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Chapter 1

Introduction

One of the central tools of scientific computing is the fifty-year old finite element method—a numerical
method for approximating solutions to partial differential equations. The finite element method and its
cousins, the finite volume method and the boundary element method, simulate physical phenomena includ-
ing fluid flow, heat transfer, mechanical deformation, and electromagnetic wave propagation. They are
applied heavily in industry and science for marvelously diverse purposes—evaluating pumping strategies
for petroleum extraction, modeling the fabrication and operation of transistors and integrated circuits, opti-
mizing the aerodynamics of aircraft and car bodies, and studying phenomena from quantum mechanics to
earthquakes to black holes.

The aerospace engineer Joe F. Thompson, who commanded a multi-institutional mesh generation effort
called the National Grid Project [124], wrote in 1992 that

An essential element of the numerical solution of partial differential equations (PDEs) on gen-
eral regions is the construction of a grid (mesh) on which to represent the equations in finite
form. . . . [A]t present it can take orders of magnitude more man-hours to construct the grid than
it does to perform and analyze the PDE solution on the grid. This is especially true now that
PDE codes of wide applicability are becoming available, and grid generation has been cited
repeatedly as being a major pacing item. The PDE codes now available typically require much
less esoteric expertise of the knowledgeable user than do the grid generation codes.

Two decades later, meshes are still a recurring bottleneck. The automatic mesh generation problem is to
divide a physical domain with a complicated geometry—say, an automobile engine, a human’s blood vessels,
or the air around an airplane—into small, simple pieces called elements, such as triangles or rectangles
(for two-dimensional geometries) or tetrahedra or rectangular prisms (for three-dimensional geometries), as
illustrated in Figure 1.1. Millions or billions of elements may be needed.

A mesh must satisfy nearly contradictory requirements: it must conform to the shape of the object or
simulation domain; its elements may be neither too large nor too numerous; it may have to grade from small
to large elements over a relatively short distance; and it must be composed of elements that are of the right
shapes and sizes. “The right shapes” typically include elements that are nearly equilateral and equiangular,
and typically exclude elements that are long and thin, e.g. shaped like a needle or a kite. However, some
applications require anisotropic elements that are long and thin, albeit with specified orientations and eccen-
tricities, to interpolate fields with anisotropic second derivatives or to model anisotropic physical phenomena
such as laminar air flow over an airplane wing.

1



2 Jonathan Richard Shewchuk

Figure 1.1: Finite element meshes of a polygonal, a polyhedral, and a curved domain. One mesh of the key has
poorly shaped triangles and no Steiner points; the other has Steiner points and all angles between 30◦ and 120◦.
The cutaway view at lower right reveals some of the tetrahedral elements inside a mesh.

By my reckoning, the history of mesh generation falls into three periods, conveniently divided by decade.
The pioneering work was done by researchers from several branches of engineering, especially mechanics
and fluid dynamics, during the 1980s—though as we shall see, the earliest work dates back to at least 1970.
This period brought forth most of the techniques used today: the Delaunay, octree, and advancing front
methods for mesh generation, and mesh “clean-up” methods for improving an existing mesh. Unfortunately,
nearly all the algorithms developed during this period are fragile, and produce unsatisfying meshes when
confronted by complex domain geometries and stringent demands on element shape.

Around 1988, these problems attracted the interest of researchers in computational geometry, a branch
of theoretical computer science. Whereas most engineers were satisfied with mesh generators that usually
work for their chosen domains, computational geometers set a loftier goal: provably good mesh generation,
the design of algorithms that are mathematically guaranteed to produce a satisfying mesh, even for domain
geometries unimagined by the algorithm designer. This work flourished during the 1990s and continues to
this day.

During the first decade of the 2000s, mesh generation became bigger than the finite element methods that
gave birth to it. Computer animation uses triangulated surface models extensively, and the most novel new
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ideas for using, processing, and generating meshes often debut at computer graphics conferences. In eco-
nomic terms, the videogame and motion picture industries probably now exceed the finite element industries
as users of meshes.

Meshes find heavy use in hundreds of other applications, such as aerial land surveying, image process-
ing, geographic information systems, radio propagation analysis, shape matching, and population sampling.
Mesh generation has become a truly interdisciplinary topic.

An excellent source for many aspects of mesh generation not covered by these notes is the Handbook of
Grid Generation [125], which includes many chapters on the generation of structured meshes, chapters that
describe advancing front methods in unusual detail by Peraire, Peiró, and Morgan [94] and Marcum [78],
and a fine survey of quadrilateral and hexahedral meshing by Schneiders [105]. Further surveys of the mesh
generation literature are supplied by Bern and Eppstein [8] and Thompson and Weatherill [126]. Boissonnat,
Cohen-Steiner, Mourrain, Rote, and Vegter [18] survey algorithms for surface meshing. There is a large
literature on how to numerically evaluate the quality of an element; see Field [50] for a survey.

1.1 Meshes and the Goals of Mesh Generation

Meshes are categorized according to their dimensionality and choice of elements. Triangular meshes,
tetrahedral meshes, quadrilateral meshes, and hexahedral meshes are named according to the shapes of
their elements. The two-dimensional elements—triangles and quadrilaterals—serve both in modeling two-
dimensional domains and in surface meshes embedded in three dimensions, which are prevalent in computer
graphics, boundary element methods, and simulations of thin plates and shells.

Tetrahedral elements are the simplest of all polyhedra, having four vertices and four triangular faces.
Quadrilateral elements are four-sided polygons; their sides need not be parallel. Hexahedral elements are
brick-like polyhedra, each having six quadrilateral faces, but their faces need not be parallel or even planar.
These notes discuss only simplicial meshes—triangular and tetrahedral meshes—which are easier to gener-
ate than quadrilateral and hexahedral ones. For some applications, quadrilateral and hexahedral meshes offer
more accurate interpolation and approximation. Non-simplicial elements sometimes make life easier for the
numerical analyst; simplicial elements nearly always make life easier for the mesh generator. For topolog-
ical reasons, hexahedral meshes can be extraordinarily difficult to generate for geometrically complicated
domains.

Meshes are also categorized as structured or unstructured. A structured mesh, such as a regular cubical
grid, or the triangular mesh at left in Figure 1.2, has the property that its vertices can be numbered so
that simple arithmetic suffices to determine which vertices share an element with a selected vertex. These
notes discuss only unstructured meshes, which entail explicitly storing each vertex’s neighboring vertices
or elements. All the meshes in Figure 1.1 are unstructured, as is the mesh at right in Figure 1.2. Structured
meshes have been studied extensively [125]; they are suitable primarily for domains that have tractable
geometries and do not require a strongly graded mesh. Unstructured meshes are much more versatile because
of their ability to combine good element shapes with odd domain shapes and element sizes that grade from
very small to very large.

For most applications, the elements comprising a mesh must intersect “nicely,” meaning that if two
elements intersect, their intersection is a vertex or edge or entire face of both. Formally, a mesh must be a
complex, defined in Section 1.3. Nonconforming elements like those illustrated in Figure 1.3 rarely alleviate
the underlying numerical problems, so they are rarely used in unstructured meshes.
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Figure 1.2: Structured vs. unstructured mesh.

Figure 1.3: Nonconforming elements.

The goal of mesh generation is to create elements that conform to the shape of the geometric domain and
meet constraints on their sizes and shapes. The next two sections discuss domain conformity and element
quality.

1.1.1 Domain Conformity

Mesh generation algorithms vary in what domains they can mesh and how those domains are specified.
The input to a mesh generator—particularly one in the theory literature—might be a simple polygon or
polyhedron. Meshing becomes more difficult if the domain can have internal boundaries that no element
is permitted to cross, such as a boundary between two materials in a heat transfer simulation. Meshing
is substantially more difficult for domains that have curved edges and surfaces, called ridges and patches,
which are typically represented as splines or subdivision surfaces. Each of these kinds of geometry requires
a different definition of what it means to triangulate a domain. Let us consider these geometries in turn.

A polygon whose boundary is a closed loop of straight edges can be subdivided into triangles whose
vertices all coincide with vertices of the polygon; see Section 2.8.1 for a proof of that fact. The set containing
those triangles, their edges, and their vertices is called a triangulation of the polygon. But as the illustration
at top center in Figure 1.1 illustrates, the triangles may be badly shaped. To mesh a polygon with only high-
quality triangles, as illustrated at upper right in the figure, a mesh generator usually introduces additional
vertices that are not vertices of the polygon. The added vertices are often called Steiner points, and the mesh
is called a Steiner triangulation of the polygon.

Stepping into three dimensions, we discover that polyhedra can be substantially more difficult to trian-
gulate than polygons. It comes as a surprise to learn that many polyhedra do not have triangulations, if a
triangulation is defined to be a subdivision of a polyhedron into tetrahedra whose vertices are all vertices of
the polyhedron. In other words, Steiner points are sometimes mandatory. See Section 4.5 for an example.

Internal boundaries exist to help apply boundary conditions for partial differential equations and to sup-
port discontinuities in physical properties, like differences in heat conductivity in a multi-material simula-
tion. A boundary, whether internal or external, must be represented by a union of edges or faces of the mesh.
Elements cannot cross boundaries, and where two materials meet, their meshes must have matching edges
and faces. This requirement may seem innocuous, but it makes meshing much harder if the domain has small
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angles. We define geometric structures called piecewise linear complexes to formally treat polygonal and
polyhedral domains, like those at upper left and center left in Figure 1.1, in a manner that supports internal
boundaries. Piecewise linear complexes and their triangulations are defined in Sections 2.8.1 and 4.5.1.

Curved domains introduce more difficulties. Some applications require elements that curve to match
a domain. Others approximate a curved domain with a piecewise linear mesh at the cost of introducing
inaccuracies in shape, finite element solutions, and surface normal vectors (which are important for com-
puter graphics). In finite element methods, curved domains are sometimes approximated with elements
whose faces are described by parametrized quadratic, cubic, bilinear, or trilinear patches. In these notes, the
elements are always linear triangles and tetrahedra.

Domains like that at lower left in Figure 1.1 can be specified by geometric structures called piecewise
smooth complexes. These complexes are composed of smoothly curved patches and ridges, but patches can
meet nonsmoothly at ridges and vertices, and internal boundaries are permitted. A ridge where patches meet
nonsmoothly is sometimes called a crease.

1.1.2 Element Quality

Most applications of meshes place constraints on both the shapes and sizes of the elements. These con-
straints come from several sources. First, large angles (near 180◦) can cause large interpolation errors. In
the finite element method, these errors induce a large discretization error—the difference between the com-
puted approximation and the true solution of the PDE. Second, small angles (near 0◦) can cause the stiffness
matrices associated with the finite element method to be ill-conditioned. Small angles do not harm interpo-
lation accuracy, and many applications can tolerate them. Third, smaller elements offer more accuracy, but
cost more computationally. Fourth, small or skinny elements can induce instability in the explicit time in-
tegration methods employed by many time-dependent physical simulations. Consider these four constraints
in turn.

The first constraint forbids large angles, including large plane angles in triangles and large dihedral an-
gles in tetrahedra. Most applications of triangulations use them to interpolate a multivariate function whose
true value might or might not be known. For example, a surveyor may know the altitude of the land at each
point in a large sample, and use interpolation over a triangulation to approximate the altitude at points where
readings were not taken. There are two kinds of interpolation error that matter for most applications: the
difference between the interpolated function and the true function, and the difference between the gradient
of the interpolated function and the gradient of the true function. Element shape is largely irrelevant for the
first kind—the way to reduce interpolation error is to use smaller elements.

However, the error in the gradient depends on both the shapes and the sizes: it can grow arbitrarily large
as an element’s largest angle approaches 180◦ [122, 5, 65, 116], as Figure 1.4 illustrates. Three triangula-
tions, each having 200 triangles, are used to render a paraboloid. The mesh of long thin triangles at right
has no angle greater than 90◦, and visually performs only slightly worse than the isotropic triangulation at
left. The slightly worse performance is because of the longer edge lengths. However, the middle paraboloid
looks like a washboard, because the triangles with large angles have very inaccurate gradients.

Figure 1.5 shows why this problem occurs. Let f be a function—perhaps some physical quantity like
temperature—linearly interpolated on the illustrated triangle. The values of f at the vertices of the bottom
edge are 35 and 65, so the linearly interpolated value of f at the center of the edge is 50. This value is
independent of the value associated with the top vertex. As the angle at the upper vertex approaches 180◦,
the interpolated point with value 50 becomes arbitrarily close to the upper vertex with value 40. Hence, the
interpolated gradient ∇ f can become arbitrarily large, and is clearly specious as an approximation of the
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Figure 1.4: An illustration of how large angles, but not small angles, can ruin the interpolated gradients. Each
triangulation uses 200 triangles to render a paraboloid.
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Figure 1.5: As the large angle of the triangle approaches 180◦, or the sliver tetrahedron becomes arbitrarily flat,
the magnitude of the interpolated gradient becomes arbitrarily large.

true gradient. The same effect is seen between two edges of a sliver tetrahedron that pass near each other,
also illustrated in Figure 1.5.

In the finite element method, the discretization error is usually proportional to the error in the gradient,
although the relationship between the two depends on the PDE and the order of the basis functions used to
discretize it. In surface meshes for computer graphics, large angles cause triangles to have normal vectors
that poorly approximate the normal to the true surface, and these can create visual artifacts in rendering.

For tetrahedral elements, usually it is their largest dihedral angles (defined in Section 1.5) that matter
most [71, 116]. Nonconvex quadrilateral and hexahedral elements, with angles exceeding 180◦, sabotage
interpolation and the finite element method.

The second constraint on meshes is that many applications forbid small angles, although fewer than
those that forbid large angles. If your application is the finite element method, then the eigenvalues of
the stiffness matrix associated with the method ideally should be clustered as close together as possible.
Matrices with poor eigenvalue spectra affect linear equation solvers by slowing down iterative methods and
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introducing large roundoff errors into direct methods. The relationship between element shape and matrix
conditioning depends on the PDE being solved and the basis functions and test functions used to discretize
it, but as a rule of thumb, it is the small angles that are deleterious: the largest eigenvalue of the stiffness
matrix approaches infinity as an element’s smallest angle approaches zero [57, 7, 116]. Fortunately, most
linear equation solvers cope well with a few bad eigenvalues.

The third constraint on meshes governs element size. Many mesh generation algorithms take as input
not just the domain geometry, but also a space-varying size field that specifies the ideal size, and sometimes
anisotropy, of an element as a function of its position in the domain. (The size field is often implemented
by interpolation over a background mesh.) A large number of fine (small) elements may be required in
one region where they are needed to attain good accuracy—often where the physics is most interesting, as
amid turbulence in a fluid flow simulation—whereas other regions might be better served by coarse (large)
elements, to keep their number small and avoid imposing an overwhelming computational burden on the
application. The ideal element in one part of the mesh may vary in volume by a factor of a million or more
from the ideal element in another part of the mesh. If elements of uniform size are used throughout the
mesh, one must choose a size small enough to guarantee sufficient accuracy in the most demanding portion
of the problem domain, and thereby incur excessively large computational demands.

A graded mesh is one that has large disparities in element size. Ideally, a mesh generator should be able
to grade from very small to very large elements over a short distance. However, overly aggressive grading
introduces skinny elements in the transition region. The size field alone does not determine element size:
mesh generators often create elements smaller than specified to maintain good element quality in a graded
mesh, and to conform to small geometric features of a domain.

Given a coarse mesh—one with relatively few elements—it is typically easy to refine it, guided by the
size field, to produce another mesh having a larger number of smaller elements. The reverse process is
much harder. Hence, mesh generation algorithms often set themselves the goal of being able, in principle,
to generate as coarse a mesh as possible.

The fourth constraint forbids unnecessarily small or skinny elements for time-dependent PDEs solved
with explicit time integration methods. The stability of explicit time integration is typically governed by
the Courant–Friedrichs–Lewy condition [41], which implies that the computational time step must be small
enough that a wave or other time-dependent signal cannot cross more than one element per time step. There-
fore, elements with short edges or short altitudes may force a simulation to take unnecessarily small time
steps, at great computational cost, or risk introducing a large dose of spurious energy that causes the simu-
lation to “explode.”

Some meshing problems are impossible. A polygonal domain that has a corner bearing a 1◦ angle
obviously cannot be meshed with triangles whose angles all exceed 30◦; but suppose we merely ask that
all angles be greater than 30◦ except the 1◦ angle? This request can always be granted for a polygon with
no internal boundaries, but Figure 1.6 depicts a domain composed of two polygons glued together that,
surprisingly, provably has no mesh whose new angles are all over 30◦ [112]. Simple polyhedra in three
dimensions inherit this hurdle, even without internal boundaries. One of the biggest challenges in mesh
generation is three-dimensional domains with small angles and internal boundaries, wherein an arbitrary
number of ridges and patches can meet at a single vertex.

1.2 A Brief History of Mesh Generation

Three classes of mesh generation algorithms predominate nowadays: advancing front methods, wherein
elements crystallize one by one, coalescing from the boundary of a domain to its center; grid, quadtree,
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Figure 1.6: A mesh of this domain must have a new small angle.

Figure 1.7: Advancing front mesh generation.

and octree algorithms, which overlay a structured background grid and use it as a guide to subdivide a
domain; and Delaunay refinement algorithms, the subject of these notes. An important fourth class is mesh
improvement algorithms, which take an existing mesh and make it better through local optimization. The
few fully unstructured mesh generation algorithms that do not fall into one of these four categories are not
yet in widespread use.

Automatic unstructured mesh generation for finite element methods began in 1970 with an article by
C. O. Frederick, Y. C. Wong, and F. W. Edge entitled “Two-Dimensional Automatic Mesh Generation for
Structural Analysis” in the International Journal for Numerical Methods in Engineering [53]. This startling
paper describes, to the best of our knowledge, the first Delaunay mesh generation algorithm, the first advanc-
ing front method, and the first algorithm for Delaunay triangulations in the plane besides slow exhaustive
search—all one and the same. The irony of this distinction is that the authors appear to have been unaware
that the triangulations they create are Delaunay. Moreover, a careful reading of their paper reveals that
their meshes are constrained Delaunay triangulations, a sophisticated variant of Delaunay triangulations
discussed in Section 2.8.2. The paper is not well known, perhaps because it was two decades ahead of its
time.

Advancing front methods construct elements one by one, starting from the domain boundary and ad-
vancing inward, as illustrated in Figure 1.7—or occasionally outward, as when meshing the air around an
airplane. The frontier where elements meet unmeshed domain is called the front, which ventures forward
until the domain is paved with elements and the front vanishes. Advancing front methods are characterized
by exceptionally high quality elements at the domain boundary. The worst elements appear where the front
collides with itself, and assuring their quality is difficult, especially in three dimensions; there is no literature
on provably good advancing front algorithms. Advancing front methods have been particularly successful
in fluid mechanics, because it is easy to place extremely anisotropic elements or specialized elements at the
boundary, where they are needed to model phenomena such as laminar air flow.

Most early methods created vertices then triangulated them in two separate stages [53, 24, 76]. For
instance, Frederick, Wong, and Edge [53] use “a magnetic pen to record node point data and a computer
program to generate element data.” The simple but crucial next insight—arguably, the “true” advancing front
technique—was to interleave vertex creation with element creation, so the front can guide the placement of
vertices. Alan George [58] took this step in 1971, but it was forgotten and reinvented in 1980 by Sadek [104]
and again in 1987 by Peraire, Vahdati, Morgan, and Zienkiewicz [95], who also introduced support for
anisotropic triangles. Soon thereafter, methods of this design appeared for tetrahedral meshing [77, 93],
quadrilateral meshing [15], and hexahedral meshing [14, 119].
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Figure 1.8: A quadtree mesh.

These notes are about provably good mesh generation algorithms that employ the Delaunay triangu-
lation, a geometric structure possessed of mathematical properties uniquely well suited to creating good
triangular and tetrahedral meshes. The defining property of a Delaunay triangulation in the plane is that
no vertex of the triangulation lies in the interior of any triangle’s circumscribing disk—the unique circular
disk whose boundary touches the triangle’s three vertices. In three dimensions, no vertex is enclosed by any
tetrahedron’s circumscribing sphere. Delaunay triangulations optimize several valuable geometric criteria,
including some related to interpolation accuracy.

Delaunay refinement algorithms construct a Delaunay triangulation and refine it by inserting new ver-
tices, chosen to eliminate skinny or oversized elements, while always maintaining the Delaunay property of
the mesh. The key to ensuring good element quality is to prevent the creation of unnecessarily short edges.
The Delaunay triangulation serves as a guide to finding locations to place new vertices that are far from
existing ones, so that short edges and skinny elements are not created needlessly.

Most Delaunay mesh generators, unlike advancing front methods, create their worst elements near the
domain boundary and their best elements in the interior. The early Delaunay mesh generators, like the early
advancing front methods, created vertices and triangulated them in two separate stages [53, 25, 64]. The era
of modern meshing began in 1987 with the insight, care of William Frey [56], to use the triangulation as a
search structure to decide where to place the vertices. Delaunay refinement is the notion of maintaining a
Delaunay triangulation while inserting vertices in locations dictated by the triangulation itself. The advan-
tage of Delaunay methods, besides the optimality properties of the Delaunay triangulation, is that they can
be designed to have mathematical guarantees: that they will always construct a valid mesh and, at least in
two dimensions, that they will never produce skinny elements.

The third class of mesh generators is those that overlay a domain with a background grid whose resolu-
tion is small enough that each of its cells overlaps a very simple, easily triangulated portion of the domain,
as illustrated in Figure 1.8. A variable-resolution grid, usually a quadtree or octree, yields a graded mesh.
Element quality is usually assured by warping the grid so that no short edges appear when the cells are
triangulated, or by improving the mesh afterward.

Grid meshers place excellent elements in the domain interior, but the elements near the domain boundary
are worse than with other methods. Other disadvantages are the tendency for most mesh edges to be aligned
in a few preferred directions, which may influence subsequent finite element solutions, and the difficulty of
creating anisotropic elements that are not aligned with the grid. Their advantages are their speed, their ease
of parallelism, the fact that some of them have mathematical guarantees, and most notably, their robustness
for meshing imprecisely specified geometry and dirty CAD data. Mark Yerry and Mark Shephard published
the first quadtree mesher in 1983 and the first octree mesher in 1984 [130, 131].

From nearly the beginning of the field, most mesh generation systems have included a mesh “clean-up”
component that improves the quality of a finished mesh. Today, simplicial mesh improvement heuristics



10 Jonathan Richard Shewchuk

Figure 1.9: Smoothing a vertex to maximize the minimum angle.
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Figure 1.10: Bistellar flips.

offer by far the highest quality of all the methods, and excellent control of anisotropy. Their disadvantages
are the requirement for an initial mesh and a lack of mathematical guarantees. (They can guarantee they will
not make the mesh worse.)

The ingredients of a mesh improvement method are a set of local transformations, which replace small
groups of tetrahedra with other tetrahedra of better quality, and a schedule that searches for opportunities
to apply them. Smoothing is the act of moving a vertex to improve the quality of the elements adjoining
it. Smoothing does not change the topology (connectivity) of the mesh. Topological transformations are
operations that change the mesh topology by removing elements from a mesh and replacing them with a
different configuration of elements occupying the same space.

Smoothing is commonly applied to each interior vertex of the mesh in turn, perhaps for several passes
over the mesh. The simplest and most famous way to smooth an interior vertex is to move it to the centroid
of the vertices that adjoin it. This method, which dates back at least to Kamel and Eisenstein [68] in 1970, is
called Laplacian smoothing because of its interpretation as a Laplacian finite difference operator. It usually
works well for triangular meshes, but it is unreliable for tetrahedra, quadrilaterals, and hexahedra.

More sophisticated optimization-based smoothers began to appear in the 1990s [91, 23, 90]. Slower
but better smoothing is provided by the nonsmooth optimization algorithm of Freitag, Jones, and Plass-
mann [54], which can optimize the worst element in a group—for instance, maximizing the minimum di-
hedral angle among the tetrahedra that share a specified vertex. For some quality measures, optimal mesh
smoothing can be done with generalized linear programming [1]. Figure 1.9 illustrates a smoothing step that
maximizes the minimum angle among triangles.

The simplest topological transformation is the edge flip in a triangular mesh, which replaces two triangles
with two different triangles. Figure 1.10 also illustrates several analogous transformations for tetrahedra,
which mathematicians call bistellar flips. There are analogous transformations for tetrahedra, quadrilaterals,
and hexahedra. Similar flips exist for quadrilaterals and hexahedra; see Bern, Eppstein, and Erickson [9] for
a list.

Mesh improvement is usually driven by a schedule that searches the mesh for elements that can be im-
proved by local transformations, ideally as quickly as possible. Canann, Muthukrishnan, and Phillips [22]
provide a fast triangular mesh improvement schedule. Sophisticated schedules for tetrahedral mesh im-
provement are provided by Joe [67], Freitag and Ollivier-Gooch [55], and Klingner and Shewchuk [70]. For
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Figure 1.11: The mesh generator’s nemesis: a sliver tetrahedron.

a list of flips for quadrilateral and hexahedral meshes, see Bern, Eppstein, and Erickson [9]. Kinney [69]
describes mesh improvement methods for quadrilateral meshes. There does not seem to have been much
work on applying hexahedral flips.

The story of provably good mesh generation is an interplay of ideas between Delaunay methods and
methods based on grids, quadtrees, and octrees. The first provably good mesh generation algorithm, by
Baker, Grosse, and Rafferty [6] in 1988, employs a square grid. The first provably good Delaunay refinement
algorithm in the plane, by Chew [35], followed the next year. The first provably good three-dimensional
Delaunay refinement algorithm is by Dey, Bajaj, and Sugihara [45]. Although their algorithm is guaranteed
to eliminate most types of bad tetrahedra, a few bad tetrahedra slip through: a type of tetrahedron called a
sliver or kite.

The canonical sliver is formed by arranging four vertices around the equator of a sphere, equally spaced,
then perturbing one of the vertices slightly off the equator, as Figure 1.11 illustrates. A sliver can have dihe-
dral angles arbitrarily close to 0◦ and 180◦ yet have no edge that is particularly short. Provably good sliver
removal is one of the most difficult theoretical problems in mesh generation, although mesh improvement
algorithms beat slivers consistently in practice.

