with the AWSestimates. The third olumn provides estimates obtained by the best alternative proedures,wavelets and CART, for a omparison.************ put Figure 1 around here ************************ put Table 1 around here ************We run 1000 simulations with sample size 256 and error standard deviation � = :25, :5and 1, respetively. Table 1 displays results of the simulations in terms of estimated MISEand mean, over x, estimates of P( jbf (x) � f(x)j > �=4) , � = 1 . We all this quantity largedeviation probability (LDP). Note that AWS performs best with respet to both MSE and LDPin ase of � � :5. For � = 1 our adaptive proedure does not always detet the disontinuitiesfor small x, i.e. where the homogeneous regions are small. This leads to an inreased meansquared error and large deviation probability for small x.4.3 Bivariate simulationsWe use an arti�ial image to demonstrate the power of our proedures in more ompliatedsituations, see Figure 2.************ put Figure 2 around here ************The image possesses two di�erent image ontrasts, � = :5 and 2 � = 1, and homogeneousregions of various size and form. The image ontains n = 256 � 256 pixel. Note that in theimage the size of homogeneous regions inreases from the lower left to the upper right. Thereare very detailed strutures in the upper left and lower right of the image.************ put Figure 3 around here ************In the left olumn of Figure 3 we display this image distorted by additive Gaussian noise ofstandard deviation � = :25, :5, and 1, respetively. The seond olumn ontains the reonstru-tion of the noisy images by AWS (with default parameters). For a omparison we provide theresults obtained by modal regression, wavelets and Markov random �elds. For the alternativeproedures estimated gray levels, that are out of sale are projeted.With standard deviation inreasing we �rst loose the most detailed struture (� = :5) and14



observe some loss in edge auray for the lower ontrast level (� = 1). Note that we stillreover the main struture that is hardly visible in the noisy original. The AWS-estimatesbehave very stable with respet to hanges of the parameters, e.g. eah � 2 (3; 3:6) givesessentially the same quality of reonstrution for all � onsidered.To illustrate the loal behavior of our proedure in more detail we ondut a omparativesimulation study based on the test image, see Figure 5. We perform 100 simulations with errorstandard deviation of � = :25, :5 and 1, respetively. We use our default parameter settingsfor AWS and again approximately MISE-optimal parameters for the alternative proedures.Table 2 provides the simulation results using the same riteria as in the univariate ase.************ put Table 2 around here ************For the lowest noise level we observe that even the detailed strutures in the upper leftand lower right of the image are reovered by our method. MRF and modal regression bothwork reasonable in this situation, providing an improvement to the gauss �lter with respetto both riteria. The wavelet estimate su�ers espeially for detailed strutures and where theboundaries are not parallel to the axes. Inreasing � we see a lear advantage of our proedure.5 Appliations5.1 An Appliation to Magneti Resonane ImagingMagneti Resonane imaging (MRI) is a new tehnique of noninvasive analysis providing adelineation of a physial objet. The signal, or true image, an be interpreted as a weightedspin density of the system of atomi nulei the physial objet onsists of. For an exellentintrodution into the mathematis and physis of MRI see for instane Sebastiani and Barone(1991) and Lange (1996).In Fourier imaging, whih is the most ommon MR imaging tehnique, a �nite number ofoeÆients from the 2-D Fourier series expansion of the true image are measured. The MRimage is then obtained applying the disrete Fourier transform to the raw data, i.e. the MRimage an be viewed as a trunated Fourier series of the weighted spin density distorted bynoise, see e.g. Barone and Sebastiani (1992).It is reasonable to haraterize the underlying image by a pieewise onstant funtion, withhomogeneous regions orresponding to the same type of tissue and therefore having a similarspin density and disontinuities at the interfae between adjaent tissues. Random errors anbe modeled as additive white Gaussian noise, see e.g. Sebastiani and Barone (1995).************ put Figure 4 around here ************Our �rst example is based on a MR image reorded at the MR enter at Trondheim,kindly provided to us by F. Godtliebsen. The same data were analyzed e.g in Barone and15