None of the provably good algorithms discussed above produce graded meshes. The first mesh generator
offering provably good grading is the 1990 quadtree algorithm of Bern, Eppstein, and Gilbert [10], which
meshes a polygon so no new angle is less than 18.4◦. It has been influential in part because the meshes
it produces are not only graded, but size-optimal: the number of triangles in a mesh is at most a constant
factor times the number in the smallest possible mesh (measured by triangle count) having no angle less than
18.4◦. Ironically, the algorithm produces too many triangles to be practical—but only by a constant factor.
Neugebauer and Diekmann [88] improve the algorithm by replacing square quadrants with rhomboids.

A groundbreaking 1992 paper by Jim Ruppert [100, 102] on triangular meshing brought guaranteed
good grading and size optimality to Delaunay refinement algorithms. Ruppert’s algorithm, described in
Chapter 6, accepts nonconvex domains with internal boundaries and produces graded meshes of modest size
and high quality in practice.

The first tetrahedral mesh generator offering size optimality is the 1992 octree algorithm of Mitchell
and Vavasis [84]. Remarkably, Mitchell and Vavasis [85] extended their mathematical guarantees to meshes
of polyhedra of any dimensionality by using d-dimensional 2d-trees. Shewchuk [113, 114] generalized the
tetrahedral Delaunay refinement algorithm of Dey, Bajaj, and Sugihara from convex polyhedra to piecewise
linear complexes; the algorithm appears in Chapter 7.

The first provably good meshing algorithm for curved surfaces in three dimensions is by Chew [37]; see
the aforementioned survey by Boissonnat et al. [18] for a discussion of subsequent algorithms. Guaranteed-
quality triangular mesh generators for two-dimensional domains with curved boundaries include those by
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Figure 1.12: From left to right, a simplicial complex, a polyhedral complex, a piecewise linear complex, and a
piecewise smooth complex. The shaded areas are triangles, convex polygons, linear 2-cells, and smooth 2-cells,
respectively. In the piecewise linear complex, observe that several linear cells have holes, one of which is filled
by another linear cell (darkly shaded).

Boivin and Ollivier-Gooch [19] and Pav and Walkington [92]. Labelle and Shewchuk [72] provide a prov-
ably good triangular mesh generator that produces anisotropic meshes in the plane, and Cheng, Dey, Ramos,
and Wenger [32] generalize it to generate anisotropic meshes of curved surfaces in three-dimensional space.

1.3 Simplices, Complexes, and Polyhedra

Tetrahedra, triangles, edges, and vertices are instances of simplices. In these notes, I represent meshes and
the domains we wish to mesh as complexes. There are several different types of complexes, illustrated in
Figure 1.12, which all share two common properties. First, a complex is a set that contains not only volumes
such as tetrahedra, but also the faces, edges, and vertices of those volumes. Second, the cells in a complex
must intersect each other according to specified rules, which depend on the type of complex.

The simplest type of complex is a simplicial complex, which contains only simplices. The mesh gen-
eration algorithms in these notes produce simplicial complexes. More general are polyhedral complexes,
composed of convex polyhedra; these “polyhedra” can be of any dimension from zero on up. The most
important polyhedral complexes for mesh generation are the famous Voronoi diagram and the Delaunay
subdivision, defined in Section 2.2.

Theorists use two other kinds of complexes to specify domains to be triangulated. Piecewise linear
complexes, defined in Sections 2.8.1 and 4.5.1, differ from polyhedral complexes by permitting noncon-
vex polyhedra and by relaxing the rules of intersection of those polyhedra. Piecewise smooth complexes,
introduced by Cheng, Dey, and Ramos [31] generalize straight edges and flat facets to curved ridges and
patches.

To a mathematician, a “triangle” is a set of points, which includes all the points inside the triangle as
well as the points on the three edges. Likewise, a polyhedron is a set of points covering its entire volume.
A complex is a set of sets of points. We define these and other geometric structures in terms of affine hulls
and convex hulls. Simplices, convex polyhedra, and their faces are convex sets of points. A point set C is
convex if for every pair of points p, q ∈ C, the line segment pq is included in C.

Definition 1 (affine hull). Let X = {x1, x2, . . . , xk} be a set of points in Rd. A point p is an affine combination
of the points in X if it can be written p =

∑k
i=1 wixi for a set of scalar weights wi such that

∑k
i=1 wi = 1.

A point p is affinely independent of X if it is not an affine combination of points in X. The points in X are
affinely independent if no point in X is an affine combination of the others. In Rd, no more than d + 1 points
can be affinely independent. The affine hull of X, denoted aff X, is the set of all affine combinations of points
in X, as illustrated in Figure 1.13. A k-flat, also known as an affine subspace, is the affine hull of k + 1
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affine hull affine hull affine hull affine hull

convex hullconvex hullconvex hullconvex hull

0−flat (vertex)
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Figure 1.13: Examples of affine hulls and convex hulls in the plane.

affinely independent points; so a 0-flat is a vertex, a 1-flat is a line, a 2-flat is a plane, etc. A (d − 1)-flat in
Rd is called a hyperplane. A k-flat is said to have dimension k.

Definition 2 (convex hull). A point p is a convex combination of the points in X if it can be written as an
affine combination with all the weights nonnegative; i.e. wi ≥ 0 for all i. The convex hull of X, denoted
conv X, is the set of all convex combinations of points in X, as illustrated in Figure 1.13. An alternative
definition is that conv X is the most exclusive convex point set such that X ⊆ conv X.

Simplices and convex polyhedra are convex hulls of finite point sets, with k-simplices being the simplest
possible k-dimensional polyhedra. One way that mathematical language deviates from lay usage is that a
“face” of a polyhedron can be of any dimension; mathematicians use “facet” to denote what a layman calls
a “face.”

Definition 3 (simplex). A k-simplex τ is the convex hull of a set X of k + 1 affinely independent points. In
particular, a 0-simplex is a vertex, a 1-simplex is an edge, a 2-simplex is a triangle, and a 3-simplex is a
tetrahedron. A k-simplex is said to have dimension k. A simplex is a face of τ if it is the convex hull of a
nonempty subset of X. Faces of τ come in all dimensions from zero1 (τ’s vertices) to k; τ is a face of τ.
A simplex is a proper face of τ if it is the convex hull of a proper subset of X; i.e. any face except τ. In
particular, the (k − 1)-faces of τ are called facets of τ; τ has k + 1 facets. For instance, the facets of a
tetrahedron are its four triangular faces.

Definition 4 (simplicial complex). A simplicial complex T , also known as a triangulation, is a set contain-
ing finitely2 many simplices that satisfies the following two restrictions.

• T contains every face of every simplex in T .
1Some writers use the convention that the empty set is a simplex of dimension −1 and a face of every simplex, albeit not a

proper face. I make no use of this convention.
2Topologists usually define complexes so they have countable cardinality. I restrict complexes to finite cardinality to avoid some

interesting quirks, like the possibility that a polygon with a 1◦ angle can be meshed with a countably infinite set of triangles having
no angle less than 20◦.
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• For any two simplices σ, τ ∈ T , their intersection σ ∩ τ is either empty or a face of both σ and τ.

Convex polyhedra are as easy to define as simplices, but their faces are trickier. Whereas the convex hull
of a subset of a simplex’s vertices is a face of the simplex, the convex hull of an arbitrary subset of a cube’s
vertices is usually not a face of the cube. The faces of a polyhedron are defined below in terms of supporting
hyperplanes; observe that this definition is consistent with the definition of a face of a simplex above.

Definition 5 (convex polyhedron). A convex polyhedron is the convex hull of a finite point set. A polyhedron
whose affine hull is a k-flat is called a k-polyhedron and is said to have dimension k. A 0-polyhedron is a
vertex, a 1-polyhedron is an edge, and a 2-polyhedron is a polygon. The proper faces of a convex polyhedron
C are the polyhedra that can be generated by taking the intersection of C with a hyperplane that intersects
C’s boundary but not C’s interior; such a hyperplane is called a supporting hyperplane of C. For example,
the proper faces of a cube are six squares, twelve edges, and eight vertices. The faces of C are the proper
faces of C and C itself. The facets of a k-polyhedron are its (k − 1)-faces.

A polyhedral complex imposes exactly the same restrictions as a simplicial complex.

Definition 6 (polyhedral complex). A polyhedral complex P is a set containing finitely many convex poly-
hedra that satisfies the following two restrictions.

• P contains every face of every polyhedron in P.

• For any two polyhedra C,D ∈ P, their intersection C ∩ D is either empty or a face of both C and D.

Piecewise linear complexes are sets of polyhedra that are not necessarily convex. I call these polyhedra
linear cells.

Definition 7 (linear cell). A linear k-cell is the union of a finite number of convex k-polyhedra, all included
in some common k-flat. A linear 0-cell is a vertex, a linear 2-cell is sometimes called a polygon, and a linear
3-cell is sometimes called a polyhedron.

For k ≥ 1, a linear k-cell can have multiple connected components. These do no harm; removing a
linear cell from a complex and replacing it with its connected components, or vice versa, makes no material
difference. To simplify the exposition, I will forbid disconnected linear 1-cells in complexes; i.e. the only
linear 1-cells are edges. For k ≥ 2, a linear cell can be only tenuously connected; e.g. a union of two squares
that intersect at a single point is a linear 2-cell, even though it is not a simple polygon.

Another difference between linear cells and convex polyhedra is that we define the faces of a linear cell
in a fundamentally different way that supports configurations like those in Figures 1.3 and 1.12. A linear
cell’s faces are not an intrinsic property of the linear cell alone, but depend on the complex that contains it.
I defer the details to Section 2.8.1, where I define piecewise linear complexes.

Piecewise smooth complexes are sets of cells called smooth cells, which are similar to linear cells except
that they are not linear, but are smooth manifolds.

A complex or a mesh is a representation of a domain. The former is a set of sets of points, and the latter
is a set of points. The following operator collapses the former to the latter.

Definition 8 (underlying space). The underlying space of a complex P, denoted |P|, is the union of its cells;
that is, |P| =

⋃

C∈PC.
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Ideally, a complex provided as input to a mesh generation algorithm and the mesh produced as output
should cover exactly the same points. This ideal is not always possible—for example, if we are generating
a linear tetrahedral mesh of a curved domain. When it is achieved, we call it exact conformity.

Definition 9 (exact conformity). A complex T exactly conforms to a complex P if |T | = |P| and every cell
in P is a union of cells in T . We also say that T is a subdivision of P.

1.4 Metric Space Topology

This section introduces basic notions from point set topology that underlie triangulations and other com-
plexes. They are prerequisites for more sophisticated topological ideas—manifolds and homeomorphisms—
introduced in Sections 1.6 and 1.7. A complex of linear elements cannot exactly conform to a curved domain,
which raises the question of what it means for a triangulation to be a mesh of such a domain. To a layman,
the word topology evokes visions of “rubber-sheet topology”: the idea that if you bend and stretch a sheet
of rubber, it changes shape but always preserves the underlying structure of how it is connected to itself.
Homeomorphisms offer a rigorous way to state that a mesh preserves the topology of a domain.

Topology begins with a set T of points—perhaps the points comprising the d-dimensional Euclidean
space Rd, or perhaps the points on the surface of a volume such as a coffee mug. We suppose that there is a
metric d(p, q) that specifies the scalar distance between every pair of points p, q ∈ T. In the Euclidean space
Rd we choose the Euclidean distance. On the surface of the coffee mug, we could choose the Euclidean
distance too; alternatively, we could choose the geodesic distance, namely the length of the shortest path
from p to q on the mug’s surface.

Let us briefly review the Euclidean metric. We write points in Rd as p = (p1, p2, . . . , pd), where each pi
is a real-valued coordinate. The Euclidean norm of a point p ∈ Rd is ∥p∥ =

(∑d
i=1 p2

i
)1/2, and the Euclidean

distance between two points p, q ∈ Rd is d(p, q) = ∥p − q∥ =
(∑d

i=1(pi − qi)2)1/2. I also use the notation
d(·, ·) to express minimum distances between point sets P,Q ⊆ T,

d(p,Q) = inf{d(p, q) : q ∈ Q} and
d(P,Q) = inf{d(p, q) : p ∈ P, q ∈ Q}.

The heart of topology is the question of what it means for a set of points—say, a squiggle drawn on a
piece of paper—to be connected. After all, two distinct points cannot be adjacent to each other; they can
only be connected to another by an uncountably infinite bunch of intermediate points. Topologists solve that
mystery with the idea of limit points.

Definition 10 (limit point). Let Q ⊆ T be a point set. A point p ∈ T is a limit point of Q, also known as an
accumulation point of Q, if for every real number ϵ > 0, however tiny, Q contains a point q ! p such that
that d(p, q) < ϵ.

In other words, there is an infinite sequence of points in Q that get successively closer and closer to
p—without actually being p—and get arbitrarily close. Stated succinctly, d(p,Q \ {p}) = 0. Observe that it
doesn’t matter whether p ∈ Q or not.

Definition 11 (connected). Let Q ⊆ T be a point set. Imagine coloring every point in Q either red or
blue. Q is disconnected if there exists a coloring having at least one red point and at least one blue point,
wherein no red point is a limit point of the blue points, and no blue point is a limit point of the red points.
A disconnected point set appears at left in Figure 1.14. If no such coloring exists, Q is connected, like the
point set at right in Figure 1.14.
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Figure 1.14: The disconnected point set at left can be partitioned into two connected subsets, which are colored
differently here. The point set at right is connected. The dark point at its center is a limit point of the lightly colored
points.
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Figure 1.15: Closed, open, and relatively open point sets in the plane. Dashed edges and open circles indicate
points missing from the point set.

In these notes, I frequently distinguish between closed and open point sets. Informally, a triangle in the
plane is closed if it contains all the points on its edges, and open if it excludes all the points on its edges, as
illustrated in Figure 1.15. The idea can be formally extended to any point set.

Definition 12 (closure). The closure of a point set Q ⊆ T, denoted Cl Q, is the set containing every point
in Q and every limit point of Q. A point set Q is closed if Q = Cl Q, i.e. Q contains all its limit points. The
complement of a point set Q is T\Q. A point set Q is open if its complement is closed, i.e. T\Q = Cl (T\Q).

For example, let (0, 1) denote an open interval on the real number line—the set containing every r ∈ R
such that r > 0 and r < 1, and let [0, 1] denote a closed interval (0, 1) ∪ {0} ∪ {1}. The numbers zero and
one are both limit points of the open interval, so Cl (0, 1) = [0, 1] = Cl [0, 1]. Therefore, [0, 1] is closed
and (0, 1) is not. The numbers zero and one are also limit points of the complement of the closed interval,
R \ [0, 1], so (0, 1) is open, but [0, 1] is not.

The terminology is misleading because “closed” and “open” are not opposites. In every nonempty metric
space T, there are at least two point sets that are both closed and open: ∅ and T. The interval (0, 1] on the
real number line is neither open nor closed.

The definition of open set hides a subtlety that often misleads newcomers to point set topology: a triangle
τ that is open in the metric space aff τ is not open in the metric space R3. Every point in τ is a limit point of
R3 \ τ, because you can find sequences of points that approach τ from the side. In recognition of this quirk,
a simplex σ ⊂ Rd is said to be relatively open if it is open relative to its affine hull. It is commonplace to
abuse terminology by writing “open simplex” for a simplex that is only relatively open, and I follow this
convention in these notes. Particularly useful is the concept of an “open edge,” an edge that is missing its
endpoints, illustrated in Figure 1.15.

Informally, the boundary of a point set Q is the set of points where Q meets its complement T \ Q. The
interior of Q contains all the other points of Q. Limit points provide formal definitions.

Definition 13 (boundary; interior). The boundary of a point set Q in a metric space T, denoted Bd Q, is
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the intersection of the closures of Q and its complement; i.e. Bd Q = Cl Q ∩ Cl (T \ Q). The interior of Q,
denoted Int Q, is Q \ Bd Q = Q \ Cl (T \ Q).

For example, Bd [0, 1] = {0, 1} = Bd (0, 1) and Int [0, 1] = (0, 1) = Int (0, 1). The boundary of a triangle
(closed or open) in the Euclidean plane is the union of the triangle’s three edges, and its interior is an open
triangle, illustrated in Figure 1.15. The terms boundary and interior have the same misleading subtlety as
open sets: the boundary of a triangle embedded in R3 is the whole triangle, and its interior is the empty set.
Therefore, the relative boundary and relative interior of a simplex are its boundary and interior relative to its
affine hull rather than the entire Euclidean space. Again, I often abuse terminology by writing “boundary”
for relative boundary and “interior” for relative interior.

Definition 14 (bounded; compact). The diameter of a point set Q is supp,q∈Q d(p, q). The set Q is bounded
if its diameter is finite, or unbounded if its diameter is infinite. A point set Q in a metric space is compact if
it is closed and bounded.

Besides simplices and polyhedra, the point sets we use most in these notes are balls and spheres.

Definition 15 (Euclidean ball). In Rd, the Euclidean d-ball with center c and radius r, denoted B(c, r),
is the point set B(c, r) = {p ∈ Rd : d(p, c) ≤ r}. A 1-ball is an edge, and a 2-ball is sometimes called
a disk. A unit ball is a ball with radius 1. The boundary of the d-ball is called the Euclidean (d − 1)-
sphere and denoted S (c, r) = {p ∈ Rd : d(p, c) = r}. For example, a circle is a 1-sphere, and a layman’s
“sphere” in R3 is a 2-sphere. If we remove the boundary from a ball, we have the open Euclidean d-ball
Bo(c, r) = {p ∈ Rd : d(p, c) < r}.

The foregoing text introduces point set topology in terms of metric spaces. Surprisingly, it is possible to
define all the same concepts without the use of a metric, point coordinates, or any scalar values at all. Topo-
logical spaces are a mathematical abstraction for representing the topology of a point set while excluding
all information that is not topologically essential. In these notes, all the topological spaces have metrics.

1.5 How to Measure an Element

Here, I describe ways to measure the size, angles, and quality of a simplicial element, and I introduce some
geometric structures associated with simplices—most importantly, their circumspheres and circumcenters.

Definition 16 (circumsphere). Let τ be a simplex embedded in Rd. A circumsphere, or circumscribing
sphere, of τ is a (d − 1)-sphere whose boundary passes through every vertex of τ, illustrated in Figure 1.16.
A circumball, or circumscribing ball, of τ is a d-ball whose boundary is a circumsphere of τ. A closed cir-
cumball includes its boundary—the circumsphere—and an open circumball excludes it. If τ is a k-simplex,
the k-circumball of τ is the unique k-ball whose boundary passes through every vertex of τ, and its rel-
ative boundary is the (k − 1)-circumsphere of τ. I sometimes call a 2-circumball a circumdisk and a 1-
circumsphere a circumcircle.

If τ is a d-simplex in Rd, it has one unique circumsphere and circumball; but if τ has dimension less than
d, it has an infinite set of circumspheres and circumballs. Consider a triangle τ in R3, for example. There is
only one circumcircle of τ, which passes through τ’s three vertices, but τ has infinitely many circumspheres,
and the intersection of any of those circumspheres with τ’s affine hull is τ’s circumcircle. The smallest
of these circumspheres is special, because its center lies on τ’s affine hull, it has the same radius as τ’s
circumcircle, and τ’s circumcircle is its equatorial cross-section. Call τ’s smallest circumcircle, illustrated
in Figure 1.17, its diametric circle; and call τ’s smallest circumdisk its diametric disk.
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Figure 1.16: Three spheres associated with a triangle.

Figure 1.17: A triangle, two circumspheres of the triangle of which the smaller (solid) is the triangle’s diamet-
ric sphere, the triangle’s circumcircle (the equatorial cross-section of the diametric sphere), and the triangle’s
circumcenter.

Definition 17 (diametric sphere). The diametric sphere of a simplex τ is the circumsphere of τ with the
smallest radius, and the diametric ball of τ is the circumball of τ with the smallest radius, whose boundary
is the diametric sphere. The circumcenter of τ is the point at the center of τ’s diametric sphere, which always
lies on aff τ. The circumradius of τ is the radius of τ’s diametric sphere.

The significance of circumcenters in Delaunay refinement algorithms is that the best place to insert a
new vertex into a mesh is often at the circumcenter of a poorly shaped element, domain boundary triangle,
or domain boundary edge. In a Delaunay mesh, these circumcenters are locally far from other mesh vertices,
so inserting them does not create overly short edges.

Other spheres associated with simplicial elements are the insphere and the min-containment sphere, both
illustrated in Figure 1.16.

Definition 18 (insphere). The inball, or inscribed ball, of a k-simplex τ is the largest k-ball B ⊂ τ. Observe
that B is tangent to every facet of τ. The insphere of τ is the boundary of B, the incenter of τ is the point at
the center of B, and the inradius of τ is the radius of B.

Definition 19 (min-containment sphere). The min-containment ball, or minimum enclosing ball, of a k-
simplex τ is the smallest k-ball B ⊃ τ. The min-containment ball is always a diametric ball of a face of τ.
The min-containment sphere of τ is the boundary of B.

Finite element practitioners often represent the size of an element by the length of its longest edge, but
one could argue that the radius of its min-containment sphere is a slightly better measure, because there are
sharp error bounds for piecewise linear interpolation over simplicial elements that are directly proportional
to the squares of the radii of their min-containment spheres. Details appear in Section 4.4.
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Needle Cap

Figure 1.18: Skinny triangles have circumdisks larger than their shortest edges.

A quality measure is a mapping from elements to scalar values that estimates the suitability of an el-
ement’s shape independently of its size. The most obvious quality measures of a triangle are its smallest
and largest angles, and a tetrahedron can be judged by its dihedral angles. I denote the angle between two
vectors u and v as

∠(u, v) = arccos
u · v
|u||v| .

I compute an angle ∠xyz of a triangle as ∠(x − y, z − y).

A dihedral angle is a measure of the angle separating two planes or polygons in R3—for example, the
facets of a tetrahedron or 3-polyhedron. Suppose that two flat facets meet at an edge yz, where y and z are
points in R3. Let w be a point lying on one of the facets, and let x be a point lying on the other. It is helpful
to imagine the tetrahedron wxyz. The dihedral angle separating the two facets is the same angle separating
△wyz and △xyz, namely ∠(u, v) where u = (y − w) × (z − w) and v = (y − x) × (z − x) are vectors normal to
△wyz and △xyz.

Elements can go bad in different ways, and it is useful to distinguish types of skinny elements. There are
two kinds of skinny triangles, illustrated in Figure 1.18: needles, which have one edge much shorter than the
others, and caps, which have an angle near 180◦ and a large circumdisk. Figure 1.19 offers a taxonomy of
types of skinny tetrahedra. The tetrahedra in the top row are skinny in one dimension and fat in two. Those
in the bottom row are skinny in two dimensions and fat in one. Spears, spindles, spades, caps, and slivers
have a dihedral angle near 180◦; the others may or may not. Spikes, splinters, and all the tetrahedra in the
top row have a dihedral angle near 0◦; the others may or may not. The cap, which has a vertex quite close to
the center of the opposite triangle, is notable for a large solid angle, near 360◦. Spikes also can have a solid
angle arbitrarily close to 360◦, and all the skinny tetrahedra can have a solid angle arbitrarily close to zero.

There are several surprises. The first is that spires, despite being skinny, can have all their dihedral angles
between 60◦ and 90◦, even if two edges are separated by a plane angle near 0◦. Spires with good dihedral
angles are harmless in many applications, and are indispensable at the tip of a needle-shaped domain, but
some applications eschew them anyway. The second surprise is that a spear or spindle tetrahedron can have
a dihedral angle near 180◦ without having a small dihedral angle. By contrast, a triangle with an angle near
180◦ must have an angle near 0◦.

For many purposes—mesh improvement, for instance—it is desirable to have a single quality measure
that punishes both angles near 0◦ and angles near 180◦, and perhaps spires as well. Most quality measures
are designed to reach one extreme value for an equilateral triangle or tetrahedron, and an opposite extreme
value for a degenerate element—a triangle whose vertices are collinear, or a tetrahedron whose vertices
are coplanar. In these notes, the most important quality measure is the radius-edge ratio, because it is
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Figure 1.19: A taxonomy of skinny tetrahedra, adapted from Cheng, Dey, Edelsbrunner, Facello, and Teng [29].

naturally bounded by Delaunay refinement algorithms (a fact first pointed out by Miller, Talmor, Teng, and
Walkington [81]).

Definition 20 (radius-edge ratio). The radius-edge ratio of a simplex τ is R/ℓmin, where R is τ’s circumradius
and ℓmin is the length of its shortest edge.

We would like the radius-edge ratio to be as small as possible; it ranges from ∞ for most degenerate
simplices down to 1/

√
3 " 0.577 for an equilateral triangle or

√
6/4 " 0.612 for an equilateral tetrahedron.

But is it a good estimate of element quality?

In two dimensions, the answer is yes. A triangle’s radius-edge ratio is related to its smallest angle θmin
by the formula

R
ℓmin
=

1
2 sin θmin

.

Figure 1.20 illustrates how this identity is derived for a triangle xyz with circumcenter c. Observe that the
triangles ycz and xcz are isosceles, so their apex angles are ∠ycz = 180◦ − 2φ and ∠xcz = 180◦ − 2φ − 2θ.
Therefore, ϕ = 2θmin and ℓmin = 2R sin θmin. This reasoning holds even if φ is negative.

The smaller a triangle’s radius-edge ratio, the larger its smallest angle. The angles of a triangle sum to
180◦, so the triangle’s largest angle is at most 180◦ − 2θmin; hence an upper bound on the radius-edge ratio
places bounds on both the smallest and largest angles.

In three dimensions, however, the radius-edge ratio is a flawed measure. It screens out all the tetrahedra
in Figure 1.19 except slivers. A degenerate sliver can have a radius-edge ratio as small as 1/

√
2 " 0.707,

which is not far from the 0.612 of an equilateral tetrahedron. Delaunay refinement algorithms are guaranteed
to remove all tetrahedra with large radius-edge ratios, but they do not promise to remove all slivers.

There are other quality measures that screen out all the skinny tetrahedra in Figure 1.19, including
slivers and spires, but Delaunay refinement does not promise to bound these measures. A popular measure
is the radius ratio r/R, suggested by Cavendish, Field, and Frey [25], where r is τ’s inradius and R is
its circumradius. It obtains a maximum value of 1/2 for an equilateral triangle or 1/3 for an equilateral
tetrahedron, and a minimum value of zero for a degenerate element, which implies that it approaches zero
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Figure 1.20: Relationships between the circumradius R, shortest edge ℓmin, and smallest angle θ.

as any dihedral angle separating τ’s faces approaches 0◦ or 180◦, any plane angle separating τ’s edges
approaches 0◦ or 180◦, or any solid angle at τ’s vertices approaches 0◦ or 360◦.

For a triangle τ, the radius ratio is related to the smallest angle θmin by the inequalities

2 sin2 θmin
2
≤

r
R
≤ 2 tan

θmin
2
,

which implies that it approaches zero as θmin approaches zero, and vice versa.

Two unfortunate properties of the circumradius are that it is relatively expensive to compute for a tetra-
hedron, and it can be numerically unstable. A tiny perturbation of the position of one vertex of a skinny
tetrahedron can induce an arbitrarily large change in its circumradius. Both the radius-edge ratio and the
radius ratio inherit these problems. In these respects, a better quality measure for tetrahedra is the volume-
length measure V/ℓ3rms, suggested by Parthasarathy, Graichen, and Hathaway [90], where V is the volume
of a tetrahedron and ℓrms is the root-mean-squared length of its six edges. It obtains a maximum value
of 1/(6

√
2) for an equilateral tetrahedron and a minimum value of zero for a degenerate tetrahedron. The

volume-length measure is numerically stable and faster to compute than a tetrahedron’s circumradius. It has
proven itself as a filter against all poorly shaped tetrahedra and as an objective function for mesh improve-
ment algorithms, especially optimization-based smoothing [70].

1.6 Maps and Homeomorphisms

Two metric spaces are considered to be the same if the points that comprise them are connected the same
way. For example, the boundary of a cube can be deformed into a sphere without cutting or gluing it. They
have the same topology. We formalize this notion of topological equality by defining a function that maps
the points of one space to points of the other and preserves how they are connected. Specifically, the function
preserves limit points.

A function from one space to another that preserves limit points is called a continuous function or a
map.3 Continuity is just a step on the way to topological equivalence, because a continuous function can

3There is a small caveat with this characterization: a function g that maps a neighborhood of x to a single point g(x) may be
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(a) (b)

(c) (d)

Figure 1.21: (a) A 1-ball. (b) Spaces homeomorphic to the 1-sphere. (c) Spaces homeomorphic to the 2-ball.
(d) An open 2-ball. It is homeomorphic to R2, but not to a closed 2-ball.

map many points to a single point in the target space, or map no points to a given point in the target space.
True equivalence is marked by a homeomorphism, a one-to-one function from one space to another that
possesses both continuity and a continuous inverse, so that limit points are preserved in both directions.

Definition 21 (continuous function; map). Let T and U be metric spaces. A function g : T → U is
continuous if for every set Q ⊆ T and every limit point p ∈ T of Q, g(p) is either a limit point of the set g(Q)
or in g(Q). Continuous functions are also called maps.

Definition 22 (homeomorphism). Let T and U be metric spaces. A homeomorphism is a bijective (one-to-
one) map h : T → U whose inverse is continuous too. Two metric spaces are homeomorphic if there exists
a homeomorphism between them.

Homeomorphism induces an equivalence relation among metric spaces, which is why two homeomor-
phic metric spaces are called topologically equivalent. Figure 1.21(b, c) shows pairs of metric spaces that
are homeomorphic. A less obvious example is that the open unit d-ball Bd

o = {x ∈ Rd : |x| < 1} is homeo-
morphic to the Euclidean space Rd, a fact demonstrated by the map h(p) = (1/(1 − |p|))p. The same map
shows that the open unit halfball Hd = {x ∈ Rd : |x| < 1 and xd ≥ 0} is homeomorphic to the Euclidean
halfspace {x ∈ Rd : xd ≥ 0}.

Homeomorphism gives us a purely topological definition of what it means to triangulate a domain.

Definition 23 (triangulation of a metric space). A simplicial complexK is a triangulation of a metric space
T if its underlying space |K| is homeomorphic to T.

1.7 Manifolds

A manifold is a set of points that is locally connected in a particular way. A 1-manifold has the structure of
a piece of string, possibly with its ends tied in a loop, and a 2-manifold has the structure of a piece of paper

continuous, but technically g(x) is not a limit point of itself, so in this sense a continuous function might not preserve all limit
points. This technicality does not apply to homeomorphisms because they are bijective.
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Figure 1.22: Mobiüs band.

or rubber sheet that has been cut and perhaps glued along its edges—a category that includes disks, spheres,
tori, and Mobiüs bands.

Definition 24 (manifold). A metric space Σ is a k-manifold, or simply manifold, if every point x ∈ Σ has a
neighborhood homeomorphic to Rk or Hk. The dimension of Σ is k.

A manifold can be viewed as a purely abstract metric space, or it can be embedded into a metric space
or a Euclidean space. Even without an embedding, every manifold can be partitioned into boundary and
interior points. Observe that these words mean very different things for a manifold than they do for a metric
space.

Definition 25 (boundary, interior). The interior IntΣ of a manifold Σ is the set of points in Σ that have a
neighborhood homeomorphic to Rk. The boundary BdΣ of Σ is the set of points Σ \ IntΣ. Except for the
case of 0-manifolds (points) whose boundary is empty, BdΣ consists of points that have a neighborhood
homeomorphic to Hk. If BdΣ is the empty set, we say that Σ is without boundary.

For example, the closed disk B2 is a 2-manifold whose interior is the open disk B2
o and whose boundary

is the circle S1. The open disk B2
o is a 2-manifold whose boundary is the empty set. So is the Euclidean space

R2, and so is the sphere S2. The open disk is homeomorphic to R2, but the sphere is topologically different
from the other two. Moreover, the sphere is compact (bounded and closed with respect to R3) whereas the
other two are not.

A 2-manifold Σ is non-orientable if starting from a point p one can walk on Σ and end up on the
opposite side of Σ when returning to p. Otherwise, Σ is orientable. Spheres and balls are orientable, whereas
the Mobiüs band in Figure 1.22 is a non-orientable 2-manifold.

A surface is a 2-manifold that is a subspace of Rd. Any compact surface without boundary in R3 is
an orientable 2-manifold. To be non-orientable, a compact surface must have a nonempty boundary or be
embedded in a 4- or higher-dimensional Euclidean space.

A surface can sometimes be disconnected by removing one or more loops (1-manifolds without bound-
ary) from it. The genus of a surface is g if 2g is the maximum number of loops that can be removed from
the surface without disconnecting it; here the loops are permitted to intersect each other. For example, the
sphere has genus zero as any loop cuts it into two surfaces. The torus has genus one: a circular cut around
its neck and a second circular cut around its circumference, illustrated in Figure 1.23(a), allow it to unfold
into a rectangle, which topologically is a disk. A third loop would cut it into two pieces. Figure 1.23(b)
shows a 2-manifold without boundary of genus 2. Although a high-genus surface can have a very complex
shape, all compact 2-manifolds of genus g without boundary are homeomorphic to each other.
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(a) (b)

Figure 1.23: (a) Removal of the bold loops opens up the torus into a topological disk. (b) Every surface without
boundary in R3 resembles a sphere or a conjunction of one or more tori.



Chapter 2

Two-Dimensional Delaunay Triangulations

The Delaunay triangulation is a geometric structure that engineers have used for meshes since mesh gener-
ation was in its infancy. In two dimensions, it has a striking advantage: among all possible triangulations
of a fixed set of points, the Delaunay triangulation maximizes the minimum angle. It also optimizes several
other geometric criteria related to interpolation accuracy. If it is your goal to create a triangulation without
small angles, it seems almost silly to consider a triangulation that is not Delaunay. Delaunay triangulations
have been studied thoroughly, and excellent algorithms are available for constructing and updating them.

A constrained triangulation is a triangulation that enforces the presence of specified edges—for example,
the boundary of a nonconvex object. A constrained Delaunay triangulation relaxes the Delaunay property
just enough to recover those edges, while enjoying optimality properties similar to those of a Delaunay
triangulation. Constrained Delaunay triangulations are nearly as popular as their unconstrained ancestors.

This chapter surveys two-dimensional Delaunay triangulations, constrained Delaunay triangulations,
and their geometric properties. See Fortune [52] for an alternative survey of Delaunay triangulations, and
Aurenhammer [4] for a survey of many more types of Voronoi diagrams.

Figure 2.1: A Delaunay triangulation.

25
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Figure 2.2: Incremental construction of a lexicographic triangulation.

2.1 Triangulations of a Planar Point Set

The word triangulation usually refers to a simplicial complex, but it has multiple meanings when we discuss
a triangulation of some geometric entity that is being triangulated. There are triangulations of point sets,
polygons, polyhedra, and many other structures. Consider points in the plane (or in any Euclidean space).

Definition 26 (triangulation of a point set). Let V (for “vertices”) be a finite set of points in the plane. A
triangulation of V is a simplicial complex T such that

• V is the set of vertices in T , and

• the union of all the simplices in T is the convex hull of V.

Does every point set have a triangulation? Yes. Consider the lexicographic triangulation illustrated in
Figure 2.2. To construct one, sort the points lexicograpically (that is, by x-coordinate, ordering points with
the same x-coordinate according to their y-coordinates), yielding a sorted sequence v1, v2, . . . , vn of points.
Define the lexicographic triangulation Ti of the first i points by induction as follows. The first triangulation
is T1 = {v1}. Each subsequent triangulation is Ti = Ti−1 ∪ {vi} ∪ {conv({vi} ∪ σ) : σ ∈ Ti−1 and the relative
interior of conv({vi} ∪ σ) intersects no simplex in Ti−1}.

V has a triangulation even if all its points are collinear: Tn contains n vertices, n − 1 collinear edges
connecting them, and no triangles.

A triangulation of n points in the plane has at most 2n − 5 triangles and 3n − 6 edges as a consequence
of Euler’s formula. With no change, Definition 26 defines triangulations of point sets in higher-dimensional
Euclidean spaces as well.

2.2 The Delaunay Triangulation

The Delaunay triangulation of a point set V , introduced by Boris Nikolaevich Delone [43] in 1934, is a
triangulation of V whose triangles are particularly nicely shaped. Figure 2.1 illustrates a Delaunay triangu-
lation. Its defining characteristic is the empty circumcircle property: no triangle has a circumscribing circle
that encloses any point in V .

Definition 27 (circumcircle). The circumcircle, or circumscribing circle, of a triangle is the unique circle
that passes through all three of its vertices. A circumcircle of an edge is any circle that passes through both
its vertices.

In the plane, an edge has an infinite set of circumcircles; a triangle has only one.
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Figure 2.3: Every triangle in a Delaunay triangulation has an empty circumcircle.

(a) (b) (c)

Figure 2.4: Three ways to define a Delaunay structure in the presence of cocircular vertices. (a) Include all the
Delaunay simplices. (b) Choose a subset of Delaunay simplices that comprises a triangulation. (c) Exclude all
crossing Delaunay edges, and fuse overlapping Delaunay triangles into Delaunay polygons.

Definition 28 (Delaunay). In the context of a finite point set V, a triangle is Delaunay if its vertices are in V
and its circumcircle is empty—encloses no point in V. Note that any number of points can lie on a Delaunay
triangle’s circumcircle.

An edge is Delaunay if its vertices are in V and it has at least one empty circumcircle.

A Delaunay triangulation of V, denoted Del V, is a triangulation of V in which every triangle is Delau-
nay, as illustrated in Figure 2.3.

You might wonder whether every point set has a Delaunay triangulation, and how many Delaunay trian-
gulations a point set can have. The answer to the first question is “yes.” Section 2.3 gives some intuition for
why this is true, and Section 2.4 gives a proof.

The Delaunay triangulation of V is unique if and only if no four points in V lie on a common empty
circle, a fact proven in Section 2.7. Otherwise, there are Delaunay triangles and edges whose interiors
intersect, as illustrated in Figure 2.4(a). Most applications omit some of these triangles and edges so that
the survivors form a simplicial complex, as in Figure 2.4(b). Depending on which Delaunay simplices you
keep and which you discard, you obtain different Delaunay triangulations.

It is sometimes useful to unite the intersecting triangles into a single polygon, depicted in Figure 2.4(c).
The Delaunay subdivision obtained this way is a polyhedral complex, rather than a simplicial complex. It
has the advantage of being the geometric dual of the famous Voronoi diagram.

Clearly, a simplex’s being Delaunay does not guarantee that it is in every Delaunay triangulation of a
point set. But a slightly stronger property does provide that guarantee.
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Figure 2.5: Every edge on the boundary of a convex triangulation is strongly Delaunay, because it is always
possible to find an empty circle that passes through its endpoints and no other vertex.

Definition 29 (strongly Delaunay). In the context of a finite point set V, a triangle τ is strongly Delaunay if
its vertices are in V and no point in V lies inside or on its circumcircle, except the vertices of τ.

An edge e is strongly Delaunay if its vertices are in V and it has at least one circumcircle that no point
in V lies inside or on, except the vertices of e.

Every point in V is a strongly Delaunay vertex.

Every Delaunay triangulation of V contains every strongly Delaunay simplex, a fact proven in Sec-
tion 2.7. The Delaunay subdivision contains the strongly Delaunay edges and triangles, and no others.

Consider two examples of strongly Delaunay edges. First, every edge on the boundary of a triangulation
of V is strongly Delaunay. Figure 2.5 shows why. Second, the edge connecting a point v ∈ V to its nearest
neighbor w ∈ V is strongly Delaunay, because the smallest circle passing through v and w does not enclose
nor touch any other point in V . Therefore, every Delaunay triangulation connects every vertex to its nearest
neighbor.

2.3 The Parabolic Lifting Map

Given a finite point set V , the parabolic lifting map of Seidel [107, 48] transforms the Delaunay subdivision
of V into faces of a convex polyhedron in three dimensions, as illustrated in Figure 2.6. This relationship
between Delaunay triangulations and convex hulls has two consequences. First, it makes many properties of
the Delaunay triangulation intuitive. For example, from the fact that every finite point set has a polyhedral
convex hull, it follows that every finite point set has a Delaunay triangulation. Second, it brings to mesh
generation the power of a huge literature on polytope theory and algorithms: every convex hull algorithm is
a Delaunay triangulation algorithm!

The parabolic lifting map sends each point p = (x, y) ∈ E2 to a point p+ = (x, y, x2 + y2) ∈ E3. Call p+
the lifted companion of p.

Consider the convex hull conv(V+) of the lifted points V+ = {v+ : v ∈ V}. Figure 2.6 illustrates its
downward-facing faces. Formally, a face f of conv(V+) is downward-facing if no point in conv(V+) is
directly below any point in f , with respect to the z-axis. Call the collection of downward-facing faces the
underside of conv(V+). Projecting the underside of conv(V+) to the x-y plane (by discarding every point’s
z-coordinate) yields the Delaunay subdivision of V . If V has more than one Delaunay triangulation, this
Delaunay subdivision has non-triangular polygons, like the hexagon in Figure 2.4(c). Triangulating these
polygonal faces yields a Delaunay triangulation.

For a simplex σ in the plane, its lifted companion σ+ is the simplex embedded in E3 whose vertices are
the lifted companions of the vertices of σ. Note that σ+ is flat, and does not curve to hug the paraboloid.
The following lemma and theorem show that every Delaunay simplex’s lifted companion is included in a
downward-facing face of conv(V+).
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Figure 2.6: The parabolic lifting map.

Lemma 1. Let C be a circle in the plane. Let C+ = {p+ : p ∈ C} be the ellipse obtained by lifting C to
the paraboloid. Then the points of C+ lie on a plane h, which is not parallel to the z-axis. Furthermore,
every point p inside C lifts to a point p+ below h, and every point p outside C lifts to a point p+ above h.
Therefore, testing whether a point p is inside, on, or outside C is equivalent to testing whether the lifted
point p+ is below, on, or above h.

Proof. Let O and r be the center and radius of C, respectively. Let p be a point in the plane. The z-coordinate
of p+ is |p|2. By expanding |O − p|2, we have the identity |p|2 = 2O · p − |O|2 + |O − p|2.

With O and r fixed and p ∈ E2 varying, the equation z = 2O · p − |O|2 + r2 defines a plane h in E3, not
parallel to the z-axis. For every point p ∈ C, |O − p| = r, so C+ ⊂ h. For every point p # C, if |O − p| < r,
then the lifted point p+ lies below h, and if |O − p| > r, then p+ lies above h. "

Theorem 2 (Seidel [107]). Let σ be a simplex whose vertices are in V, and let σ+ be its lifted companion.
Then σ is Delaunay if and only if σ+ is included in some downward-facing face of conv(V+). The simplex
σ is strongly Delaunay if and only if σ+ is a downward-facing face of conv(V+).

Proof. If σ is Delaunay, σ has a circumcircle C that encloses no point in V . Let h be the unique plane in E3

that includes C+. By Lemma 1, no point in V+ lies below h. Because the vertices of σ+ are in C+, h ⊃ σ+.
Therefore, σ+ is included in a downward-facing face of the convex hull of V+. If σ is strongly Delaunay,
every point in V+ lies above h except the vertices of σ+. Therefore, σ+ is a downward-facing face of the
convex hull of V+.

The converse implications follow by reversing the argument. "

The parabolic lifting map works equally well for Delaunay triangulations in three or more dimensions;
Lemma 1 and Theorem 2 generalize to higher dimensions without any new ideas. Theorem 2 implies that
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e e

Figure 2.7: At left, e is locally Delaunay. At right, e is not.

any algorithm for constructing convex hulls of point sets in Ed+1 can construct the Delaunay triangulation
of a point set in Ed.

The relationship between Delaunay triangulations and convex hulls was first discovered by Brown [21],
who proposed a different lifting map that projects V onto a sphere. The parabolic lifting map is numerically
better behaved than the spherical one.

2.4 The Delaunay Lemma

Perhaps the most important result about Delaunay triangulations is the Delaunay Lemma, proven by Boris
Delaunay himself [43]. It provides an alternative characterization of the Delaunay triangulation: a triangu-
lation whose edges are locally Delaunay.

Definition 30 (locally Delaunay). Let e be an edge in a triangulation T of a planar point set. If e is an
edge of fewer than two triangles in T , then e is said to be locally Delaunay. If e is an edge of exactly two
triangles τ1 and τ2 in T , then e is locally Delaunay if it has a circumcircle enclosing no vertex of τ1 nor τ2.
Equivalently, the circumcircle of τ1 encloses no vertex of τ2. Equivalently, the circumcircle of τ2 encloses
no vertex of τ1.

Figure 2.7 shows two different triangulations of six vertices. In the triangulation at left, the edge e is
locally Delaunay, because the depicted circumcircle of e does not enclose either vertex opposite e. Never-
theless, e is not Delaunay, thanks to other vertices inside e’s circumcircle. In the triangulation at right, e is
not locally Delaunay; every circumcircle of e encloses at least one of the two vertices opposite e.

The Delaunay Lemma has several uses. First, it provides a linear-time algorithm to determine whether
a triangulation is Delaunay: simply test whether every edge is locally Delaunay. Second, it implies a simple
algorithm for producing a Delaunay triangulation called the flip algorithm (Section 2.5). The flip algorithm
helps to prove that Delaunay triangulations have useful optimality properties. Third, the Delaunay Lemma
helps to prove the correctness of other algorithms for constructing Delaunay triangulations.

As with many properties of Delaunay triangulations, the lifting map provides intuition for the Delaunay
Lemma. On the lifting map, the Delaunay Lemma is essentially the observation that a simple polyhedron
is convex if and only if its has no reflex edge. A reflex edge is an edge where the polyhedron is locally
nonconvex; that is, the dihedral angle at which the two adjoining faces meet along that edge exceeds 180◦,
measured through the interior of the polyhedron. If a triangulation has an edge that is not locally Delaunay,
that edge’s lifted companion is a reflex edge of the lifted triangulation (by Lemma 1).

Theorem 3 (Delaunay Lemma [43]). Let T be a triangulation of a point set V. The following three state-
ments are equivalent.
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Figure 2.8: (a) Because τ’s circumcircle encloses v, some edge between v and τ is not locally Delaunay. (b) Be-
cause v lies above e1 and inside τ’s circumcircle, and because w1 lies outside (or on) τ’s circumcircle, v must lie
inside τ1’s circumcircle.

A. Every triangle in T is Delaunay (i.e. T is Delaunay).

B. Every edge in T is Delaunay.

C. Every edge in T is locally Delaunay.

Proof. If the points in V are all collinear, V has only one triangulation, which trivially satisfies all three
properties.

Otherwise, let e be an edge in T ; e is an edge of at least one triangle τ ∈ T . If τ is Delaunay, τ’s
circumcircle is empty, and because τ’s circumcircle is also a circumcircle of e, e is Delaunay. Therefore,
Property A implies Property B. If an edge is Delaunay, it is clearly locally Delaunay too, so Property B
implies Property C. The proof is complete if Property C implies Property A. Of course, this is the hard part.

Suppose that every edge in T is locally Delaunay. Suppose for the sake of contradiction that Property A
does not hold. Then some triangle τ ∈ T is not Delaunay, and some vertex v ∈ V is inside τ’s circumcircle.
Let e1 be the edge of τ that separates v from the interior of τ, as illustrated in Figure 2.8(a). Without loss of
generality, assume that e1 is oriented horizontally, with τ below e1.

Draw a line segment from the midpoint of e1 to v—see the dashed line in Figure 2.8(a). If the line
segment intersects some vertex other than v, replace v with the lowest such vertex. Let e1, e2, e3, . . ., em be
the sequence of triangulation edges (from bottom to top) whose relative interiors the line segment intersects.
Because T is a triangulation of V , every point on the line segment lies either in a single triangle or on an
edge. Let wi be the vertex above ei that forms a triangle τi in conjunction with ei. Observe that wm = v.

By assumption, e1 is locally Delaunay, so w1 lies on or outside the circumcircle of τ. As Figure 2.8(b)
shows, it follows that the circumcircle of τ1 encloses every point above e1 inside the circumcircle of τ, and
hence encloses v. Repeating this argument inductively, we find that the circumcircles of τ2, . . . , τm enclose
v. But wm = v is a vertex of τm, which contradicts the claim that v is inside the circumcircle of τm. "
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Figure 2.9: In this nonconvex quadrilateral, e cannot be flipped.
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Figure 2.10: (a) The edge e is locally Delaunay. (b) The edge e is not locally Delaunay. The edge created by a
flip of e is locally Delaunay.

2.5 The Flip Algorithm

The flip algorithm has at least three uses: it is a simple algorithm for computing a Delaunay triangulation, it
is the core of a constructive proof that every finite set of points in the plane has a Delaunay triangulation, and
it is the core of a proof that the Delaunay triangulation optimizes several geometric criteria when compared
with all other triangulations of the same point set.

Let V be a point set you wish to triangulate. The flip algorithm begins with any triangulation T of V;
for instance, the lexicographic triangulation described in Section 2.1. The Delaunay Lemma tells us that T
is Delaunay if and only if every edge in T is locally Delaunay. The flip algorithm repeatedly chooses any
edge that is not locally Delaunay, and flips it.

The union of two triangles that share an edge is a quadrilateral, and the shared edge is a diagonal of
the quadrilateral. To flip an edge is to replace it with the quadrilateral’s other diagonal, as illustrated in
Figure 2.7. An edge flip is legal only if the two diagonals cross each other—equivalently, if the quadrilateral
is convex. Figure 2.9 shows that not every edge can be flipped, because the quadrilateral might not be
convex. Fortunately, unflippable edges are always locally Delaunay.

Lemma 4. Let e be an edge in a triangulation of V. Either e is locally Delaunay, or e is flippable and the
edge created by flipping e is locally Delaunay.

Proof: Let v and w be the vertices opposite e. Consider the quadrilateral defined by e, v, and w, illustrated
in Figure 2.10. Let C be the circle that passes through v and the vertices of e.

If w is on or outside C, as in Figure 2.10(a), then the empty circle C demonstrates that e is locally
Delaunay.

Otherwise, w is inside the section of C bounded by e and opposite v. This section is shaded in Fig-
ure 2.10(b). The quadrilateral is thus strictly convex, so e is flippable. Furthermore, the circle that is tangent
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to C at v and passes through w does not enclose the endpoints of e, because C encloses it, as Figure 2.10(b)
demonstrates. Therefore, the edge vw is locally Delaunay. "

Lemma 4 shows that the flip algorithm can flip any edge that is not locally Delaunay, thereby creating an
edge that is. Unfortunately, the outer four edges of the quadrilateral might discover that they are no longer
locally Delaunay, even if they were locally Delaunay before the flip. If the flip algorithm repeatedly flips
edges that are not locally Delaunay, will it go on forever?

Theorem 5. Given a triangulation of n points, the flip algorithm terminates after O(n2) edge flips, yielding
a Delaunay triangulation.

Proof: Let T be the initial triangulation provided as input to the flip algorithm. Let T + = {σ+ : σ ∈ T } be
the initial triangulation lifted to the parabolic lifting map; T + is a simplicial complex embedded in E3. If T
is Delaunay, then T + triangulates the underside of conv(V+); otherwise, by Lemma 1, the edges of T that
are not locally Delaunay lift to reflex edges of T +.

By Lemma 4, an edge flip replaces an edge that is not locally Delaunay with one that is. In the lifted
triangulation T +, a flip replaces a reflex edge with a convex edge. Let Q be the set containing the four
vertices of the two triangles that share the flipped edge. Then conv(Q+) is a tetrahedron whose upper faces
are the pre-flip simplices and whose lower faces are the post-flip simplices. Imagine the edge flip as the act
of gluing the tetrahedron conv(Q+) to the underside of T +.

Each edge flip monotonically lowers the lifted triangulation, so once flipped, an edge can never reappear.
The flip algorithm can perform no more than n(n− 1)/2 flips—the number of edges that can be defined on n
vertices—so it must terminate. But the flip algorithm terminates only when every edge is locally Delaunay.
By the Delaunay Lemma, the final triangulation is Delaunay. "

The fact that the flip algorithm terminates helps to prove that point sets have Delaunay triangulations.