Sebastiani (1992), Chu et al. (1998), and Godtliebsen et al. (1997). Reonstrutions of thesame image using Markov random �eld methods an be found in Godtliebsen and Sebastiani(1994). The upper left plot of Figure 4 shows the entral part of the image. The upper rightplot gives the estimate obtained by AWS. Parameters are seleted by the proedure desribedin Subsetion 3.4 using  (t) = jtj .To illustrate the quality of reonstrution we present the result of another well establishedmethod to redue the noise level by averaging several MR-Images reorded from the same slieof the brain, see the lower left plot. Images, reorded suessively, an not be assumed to haveexatly the same loation. This leads to some onvolution in the averaged image. In the lowerright plot we show gray level densities for both the averaged image and the AWS estimate.Sine gray levels orrespond to ertain tissues in the brain, a density with spikes is more whatone would expet. By averaging images this property is lost. AWS allows to preserve thestruture, although at the given noise level there is no de�nite deision whether peaks of thegray level density are due to the struture or introdued by the proedure.5.2 An example from satellite imagingIn our last example, suggested by a referee, we use a log-transformed C-band, HH-polarization,syntheti aperture radar (SAR) image reorded by Dr. E. Attema at the European Spae Re-searh and Tehnology Centre in Noordwijk, Netherlands. The example is also used in Glasbeyand Horgan (1995). The data an be obtained from ftp://peipa.essex.a.uk/ipa/pix/books/glasbey-horgan/ . The image shows an area near Thetford forest, England.************ put Figure 5 around here ************In Figure 5 we show the noisy original, the reonstrution obtained by AWS and a residualimage. Parameters for AWS are seleted aording to Subsetion 3.4 using  (t) = jtj .6 ConlusionsThe simulated results and the examples demonstrate a reasonable performane of the proposedproedure espeially in situations where the underlying image is pieewise onstant or an beapproximated by suh images. In suh ases the proedure outperforms most other methods.The nie visual quality of restoration for suh examples is due to the two most importantfeatures of the method: the estimated image is homogeneous within every large homogeneousregions independently of its shape and, simultaneously the proedure provides a reasonablequality of estimation near image edges. The proedure is very stable w.r.t. inreasing noiselevel. All these issues are in agreement with theoretial properties of the proedure whih surelyshould be investigated further. The algorithm an be easely applied to higher dimensional16



situations.Aknowledgements:We would like to thank Fritjof Kruggel and Fred Godtliebsen for their introdution into MRIand for useful disussions. We also thank two unknown referees for their helpful suggestions.Appendix: ProofsProof of Proposition 3.1. We argue by indution in k . First we onsider the weightsw1(Xi;Xj) . Sine every initial neighborhood U0(Xi) ontains exatly N0 design points, eahestimate bf0(Xi) is normal with the mean a and the variane s20(Xi) = �2=N0 . First weevaluate the probability of the eventfj bf0(Xi)� bf0(Xj)j > ��N�1=20 for some i 6= jg:By (1), bf0(Xi)� bf0(Xj) = 1N0 XU0(Xi) "` � 1N0 XU0(Xj) "`and this is a linear ombination of Gaussian errors. Therefore this di�erene itself is a Gaussianzero mean random variable withEj bf0(Xi)� bf0(Xj)j2 = �2N0(Xi;Xj)=N20where N0(Xi;Xj) is the number of design points lying either in U0(Xi) or in U0(Xj) but notin their intersetion,N0(Xi;Xj) = # fU0(Xi) [ U0(Xj) nU0(Xi) \ U0(Xj)g :Obviously N0(Xi;Xj) � 2N0 . Therefore,P �j bf0(Xi)� bf0(Xj)j > ��N�1=20 �� exp�� �2�2N�102�2N0(Xi;Xj)N�20 �� exp�� �2N02N0(Xi;Xj)�� expf��2=4g:In the adaptation step we ompute the weights w1(Xi;Xj) for all Xi and for every Xj fromU1(Xi) . This involves about nN1=2 omparisons for di�erent pairs (Xi;Xj) . ThereforeP �fj bf0(Xi)� bf0(Xj)j > ��N�1=20 for some i 6= jg�17