Corollary 6. Every finite set of points in the plane has a Delaunay triangulation.

Proof: Section 2.1 demonstrates that every finite point set has at least one triangulation. By Theorem 5, the
application of the flip algorithm to that triangulation produces a Delaunay triangulation. "

If a point set has more than one Delaunay triangulation, the flip algorithm will find one of them. Which
one it finds depends upon the starting triangulation and the order in which flips are performed.

An efficient implementation of the flip algorithm requires one extra ingredient. How quickly can you
find an edge that is not locally Delaunay? To repeatedly test every edge in the triangulation would be slow.
Instead, the flip algorithm maintains a list of edges that might not be locally Delaunay. The list initially
contains every edge in the triangulation. Thereafter, the flip algorithm iterates the following procedure until
the list is empty, whereupon the algorithm halts.

• Remove an edge from the list.

• Check whether the edge is still in the triangulation, and if so, whether it is locally Delaunay.

• If the edge is present but not locally Delaunay, flip it, and add the four edges of the flipped quadrilateral
to the list.
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The list may contain multiple copies of the same edge, but they do no harm.

Implemented this way, the flip algorithm runs in O(n + k) time, where n is the number of vertices (or
triangles) of the triangulation, and k is the number of flips performed. In the worst case, k ∈ Θ(n2), giving
O(n2) running time. But there are circumstances where the flip algorithm is fast in practice. For instance, if
the vertices of a Delaunay mesh are perturbed by small displacements during a physical simulation, it might
take only a small number of flips to restore the Delaunay property. In this circumstance, the flip algorithm
probably outperforms any algorithm that reconstructs the triangulation from scratch.

2.6 The Optimality of the Delaunay Triangulation

Delaunay triangulations are valuable in part because they optimize several geometric criteria: the smallest
angle, the largest circumcircle, and the largest min-containment circle. The min-containment circle of a
triangle is the smallest circle that encloses it. For a triangle with no obtuse angles, the circumcircle and the
min-containment circle are the same, but for an obtuse triangle, the min-containment circle is smaller.

Theorem 7. Among all the triangulations of a point set, there is a Delaunay triangulation that maximizes
the minimum angle in the triangulation, minimizes the largest circumcircle, and minimizes the largest min-
containment circle.

Proof: Each of these properties is locally improved when an edge that is not locally Delaunay is flipped;
Lemma 8 below demonstrates this for the first two properties. (I omit the min-containment property in favor
of a general-dimensional proof in Section 4.4.) There is at least one optimal triangulation T . If T has an
edge that is not locally Delaunay, flipping that edge produces another optimal triangulation. When the flip
algorithm runs with T as its input, every triangulation it iterates through is optimal by induction, and by
Theorem 5, that includes a Delaunay triangulation. "

Lemma 8. Flipping an edge that is not locally Delaunay increases the minimum angle and reduces the
largest circumcircle among the triangles changed by the flip.

Proof: Let uv be the flipped edge, and let △wvu and △xuv be the triangles deleted by the flip, so △wxu and
△xwv are the triangles created by the flip.

The angle opposite the edge uw is ∠wvu before the flip, and ∠wxu after the flip. As Figure 2.11 il-
lustrates, because the circumcircle of △wvu encloses x, the latter angle is greater than the former angle by
Thales’ Theorem, a standard and ancient fact about circle geometry. Likewise, the flip increases the angles
opposite wv, vx, and xu.

Each of the other two angles of the new triangles, ∠xuw and ∠wvx, is a sum of two pre-flip angles that
merge when uv is deleted. It follows that all six angles of the two post-flip triangles exceed the smallest of
the four angles that uv participates in before the flip.

Suppose without loss of generality that the circumcircle of △wxu is at least as large as the circumcircle
of △xwv, and that ∠wxu ≤ ∠uwx, implying that ∠wxu is acute. Because the circumcircle of △wvu encloses
x, it is larger than the circumcircle of △wxu, as illustrated in Figure 2.11. It follows that the largest pre-flip
circumcircle is larger than the largest post-flip circumcircle. "

Theorem 7 guarantees that if a point set has only one Delaunay triangulation, the Delaunay triangulation
is optimal. But what if a point set has more than one Delaunay triangulation? Every Delaunay triangulation



The Uniqueness of the Delaunay Triangulation 35

x
w

v

u

w

v

u

x

Figure 2.11: A Delaunay flip increases the angle opposite edge uw and, if ∠wxu is acute, reduces the circumcircle
of the triangle adjoining that edge.

optimizes these criteria, because any Delaunay triangulation can be transformed to any other Delaunay
triangulation of the same points by a sequence of edge flips such that every intermediate triangulation is
Delaunay, and each flip preserves optimality.

Unfortunately, the optimality properties of Theorem 7 do not generalize to Delaunay triangulations in
dimensions higher than two, with the exception of minimizing the largest min-containment circle. However,
the list of optimality properties in Theorem 7 is not complete. Section 4.4 discusses criteria related to
interpolation error for which Delaunay triangulations of any dimension are optimal.

The flip algorithm and the Delaunay triangulation’s property of maximizing the minimum angle were
both introduced by a classic paper by Charles Lawson [73], which also introduced the incremental insertion
algorithm for constructing a Delaunay triangulation. D’Azevedo and Simpson [42] were the first to show that
two-dimensional Delaunay triangulations minimize the largest min-containment circle. Rajan [96] shows
that higher-dimensional Delaunay triangulations minimize the largest min-containment hypersphere.

2.7 The Uniqueness of the Delaunay Triangulation

The strength of a strongly Delaunay simplex is that it appears in every Delaunay triangulation of a point
set. If a point set has multiple Delaunay triangulations, they differ only in their choices of simplices that are
merely Delaunay. Hence, if a point set has no four cocircular points, it has only one Delaunay triangulation.

Let us prove these facts. Loosely speaking, the following theorem says that strongly Delaunay simplices
intersect nicely.

Theorem 9. Let σ be a strongly Delaunay simplex, and let τ be a Delaunay simplex. Then σ ∩ τ is either
empty or a shared face of both σ and τ.

Proof. If τ is a face of σ, the theorem follows immediately. Otherwise, τ has a vertex v that σ does not have.
Because τ is Delaunay, it has an empty circumcircle Cτ. Because σ is strongly Delaunay, it has an empty
circumcircle Cσ that does not pass through v, illustrated in Figure 2.12. But v lies on Cτ, so Cσ ! Cτ.

The intersection of circumcircles Cσ ∩Cτ contains either zero, one, or two points. In the first two cases,
the theorem follows easily, so suppose it is two points w and x, and let ℓ be the unique line through w and
x. On one side of ℓ, an arc of Cσ encloses an arc of Cτ, and because Cσ is empty, no vertex of τ lies on this
side of ℓ. Symmetrically, no vertex of σ lies on the other side of ℓ. Therefore, σ ∩ τ ⊂ ℓ. It follows that
σ ∩ ℓ is either ∅, {w}, {x}, or the edge wx. The same is true of τ ∩ ℓ, and therefore of σ ∩ τ. "

Theorem 9 leads us to see that if a point set has several Delaunay triangulations, they differ only by the
simplices that are not strongly Delaunay.
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Figure 2.12: A strongly Delaunay simplex σ intersects any Delaunay simplex τ at a shared face of both. The
illustration at right foreshadows the fact that this result holds for higher-dimensional Delaunay triangulations too.

Theorem 10. Every Delaunay triangulation of a point set contains every strongly Delaunay simplex.

Proof. Let T be any Delaunay triangulation of a point set V . Let σ be any strongly Delaunay simplex. Let
p be a point in the relative interior of σ.

Some Delaunay simplex τ in T contains the point p. By Theorem 9, σ ∩ τ is a shared face of σ and τ.
But σ ∩ τ contains p, which is in the relative interior of σ, so σ ∩ τ = σ. Therefore, σ is a face of τ, so
σ ∈ T . "

An immediate consequence of this theorem is that “most” point sets—at least, most point sets with
randomly perturbed real coordinates—have just one Delaunay triangulation.

Corollary 11. Let V be a point set. Suppose no four points in V lie on a common empty circle. Then V has
at most one Delaunay triangulation.

Proof. Because no four points lie on a common empty circle, every Delaunay simplex is strongly Delaunay.
By Theorem 10, every Delaunay triangulation of V contains every Delaunay simplex. By definition, no De-
launay triangulation contains a triangle that is not Delaunay. Hence, the Delaunay triangulation is uniquely
defined as the set of all Delaunay triangles and their faces. "

2.8 Constrained Delaunay Triangulations in the Plane

As planar Delaunay triangulations maximize the minimum angle, do they solve the problem of triangular
mesh generation? No, for two reasons illustrated in Figure 2.13. First, skinny triangles might appear anyway.
Second, the Delaunay triangulation of a domain’s vertices might not respect the domain’s boundary. Both
these problems can be solved by introducing additional vertices, as illustrated.

An alternative solution to the second problem is to use a constrained Delaunay triangulation (CDT).
A CDT is defined with respect to a set of points and segments that demarcate the domain boundary. Every
segment is required to become an edge of the CDT. The triangles of a CDT are not required to be Delaunay;
instead, they must be constrained Delaunay, a property that partly relaxes the empty circumcircle property.

One virtue of a CDT is that it can respect arbitrary segments without requiring the insertion of any
additional vertices (besides the vertices of the segments). Another is that the CDT inherits the Delaunay
triangulation’s optimality: among all triangulations of a point set that include all the segments, the CDT
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Figure 2.13: The Delaunay triangulation (upper right) may omit domain edges and contain skinny triangles. A
Steiner Delaunay triangulation (lower left) can fix these faults by introducing new vertices. A constrained Delaunay
triangulation (lower right) fixes the first fault without introducing new vertices.

gf

Figure 2.14: A two-dimensional piecewise linear complex and its constrained Delaunay triangulation. Each
polygon may have holes, slits, and vertices in its interior.

maximizes the minimum angle [74], minimizes the largest circumcircle, and minimizes the largest min-
containment circle. CDTs in the plane were mathematically formalized by Lee and Lin [74] in 1986, though
algorithms that unwittingly construct CDTs appeared much sooner [53, 89].

2.8.1 Piecewise Linear Complexes and their Triangulations

The domain over which a CDT is defined (and the input to a CDT construction algorithm) is not just a set
of points, but rather a complex composed of points, edges, and polygons, illustrated in Figure 2.14. The
purpose of the edges is to dictate that triangulations of the complex must contain those edges. The purpose
of the polygons is to specify the region to be triangulated. The polygons are not necessarily convex, and
they may have holes.

Definition 31 (piecewise linear complex; segment; wall). In the plane, a piecewise linear complex (PLC) X
is a finite set of vertices, edges, and polygons that satisfies the following properties.

• The vertices and edges inX form a simplicial complex. That is, X contains both vertices of every edge
in X, and the relative interior of an edge in X intersects no vertex in X nor any other edge in X.

• For each polygon f in X, the boundary of f is a union of edges in X.

• If two polygons in X intersect, their intersection is a union of edges and vertices in X. (For example,
in Figure 2.14 f ∩ g is a union of three edges and a vertex in X.) This rule implies that two polygons’
interiors cannot intersect.)
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Following Ruppert [102], the edges in a PLC X are called segments to distinguish them from other
edges in a triangulation of X. The polygons in a PLC are called walls.

The underlying space of a PLCX, denoted |X|, is the union of its contents; that is, |X| =
⋃

f∈X f . Usually,
the underlying space is the domain to be triangulated.1

Every simplicial complex and every polyhedral complex is a PLC. But PLCs are more general, and not
just because they permit nonconvex polygons. As Figure 2.14 illustrates, segments and isolated vertices
can float in a wall’s interior, constraining how the wall can be triangulated. One purpose of these floating
constraints is to permit the application of boundary conditions at appropriate locations in a mesh of a PLC.

Whereas the faces of a simplex are defined in a way that depends solely on the simplex, and the faces of
a convex polyhedron are too, the faces of a wall are defined in a fundamentally different way that depends
on both the wall and the PLC it is a part of. An edge of a wall might be a union of several segments in the
PLC; these segments and their vertices are faces of the wall. A PLC may contain segments and edges that
lie in the relative interior of a wall; these are also considered to be faces of the wall, because they constrain
how the wall can be subdivided into triangles.

Definition 32 (face of a linear cell). The faces of a linear cell (polygon, edge, or vertex) f in a PLC X are
the linear cells in X that are subsets of f , including f itself.

A triangulation of X must cover every wall and include every segment.

Definition 33 (triangulation of a planar PLC). Let X be a PLC in the plane. A triangulation of X is a
simplicial complex T such that

• X and T have the same vertices,

• T contains every edge in X (and perhaps additional edges), and

• |T | = |X|.

It is not difficult to see that a simplex can appear in a triangulation of X only if it respects X.

Definition 34 (respect). A simplex σ respects a PLC X if σ ⊆ |X| and for every f ∈ X that intersects σ,
f ∩ σ is a union of faces of σ. (Usually, but not always, that union is one face of σ or σ itself.) In other
words, f fully includes every face of σ whose relative interior intersects f .

Theorem 12. Every simple polygon has a triangulation. Every PLC in the plane has a triangulation too.

Proof: Let P be a simple polygon. If P is a triangle, it clearly has a triangulation. Otherwise, consider the
following procedure for triangulating P. Let ∠uvw be a corner of P having an interior angle less than 180◦.
Two such corners are found by letting v be the lexicographically least or greatest vertex of P.

If the open edge uw lies strictly in P’s interior, then cutting △uvw from P yields a polygon having one
edge fewer; triangulate it recursively. Otherwise, △uvw contains at least one vertex of P besides u, v, and
w, as illustrated in Figure 2.15. Among those vertices, let x be the vertex furthest from the line aff uw. The
open edge vx must lie strictly in P’s interior, because if it intersected an edge of P, that edge would have a
vertex further from aff uw. Cutting P at vx produces two simple polygons, each with fewer edges than P;
triangulate them recursively. In either case, the procedure produces a triangulation of P.

1If you take the vertices and edges of a planar PLC and discard the polygons, you have a simplicial complex with no triangles.
This complex is called a planar straight line graph (PSLG). Most publications about CDTs take a PSLG as the input, and assume
that the CDT should cover the PSLG’s convex hull. PLCs are more expressive, as they can restrict the triangulation to a nonconvex
region of the plane.
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Figure 2.15: The edge vx cuts this simple polygon into two simple polygons.

Figure 2.16: Inserting a segment into a triangulation.

Let X be a planar PLC. Consider the following procedure for triangulating X. Begin with an arbitrary
triangulation of the vertices in X, such as the lexicographic triangulation described in Section 2.1. Examine
each segment in X to see if it is already an edge of the triangulation. Insert each missing segment into
the triangulation by deleting all the edges and triangles that intersect its relative interior, creating the new
segment, and retriangulating the two polygonal cavities thus created (one on each side of the segment),
as illustrated in Figure 2.16. The cavities might not be simple polygons, because they might have edges
dangling in their interiors, as shown. But it is straightforward to verify that the procedure discussed above
for triangulating a simple polygon works equally well for a cavity with dangling edges.

The act of inserting a segment never deletes another segment, because two segments in X cannot cross.
Therefore, after every segment is inserted, the triangulation contains all of them. Finally, delete any sim-
plices not included in |X|. "

Definition 33 does not permit T to have vertices absent from X, but mesh generation usually entails
adding new vertices to guarantee that the triangles have high quality. This motivates the notion of a Steiner
triangulation.

Definition 35 (Steiner triangulation of a planar PLC; Steiner Delaunay triangulation; Steiner point). Let X
be a PLC in the plane. A Steiner triangulation of X, also known as a conforming triangulation of X or a
mesh of X, is a simplicial complex T such that

• T contains every vertex in X (and perhaps additional vertices),

• every edge in X is a union of edges in T , and

• |T | = |X|.

The new vertices in T , absent from X, are called Steiner points.

A Steiner Delaunay triangulation of X, also known as a conforming Delaunay triangulation of X, is a
Steiner triangulation of X in which every simplex is Delaunay.

If the Delaunay triangulation of the vertices in a planar PLC X does not respect all the segments in X,
it is always possible to find a Steiner Delaunay triangulation of X by adding Steiner points, as illustrated at



40 Jonathan Richard Shewchuk

lower left in Figure 2.13. Unfortunately, the number of Steiner points might be large. The best algorithm to
date, by Bishop [13], triangulates a PLC having m segments and n vertices with the addition of O(m2.5+mn)
Steiner points. Edelsbrunner and Tan [49] exhibit a PLC requiring Θ(mn) Steiner points. Closing the gap
between the O(m2.5 +mn) and Ω(mn) bounds remains an open problem. The large number of Steiner points
that some PLCs need motivates the constrained Delaunay triangulation, which needs none.

2.8.2 The Constrained Delaunay Triangulation

Constrained Delaunay triangulations (CDTs) offer a way to force a triangulation to respect the edges in a
PLC without introducing new vertices, while maintaining some of the advantages of Delaunay triangula-
tions. However, it is necessary to relax the requirement that all triangles be Delaunay. The terminology can
be confusing: whereas every Steiner Delaunay triangulation is a Delaunay triangulation (of some point set),
constrained Delaunay triangulations generally are not.

Recall the Delaunay Lemma: a triangulation of a point set is Delaunay if and only if every edge is lo-
cally Delaunay. Likewise, there is a Constrained Delaunay Lemma (Section 2.8.3) that offers the simplest
definition of a CDT: a triangulation of a PLC is constrained Delaunay if and only if every edge is locally
Delaunay or a segment. Thus, a CDT differs from a Delaunay triangulation in three ways: it is not neces-
sarily convex, it is required to contain the edges in a PLC, and those edges are exempted from being locally
Delaunay.

The defining characteristic of a CDT is that every triangle is constrained Delaunay, as defined below.

Definition 36 (visibility). Two points x and y are visible to each other if the line segment xy respects X;
recall Definition 34. We also say that x and y can see each other. A linear cell in X that intersects the
relative interior of xy but does not include xy is said to occlude the visibility between x and y.

Definition 37 (constrained Delaunay). In the context of a PLC X, a simplex σ is constrained Delaunay if it
satisfies the following three conditions.

• X contains σ’s vertices.

• σ respects X.

• There is a circumcircle of σ that encloses no vertex in X that is visible from a point in the relative
interior of σ.

Figure 2.17 illustrates examples of a constrained Delaunay edge e and a constrained Delaunay triangle
τ. Bold lines indicate PLC segments. Although e has no empty circumcircle, the depicted circumcircle of
e encloses no vertex that is visible from the relative interior of e. There are two vertices inside the circle,
but both are hidden behind segments. Hence, e is constrained Delaunay. Similarly, the circumcircle of τ
encloses two vertices, but both are hidden from the interior of τ by segments, so τ is constrained Delaunay.

Definition 38 (constrained Delaunay triangulation). A constrained Delaunay triangulation (CDT) of a PLC
X is a triangulation of X in which every triangle is constrained Delaunay.

Figure 2.18 illustrates a PLC, a Delaunay triangulation of its vertices, and a constrained Delaunay tri-
angulation of the PLC. In the CDT, every triangle is constrained Delaunay, every edge that is not a PLC
segment is constrained Delaunay, and every vertex is trivially constrained Delaunay.
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Figure 2.17: The edge e and triangle τ are constrained Delaunay. Bold lines represent segments.
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Figure 2.18: (a) A piecewise linear complex. (b) The Delaunay triangulation of its vertices. (c) Its constrained
Delaunay triangulation.

CDTs and Steiner Delaunay triangulations are two different ways to force a triangulation to conform
to the boundary of a geometric domain. CDTs partly sacrifice the Delaunay property for the benefit of
requiring no new vertices. For mesh generation, new vertices are usually needed anyway to obtain good
triangles, so many Delaunay meshing algorithms use Steiner Delaunay triangulations. But some algorithms
use a hybrid of CDTs and Steiner Delaunay triangulations because it helps to reduce the number of new
vertices. A Steiner CDT or conforming CDT of X is a Steiner triangulation of X in which every triangle is
constrained Delaunay.

2.8.3 Properties of the Constrained Delaunay Triangulation

For every property of Delaunay triangulations discussed in this chapter, there is an analogous property of
constrained Delaunay triangulations. This section summarizes them. Proofs are omitted, but each of them
is a straightforward extension of the corresponding proof for Delaunay triangulations.

The Delaunay Lemma generalizes to CDTs, and provides a useful alternative definition: a triangulation
of a PLC X is a CDT if and only if every one of its edges is locally Delaunay or a segment in X.

Theorem 13 (Constrained Delaunay Lemma). Let T be a triangulation of a PLC X. The following three
statements are equivalent.

• Every triangle in T is constrained Delaunay (i.e. T is constrained Delaunay).

• Every edge in T not in X is constrained Delaunay.
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• Every edge in T not in X is locally Delaunay. "

One way to construct a constrained Delaunay triangulation of a PLC X is to begin with any triangulation
of X. Apply the flip algorithm, modified so that it never flips a segment: repeatedly choose any edge of
the triangulation that is not in X and not locally Delaunay, and flip it. When no such edge survives, the
Delaunay Lemma tells us that the triangulation is constrained Delaunay.

Theorem 14. Given a triangulation of a PLC having n vertices, the modified flip algorithm (which never
flips a PLC segment) terminates after O(n2) edge flips, yielding a constrained Delaunay triangulation. "

Corollary 15. Every PLC has a constrained Delaunay triangulation. "

The CDT has the same optimality properties as the Delaunay triangulation, except that the optimality is
with respect to a smaller set of triangulations—those that include the PLC’s edges.

Theorem 16. Among all the triangulations of a PLC, every constrained Delaunay triangulation maximizes
the minimum angle in the triangulation, minimizes the largest circumcircle, and minimizes the largest min-
containment circle. "

A sufficient but not necessary condition for the CDT to be unique is that no four vertices are cocircular.

Theorem 17. If no four vertices in a PLC lie on a common circle, then the PLC has one unique constrained
Delaunay triangulation. "



Chapter 3

Algorithms for Constructing Delaunay
Triangulations

The first published Delaunay triangulation algorithm I know of appears in a 1967 paper by J. Desmond
Bernal and John Finney [12]. Bernal was a father of structural biology who discovered the structure of
graphite and was awarded a Stalin Peace Prize. Finney, Bernal’s last Ph.D. student, implemented a program
that produces a three-dimensional Voronoi diagram and used it to characterize the structures of liquids,
amorphous metal alloys, protein molecules, and random packings. Finney’s is the brute force algorithm:
test every possible tetrahedron (every combination of four vertices) to see if its circumsphere is empty,
taking O(n5) time—or more generally, O(nd+2) time for d-dimensional Delaunay triangulations.

Besides this brute force algorithm and the flip algorithm, there are three classic types of algorithm for
constructing Delaunay triangulations.

Gift-wrapping—also called graph traversal, pivoting, and incremental search—is an obvious algorithm
that is rediscovered frequently [53, 26, 79, 121, 123]. Gift-wrapping algorithms construct Delaunay triangles
one at a time, using the previously computed triangles as a seed on which new triangles crystallize. They are
closely related to advancing front methods for mesh generation. Gift-wrapping generalizes easily to CDTs
and to higher dimensions, and it is easy to implement, but it is difficult to make fast. Section 3.8 describes
a basic gift-wrapping algorithm that triangulates n points in the plane in O(n2) worst-case time, or a PLC
in the plane with n vertices and m segments in O(n2m) time. The bottleneck of gift-wrapping is identifying
new triangles, so the fastest gift-wrapping algorithms are differentiated by sweep orderings for constructing
the triangles [108, 51] or sophisticated vertex search strategies [47, 120].

In the decision-tree model of computation, sets of n points in the plane sometimes require Ω(n log n)
time to triangulate. The first Delaunay triangulation algorithm to run in optimalO(n log n) time was the 1975
divide-and-conquer algorithm of Shamos and Hoey [111], subsequently simplified by Lee and Schachter [75]
and Guibas and Stolfi [60] and sped up by Dwyer [46]. The divide-and-conquer algorithm partitions a set of
points into two halves separated by a line, recursively computes the Delaunay triangulation of each subset,
and merges the two triangulations into one. This algorithm remains the fastest planar Delaunay triangulator
in practice [112], and the reader interested in implementing it is urged to read the guide by Guibas and
Stolfi [60], which includes detailed pseudocode. However, the divide-and-conquer strategy is not fast in
three dimensions.

Incremental insertion algorithms insert vertices into a Delaunay triangulation one at a time, always
restoring the Delaunay property to the triangulation before inserting another vertex. Some incremental in-
sertion algorithms run in worst-case optimal time. The fastest three-dimensional Delaunay triangulators in
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practice are in this class. Moreover, the difference between a Delaunay triangulation algorithm and a mod-
ern Delaunay mesh generator is that the former is given all the vertices at the outset, whereas the latter uses
the triangulation to decide where to place additional vertices, making incremental insertion obligatory. Sec-
tions 3.3–3.5 study incremental insertion, and Section 5.4 introduces a more sophisticated vertex ordering
method called a biased randomized insertion order that speeds up incremental insertion for large points sets.

All three types of algorithm extend to constrained Delaunay triangulations. There are a divide-and-
conquer algorithm [34] and a gift-wrapping algorithm [109] that both run in worst-case optimal O(n log n)
time, but because they are complicated, these algorithms are rarely implemented.

The most commonly used CDT construction method in practice is incremental insertion: first construct
a Delaunay triangulation of the PLC’s vertices, then insert the PLC’s segments one by one. The algorithms
commonly used to perform segment insertion in practice are slow, but a specialized incremental algorithm
described in Section 3.9 runs in expected O(n log n+ n log2 m) time. Realistic PLCs have few segments long
enough to cross many edges, and it is typical to observe O(n log n) running time in practice.

3.1 The Orientation and Incircle Predicates

Most geometric algorithms perform a mix of combinatorial and numerical computations. The numerical
computations are usually packaged as geometric primitives of two types: geometric constructors that create
new entities, such as the point where two specified lines intersect, and geometric predicates that determine
relationships among entities, such as whether or not two lines intersect at all. Many Delaunay triangulation
algorithms require just two predicates, called the orientation and incircle tests.

The most used predicate in computational geometry is the orientation test. Let a, b, and c be three points
in the plane. Consider a function Orient2D(a, b, c) that returns a positive value if the points a, b, and c
are arranged in counterclockwise order, a negative value if the points are in clockwise order, and zero if
the points are collinear. Another interpretation, important for many geometric algorithms, is that Orient2D
returns a positive value if a lies to the left of the directed line b⃗c. The orientation test can be implemented
as a matrix determinant that computes the signed area of the parallelogram determined by the vectors a − c
and b − c,
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These expressions extend to higher dimensions by adding rows and columns for additional points and
coordinate axes. Given four points a, b, c, and d in E3, define Orient3D(a, b, c, d) to be the signed volume
of the parallelepiped determined by the vectors a − d, b − d, and c − d. It is positive if the points occur in
the orientation illustrated in Figure 3.1, negative if they occur in the mirror-image orientation, and zero if
the four points are coplanar. You can apply a right-hand rule: orient your right hand with fingers curled to
follow the circular sequence bcd. If your thumb points toward a, Orient3D is positive.
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c

c d

a b
a b

Figure 3.1: A triangle and a tetrahedron, both having positive orientation.

Most planar Delaunay triangulation algorithms use a predicate InCircle(a, b, c, d) that returns a positive
value if d lies inside the unique (and possibly degenerate) circle through a, b, and c, assuming that the latter
three points occur in counterclockwise order around the circle. InCircle returns zero if and only if all four
points lie on a common circle or line. InCircle is derived from Orient3D and Lemma 1, which shows
that testing whether a point is inside a circle is equivalent to an orientation test on the points lifted by the
parabolic lifting map.
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These expressions also extend easily to higher dimensions. Let a, b, c, d, and e be five points in E3,
with the first four ordered so that Orient3D(a, b, c, d) is nonnegative. The function InSphere(a, b, c, d, e) is
positive if e lies inside the sphere passing through a, b, c, and d; negative if e lies outside the sphere; and
zero if all five points are cospherical or coplanar.
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Orient2D, Orient3D, InCircle, and InSphere have the symmetry property that interchanging any two of
their parameters reverses their sign. If the points a, b, c occur in clockwise order, InCircle behaves as if the
circle’s outside were its inside. Likewise, if Orient3D(a, b, c, d) is negative, the sign returned by InSphere
is reversed.

Expressions (3.1) and (3.2) can be shown to be equivalent by simple algebraic transformations, as can
Expressions (3.3) and (3.4) with a little more effort. Expressions (3.2) and (3.4) should be strongly preferred
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Procedure Purpose
AddTriangle(u, v,w) Add a positively oriented triangle △uvw
DeleteTriangle(u, v,w) Delete a positively oriented triangle △uvw
Adjacent(u, v) Return a vertex w such that △uvw is a positively oriented triangle
AdjacentOne(u) Return vertices v, w such that △uvw is a positively oriented triangle

Figure 3.2: An interface for a triangulation data structure.

over Expressions (3.1) and (3.3) for fixed precision floating-point computation, because they lose far less
accuracy to roundoff error. Ideally, some form of exact arithmetic should be used to perform these tests, or
the triangulation algorithms cannot be guaranteed to work correctly.

3.2 A Dictionary Data Structure for Triangulations

Two data structures are commonly used to implement triangulation algorithms: edge-based data structures,
of which the best known is the doubly connected edge list [86], and triangle-based data structures. What
these two data structures have in common is that records represent edges or triangles, and the records store
pointers that point at neighboring edges or triangles. Many implementations of triangulation algorithms read
and change these pointers directly; experience shows that these implementations are difficult to code and
debug.

Here, I advocate an interface that does not expose pointers to the triangulation algorithms that use the
data structure. Triangulation algorithms access the triangulation in a natural way, by adding or deleting
triangles specified by their vertices. It is wholly the responsibility of the triangulation storage library to
determine triangle adjacencies, and to correctly maintain any pointers it uses internally. This policy, which
originates with Blelloch et al. [17, 16], improves programmer productivity and simplifies debugging.

The interface appears in Figure 3.2. Two procedures, AddTriangle and DeleteTriangle, create and
delete triangles by specifying the vertices of a triangle, ordered so that all the triangles stored in the data
structure have positive orientation. The data structure enforces the invariant that only two triangles may
adjoin an edge, and only one on each side of the edge. Therefore, if the data structure contains a positively
oriented triangle △uvw and an application calls AddTriangle(u, v, x), the triangle △uvx is rejected and the
data structure does not change.

At least two query operations are supported. The procedure Adjacent(u, v) returns a vertex w if the
triangulation includes a positively oriented triangle △uvw, or the empty set otherwise. Adjacent(u, v) and
Adjacent(v, u) return different triangles, on opposite sides of the edge uv. The procedure AdjacentOne(u)
identifies an arbitrary triangle having vertex u, or returns the empty set if no such triangle exists.

A fast way to implement Adjacent efficiently is to store each triangle △uvw three times in a hash table,
keyed on the directed edges uv, vw, and wu. A hash table can store triangles and query edges in expected
constant time. For a more compact representation that is still reasonably fast, see Blandford, Blelloch,
Clemens, and Kadow [16].

Unfortunately, it takes substantial additional memory to guarantee that the AdjacentOne query will run
fast. Many algorithms for Delaunay triangulation and meshing can be implemented without it, so I recom-
mend using AdjacentOne as little as possible, and settling for a slow but memory-efficient implementation,
perhaps even searching the entire hash table. A good compromise implementation is to maintain an array
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Figure 3.3: The Bowyer–Watson algorithm in the plane. At left, a Delaunay triangulation and a new vertex to
insert. At center, every triangle whose circumcircle encloses the new vertex is shaded. These triangles are no
longer Delaunay. At right, the shaded triangles disappear, replaced by new triangles that connect the new vertex
to the edges of the cavity.

that stores, for each vertex u, a vertex v such that the most recently added triangle adjoining u also had v
for a vertex. When AdjacentOne(u) is invoked, it looks up the edges uv and vu in the hash table to find
an adjoining triangle in expected constant time. The problem with this implementation is that the triangles
having edge uv may have been subsequently deleted, in which case a triangle adjoining u must be found
some other way (e.g. searching the entire hash table). However, observe that this catastrophe will not occur
if every triangle deletion is followed by triangle creations that cover all the same vertices—which is true of
most of the algorithms discussed in this book.

The interface and data structure extend easily to permit the storage of edges that are not part of any
triangle. For example, an edge uv that is not an edge of any triangle can be represented by storing △uvg
keyed on the directed edge uv, where g is a special entity called the ghost vertex.

3.3 Inserting a Vertex into a Delaunay Triangulation

Lawson [73] invented the first algorithm for inserting a vertex into a Delaunay triangulation and restoring
the Delaunay property, but it works only in the plane. A slightly faster algorithm that works in any dimen-
sionality was discovered independently by Bowyer [20], Hermeline [62, 63], and Watson [128]. Bowyer and
Watson simultaneously submitted it to Computer Journal and found their articles published side by side.

Consider inserting a new vertex v into a Delaunay triangulation. If a triangle’s circumcircle encloses v,
that triangle is no longer Delaunay, so it must be deleted. This suggests the Bowyer–Watson algorithm.

• Find one triangle whose circumcircle encloses v.

• Find all the others (in time linear in their number) by a depth-first search in the triangulation.

• Delete them all, evacuating a polyhedral cavity, which is shaded in Figure 3.3.

• For each edge of this cavity, create a new triangle joining it with v, as illustrated.

The first step is called point location. Most Delaunay mesh generation algorithms generate new vertices
inside the circumcircles of badly shaped or oversized triangles, in which case point location is free. However,
point location is not free for the domain vertices provided as input to the mesh generator. Locating these
points in the triangulation is sometimes the most costly and complicated part of the incremental insertion
algorithm. Incremental insertion is really a class of Delaunay triangulation algorithms, differentiated by their
point location methods. Clarkson and Shor [39] describe a point location method that helps a randomized
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InsertVertex(u, v,w, x)
{ u is the vertex to insert. △vwx is a positively oriented triangle whose circumcircle encloses u. }
1 DeleteTriangle(v,w, x)
2 DigCavity(u, v,w)
3 DigCavity(u,w, x)
4 DigCavity(u, x, v)

DigCavity(u, v,w)
{ u is a new vertex. Is the oriented triangle △uvw Delaunay? }
5 x← Adjacent(w, v) { Find △wvx opposite the edge vw from u }
6 if x ! ∅ { Do nothing if the triangle has already been deleted }
7 if InCircle(u, v,w, x) > 0
8 DeleteTriangle(w, v, x) { △uvw and △wvx are not Delaunay }
9 DigCavity(u, v, x)
10 DigCavity(u, x,w)
11 else AddTriangle(u, v,w) { vw is an edge of the cavity and △uvw is Delaunay }

Figure 3.4: Algorithm for inserting a vertex u into a Delaunay triangulation, given a triangle △vwx whose circum-
circle encloses u.

incremental insertion algorithm to construct the Delaunay triangulation of n vertices in expected O(n log n)
time. Section 5.5 describes a point location method that seems to be even faster in practice, albeit only if the
vertices are carefully ordered as described in Section 5.4.

Figure 3.4 gives pseudocode for vertex insertion, omitting the point location step. It interleaves the
second, third, and fourth steps of the Bowyer–Watson algorithm (rather than performing them in sequence),
thereby achieving simplicity and speed although obscuring the algorithm’s workings.

The following three results demonstrate the correctness of the Bowyer–Watson algorithm if a correct
point location algorithm is available. The first result shows that the deleted triangles—those that are no
longer Delaunay—comprise a star-shaped polygon. This fact guarantees that a depth-first search (the second
Bowyer–Watson step) will find all the triangles that are no longer Delaunay, and that the third and fourth
Bowyer–Watson steps yield a simplicial complex.

Lemma 18. The union of the triangles whose circumcircles enclose v is a connected star-shaped polygon,
meaning that for every point p in the polygon, the polygon includes the line segment pv.

Proof: Prior to the insertion of v, the triangulation is Delaunay, so all of its edges are locally Delaunay. Let
τ be a triangle whose circumcircle encloses v. Let p be any point in the interior of τ. By the same inductive
reasoning employed in the proof of the Delaunay Lemma (Section 2.4), every triangle that intersects the line
segment pv also has v inside its circumcircle. The result follows. "

The lifting map gives us intuition for why Lemma 18 is unsurprising: it says that the facets of the lifted
triangulation that are visible from the lifted vertex v+ are connected.

The key to proving that the updated triangulation is Delaunay is to show that all its edges are Delaunay
and apply the Delaunay Lemma. The following lemma shows that every newly created edge is strongly
Delaunay, and therefore appears in every Delaunay triangulation of the vertices.

Lemma 19. Let v be a newly inserted vertex. Let τ be a triangle that is deleted because its circumcircle
encloses v. Let w be a vertex of τ. The edge vw is strongly Delaunay.
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τ

v

w
C

Figure 3.5: Because τ was Delaunay before v was inserted, vw is strongly Delaunay.

Figure 3.6: Inserting a vertex outside the triangulation. The open circle is the ghost vertex. The circular arrow
indicates two ghost edges that are really the same edge. Three ghost triangles and three solid triangles (shaded)
are deleted and replaced with two new ghost triangles and six new solid triangles.

Proof: See Figure 3.5. The circumcircle of τ encloses no vertex but v. Let C be the circle that is tangent to
τ’s circumcircle at w and passes through v. C demonstrates that vw is strongly Delaunay. "

Theorem 20. A triangulation produced by applying the Bowyer–Watson algorithm to a Delaunay triangu-
lation is Delaunay.

Proof: It follows from Lemma 18 that the update produces a triangulation of the point set augmented with
the new point. All the surviving old triangles are Delaunay; otherwise they would have been deleted. It
follows that their edges are Delaunay too. By Lemma 19, all of the newly created edges are Delaunay as
well. By the Delaunay Lemma, the new triangulation is Delaunay. "

3.4 Inserting a Vertex Outside a Delaunay Triangulation

The Bowyer–Watson algorithm works only if the newly inserted vertex lies in the triangulation. However,
there is an elegant way to represent a triangulation so that the algorithm, with almost no changes, can insert
a vertex outside the triangulation equally well. Imagine that every edge on the boundary of the triangulation
adjoins a ghost triangle, as illustrated in Figure 3.6. The third vertex of every ghost triangle is the ghost
vertex, a vertex “at infinity” shared by every ghost triangle. Every ghost triangle has two ghost edges that
adjoin the ghost vertex. A triangle that is not a ghost is called a solid triangle.

The ghost triangles are explicitly stored in the triangulation data structure. They are not merely cosmetic;
they make it possible for the Bowyer–Watson algorithm to efficiently traverse the triangulation boundary,
and thus they are essential to obtaining an incremental insertion algorithm with optimal running time.



50 Jonathan Richard Shewchuk

g

Figure 3.7: The ghost triangle uvg is deleted if a new vertex is inserted in the shaded open halfplane (as at
center) or on uv (as at right). The union of the open halfplane and uv is the outer halfplane of uvg.

Consider an edge uv on the boundary of a triangulation, directed clockwise around the boundary. Define
a positively oriented ghost triangle △uvg, where g is the ghost vertex. Like any other triangle, △uvg has
a circumcircle—albeit a degenerate one—and must be deleted if a new vertex is inserted “inside” it. The
definition of “circumcircle” is a bit tricky, though. The circumcircle degenerates to the line aff uv, which
divides the plane into two open halfplanes.

There are two cases in which the ghost triangle △uvg must be deleted (i.e. uv is no longer a boundary
edge of the triangulation), both illustrated in Figure 3.7: if a vertex is inserted in the open halfplane on the
other side of aff uv from the triangulation, or if a vertex is inserted on the open edge uv. Call the union of
these two regions the outer halfplane of uv. It is neither an open nor closed halfplane, but something in
between. It is the set of points enclosed by the circumcircle of △uvg in the limit as g moves away from the
triangulation.

A new vertex inserted outside the triangulation causes at least one ghost triangle to be deleted, and
perhaps some solid (non-ghost) triangles as well. Two new boundary edges, two new ghost triangles, and an
arbitrary number of solid triangles are created, as illustrated in Figure 3.6.

Ghost triangles have an intuitive interpretation in terms of the lifting map. Imagine that in E3, the solid
triangles are lifted to the paraboloid, and the ghost triangles and ghost edges are vertical—parallel to the
z-axis. By magic, the ghost vertex is interpreted as being directly above every other vertex at an infinite
height. The faces of the convex hull of this three-dimensional point set, including the magic ghost vertex,
are in one-to-one correspondence with the faces and ghost faces of the Delaunay triangulation.

A popular alternative to ghost triangles is to enclose the input vertices in a giant triangular bounding
box, illustrated in Figure 3.8. After all the vertices have been inserted, every triangle having a bounding
box vertex is deleted. The difficulty with this approach is that the bounding box vertices may leave concave
divots in the triangulation if they are too close, and it is not easy to determine how far away they need
to be. One solution to this problem is to compute a weighted Delaunay triangulation, assigning the three
bounding box vertices weights of negative infinity. These three infinite weights must be incomparable—say,
∞, 2∞, and 22∞—so that InCircle tests involving two of the bounding box vertices operate consistently.
This approach seems to run more slowly (perhaps by 10%) than the ghost triangle implementation. Another
solution is to fill the divots with the segment insertion algorithm described in Section 3.9.

3.5 The Running Time of Vertex Insertion

How expensive is vertex insertion, leaving out the cost of point location? This section considers two cases:
the worst case, and the expected case when vertices are inserted in random order. The latter case is a part
of an incremental insertion algorithm that computes the Delaunay triangulation of n vertices in expected
O(n log n) time, and it also introduces an elegant algorithm analysis technique called backward analysis.
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Figure 3.8: Enclosing the vertices in a large triangular bounding box.

Figure 3.9: Each vertex insertion can delete Θ(n) triangles and create Θ(n) others.

Figure 3.9 illustrates the worst case. A single vertex insertion can delete Θ(n) triangles and create Θ(n)
others, taking Θ(n) time. Moreover, this dismal performance can be repeated for Θ(n) successive vertex
insertions. Therefore, the incremental insertion algorithm for constructing a Delaunay triangulation takes
Θ(n2) time if the vertices and their insertion order are chosen badly. The grid arrangement and vertex
ordering in the figure are common in practice.

Fortunately, there are better ways to order the vertex insertion operations. The randomized incremental
insertion algorithm inserts the vertices in random order, with each permutation of the vertices being equally
likely. Surprisingly, the expected number of triangles created by each successive vertex insertion operation
is less than six, as Theorem 21 below shows. The catch is that all the vertices must be known in advance, so
that a random permutation can be computed. The randomized algorithm is excellent for creating an initial
triangulation of the vertices of a domain, but its analysis does not apply to the vertices that are subsequently
generated during mesh generation, because their order cannot be randomized. Nevertheless, the theorem
provides intuition for why constant-time vertex insertion is so commonly observed in mesh generation.

Theorem 21. Let V be a set of n vertices in the plane. Let ⟨v1, v2, . . . , vn⟩ be a permutation of V chosen
uniformly at random from the set of all such permutations. For i ∈ [0, n], letTi be the Delaunay triangulation
constructed by inserting the first i vertices in order. When vi is inserted into Ti−1 to create Ti, the expected
number of new triangles (including ghost triangles) created is less than six. An expected total of O(n)
triangles are created and deleted during the n vertex insertions that construct Tn.

This theorem is most easily proved with backward analysis, a remarkable analysis technique that Sei-
del [110] summarizes thus: “Analyze an algorithm as if it was running backwards in time, from output to
input.” Imagine that instead of inserting a randomly chosen vertex into Ti−1, you are deleting a randomly
chosen vertex from Ti. Because a random permutation written backward is still a random permutation, each
vertex in Ti is deleted with equal probability.
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Proof of Theorem 21: For every vertex v of Ti, the number of triangles adjoining v, including ghost
triangles, is equal to the degree of v, counting one ghost edge if v is on the boundary of the triangulation.
When vi is inserted into Ti−1 to construct Ti, every new triangle created has vi for a vertex. Therefore, the
expected number of new triangles created is equal to the expected degree of vi.

There is one technical difficulty: if four vertices of Ti lie on a common empty circle, then Ti depends
on the order in which the vertices are inserted. Thus, let S i be the Delaunay subdivision of {v1, v2, . . . , vi},
wherein triangles in Ti sharing a common circumcircle are merged into a polygon. Recall from Section 2.2
that S i contains the strongly Delaunay edges of Ti and no others, and is therefore unique. By Lemma 19,
every edge adjoining vi in Ti is strongly Delaunay, so the degree of vi in Ti is equal to the degree of vi in S i.

Because the permutation is chosen uniformly at random, each vertex of S i is equally likely to be vi. The
expected degree of a randomly chosen vertex in S i (or any planar graph) is less than six, by the following
reasoning.

Let i + 1, e, and f denote the number of vertices, edges, and triangles of Ti, respectively, with the ghost
vertex, ghost edges, and ghost triangles included. By Euler’s formula, i + 1 − e + f = 2. Each triangle has
three edges, and each edge is shared by two triangles, so 2e = 3 f . Eliminating f from Euler’s formula gives
e = 3i − 3. Each edge has two vertices, so the total number of edge-vertex incidences is 6i − 6, and the
average degree of a non-ghost vertex in Ti is less than 6 − 6/i. The average degree of a non-ghost vertex in
S i cannot be greater.

Each vertex insertion creates, in expectation, fewer than six new triangles, so the expected total number
of triangles created during the n vertex insertions is in O(n). A triangle cannot be deleted unless it is created
first, so the expected total number of triangles deleted is also in O(n). "

Theorem 21 bounds not only the number of structural changes, but also the running time of the depth-
first search in the Bowyer–Watson algorithm. This search visits all the triangles that are deleted and all the
triangles that share an edge with a deleted triangle. Depth-first search takes time linear in the number of
visited triangles, and therefore linear in the number of deleted triangles.

It follows that the expected running time of the randomized incremental insertion algorithm, excluding
point location, is in O(n). We shall see that point location is the dominant cost of the algorithm.

A general fact about randomized algorithms is that there is a chance that they will run much, much more
slowly than their expected running time, but the probability of that is exceedingly small. If the incremental
insertion algorithm gets unlucky and endures a slow vertex insertion like those depicted in Figure 3.9, other,
faster vertex insertions will probably make up for it. The probability that many such slow vertex insertions
will occur in one run is tiny, but it can happen.

The argument in the proof of Theorem 21, which is the first known use of backward analysis in computa-
tional geometry, originates in a paper by Chew [36]. Chew’s paper describes an algorithm for computing the
Delaunay triangulation of a convex polygon, or deleting a vertex from a Delaunay triangulation, in expected
linear time. Backward analysis was popularized by a charming paper by Seidel [110].

3.6 Inserting a Vertex into a Constrained Delaunay Triangulation

To “insert a vertex into a CDT” is to take as input the CDT of some PLC X and a new vertex v to insert,
and produce the CDT of X ∪ {v}. An implementation might also support the insertion of a vertex v on a
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Figure 3.10: Inserting or deleting a vertex v in a CDT. Bold edges are segments. The shaded polygon is the union
of the deleted/created triangles. Simplices not intersecting the interior of the shaded polygon are constrained
Delaunay before and after. When v is inserted, depth-first search on the graph G identifies the deleted triangles.
Observe that although v lies inside τ’s circumcircle, v’s insertion does not delete τ because G does not connect τ
to any deleted triangle.

segment s ∈ X, in which case the algorithm subdivides s into two subsegments s1 and s2 having vertex v,
and produces the CDT of X ∪ {v, s1, s2} \ {s}.

With a small change, the Bowyer–Watson algorithm can insert a vertex v into a CDT, as Figure 3.10
illustrates. The change, of course, is that the algorithm deletes the triangles that are no longer constrained
Delaunay. Fortunately, it is possible to enumerate those triangles without performing expensive visibility
tests. To accomplish that, the first step—point location—finds the triangle that contains v. There may be
two such triangles, if v lies on a triangulation edge. The second step—the depth-first search that identifies
triangles that are no longer constrained Delaunay—should never walk across a segment. As Figure 3.10
shows, this restriction suffices to ensure that only triangles whose interiors are visible from v will be deleted.
If v lies on a segment in X, depth-first searches must be run from both of the two adjoining triangles. The
third and fourth steps of the Bowyer–Watson algorithm do not change. In a straightforward extension of
the proofs in Section 3.3, one can show that the depth-first search finds all the triangles that are no longer
constrained Delaunay, the cavity is always star-shaped, and the algorithm works correctly.

3.7 The Gift-Wrapping Step

Gift-wrapping algorithms rely on a simple procedure that constructs a triangle adjoining a specified edge.
Let e = uw be an oriented edge. The front of e is the open halfplane to the left of u⃗w, and a positively
oriented triangle △uwv is said to be in front of e. The back of e is the open halfplane to the right of u⃗w, and
a positively oriented triangle △wuv is said to be behind e.

During the execution of a gift-wrapping algorithm, an oriented edge constructed by the algorithm is said
to be unfinished if the algorithm has not yet identified the triangle in front of the edge. A gift-wrapping step
finishes the edge by constructing that triangle, or by determining that there is no such triangle because the
edge is on the boundary of the domain.

A edge e has an infinite number of circumcircles, any one of which can be continuously deformed
into any other such that every intermediate circle is also a circumcircle of e. Imagine beginning with a
circumcircle that encloses no vertex in front of e, then deforming it so it expands in front of e and shrinks
behind e, always remaining a circumcircle of e, as illustrated in Figure 3.11. As the circumcircle deforms,
its center always lies on e’s bisector.
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Figure 3.11: An empty circumcircle of e, expanding in search of a vertex v.

Finish(e,V,K)
{ e is an oriented edge. V is the set of vertices in a PLC X. K is the set of segments in X. }
{ Finish returns a triangle that finishes e, or ∅ if none exists. }
1 τ← ∅
2 p← an arbitrary point in the relative interior of e (e.g. its midpoint)
3 for each vertex v ∈ V
4 if v is in front of e and (τ = ∅ or the circumcircle of τ encloses v)
5 if no segment s ∈ K occludes the visibility between v and p
6 τ← conv(e ∪ v)
7 return τ

Figure 3.12: Algorithm to gift-wrap one constrained Delaunay triangle. For an ordinary Delaunay triangulation,
omit Line 5.

Eventually, the expanding portion of the circumcircle might touch a vertex v that is visible from the
relative interior of e, in which case the gift-wrapping step constructs τ = conv(e ∪ v), thereby finishing
e. Lemma 22 below shows that τ is constrained Delaunay if e is constrained Delaunay or a segment.
Alternatively, the expanding portion of the circumcircle might never touch a vertex, in which case e is
on the boundary of the convex hull of the vertices.

Although the expanding circumcircle gives the right intuition for which vertex is chosen, the algorithm
that implements a gift-wrapping step works the opposite way, by shrinking the front of the circumcircle: it
scans through the vertices in front of e and remembers which vertex, so far, minimizes the portion of the
circumcircle in front of e.

Figure 3.12 gives pseudocode for the gift-wrapping step. One gift-wrapping step takes O(n) time for a
Delaunay triangulation, or O(nm) time for a CDT, where n = |V | is the number of vertices and m = |K| is the
number of segments. Line 5 of the pseudocode accounts for the factor of m.

Lemma 22. If the edge e is constrained Delaunay or a segment, the algorithm Finish returns a constrained
Delaunay triangle τ.

Proof. There is a total ordering of the set of all e’s circumcircles such that, if one circumcircle precedes
another, the former circumcircle encloses the portion of the latter in front of e. It is easy to see that, among
the vertices in V that are in front of e and visible from e’s relative interior, Lines 3–6 choose the vertex v
such that τ = conv(e ∪ v) has the last circumcircle in this ordering. Hence, τ’s circumcircle encloses no
vertex that is in front of e and visible from e’s relative interior.
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Figure 3.13: A gift-wrapping failure because of cocircular vertices.

If e is a segment, then no vertex that is behind e and inside τ’s circumcircle is visible from the interior
of τ, so τ is constrained Delaunay.