� nXi=1 XU1(Xi)P �j bf0(Xi)� bf0(Xj)j > ��N�1=20 �� 0:5nN1 expf��2=4g:We see that all the weights w1(Xi;Xj) = 1 with a probability greater than1 � 0:5nN1 expf��2=4g . Therefore, assuming that an event of type fw1(Xi;Xj) = 0g doesnot our, all estimates bf1(Xi) are simply mean values of the observations Yj over U1(Xi) .All these arguments apply to the next iteration with bf1 in plae of bf0 and so on.Now suppose that we have got the equal weights wk0(Xi;Xj) = 1 for all k0 � k witha probability of at least 1 � k with some number k . We intend to estimate the similarprobability to the next iteration. First we note that by the previous arguments wk+1(Xi;Xj) =1 for all i 6= j with a probability of at least 1�k�0:5nNk+1 expf��2=4g . It remains only tohek that the ontrol step does not rejet the estimate bfk+1(Xi) . Let k0 � k . Then obviouslybfk+1(Xi)� bfk0(Xi) = N�1k+1 XUk+1(Xi)Yj �N�1k0 XUk0(Xi) Yj = N�1k+1 XUk+1(Xi) "j �N�1k0 XUk0(Xi) "j :Sine all errors "j are independent N (0; �2) r.v.'s, this di�erene is also a normal zero meanr.v. with the varianeE � bfk+1(Xi)� bfk0(Xi)�2 = �2(N�1k0 �N�1k+1) � �2N�1k0 :Therefore, using s2k0(Xi) = �2N�1k0P �j bfk+1(Xi)� bfk0(Xi)j > ��Nk0� � P (j�j > �) � expf��2=2gwhere � denotes a standard normal r.v. The total number of suh ontrol tests is not greaterthan nk and the probability that at least one suh event ours at the (k + 1) -th iterationan be bounded by expf��2=2gnk . Therefore, ifk+1 = k + 0:5nNk+1 expf��2=4g + expf��2=2gnk;then, with a probability greater or equal to 1� k+1 , we get all wk+1(Xi;Xj) = 1 .Summing over all iterations we get the following upper bound for k�k� � 0:5n expf��2=4g k�Xk=1Nk + expf��2=2gn k�Xk=1 k� C n2 expf��2=4g=2 + expf��2=2gnk�(k� + 1)=2as required. 2Proof of Proposition 3.2. Let us �x one pair (Xi1 ;Xi2) with Xim 2 AÆm , m = 1; 2 .First we note that bf0(Xim) � N (am; �2N�10 ) and we may represent these estimates in the18
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MISE LDP� = :25 � = :5 � = 1 � = :25 � = :5 � = 1AWS 0.003 0.023 0.123 0.002 0.026 0.243Gauss �ltering 0.019 0.039 0.081 0.069 0.182 0.368Nonlinear gauss 0.013 0.040 0.089 0.038 0.189 0.394Modal regression 0.008 0.040 0.084 0.015 0.179 0.378Change point 0.014 0.043 0.095 0.047 0.196 0.388CART 0.006 0.031 0.149 0.008 0.066 0.414Wavelets 0.009 0.038 0.097 0.008 0.146 0.379MRF 0.010 0.044 0.112 0.021 0.191 0.422
Table 1: Estimated mean integrated squared error (MISE) and large deviation probability (LDP) in theunivariate simulation experiment

MISE LDP� = :25 � = :5 � = 1 � = :25 � = :5 � = 1AWS 0.0021 0.0109 0.0328 0.007 0.032 0.119Gauss �ltering 0.0138 0.0243 0.0396 0.212 0.313 0.452Nonlinear gauss 0.0096 0.0262 0.0454 0.151 0.334 0.491Modal regression 0.0068 0.0254 0.0426 0.078 0.290 0.479Wavelets 0.0079 0.0147 0.0468 0.073 0.172 0.437MRF 0.0050 0.0204 0.0475 0.048 0.248 0.497
Table 2: Estimated mean integrated squared error (MISE) and large deviation probability (LDP) in thebivariate simulation experiment
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Figure 1: Data generated in the univariate experiment (left olumn), true funtion (dashed line), AWSestimate (solid line) (entral olumn), wavelet estimate (best hard thresholding,solid line) and CARTestimate (dashed line) (right olumn) for standard deviations � = :25, :5 and 1.
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Figure 2: Arti�ial test image
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Figure 3: Image plus noise (left), AWS-reonstrutions (seond), modal regression (third), wavelet(fourth) and MRF estimate (right olumn) for di�erent values of �.
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Figure 4: Central part of Original Magneti Resonane image and AWS estimate (upper row); averageof eight images of the same slie and estimated densities of gray levels (lower row)26
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Figure 5: Syntheti aperture radar (SAR) data: original image (left), AWS Reonstrution (entral)and residuals (right).
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Figure 1: Data generated in the univariate experiment (left olumn), true funtion (dashedline), AWS estimate (solid line) (entral olumn), wavelet estimate (best hard thresholding,solidline) and CART estimate (dashed line) (right olumn) for standard deviations � = :25, :5 and1.Figure 2: Arti�ial test imageFigure 3: Image plus noise (left), AWS-reonstrutions (seond), modal regression (third),wavelet (fourth) and MRF estimate (right olumn) for di�erent values of �.Figure 4: Central part of Original Magneti Resonane image and AWS estimate (upper row);average of eight images of the same slie and estimated densities of gray levels (lower row)Figure 5: Syntheti aperture radar (SAR) data: original image (left), AWS Reonstrution(entral) and residuals (right).Table 1: Estimated mean integrated squared error (MISE) and large deviation probability(LDP) in the univariate simulation experimentTable 2: Estimated mean integrated squared error (MISE) and large deviation probability(LDP) in the bivariate simulation experiment
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