If e is constrained Delaunay, it has a circumcircle that encloses no vertex visible from the relative interior
of e. This circumcircle does not enclose v, so it must enclose every point on or behind e that τ’s circumcircle
encloses. It follows that τ’s circumcircle encloses no vertex visible from the interior of τ, so τ is constrained
Delaunay. "

3.8 The Gift-Wrapping Algorithm

This section describes a basic gift-wrapping algorithm for constructing Delaunay trianglations and CDTs.
Be forewarned that if the input PLC or point set has four corcircular vertices, gift-wrapping can make
decisions that are mutually inconsistent and fail to construct a valid triangulation. Figure 3.13 depicts
a simple, unconstrained example where Delaunay gift-wrapping fails. Gift-wrapping can be modified to
handle these inputs by symbolically perturbing the vertex weights, or by identifying groups of cocircular
vertices that can see each other and triangulating them all at once.

The gift-wrapping algorithm begins with the segments of the PLC, upon which the constrained Delaunay
triangles crystallize one by one. The core of the algorithm is a loop that selects an unfinished edge and
finishes it by invoking the procedure Finish in Figure 3.12. Often, the new triangle finishes more than one
unfinished edge. To detect this circumstance, the algorithm maintains the unfinished edges in a dictionary
(e.g. a hash table) so they can be quickly looked up by their vertex indices. The data structure in Section 3.2
is easily modified to serve this purpose while also storing the triangulation. Pseudocode for the gift-wrapping
algorithm appears in Figure 3.14.

The algorithm can construct Delaunay triangulations too, but the pseudocode assumes that X contains at
least one segment that can serve as a seed upon which to build the triangulation. When there are no segments,
seed the algorithm by constructing one strongly Delaunay edge—an arbitrary vertex and its nearest neighbor
will do—and entering it (twice, with both orientations) in the dictionary.

The algorithm takes O(n2) time for a Delaunay triangulation, or O(n2m) time for a CDT, where n = |V | is
the number of vertices and m = |K| is the number of segments. These are not impressive speeds, especially
when compared to the incremental insertion or divide-and-conquer algorithms. However, gift-wrapping
is easy to implement and fast enough for small jobs, such as retriangulating the cavity evacuated when a
vertex is deleted or a segment is inserted in a triangulation. Moreover, there are several ways to speed up
gift-wrapping that make it more practical.



56 Jonathan Richard Shewchuk

GiftWrapCDT(V,K)
{ V is the set of vertices in a PLC X. K is the set of segments in X. }
1 for each segment s ∈ K that adjoins a wall on one side only
2 Enter s in the dictionary, oriented so its front adjoins a wall
3 while the dictionary is not empty

{ Loop invariant: the dictionary contains all the unfinished edges. }
4 Remove an oriented edge e from the dictionary
5 τ← Finish(e,V,K)
6 if τ ! ∅
7 AddTriangle(t)
8 for each oriented edge f of τ except e
9 if f is in the dictionary
10 Remove f from the dictionary
11 else Enter f in the dictionary with reversed orientation

(facing away from τ)

Figure 3.14: Gift-wrapping algorithm for constructing a CDT.

One specialized class of gift-wrapping algorithms are sweepline algorithms that construct the triangles
in a disciplined order, making it possible to determine which vertex finishes each edge without an exhaustive
search. Fortune [51] developed such an algorithm for Delaunay triangulations. Seidel [109] extended it to
CDTs. Both algorithms run in O(n log n) time.

Another way to avoid exhaustive search is to subdivide the plane into square buckets, record the ver-
tices in their respective buckets, and finish each edge by searching through the buckets in an appropriate
order. Dwyer [47] shows that if the vertices are distributed uniformly at random in a disk, this technique
finishes each face in O(1) expected time, so an entire Delaunay triangulation can be constructed in O(n)
expected time. Moreover, the algorithm extends to higher dimensions, still with expected linear running
time! Unfortunately, this method does not extend easily to CDTs, and not all real-world point sets are so
nicely distributed. It is easy to construct a point set for which most of the points fall into one bucket.

3.9 Inserting a Segment into a Constrained Delaunay Triangulation

To “insert a segment into a CDT” is to take as input the CDT of a PLC X and a new segment s to insert, and
produce the CDT of X ∪ {s}. It is only meaningful if X ∪ {s} is a valid PLC—that is, X already contains the
vertices of s (otherwise, they must be inserted first, as described in Section 3.6), and the relative interior of s
intersects no segment or vertex in X. This section presents a gift-wrapping algorithm for segment insertion.
It appears in an article by Anglada [3], but it was part of the folklore of the field before that paper appeared.
It is difficult to trace who thought of the algorithm first.

Let T be the CDT of X. If s ∈ T , then T is also the CDT of X ∪ {s}. Otherwise, the algorithm begins
by deleting from T the edges and triangles that intersect the relative interior of s. All of T ’s simplices not
deleted remain constrained Delaunay after s is inserted. Next, the algorithm adds s to the complex, and it
retriangulates the two polygonal cavities on each side of s with constrained Delaunay triangles. Recall from
Figure 2.16 that the cavities might have segments dangling in their interiors.

Let P be one of the two polygons; its edges include s. The algorithm GiftWrapCDT could gift-wrap
P starting from any edge of P, but there are several advantages to gift-wrapping from s outward. First,
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Figure 3.15: Gift-wrapping one triangle from a newly inserted segment s.

gift-wrapping from s makes it possible to eliminate the visibility tests (Line 5 of Finish) and the dictionary
of unfinished edges, speeding up the algorithm by a factor of m. Second, gift-wrapping from s gives the
best likelihood of subdividing P into two half-sized polygons, improving the speed of the algorithm. Third,
the algorithm is guaranteed to work correctly even if X has four or more cocircular vertices. Be forewarned
that gift-wrapping without visibility tests does not work correctly for all polygons, but it works for segment
insertion.

The cavity retriangulation algorithm is as follows. Begin by gift-wrapping one constrained Delaunay
triangle in front of s, as illustrated in Figure 3.15. Let u and w be the vertices of s, and let △uwv be the
positively oriented triangle produced by the gift-wrapping step. The cavity retriangulation algorithm calls
itself recursively on the oriented edges uv and vw (if they are unfinished).

The running time of the first gift-wrapping step is proportional to the number m of vertices of P. If
we are lucky, it will split P into two polygons of roughly half the size, and the recursive calls will also
enjoy balanced splits, so the time required to triangulate P will be in O(m log m). In the worst case, each
gift-wrapping step might simply cut one triangle off of P without subdividing P into smaller polygons, and
it will take Θ(m2) time to triangulate P. In practice, if m is large, P is probably long and thin and will enjoy
well-balanced recursive calls.





Chapter 4

Three-Dimensional Delaunay
Triangulations

Three-dimensional triangulations are sometimes called tetrahedralizations. Delaunay tetrahedralizations are
not quite as effective as planar Delaunay triangulations at producing elements of good quality, but they are
nearly as popular in the mesh generation literature as their two-dimensional cousins. Many properties of
Delaunay triangulations in the plane generalize to higher dimensions, but many of the optimality properties
do not. Notably, Delaunay tetrahedralizations do not maximize the minimum angle (whether plane angle
or dihedral angle). Figure 4.1 depicts a three-dimensional counterexample. The hexahedron at the top is
the convex hull of its five vertices. The Delaunay triangulation of those vertices, to the left, includes a thin
tetrahedron known as a sliver or kite, whose vertices are nearly coplanar and whose dihedral angles can be
arbitrarily close to 0◦ and 180◦. A triangulation of the same vertices that is not Delaunay, at lower right, has
better quality.

This chapter surveys Delaunay triangulations and constrained Delaunay triangulations in three (and oc-
casionally more) dimensions. Constrained Delaunay triangulations generalize uneasily to three dimensions,
because there are polyhedra that do not have any tetrahedralization at all.

Figure 4.1: This hexahedron has two tetrahedralizations. The Delaunay tetrahedralization at left includes an
arbitrarily thin sliver tetrahedron. The non-Delaunay tetrahedralization at right consists of two nicely shaped
tetrahedra.
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Figure 4.2: At center, the Delaunay tetrahedralization of the points at left. At right, the circumsphere of one
Delaunay tetrahedron with two cross-sections showing it is empty.

4.1 Triangulations of a Point Set in Ed

Definition 26 in Section 2.1 defines a triangulation of a set of points to be a simplicial complex whose
vertices are the points and whose union is the convex hull of the points. With no change, the definition holds
in any finite dimension d. Figures 4.1–4.4 illustrate triangulations of point sets in three dimensions. Every
finite point set in Ed has a triangulation; for example, the lexicographic triangulation of Section 2.1 also
generalizes to higher dimensions with no change.

Let V be a set of n points in Ed. Recall from Section 2.1 that if all the points in V are collinear, they
have one triangulation having n vertices and n − 1 collinear edges connecting them. This is true regardless
of d; the triangulation is one-dimensional, although it is embedded in Ed. More generally, if the affine hull
of V is k-dimensional, then every triangulation of V is a k-dimensional triangulation embedded in Ed: the
simplicial complex has at least one k-simplex but no (k + 1)-simplex.

The complexity of a triangulation is its total number of simplices of all dimensions. Whereas a planar
triangulation of n points has O(n) triangles and edges, a surprising property of higher-dimensional triangu-
lations is that they can have superlinear complexity. Figure 4.2 shows a triangulation of n points that has
Θ(n2) edges and tetrahedra, which is asymptotically the largest number possible in three dimensions. Every
vertex lies on one of two non-intersecting lines, and there is one tetrahedron for each pairing of an edge on
one line and an edge on the other. This is the only triangulation of these points, and it is Delaunay.

An n-vertex triangulation in Ed can have a maximum of Θ(n⌈d/2⌉) d-simplices. Of course, most applica-
tions do best with linear-complexity meshes. The existence of triangulations with much higher complexity
is a potential pitfall for mesh generation algorithms, especially if the input vertices resemble those in Fig-
ure 4.2.

4.2 The Delaunay Triangulation in Ed

Delaunay triangulations generalize easily to higher dimensions. Let V be a finite set of points in Ed, for
d ≥ 1. Let σ be a k-simplex (for any k ≤ d) whose vertices are in V . Let S be a hypersphere in Ed; S is a
circumsphere, or circumscribing sphere, of σ if S passes through every vertex of σ. If k = d, then σ has a
unique circumsphere; otherwise, σ has infinitely many circumspheres.
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Figure 4.3: Three renderings of a Delaunay tetrahedralization.

Figure 4.4: A Delaunay subdivision comprising two cubic cells and their faces. The least-vertex Delaunay
triangulation subdivides each 2-face into triangles adjoining the face’s lexicographically minimum vertex, and
likewise subdivides each 3-face into tetrahedra.

A simplex σ is Delaunay if there exists a circumsphere of σ that encloses no point in V . Clearly, every
face of a Delaunay simplex is Delaunay too. A simplex σ is strongly Delaunay if there exists a circumsphere
S of σ such that no point in V lies inside or on S , except the vertices of σ. Every point in V is trivially
a strongly Delaunay vertex. A Delaunay triangulation Del V of V is a triangulation of V in which every
d-simplex is Delaunay, as Figure 4.2 shows. Figure 4.3 depicts a more typical Delaunay tetrahedralization,
with complexity linear in the number of vertices.

The parabolic lifting map generalizes to higher dimensions too. It maps each point p = (p1, p2, . . . , pd) ∈
Ed to its lifted companion, the point p+ = (p1, p2, . . . , pd, p2

1 + p2
2 + · · · + p2

d) in Ed+1. Consider the (d +
1)-dimensional convex hull of the lifted points, V+ = {v+ : v ∈ V}. Projecting the downward-facing
faces of conv(V+) to Ed yields a polyhedral complex called the Delaunay subdivision of V , which is easily
transformed to its complement, the Voronoi diagram of V .

If V is generic, its Delaunay subdivision is simplicial and V has exactly one Delaunay triangulation,

Definition 39 (generic). Let V be a point set in Ed. Let k be the dimension of the affine hull of V. V is
generic if no k + 2 points in V lie on a common hypersphere.

If V if not generic, the Delaunay subdivision may have non-simplicial faces; recall Figure 2.4. In that
case, V has multiple Delaunay triangulations, which differ according to how the non-simplicial faces are
triangulated.

Whereas each non-simplicial face in a two-dimensional Delaunay subdivision can be triangulated inde-
pendently, in higher dimensions the triangulations are not always independent. Figure 4.4 illustrates a set
of twelve points in E3 whose Delaunay subdivision includes two cubic cells that share a square 2-face. The
square face can be divided into two triangles in two different ways, and each cube can be divided into five or
six tetrahedra in several ways, but they are not independent: the triangulation of the square face constrains
how both cubes are triangulated.
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A least-vertex triangulation provides one way to safely subdivide a polyhedral complex into a simplicial
complex. To construct it, triangulate the 2-faces through the d-faces in order of increasing dimension. To
triangulate a non-simplicial k-face f , subdivide it into k-simplices of the form conv(v ∪ g), where v is the
lexicographically minimum vertex of f , and g varies over the (k − 1)-simplices on f ’s subdivided boundary
that do not contain v. The choice of the lexicographically minimum vertex of each face ensures that the face
triangulations are compatible with each other.

4.3 Properties of Delaunay Triangulations in Ed

Many properties of planar Delaunay triangulations discussed in Chapter 2 generalize to higher dimensions.
A few of them are summarized below. Proofs are omitted, but each of them is a straightforward extension
of the corresponding proof for two dimensions.

Recall that a facet of a polyhedral complex is a (d − 1)-face, and a facet of a triangulation is a (d − 1)-
simplex. The Delaunay Lemma provides an alternative definition of a Delaunay triangulation: a triangu-
lation of a point set in which every facet is locally Delaunay. A facet f in a triangulation T is said to be
locally Delaunay if it is a face of fewer than two d-simplices in T , or it is a face of exactly two d-simplices
τ1 and τ2 and it has a circumsphere enclosing no vertex of τ1 nor τ2. (Equivalently, the circumsphere of τ1
encloses no vertex of τ2. Equivalently, the circumsphere of τ2 encloses no vertex of τ1.)

Theorem 23 (Delaunay Lemma). Let T be a triangulation of a finite set V of points in Ed. The following
three statements are equivalent.

• Every d-simplex in T is Delaunay (i.e. T is Delaunay).

• Every facet in T is Delaunay.

• Every facet in T is locally Delaunay. "

As in the plane, a generic point set has exactly one Delaunay triangulation, composed of every strongly
Delaunay simplex. The following three theorems have essentially the same proofs as in Section 2.7.

Theorem 24. Let σ be a strongly Delaunay simplex, and let τ be a Delaunay simplex. Then σ ∩ τ is either
empty or a shared face of both σ and τ.

Theorem 25. Every Delaunay triangulation of a point set contains every strongly Delaunay simplex.

Corollary 26. A generic point set has exactly one Delaunay triangulation.

4.4 The Optimality of the Delaunay Triangulation in Ed

Some optimality properties of Delaunay triangulations hold in any dimension. Rippa [98] investigates the
use of two-dimensional triangulations for piecewise linear interpolation of a quadratic bivariate function. If
the function is isotropic—of the form α(x2 + y2) + βx + γy + δ—then the Delaunay triangulation minimizes
the interpolation error measured in the Lq-norm for every q ≥ 1, compared with all other triangulations of
the same points. Melissaratos [80] generalizes Rippa’s result to higher dimensions. (If the function is not
isotropic, but it is parabolic rather than hyperbolic, then the optimal triangulation is a weighted Delaunay
triangulation in which the function determines the vertex heights.)
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D’Azevedo and Simpson [42] show that a two-dimensional Delaunay triangulation minimizes the radius
of the largest min-containment circle of its simplices, and Rajan [96] generalizes this result to Delaunay tri-
angulations and min-containment spheres of any dimensionality. The min-containment sphere of a simplex
is the smallest hypersphere that encloses the simplex.

Rajan’s result and a theorem of Waldron [127] together imply a third optimality result, also related
to multivariate piecewise linear interpolation. Suppose you must choose a triangulation to interpolate an
unknown function, and you wish to minimize the largest pointwise error in the domain. After you choose
the triangulation, an adversary will choose the worst possible smooth function for your triangulation to
interpolate, subject to a fixed upper bound on the absolute curvature (i.e. second directional derivative) of
the function anywhere in the domain. The Delaunay triangulation is your optimal choice.

To better understand these three optimality properties, consider multivariate piecewise linear interpola-
tion on a triangulation T of a point set V . Let T + = {σ+ : σ ∈ T } be the triangulation lifted by the parabolic
lifting map; T + is a simplicial complex embedded in Ed+1. Think of T + as inducing a continuous piecewise
linear function T +(p) that maps each point p ∈ conv(V) to a real value.

How well does T + approximate the paraboloid? Let e(p) = T +(p) − |p|2 be the error in the interpolated
function T + as an approximation of the paraboloid |p|2. At each vertex v ∈ V , e(v) = 0. Because |p|2 is
convex, the error satisfies e(p) ≥ 0 for all p ∈ conv(V).

Theorem 27. At every point p ∈ conv(V), every Delaunay triangulation T of V minimizes T +(p), and
therefore minimizes the interpolation error e(p), among all triangulations of V.

Proof. If T is Delaunay, then T + is the set of faces of the underside of the convex hull conv(V+) of the
lifted vertices (or a subdivision of those faces if some of them are not simplicial). No triangulation whose
vertices are V+ can pass through any point below conv(V+). "

Corollary 28 (Melissaratos [80]). Every Delaunay triangulation of V minimizes ∥e∥Lq for every Lebesgue
norm Lq, and every other norm monotonic in e. "

Theorem 29 (Rajan [96]). Every Delaunay triangulation of V minimizes the largest min-containment sphere,
compared with all other triangulations of V. "

I omit the proof because of its length.
The optimality of the Delaunay triangulation for controlling the largest min-containment radius dovetails

nicely with an error bound for piecewise linear interpolation derived by Waldron [127]. Let Cc be the space
of scalar functions defined over conv(V) that have C1 continuity and whose absolute curvature nowhere
exceeds c. In other words, for every f ∈ Cc, every point p ∈ conv(V), and every unit direction vector d,
the magnitude of the second directional derivative f ′′d (p) is at most c. This is a common starting point for
analyses of piecewise linear interpolation error.

Let f be a function in Cc. Let σ ⊆ conv(V) be a simplex (of any dimensionality) with min-containment
radius rmc. Let hσ be a linear function that interpolates f at the vertices of σ. Waldron shows that for all
p ∈ σ, the absolute error |e(p)| = |hσ(p) − f (p)| is at most cr2

mc/2. Furthermore, this bound is sharp: for
every simplex σ with min-containment radius rmc, there is a function f ∈ Cc and a point p ∈ σ such that
|e(p)| = cr2

mc/2. That function is f (p) = c|p|2/2, and that point is p = Omc.

Theorem 30. Every Delaunay triangulation T of V minimizes

max
f∈Cc

max
p∈conv(V)

|T +(p) − f (p)|,

the worst-case pointwise interpolation error, among all triangulations of V.
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Figure 4.5: Schönhardt’s untetrahedralizable polyhedron (center) is formed by rotating one end of a triangular
prism (left), thereby creating three diagonal reflex edges. The convex hull of any four polyhedron vertices (right)
sticks out.

Proof. For any triangulation T , max f∈Cc maxp∈conv(V) |T +(p) − f (p)| = cr2
max/2, where rmax is the largest

min-containment radius among all the simplices in T . The result follows immediately from Theorem 29. "

One of the reasons why Delaunay triangulations are important is because, in the senses of Theorems 27
and 30, the Delaunay triangulation is an optimal piecewise linear interpolating surface. Of course, e(p) is
not the only criterion for the merit of a triangulation used for interpolation. Many applications need the
interpolant to approximate the gradient—that is, not only must T +(p) approximate f (p), but ∇T +(p) must
approximate∇ f (p) well too. For the goal of approximating∇ f (p) in three or more dimensions, the Delaunay
trianguation is sometimes far from optimal even for simple functions like the paraboloid f (p) = |p|2. This
is why eliminating slivers is a crucial problem in Delaunay mesh generation.

4.5 Three-Dimensional Constrained Delaunay Triangulations

Constrained Delaunay triangulations generalize to three or more dimensions, but whereas every piecewise
linear complex in the plane has a CDT, not every three-dimensional PLC has one. Worse yet, there exist
simple polyhedra that do not have triangulations at all—that is, they cannot be subdivided into tetrahedra
without creating new vertices (i.e. tetrahedron vertices that are not vertices of the polyhedron).

E. Schönhardt [106] furnishes an example depicted in Figure 4.5. The easiest way to envision this
polyhedron is to begin with a triangular prism. Imagine grasping the prism so that its bottom triangular face
cannot move, while twisting the top triangular face so it rotates slightly about its center while remaining
horizontal. This rotation breaks each of the three square faces into two triangular faces along a diagonal
reflex edge—an edge at which the polyhedron is locally nonconvex. After this transformation, the upper left
corner and lower right corner of each (former) square face are separated by a reflex edge and are no longer
visible to each other within the polyhedron. Any four vertices of the polyhedron include two separated by a
reflex edge; thus, any tetrahedron whose vertices are vertices of the polyhedron does not lie entirely within
the polyhedron. Therefore, Schönhardt’s polyhedron cannot be triangulated without additional vertices. It
can be subdivided into tetrahedra with the addition of one vertex at its center.

Adding to the difficulty, Ruppert and Seidel [103] prove that it is NP-hard to determine whether a
polyhedron has a triangulation, or whether it can be subdivided into tetrahedra with only k additional vertices
for an arbitrary constant k.

The following sections discuss triangulations and CDTs of polyhedra and PLCs in three dimensions. It
is possible to refine any polyhedron or PLC by adding new vertices on its edges so that it has a constrained
Delaunay triangulation. This fact makes CDTs useful in three dimensions.
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Figure 4.6: A three-dimensional piecewise linear complex and its constrained Delaunay triangulation. Each
polygon and polyhedron may have holes, slits, and vertices in its relative interior. Each polyhedron may also have
polygons in its interior.

4.5.1 Piecewise Linear Complexes and their Triangulations in Ed

The domain over which a general-dimensional CDT is defined is a general-dimensional piecewise linear
complex, which is a set of linear cells—points, edges, polygons, and polyhedra—as illustrated in Figure 4.6.
The linear cells constrain how the complex can be triangulated: each linear cell in the complex must be a
union of simplices in the triangulation. The union of the linear cells specifies the region to be triangulated.

Definition 40 (piecewise linear complex; segment; wall; face). A piecewise linear complex (PLC) X is a
finite set of linear cells that satisfies the following properties.

• The vertices and edges in X form a simplicial complex.

• For each linear cell f ∈ X, the boundary of f is a union of linear cells in X.

• If two distinct linear cells f , g ∈ X intersect, their intersection is a union of linear cells in X, all
having lower dimension than at least one of f or g. (See Figures 2.14 and 4.6.)

As in the plane, X’s edges are called segments and its polygons are called walls. Its underlying space is
|X| =

⋃

f∈X f , which is usually the domain to be triangulated. The faces of a linear cell f ∈ X are the linear
cells in X that are subsets of f , including f itself.

The notion of a PLC was proposed by Miller, Talmor, Teng, Walkington, and Wang [82].1 A triangula-
tion of a PLC must cover every polyhedron, respect every polygon, and include every segment.

Definition 41 (triangulation of a PLC). Let X be a PLC. A triangulation of X is a simplicial complex T such
that

• X and T have the same vertices,

• every linear cell in X is a union of simplices in T (which implies that every edge in X is in T ), and

• |T | = |X|.
1Miller et al. call it a piecewise linear system, but their construction is so obviously a complex that a change in name seems

obligatory. The present definition is different from Miller’s, but nearly equivalent, with one true difference: Miller does not impose
the first condition given here, but permits vertices to lie in the relative interior of an edge. Disallowing such vertices simplifies the
presentation while entailing no essential loss of generality, because edges with vertices in their relative interiors can be subdivided
into edges that obey the condition.
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Figure 4.7: A convex PLC with no triangulation.

Figure 4.8: Chazelle’s polyhedron.

Schönhardt’s polyhedron shows that not every PLC has a triangulation. Every convex polyhedron has
a triangulation; what about convex polyhedra with internal segments? Figure 4.7 illustrates a PLC with no
triangulation, consisting of a cube inside which three orthogonal segments pass by each other but do not
intersect. If any one of the segments is omitted, the PLC has a triangulation. This example shows that,
unlike with planar triangulations, it is not always possible to insert a new edge into a tetrahedralization.

Because some polyhedra and PLCs do not have triangulations, Steiner triangulations (Definition 35) are
even more important in three dimensions than in the plane. Chazelle [27] shows that every n-vertex polyhe-
dron has a Steiner triangulation with at most O(n2) vertices, found by constructing a vertical decomposition
of the polyhedron. The same is true for PLCs of complexity n. Unfortunately, there are polyhedra for which
it is not possible to do better; Figure 4.8 depicts Chazelle’s polyhedron [27], which has n vertices and O(n)
edges, but cannot be divided into fewer than Θ(n2) convex bodies. Chazelle and Palios [28] show that the
worst-case complexity of subdividing a polyhedron is related to its number of reflex edges: they give an
algorithm that divides any polyhedron with r reflex edges into O(n+ r2) tetrahedra, and they show that some
polyhedra with r reflex edges cannot be divided into fewer than Ω(n + r2) convex bodies.

It appears likely, though it is proven only in two dimensions, that there exist PLCs whose smallest Steiner
Delaunay triangulations are asymptotically larger than their smallest Steiner triangulations. Algorithms by
Murphy, Mount, and Gable [87], Cohen-Steiner, Colin de Verdière, and Yvinec [40], Cheng and Poon [33],
and Rand and Walkington [97] can find a Steiner Delaunay tetrahedralization of any three-dimensional
polyhedron, but they might introduce a superpolynomial number of new vertices. No known algorithm
for finding Steiner Delaunay tetrahedralizations is guaranteed to introduce only a polynomial number of
new vertices, and no algorithm of any complexity has been offered for four- or higher-dimensional Steiner
Delaunay triangulations. Moreover, the existing algorithms all seem to introduce an unnecessarily large
number of vertices near small domain angles. These problems can be partly remediated by Steiner CDTs.
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Figure 4.9: A constrained Delaunay tetrahedron τ.

4.5.2 The Constrained Delaunay Triangulation in E3

Three-dimensional constrained Delaunay triangulations aspire to retain most of the advantages of Delaunay
triangulations while respecting constraints. But Figures 4.5, 4.7, and 4.8 demonstrate that some PLCs, even
some polyhedra, have no triangulation at all. Moreover, some polyhedra that do have triangulations do not
have CDTs. Nevertheless, CDTs are useful because, if we are willing to add new vertices, a Steiner CDT
might require many fewer vertices than a Steiner Delaunay triangulation.

As in the plane, a Constrained Delaunay Lemma states that there are several equivalent definitions of
“constrained Delaunay triangulation.” The simplest is that a CDT is a triangulation of a PLC in which every
facet not included in a wall is locally Delaunay. A CDT differs from a Delaunay triangulation in three ways:
it is not necessarily convex, it is required to respect a PLC, and the facets of the CDT that are included in
walls are exempt from being locally Delaunay.

The primary definition of CDT specifies that every tetrahedron is constrained Delaunay, defined as
follows.

Definition 42 (constrained Delaunay). In the context of a PLC X, a simplex σ is constrained Delaunay if it
satisfies the following three conditions.

• X contains σ’s vertices.

• σ respects X. (Recall Definition 34.)

• There is a circumsphere of σ that encloses no vertex in X that is visible from any point in the relative
interior of σ.

Two points are visible to each other (equivalently, can see each other) if |X| includes the open line
segment connecting the two points, but no linear cell in X intersects only part of that open line segment. A
linear cell that intersects the open line segment but does not entirely include it is said to occlude the visibility
between the two points.

Figure 4.9 depicts a constrained Delaunay tetrahedron τ. The faces of τ whose relative interiors intersect
the wall f are included in f , so τ respectsX. The circumsphere of τ encloses one vertex v, but v is not visible
from any point in the interior of τ, because f occludes its visibility.

Definition 43 (constrained Delaunay triangulation). A constrained Delaunay triangulation (CDT) of a PLC
X is a triangulation of X in which every tetrahedron is constrained Delaunay, and every triangle that is not
a face of a tetrahedron is constrained Delaunay.
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Figure 4.10: Left: a PLC with no CDT. Center: the sole tetrahedralization of this PLC. Its three tetrahedra are
not constrained Delaunay. Right: the two Delaunay tetrahedra do not respect the central segment.

Figure 4.6 illustrates a PLC and its CDT. Observe that the PLC has a polygon that is not a face of any
polyhedron; this face is triangulated with constrained Delaunay triangles.

Figure 4.10 illustrates a PLC that has no CDT because of a segment that runs vertically through the
domain interior. There is only one tetrahedralization of this PLC—composed of three tetrahedra encircling
the central segment—and its tetrahedra are not constrained Delaunay, because each of them has a visible
vertex inside its circumsphere. Whereas walls usually block enough visibility to ensure their presence in
a CDT, segments usually do not. But segments can dictate that a CDT does not exist at all. If the central
segment in Figure 4.10 is removed, the PLC has a CDT made up of two tetrahedra.

A Steiner CDT or conforming CDT of X is a Steiner triangulation of X in which every tetrahedron
is constrained Delaunay, and every triangle that is not a face of a tetrahedron is constrained Delaunay.
Algorithms for constructing Steiner CDTs (e.g. mesh generation algorithms) must sometimes place new
vertices on segments to force the triangulation to respect them.

4.5.3 The CDT Theorem

Although not all piecewise linear complexes have constrained Delaunay triangulations, there is an easily
tested, sufficient (but not necessary) condition that guarantees that a CDT exists. A three-dimensional PLC
X is edge-protected if every edge in X is strongly Delaunay.

Theorem 31 (CDT Theorem [118]). Every edge-protected PLC has a CDT. #

It is not sufficient for every edge inX to be Delaunay. If all six vertices of Schönhardt’s polyhedron lie on
a common sphere, then all of its edges (and all its faces) are Delaunay, but it still has no tetrahedralization.
It is not possible to place the vertices of Schönhardt’s polyhedron so that all three of its reflex edges are
strongly Delaunay, though any two may be.

What if a PLC that you wish to triangulate is not edge-protected? You can make it edge-protected by
adding vertices on its segments—a task that any Delaunay mesh generation algorithm must do anyway. The
augmented PLC has a CDT, which is a Steiner CDT of the original PLC.

Figure 4.11 illustrates the difference between using a Delaunay triangulation and using a CDT for mesh
generation. With a Delaunay triangulation, the mesh generator must insert new vertices that guarantee that
every segment is a union of Delaunay (preferably strongly Delaunay) edges, and every wall is a union
of Delaunay (preferably strongly Delaunay) triangles. With a CDT, new vertices must be inserted that
guarantee that every segment is a union of strongly Delaunay edges; but then the augmented PLC is edge-
protected, and the CDT Theorem guarantees that the walls can be recovered without inserting any additional
vertices. The advantage of a CDT is that many fewer vertices might be required.
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Steiner DT

Steiner CDT

Figure 4.11: Comparison of Steiner Delaunay triangulations and Steiner CDTs. For clarity, vertices inside each
box are shown, but tetrahedra are not. For both types of triangulation, missing segments are recovered by insert-
ing new vertices until each segment is a union of strongly Delaunay edges. In a Steiner Delaunay triangulation,
additional vertices are inserted until each wall is a union of strongly Delaunay triangles. In a Steiner CDT, no
additional vertices need be inserted; the walls are recovered by computing a CDT.

Testing whether a PLC X is edge-protected is straightforward. Form the Delaunay triangulation of the
vertices in X. If a segment s ∈ X is missing from the triangulation, then s is not strongly Delaunay, and
X is not edge-protected. If s is present, it is Delaunay. Testing whether a Delaunay segment s is strongly
Delaunay is equivalent to determining whether the Voronoi polygon dual to s is nondegenerate.

4.5.4 Properties of the Constrained Delaunay Triangulation in E3

This section summarizes the properties of three-dimensional CDTs. Proofs of the claims in this section may
be found elsewhere [118].

The Delaunay Lemma for three-dimensional CDTs provides an alternative definition of CDT: a triangu-
lation of a PLC X is a CDT if and only if every one of its facets is locally Delaunay or is included in a wall
in X.

Theorem 32 (Constrained Delaunay Lemma). Let X be a PLC in which every linear cell is a face of some
polyhedron in X, so there are no dangling polygons. Let T be a triangulation of X. The following three
statements are equivalent.

A. Every tetrahedron in T is constrained Delaunay (i.e. T is constrained Delaunay).

B. Every facet in T not included in a wall in X is constrained Delaunay.

C. Every facet in T not included in a wall in X is locally Delaunay. "

A constrained Delaunay triangulation T of X induces a two-dimensional triangulation of each wall
f ∈ X, namely T | f = {σ ∈ T : σ ⊆ f }. Statement B above implies that the triangles in T | f need not be
constrained Delaunay with respect to X—but they are constrained Delaunay with respect to the wall f , in
the following sense.

Theorem 33. Let T be a CDT of a three-dimensional PLC X. Let f ∈ X be a wall. Let T | f be the set
of simplices in T that are included in f . Let X| f be the set of faces of f (including f itself); X| f is a
two-dimensional PLC embedded in three-dimensional space. Then T | f is a CDT of X| f . "

A PLC is generic if its vertices are generic. A generic PLC has a unique CDT, if it has one at all.
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Theorem 34. A generic piecewise linear complex has at most one constrained Delaunay triangulation. "

A consequence of Theorems 33 and 34 is that, if a PLC is generic, a CDT construction algorithm can
begin by computing the two-dimensional CDTs of the walls, then use them to help compute the three-
dimensional CDT of the PLC, secure in the knowledge that the wall triangulations will match the volume
triangulation.

CDTs inherit the optimality properties of Delaunay triangulations described in Section 4.4, albeit with
respect to a smaller set of triangulations, namely the triangulations of a PLC. However, if a PLC has no
CDT, finding the optimal triangulation is an open problem.

Theorem 35. If a PLC X has a CDT, then every CDT of X minimizes the largest min-containment sphere,
compared with all other triangulations of X. Every CDT of X also optimizes the criteria discussed in
Theorems 27, 28, and 30. "



Chapter 5

Algorithms for Constructing Delaunay
Triangulations in E3

The most popular algorithms for constructing Delaunay tetrahedralizations are incremental insertion and
gift-wrapping algorithms, both of which generalize to three or more dimensions with little difficulty. This
chapter reprises those algorithms, with attention to the aspects that are different in three dimensions. In
particular, the analysis of the running time of point location with conflict lists is more complicated in three
dimensions than in the plane. I use this gap as an opportunity to introduce a more sophisticated vertex
ordering and its analysis. Instead of fully randomizing the order in which vertices are inserted, I recommend
using a biased randomized insertion order that employs just enough randomness to ensure that the expected
running time is the worst-case optimalO(n2)—or better yet, O(n log n) time for the classes of point sets most
commonly triangulated in practice—while maintaining enough spatial locality that implementations of the
algorithm use the memory hierarchy more efficiently. This vertex ordering, combined with a simpler point
location method, yields the fastest three-dimensional Delaunay triangulators in practice.

CDTs have received much less study in three dimensions than in two. There are two classes of algorithm
available: gift-wrapping and incremental wall insertion. Gift-wrapping is easier to implement; it is not much
different in three dimensions than in two. It runs in O(nh) time for Delaunay triangulations and O(nmh) time
for CDTs, where n is the number of vertices, m is the total complexity of the PLC’s polygons, and h is the
number of tetrahedra produced. There is a variant of the gift-wrapping algorithm that, by constructing the
tetrahedra in a disciplined order and using other tricks to avoid visibility computations [115], runs in O(nh)
worst-case time, but I omit it here.

Perhaps the fastest three-dimensional CDT construction algorithm in practice is similar to the one I
advocate in two dimensions. First, construct a Delaunay triangulation of the PLC’s vertices, then insert its
walls one by one with a flip algorithm [117]. This algorithm constructs a CDT in O(n2 log n) time, though
there are reasons to believe it will run in O(n log n) time on most PLCs in practice. Be forewarned, however,
that this algorithm only works on edge-protected PLCs! This is rarely a fatal restriction, because a mesh
generation algorithm that uses CDTs should probably insert vertices on the PLC’s edges to make it edge-
protected and ensure that it has a CDT. Some PLCs have CDTs despite not being edge-protected; if they are
generic, their CDTs can be constructed by gift-wrapping.

71
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Procedure Purpose
AddTetrahedron(u, v,w, x) Add a positively oriented tetrahedron uvwx
DeleteTetrahedron(u, v,w, x) Delete a positively oriented tetrahedron uvwx
Adjacent(u, v,w) Return a vertex x such that uvwx is a positively oriented tetrahedron
AdjacentOne(u) Return vertices v, w, x such that uvwx is a positively oriented tetrahedron

Figure 5.1: An interface for a tetrahedralization data structure.

5.1 A Dictionary Data Structure for Tetrahedralizations

Figure 5.1 summarizes an interface for storing a tetrahedral complex, analogous to the interface for planar
triangulations in Section 3.2. Two procedures, AddTetrahedron and DeleteTetrahedron, specify a tetra-
hedron to be added or deleted by listing its vertices with a positive orientation, as described in Section 3.1.
The procedure Adjacent recovers the tetrahedron adjoining a specified oriented triangular face, or returns ∅
if there is no such tetrahedron. The vertices of a tetrahedron may include the ghost vertex. The data structure
enforces the invariant that only two tetrahedra may adjoin a triangular face, and only one on each side of the
face.

The simplest fast implementation echoes the implementation described in Section 3.2. Store each tetra-
hedron △uvwx four times in a hash table, keyed on the oriented faces △uvw, △uxv, △uwx, and △vxw. To
support AdjacentOne queries, an array stores, for each vertex u, a triangle △uvw such that the most recently
added tetrahedron adjoining u has △uvw for a face.

The interface and data structure extend easily to permit the storage of triangles or edges that are not
part of any tetrahedron, but it does not support fast adjacency queries on edges. For a substantially more
space-efficient representation, see Blandford, Blelloch, Clemens, and Kadow [16].

5.2 Delaunay Vertex Insertion in E3

The Bowyer–Watson algorithm extends in a straightforward way to three (or more) dimensions. Recall
that the algorithm inserts a vertex v into a Delaunay triangulation in four steps. First, find one tetrahedron
whose circumsphere encloses v (point location). Second, a depth-first search in the triangulation finds all
the other tetrahedra whose circumspheres enclose v, in time proportional to their number. Third, delete
these tetrahedra, as illustrated in Figure 5.2. The union of the deleted tetrahedra is a star-shaped polyhedral
cavity. Fourth, for each triangular face of the cavity, create a new tetrahedron joining it with v, as illustrated.
Figure 5.3 gives pseudocode that interleaves the second, third, and fourth steps.

To support inserting vertices that lie outside the triangulation, each triangular face on the boundary of
the triangulation adjoins a ghost tetrahedron analogous to the ghost triangles of Section 3.4, having three
real vertices and a ghost vertex g. Let △uvw be a boundary triangle, oriented so the triangulation is behind it.
The incremental insertion algorithm stores a positively oriented tetrahedron uvwg in the triangulation data
structure.

There are two cases in which uvwg must be deleted, i.e. △uvw is no longer a boundary triangle: if a vertex
is inserted in the open halfspace in front of △uvw, or if a newly inserted vertex lies in the open circumdisk
of △uvw (i.e. it is coplanar with △uvw and enclosed by its circumcircle). Call the union of these two regions
the outer halfspace of △uvw. It is the set of points enclosed by the circumsphere of uvwg in the limit as g
moves away from the triangulation.
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Figure 5.2: The Bowyer–Watson algorithm in three dimensions. A new vertex falls inside the circumspheres of
the two tetrahedra illustrated at left. These tetrahedra may be surrounded by other tetrahedra, which for clarity are
not shown. The two tetrahedra and the face they share (shaded) are deleted. At center, the five new Delaunay
edges. At right, the nine new Delaunay triangles—one for each edge of the cavity. Six new tetrahedra are
created—one for each face of the cavity.

InsertVertex3D(u, v,w, x, y)
{ u is the vertex to insert. vwxy is a positively oriented tetrahedron whose circumsphere encloses u. }
1 DeleteTetrahedron(v,w, x, y)
2 ConsiderTetrahedron(u, x,w, v)
3 ConsiderTetrahedron(u, y, v,w)
4 ConsiderTetrahedron(u, v, y, x)
5 ConsiderTetrahedron(u,w, x, y)

ConsiderTetrahedron(u, v,w, x)
{ u is a new vertex. Is the oriented tetrahedron uvwx Delaunay? }
6 y← Adjacent(v,w, x) { Find tetrahedron vwxy opposite the facet vwx from u }
7 if y ! ∅ { Do nothing if the tetrahedron has already been deleted }
8 if InSphere(u, v,w, x, y) > 0
9 DeleteTetrahedron(v,w, x, y) { Tetrahedra uvwx and vwxy are not Delaunay }
10 ConsiderTetrahedron(u, v,w, y)
11 ConsiderTetrahedron(u,w, x, y)
12 ConsiderTetrahedron(u, x, v, y)
13 else AddTetrahedron(u, v,w, x) { vwx is a facet of the cavity and uvwx is Delaunay }

Figure 5.3: Algorithm for inserting a vertex u into a Delaunay triangulation, given a tetrahedron vwxy whose
circumsphere encloses u. To adapt the code for a weighted Delaunay triangulation, replace the InSphere test
in Line 8 with Orient4D(u+, v+,w+, x+, y+), and choose an input tetrahedron vwxy whose witness hyperplane is
above u+.

5.3 The Running Time of Vertex Insertion in E3

How expensive is vertex insertion, leaving out the cost of point location? The insertion of a single vertex
into an n-vertex Delaunay triangulation can delete Θ(n2) tetrahedra if the triangulation is the one depicted
in Figure 4.2. However, a single vertex insertion can only create Θ(n) tetrahedra: observe that the boundary
of the cavity is a planar graph, so the cavity has fewer than 2n boundary triangles.

It follows that during a sequence of n vertex insertion operations, at most Θ(n2) tetrahedra are created.
A tetrahedron can only be deleted if it is first created, so at most Θ(n2) tetrahedra are deleted, albeit possibly
most of them in a single vertex insertion.
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Randomizing the vertex insertion order does not improve these numbers. For d-dimensional Delaunay
triangulations, the worst-case total number of simplices created and deleted by the incremental insertion
algorithm is in Θ(n⌊d/2⌋+1), and the expected total number of simplices created and deleted by random
incremental insertion is in Θ(n⌈d/2⌉). In the worst case, randomization makes an asymptotic difference only
when d is even.

However, a special case that occurs frequently in practice—by all accounts it seems to be the norm—
is the circumstance where the Delaunay triangulation has complexity linear, rather than quadratic, in the
number of vertices, and moreover the intermediate triangulations produced during incremental insertion
have expected linear complexity. For point sets with this property, a random insertion order guarantees that
each vertex insertion will create and delete an expected constant number of tetrahedra, just as it does in the
plane, and we shall see that the random incremental insertion algorithm runs in expected O(n log n) time.
This running time is often observed in practice, even in higher dimensions. Be forewarned, however, that
there are point sets for which the final triangulation has linear complexity but the intermediate triangulations
have expected quadratic complexity, thereby slowing down the algorithm dramatically.

Moreover, even for worst-case point sets, randomization helps to support fast point location. Recall that
the last three steps of the Bowyer–Watson algorithm run in time proportional to the number of tetrahedra they
delete and create, so the running time of the three-dimensional incremental insertion algorithm, excluding
point location, is in O(n2). With conflict lists and a random insertion order, point location is no more
expensive than this, so the random incremental insertion algorithm achieves an optimal expected running
time of O(n2).

5.4 Biased Randomized Insertion Orders

The advantage of inserting vertices in random order is that it guarantees that the expected running time of
point location is optimal, and that pathologically slow circumstances like those illustrated in Figure 3.9 are
unlikely to happen. But there is a serious disadvantage: random vertex insertions tend to interact poorly with
the memory hierarchy in modern computers, especially virtual memory. Ideally, data structures representing
tetrahedra and vertices that are close together geometrically should be close together in memory—a property
called spatial locality—for better cache and virtual memory performance.

Amenta, Choi, and Rote [2] show that the permutation of vertices does not need to be uniformly random
for the running time to be optimal. A biased randomized insertion order (BRIO) is a permutation of the
vertices that has strong spatial locality but retains enough randomness to obtain an expected running time
in O(n2). Their experiments show that a BRIO greatly improves the efficiency of the memory hierarchy—
especially virtual memory.

Their experiments also show that incremental insertion achieves superior running times in practice when
it uses a BRIO but replaces the conflict list with a point location method that simply walks from the pre-
viously inserted vertex toward the next inserted vertex; see Section 5.5. Although walking point location
does not offer as strong a theoretical guarantee on running time as a conflict list, this incremental insertion
algorithm is perhaps the most attractive in practice, as it combines excellent speed with a simple implemen-
tation.

Let n be the number of vertices to triangulate. A BRIO orders the vertices in a sequence of rounds
numbered zero through ⌈log2 n⌉. Each vertex is assigned to the final round, round ⌈log2 n⌉, with probability
1/2. The remaining vertices are assigned to the second-last round with probability 1/2, and so on. Each
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p

Figure 5.4: Walking to the triangle that contains p.

vertex is assign to round zero with probability (1/2)⌈log2 n⌉ ≤ 1/n. The incremental insertion algorithm
begins by inserting the vertices in round zero, then round one, and so on to round ⌈log2 n⌉.

Within any single round, the vertices can be arranged in any order without threatening the worst-case
expected running time of the algorithm. Hence, we order the vertices within each round to create as much
spatial locality as possible. One way to do this is to insert the vertices in the order they are encountered on a
space-filling curve such as a Hilbert curve or a z-order curve. Another way, which Amenta et al. tested, is to
store the vertices in an octree or k-d tree, refined so each leaf node contains only a few vertices; then order
the vertices by a traversal of the tree. (Octree traversal is one way to sort vertices along a Hilbert or z-order
curve.)

The tendency of vertices that are geometrically close together to be close together in the ordering does
not necessarily guarantee that the data structures associated with them will be close together in memory.
Amenta et al. addressed this question experimentally by implementing BRIOs in three different Delaunay
triangulation programs written by three different people, and showing that all three run faster with a BRIO
than with a vertex permutation chosen uniformly at random, especially when the programs run out of main
memory and have to resort to virtual memory.

Whether you use the traditional random incremental insertion algorithm or a BRIO, you face the problem
of bootstrapping the algorithm. The most practical approach is to choose four affinely independent vertices,
construct their Delaunay triangulation (a single tetrahedron), create four adjoining ghost tetrahedra, con-
struct a conflict list, and insert the remaining vertices in a random order (a uniformly chosen permutation or
a BRIO). Even if the four bootstrap vertices are not chosen randomly, it is possible to prove that the expected
asymptotic running time of the algorithm is not compromised.

5.5 Point Location by Walking

By experimentation, Amenta, Choi, and Rote [2] demonstrate that, in conjuction with a BRIO, a simple
point location method called walking appears to outperform conflict lists in practice, although there is no
guarantee of a fast running time. A walking point location algorithm simply traces a straight line through
the triangulation, visiting tetrahedra that intersect the line as illustrated in Figure 5.4, until it arrives at a
tetrahedron that contains the new vertex [60]. In conjunction with a vertex permutation chosen uniformly at
random (rather than a BRIO), walking point location visits many tetrahedra and is very slow. But walking is
fast in practice if it follows two guidelines: the vertices should be inserted in an order that has much spatial
locality, such as a BRIO, and each walk should begin at the most recently created tetrahedron. Then the
typical walk visits a small constant number of tetrahdra.

To avoid a long walk between rounds of a BRIO, the vertex order (e.g. the tree traversal or the direction



76 Jonathan Richard Shewchuk

of the space-filling curve) should be reversed on even-numbered rounds, so each round begins near where
the previous round ends.

Amenta et al. observe that the three-dimensional incremental insertion algorithm with a BRIO and walk-
ing point location appears to run in linear time, not counting the initial O(n log n)-time computation of a
BRIO. For the point sets in their experiments, this observation holds whether they use a BRIO or a spatial
ordering (generated by traversing an octree) that has no randomness at all. Randomness is often unnecessary
in practice—frequently, simply sorting the vertices along a space-filling curve will yield excellent speed—
but because points sets like that illustrated in Figure 3.9 are common in practice, I recommend choosing a
BRIO to prevent the possibility of a pathologically slow running time.

5.6 The Gift-Wrapping Algorithm in E3

The gift-wrapping algorithm described in Section 3.8 requires few new ideas to work in three (or more)
dimensions. The algorithm constructs tetrahedra one at a time, and maintains a dictionary of unfinished
facets. The pseudocode for Finish and GiftWrapCDT can be reused, with triangles replaced by tetrahedra,
oriented edges replaced by oriented facets, and circumcircles replaced by circumspheres.

The biggest change is that triangles, not segments, seed the algorithm. But the walls in a PLC are
polygons, and are not always triangles. Recall from Theorem 33 that a CDT of a PLC X induces a two-
dimensional CDT of each wall in X. To seed the three-dimensional gift-wrapping algorithm, one can first
compute the two-dimensional CDT of each wall, then use the triangles in these CDTs to seed the three-
dimensional algorithm.

To gift-wrap a Delaunay triangulation, seed the algorithm with one strongly Delaunay triangle. One way
to find one is to choose an arbitrary input point and its nearest neighbor. For the third vertex of the triangle,
choose the input point that minimizes the radius of the circle through the three vertices. If the set of input
points is generic, the triangle having these three vertices is strongly Delaunay.

If the input (PLC or point set) is not generic, gift-wrapping is in even greater danger in three dimensions
than in the plane. Whereas the planar gift-wrapping algorithm can handle subsets of four or more cocircular
points by identifying them and giving them special treatment, no such approach works reliably in three
dimensions. Imagine a point set that includes six points lying on a common empty sphere. Suppose that
gift-wrapping inadvertently tetrahedralizes the space around these points so they are the vertices of a hollow
cavity shaped like Schönhardt’s polyhedron (from Section 4.5). The algorithm will be unable to fill the
cavity. By far the most practical solution is to symbolically perturb the points so that they are generic. The
same perturbation should also be used to compute the two-dimensional CDTs of the PLC’s walls.

Another difficulty is that the input PLC might not have a CDT, in which case gift-wrapping will fail in
one of two ways. One possibility is that the algorithm will fail to finish an unfinished facet, even though
there is a vertex in front of that facet, because no vertex in front of that facet is visible from the facet’s
interior. This failure is easy to detect. The second possibility is that the algorithm will finish a facet by
constructing a tetrahedron that is not constrained Delaunay, either because the tetrahedron’s circumsphere
encloses a visible vertex, or because the tetrahedron intersects the preexisting simplices wrongly (not in a
complex). An attempt to gift-wrap Schönhardt’s polyhedron brings about the last fate. The algorithm be-
comes substantially slower if it tries to detect these failures. Perhaps a better solution is to run the algorithm
only on PLCs that are edge-protected or otherwise known to have CDTs.

A strange property of the CDT is that it is NP-hard to determine whether a PLC has a CDT, if the PLC is
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not generic [59]. However, a polynomial-time algorithm is available for generic PLCs: run the gift-wrapping
algorithm, and check whether it succeeded.

Gift-wrapping takes O(nh) time for a Delaunay triangulation, or O(nmh) time for a CDT, where n is the
number of input points, m is the total complexity of the input walls, and h is the number of tetrahedra in the
CDT; h is usually linear in n, but could be quadratic in the worst case.

5.7 Inserting a Vertex into a Constrained Delaunay Triangulation in E3

Section 3.6 describes how to adapt the Bowyer–Watson vertex insertion algorithm to CDTs in the plane.
The same adaptions work for three-dimensional CDTs, but there is a catch: even if a PLC X has a CDT, an
augmented PLC X∪ {v}might not have one. This circumstance can be diagnosed after the depth-first search
step of the Bowyer–Watson algorithm in one of two ways: by the fact that the cavity is not star-shaped, thus
one of the newly created tetrahedra has nonpositive orientation, or by the fact that a segment or polygon
runs through the interior of the cavity. An implementation can check explicitly for these circumstances, and
signal that the vertex v cannot be inserted.





Chapter 6

Two-Dimensional Delaunay Refinement
Algorithms for Quality Mesh Generation

Delaunay refinement algorithms for mesh generation operate by maintaining a Delaunay or constrained De-
launay triangulation, which is refined by inserting carefully placed vertices until the mesh meets constraints
on element quality and size.

These algorithms are successful because they exploit several favorable characteristics of Delaunay tri-
angulations. One such characteristic, already mentioned in Chapter 2, is Lawson’s result that a Delaunay
triangulation maximizes the minimum angle among all possible triangulations of a point set. Another fea-
ture is that inserting a vertex is a local operation, and hence is inexpensive except in unusual cases. The
act of inserting a vertex to improve poor-quality elements in one part of a mesh will not unnecessarily per-
turb a distant part of the mesh that has no bad elements. Furthermore, Delaunay triangulations have been
extensively studied, and good algorithms for their construction are available.

The greatest advantage of Delaunay triangulations is less obvious. The central question of any Delaunay
refinement algorithm is, “Where should the next vertex be inserted?” As Section 6.1 will demonstrate, a
reasonable answer is, “As far from other vertices as possible.” If a new vertex is inserted too close to another
vertex, the resulting small edge will engender thin triangles.

Because a Delaunay triangle has no vertices in its circumcircle, a Delaunay triangulation is an ideal
search structure for finding points that are far from other vertices. (It’s no coincidence that the circumcenter
of each triangle of a Delaunay triangulation is a vertex of the corresponding Voronoi diagram.)

This chapter begins with a review of Delaunay refinement algorithms introduced by L. Paul Chew and
Jim Ruppert. Ruppert [101] proves that his algorithm produces nicely graded, size-optimal meshes with no
angles smaller than about 20.7◦. I also discuss theoretical and practical issues in triangulating regions with
small angles. The foundations built here undergird the three-dimensional Delaunay refinement algorithms
examined in the next chapter.

79
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Figure 6.1: Any triangle whose circumradius-to-shortest edge ratio is larger than some bound B is split by
inserting a vertex at its circumcenter. The Delaunay property is maintained, and the triangle is thus eliminated.
Every new edge has length at least B times that of shortest edge of the poor triangle.

6.1 The Key Idea Behind Delaunay Refinement

The central operation of Chew’s and Ruppert’s Delaunay refinement algorithms, as well as the three-
dimensional algorithms described in the next chapter, is the insertion of a vertex at the circumcenter of
an element of poor quality. The Delaunay property is maintained, using Lawson’s algorithm or the Bowyer–
Watson algorithm for the incremental update of Delaunay triangulations. The poor-quality triangle cannot
survive, because its circumcircle is no longer empty. For brevity, I refer to the act of inserting a vertex at
a triangle’s circumcenter as splitting a triangle. The idea dates back at least to the engineering literature of
the mid-1980s [56]. If poor triangles are split one by one, either all will eventually be eliminated, or the
algorithm will run forever.

The main insight behind all the Delaunay refinement algorithms is that the refinement loop is guaranteed
to terminate if the notion of “poor quality” includes only triangles that have a circumradius-to-shortest edge
ratio larger than some appropriate bound B. Recall that the only new edges created by the Delaunay insertion
of a vertex v are edges connected to v (see Figure 6.1). Because v is the circumcenter of some Delaunay
triangle t, and there were no vertices inside the circumcircle of t before v was inserted, no new edge can be
shorter than the circumradius of t. Because t has a circumradius-to-shortest edge ratio larger than B, every
new edge has length at least B times that of the shortest edge of t.

Ruppert’s Delaunay refinement algorithm [102] employs a bound of B =
√

2, and Chew’s second Delau-
nay refinement algorithm [37] employs a bound of B = 1. Chew’s first Delaunay refinement algorithm [35]
splits any triangle whose circumradius is greater than the length of the shortest edge in the entire mesh, thus
achieving a bound of B = 1, but forcing all triangles to have uniform size. With these bounds, every new
edge created is at least as long as some other edge already in the mesh. Hence, no vertex is ever inserted
closer to another vertex than the length of the shortest edge in the initial triangulation. Delaunay refinement
must eventually terminate, because the augmented triangulation will run out of places to put vertices. When
it does, all angles are bounded between 20.7◦ and 138.6◦ for Ruppert’s algorithm, and between 30◦ and 120◦
for Chew’s.

Henceforth, a triangle whose circumradius-to-shortest edge ratio is greater than B is said to be skinny.
Figure 6.2 provides a different intuition for why all skinny triangles are eventually eliminated by Delaunay
refinement. The new vertices that are inserted into a triangulation (grey dots) are spaced roughly according
to the length of the shortest nearby edge. Because skinny triangles have relatively large circumradii, their
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Needle Cap

Figure 6.2: Skinny triangles have circumcircles larger than their shortest edges. Each skinny triangle may be
classified as a needle, whose longest edge is much longer than its shortest edge, or a cap, which has an angle
close to 180◦. (The classifications are not mutually exclusive.)

circumcircles are inevitably popped. When enough vertices are introduced that the spacing of vertices is
somewhat uniform, large empty circumcircles cannot adjoin small edges, and no skinny triangles can remain
in the Delaunay triangulation. Fortunately, the spacing of vertices does not need to be so uniform that the
mesh is poorly graded; this fact is formalized in Section 6.3.4.

These ideas generalize without change to higher dimensions. Imagine a triangulation that has no
boundaries—perhaps it has infinite extent, or perhaps it lies in a periodic space that “wraps around” at
the boundaries. Regardless of the dimensionality, Delaunay refinement can eliminate all simplices having
a circumradius-to-shortest edge ratio greater than one, without creating any edge shorter than the shortest
edge already present.

Unfortunately, my description of Delaunay refinement thus far has a gaping hole: mesh boundaries have
not been accounted for. The flaw in the procedure described above is that the circumcenter of a poor triangle
might not lie in the mesh at all. Delaunay refinement algorithms, including the two-dimensional algorithms
of Chew and Ruppert and the three-dimensional algorithms described in the next chapter, are distinguished
primarily by how they handle boundaries. Boundaries complicate mesh generation immensely, and the
difficulty of coping with boundaries increases in higher dimensions.

6.2 Chew’s First Delaunay Refinement Algorithm

Paul Chew has published at least two Delaunay refinement algorithms of great interest. The first, described
here, produces triangulations of uniform density [35]. The second, which can produce graded meshes [37],
is discussed in Section 6.4.

Given a constrained Delaunay triangulation whose shortest edge has length hmin, Chew’s first algorithm
splits any triangle whose circumradius is greater than hmin, and hence creates a uniform mesh. The algorithm
never introduces an edge shorter than hmin, so any two vertices are separated by a distance of at least hmin.
The augmented triangulation will eventually run out of places to put vertices, and termination is inevitable.

Of course, the boundaries of the mesh may prevent some skinny triangles from being eliminated. Fig-
ure 6.3 illustrates an example in which there is a poor-quality triangle, but no vertex can be placed inside its
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Figure 6.3: The bold triangle could be eliminated by inserting a vertex in its circumcircle. However, a vertex
cannot be placed outside the triangulation domain, and it is forbidden to place a vertex within a distance of hmin
from any other vertex. The forbidden region includes the shaded disks, which entirely cover the bold triangle.

circumcircle without creating an edge smaller than hmin, which would compromise the termination guaran-
tee. Chew circumvents this problem by subdividing the boundaries (possibly with a smaller value of hmin)
before commencing Delaunay refinement.

The input to Chew’s algorithm is a PSLG that is presumed to be segment-bounded, meaning that the
region to be triangulated is entirely enclosed within segments. (Any PSLG may be converted to a segment-
bounded PSLG by any two-dimensional convex hull algorithm, if a convex triangulation is desired.) Untri-
angulated holes in the PSLG are permitted, but these must also be bounded by segments. A segment must lie
anywhere a triangulated region of the plane meets an untriangulated region. The input PSLG is not allowed
to have two adjoining segments separated by an angle less than 30◦.

For some parameter h chosen by the user, all segments are divided into subsegments whose lengths are in
the range [h,

√
3h]. The parameter h must be chosen small enough that such a partition exists. New vertices

are placed at the division points. Furthermore, h may be no larger than the smallest distance between any
two vertices of the resulting partition. (If a vertex is close to a segment, this latter restriction may necessitate
a smaller value of h than would be indicated by the input vertices alone.)

Chew constructs the constrained Delaunay triangulation of this modified PSLG, then applies Delaunay
refinement while maintaining the invariant that the triangulation is constrained Delaunay. Circumcenters of
triangles whose circumradii are larger than h are inserted, one at a time. When no such triangle remains, the
algorithm terminates.

Because no subsegment has length greater than
√

3h, and specifically because no boundary subsegment
has such length, the circumcenter of any triangle whose circumradius exceeds h falls within the mesh, at a
distance of at least h/2 from any subsegment. Why? If a circumcenter is a distance less than h/2 from a
subsegment whose length is no greater than

√
3h, then the circumcenter is a distance less than h from one

of the subsegment’s endpoints.

Upon termination, no circumradius is longer than h, and no edge is shorter than h, so no triangle has
a circumradius-to-shortest edge ratio larger than one, and the mesh contains no angle smaller than 30◦.
Furthermore, no edge is longer than 2h. (If the length of a Delaunay edge is greater than 2h, then at least one
of the two Delaunay triangles that contain it has a circumradius larger than h and is eligible for splitting.)

Chew’s first algorithm handles boundaries in a simple and elegant manner, at the cost that it only pro-
duces meshes of uniform density, as illustrated in Figure 6.4.
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Figure 6.4: A mesh generated by Chew’s first Delaunay refinement algorithm. (Courtesy Paul Chew).

Figure 6.5: A demonstration of the ability of Delaunay refinement to achieve large gradations in triangle size
while constraining angles. No angle is smaller than 24◦.

6.3 Ruppert’s Delaunay Refinement Algorithm

Jim Ruppert’s algorithm for two-dimensional quality mesh generation [102] is perhaps the first theoreti-
cally guaranteed meshing algorithm to be truly satisfactory in practice. It extends Chew’s first Delaunay
refinement algorithm by allowing the density of triangles to vary quickly over short distances, as illustrated
in Figure 6.5. The number of triangles produced is typically smaller than the number produced either by
Chew’s algorithm or the Bern–Eppstein–Gilbert quadtree algorithm [11], as Figure 6.6 shows.

I have mentioned that Chew independently developed a second Delaunay refinement algorithm quite
similar to Ruppert’s [37]. I present Ruppert’s algorithm first in part because Ruppert’s earliest publications
of his results [100, 101] slightly predate Chew’s, and mainly because the algorithm is accompanied by a
proof that it produces meshes that are both nicely graded and size-optimal. Size optimality means that, for
a given bound on the minimum angle, the algorithm produces a mesh whose size (number of elements)
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Figure 6.6: Meshes generated by the Bern–Eppstein–Gilbert quadtree-based algorithm (top), Chew’s first De-
launay refinement algorithm (center), and Ruppert’s Delaunay refinement algorithm (bottom). For this polygon,
Chew’s second Delaunay refinement algorithm produces nearly the same mesh as Ruppert’s. (The first mesh
was produced by the program tripoint, courtesy Scott Mitchell.)
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Figure 6.7: Segments are split recursively (while maintaining the constrained Delaunay property) until no sub-
segment is encroached.

is at most a constant factor larger than the size of the smallest possible mesh that meets the same angle
bound. (The constant depends upon the angle bound, but is independent of the input PSLG. The constant
can be explicitly calculated for any specific angle bound, but it is too large to be useful as a practical bound.)
Sections 6.4.2 and 6.4.3 apply Ruppert’s analysis method to Chew’s algorithm, which yields better bounds
on element quality than Ruppert’s.

6.3.1 Description of the Algorithm

Ruppert’s algorithm is presented here with a few modifications from Ruppert’s original presentation. The
most significant change is that the algorithm here begins with the constrained Delaunay triangulation of
the segment-bounded PSLG provided as input. In contrast, Ruppert’s presentation begins with a Delaunay
triangulation, and the missing segments are recovered through stitching, described in Section 6.

Ruppert’s algorithm inserts additional vertices (while using Lawson’s algorithm or the Bowyer/Watson
algorithm to maintain the constrained Delaunay property) until all triangles satisfy the constraints on quality
and size set by the user. Like Chew’s algorithm, Ruppert’s may divide each segment into subsegments—
but not as the first step of the algorithm. Instead, the algorithm interleaves segment splitting with triangle
splitting. Initially, each segment comprises one subsegment. Vertex insertion is governed by two rules.

• The diametral circle of a subsegment is the (unique) smallest circle that encloses the subsegment. A
subsegment is said to be encroached if a vertex other than its endpoints lies on or inside its diame-
tral circle, and the encroaching vertex is visible from the interior of the subsegment. (Visibility is
obstructed only by other segments.) Any encroached subsegment that arises is immediately split into
two subsegments by inserting a vertex at its midpoint, as illustrated in Figure 6.7. These subsegments
have smaller diametral circles, and may or may not be encroached themselves; splitting continues
until no subsegment is encroached.

• Each skinny triangle (having a circumradius-to-shortest edge ratio greater than some bound B) is
normally split by inserting a vertex at its circumcenter, thus eliminating the triangle. However, if the
new vertex would encroach upon any subsegment, then it is not inserted; instead, all the subsegments
it would encroach upon are split.

Encroached subsegments are given priority over skinny triangles. The order in which subsegments are
split, or skinny triangles are split, is arbitrary.

When no encroached subsegments remain, all triangles and edges of the triangulation are Delaunay. A
mesh produced by Ruppert’s algorithm is Delaunay, and not just constrained Delaunay.
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A sample input PSLG.

Constrained Delaunay
triangulation of the input
vertices. Encroached
segments are bold.

One encroached
subsegment is
bisected.

And another.

A third encroached
subsegment is split.

The last encroached
subsegment is split.
Find a skinny triangle.

The skinny triangle’s
circumcenter is
inserted. Find another
skinny triangle.

This circumcenter
encroaches upon a
segment, and is
rejected.

Although the vertex was
rejected, the segment it
encroached upon is still
marked for bisection.

The encroached
segment is split, and
the skinny triangle that
led to its bisection is
eliminated.

A circumcenter is
successfully inserted,
creating another skinny
triangle.

The triangle’s
circumcenter is
rejected.

The encroached
segment will be split.

The skinny triangle was
not eliminated. Attempt
to insert its
circumcenter again.

This time, its
circumcenter is inserted
successfully. There’s
only one skinny triangle
left.

The final mesh. No
angle is smaller than
20.7◦.

Figure 6.8: A complete run of Ruppert’s algorithm with an upper bound of B =
√

2 on circumradius-to-shortest
edge ratios. The first two images are the input PSLG and the constrained Delaunay triangulation of its vertices. In
each image, highlighted subsegments or triangles are about to be split, and open vertices are rejected because
they encroach upon a subsegment.
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c v

s
t

Figure 6.9: If the circumcenter v of a triangle t lies outside the triangulation, then some subsegment s is en-
croached.

Figure 6.8 illustrates the generation of a mesh by Ruppert’s algorithm from start to finish. Several
characteristics of the algorithm are worth noting. First, if the circumcenter of a skinny triangle is considered
for insertion and rejected, it may still be successfully inserted later, after the subsegments it encroaches upon
have been split. On the other hand, the act of splitting those subsegments is sometimes enough to eliminate
the skinny triangle. Second, the smaller features at the left end of the mesh lead to the insertion of some
vertices to the right, but the size of the triangles on the right remains larger than the size of the triangles on
the left. The smallest angle in the final mesh is 21.8◦.

There is a loose end to tie up. What should happen if the circumcenter of a skinny triangle falls outside
the triangulation? Fortunately, the following lemma shows the question is moot.

Lemma 36. Let T be a segment-bounded Delaunay triangulation. (Hence, any edge of T that belongs to
only one triangle is a subsegment.) Suppose that T has no encroached subsegments. Let v be the circum-
center of some triangle t of T . Then v lies in T .

Proof: Suppose for the sake of contradiction that v lies outside T . Let c be the centroid of t; c clearly lies
inside T . Because the triangulation is segment-bounded, the line segment cv must cross some subsegment
s, as Figure 6.9 illustrates. (If there are several such subsegments, let s be the subsegment nearest c.)
Because cv is entirely enclosed by the circumcircle of t, the circumcircle must enclose a portion of s; but
the constrained Delaunay property requires that the circumcircle enclose no vertex visible from c, so the
circumcircle cannot enclose the endpoints of s.

Because c and the center of t’s circumcircle lie on opposite sides of s, the portion of the circumcircle that
lies strictly on the same side of s as c (the bold arc in the illustration) is entirely enclosed by the diametral
circle of s. Each vertex of t lies on t’s circumcircle and either is an endpoint of s, or lies on the same side
of s as c. Up to two of the vertices of t may be endpoints of s, but at least one vertex of t must lie strictly
inside the diametral circle of s. But T has no encroached subsegments by assumption; the result follows by
contradiction. "

Lemma 36 offers the best reason why encroached subsegments are given priority over skinny triangles.
Because a circumcenter is inserted only when there are no encroached subsegments, one is assured that the
circumcenter will be within the triangulation. The act of splitting encroached subsegments rids the mesh of
triangles whose circumcircles lie outside it. The lemma is also reassuring to applications (like some finite
volume methods) that require all triangle circumcenters to lie within the triangulation.
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Figure 6.10: The radius of each disk illustrated here is the local feature size of the point at its center.

In addition to being required to satisfy a quality criterion, triangles can also be required to satisfy a
maximum size criterion. In a finite element problem, the triangles must be small enough to ensure that
the finite element solution accurately approximates the true solution of some partial differential equation.
Ruppert’s algorithm can allow the user to specify an upper bound on allowable triangle areas or edge lengths,
and the bound may be a function of each triangle’s location. Triangles that exceed the local upper bound
are split, whether they are skinny or not. So long as the function bounding the sizes of triangles is itself
everywhere greater than some positive constant, there is no threat to the algorithm’s termination guarantee.

6.3.2 Local Feature Sizes of Planar Straight Line Graphs

The claim that Ruppert’s algorithm produces nicely graded meshes is based on the fact that the spacing of
vertices at any location in the mesh is within a constant factor of the sparsest possible spacing. To formalize
the idea of “sparsest possible spacing,” Ruppert introduces a function called the local feature size, which is
defined over the plane relative to a specific PSLG.

Given a PSLG X, the local feature size lfs(p) at any point p is the radius of the smallest disk centered at
p that intersects two nonincident vertices or segments of X. (Two distinct features, each a vertex or segment,
are said to be incident if they intersect.) Figure 6.10 illustrates the notion by giving examples of such disks
for a variety of points.

The local feature size of a point is proportional to the sparsest possible spacing of vertices in the neigh-
borhood of that point in any triangulation that respects the segments and has no skinny triangles. The func-
tion lfs(·) is continuous and has the property that its directional derivatives (where they exist) are bounded
in the range [−1, 1]. This property leads to a lower bound (within a constant factor to be derived in Sec-
tion 6.3.4) on the rate at which edge lengths grade from small to large as one moves away from a small
feature. Formally, this is what it means for a mesh to be “nicely graded.”
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Lemma 37 (Ruppert [102]). For any PSLG X, and any two points u and v in the plane,

lfs(v) ≤ lfs(u) + |uv|.

Proof: The disk having radius lfs(u) centered at u intersects two nonincident features of X. The disk having
radius lfs(u) + |uv| centered at v contains the prior disk, and thus also intersects the same two features.
Hence, the smallest disk centered at v that intersects two nonincident features of X has radius no larger than
lfs(u) + |uv|. "

This lemma generalizes without change to higher dimensions. If the triangulation domain is nonconvex
or nonplanar, the lemma can also be generalized to use geodesic distances—lengths of shortest paths that
are constrained to lie within the triangulation domain—instead of straight-line distances. The proof relies
only on the triangle inequality: if u is within a distance of lfs(u) of each of two nonincident features, then v
is within a distance of lfs(u) + |uv| of each of those same two features.

6.3.3 Proof of Termination

Ruppert’s algorithm can eliminate any skinny triangle by inserting a vertex, but new skinny triangles might
take its place. How can we be sure the process will ever stop? In this section and the next, I present two
proofs of the termination of Ruppert’s algorithm. The first is similar to the proof that Chew’s first algorithm
terminates, and is included for its intuitive value, and because it offers the best bound on the lengths of the
shortest edges. The second proof, adapted from Ruppert, offers better bounds on the lengths of the longer
edges of a graded mesh, and thus shows that the algorithm produces meshes that are nicely graded and
size-optimal. The presentation here uses a flow graph to expose the intuition behind Ruppert’s proof and its
natural tendency to bound the circumradius-to-shortest edge ratio.

Both proofs require that B ≥
√

2, and that any two incident segments (segments that share an endpoint)
in the input PSLG are separated by an angle of 60◦ or greater. (Ruppert asks for angles of at least 90◦, but
the weaker bound suffices.) For the second proof, these inequalities must be strict.

A mesh vertex is any vertex that has been successfully inserted into the mesh (including the input ver-
tices). A rejected vertex is any vertex that is considered for insertion but rejected because it encroaches upon
a subsegment. With each mesh vertex or rejected vertex v, associate an insertion radius rv, equal to the
length of the shortest edge connected to v immediately after v is introduced into the triangulation. Consider
what this means in three different cases.

• If v is an input vertex, then rv is the Euclidean distance between v and the nearest input vertex visible
from v. See Figure 6.11(a).

• If v is a vertex inserted at the midpoint of an encroached subsegment, then rv is the distance between
v and the nearest encroaching mesh vertex; see Figure 6.11(b). If there is no encroaching mesh vertex
(some triangle’s circumcenter was considered for insertion but rejected as encroaching), then rv is the
radius of the diametral circle of the encroached subsegment, and hence the length of each of the two
subsegments thus produced; see Figure 6.11(c).

• If v is a vertex inserted at the circumcenter of a skinny triangle, then rv is the circumradius of the
triangle. See Figure 6.11(d).
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Figure 6.11: The insertion radius rv of a vertex v is the distance to the nearest vertex when v first appears in
the mesh. (a) If v is an input vertex, rv is the distance to the nearest other input vertex. (b) If v is the midpoint of
a subsegment encroached upon by a mesh vertex, rv is the distance to that vertex. (c) If v is the midpoint of a
subsegment encroached upon only by a rejected vertex, rv is the radius of the subsegment’s diametral circle. (d)
If v is the circumcenter of a skinny triangle, rv is the radius of the circumcircle.

If a vertex is considered for insertion but rejected because of an encroachment, its insertion radius is
defined the same way—as if it had been inserted, even though it is not actually inserted.

Each vertex v, including any rejected vertex, has a parent vertex p(v), unless v is an input vertex. Intu-
itively, p(v) is the vertex that is “responsible” for the insertion of v. The parent is defined as follows.

• If v is an input vertex, it has no parent.

• If v is a vertex inserted at the midpoint of an encroached subsegment, then p(v) is the encroaching
vertex. (Note that p(v) might be a rejected vertex; a parent need not be a mesh vertex.) If there are
several encroaching vertices, choose the one nearest v.

• If v is a vertex inserted (or rejected) at the circumcenter of a skinny triangle, then p(v) is the most
recently inserted endpoint of the shortest edge of that triangle. If both endpoints of the shortest edge
are input vertices, choose one arbitrarily.

Each input vertex is the root of a tree of vertices. However, what is interesting is not each tree as a
whole, but the sequence of ancestors of any given vertex, which forms a sort of history of the events leading
to the insertion of that vertex. Figure 6.12 illustrates the parents of all vertices inserted or considered for
insertion during the sample execution of Ruppert’s algorithm in Figure 6.8.

I will use these definitions to show why Ruppert’s algorithm terminates. The key insight is that no
descendant of a mesh vertex has an insertion radius smaller than the vertex’s own insertion radius—unless
the descendant’s local feature size is even smaller. Therefore, no edge will ever appear that is shorter than
the smallest feature in the input PSLG. To prove these facts, consider the relationship between the insertion
radii of a vertex and its parent.

Lemma 38. Let v be a vertex, and let p = p(v) be its parent, if one exists. Then either rv ≥ lfs(v), or
rv ≥ Crp, where

• C = B if v is the circumcenter of a skinny triangle;

• C = 1/
√

2 if v is the midpoint of an encroached subsegment and p is the (rejected) circumcenter of a
skinny triangle;
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Figure 6.12: Trees of vertices for the example of Figure 6.8. Arrows are directed from parents to their children.
Children include all inserted vertices and one rejected vertex.

• C = 1/(2 cosα) if v and p lie on incident segments separated by an angle of α (with p encroaching
upon the subsegment whose midpoint is v), where 45◦ ≤ α < 90◦; and

• C = sinα if v and p lie on incident segments separated by an angle of α ≤ 45◦.

Proof: If v is an input vertex, there is another input vertex a distance of rv from v, so lfs(v) ≤ rv, and the
lemma holds.

If v is inserted at the circumcenter of a skinny triangle, then its parent p is the most recently inserted
endpoint of the shortest edge of the triangle; see Figure 6.13(a). Hence, the length of the shortest edge of
the triangle is at least rp. Because the triangle is skinny, its circumradius-to-shortest edge ratio is at least B,
so its circumradius is rv ≥ Brp.

If v is inserted at the midpoint of an encroached subsegment s, there are four cases to consider. The first
two are all that is needed to prove the termination of Ruppert’s algorithm if no angle smaller than 90◦ is
present in the input. The last two cases consider the effects of acute angles.

• If the parent p is an input vertex, or was inserted in a segment not incident to the segment containing
s, then by definition, lfs(v) ≤ rv.

• If p is a circumcenter that was considered for insertion but rejected because it encroaches upon s,
then p lies on or inside the diametral circle of s. Because the mesh is constrained Delaunay, one can
show that the circumcircle centered at p contains neither endpoint of s. Hence, rv ≥ rp/

√
2. See

Figure 6.13(b) for an example where the relation is equality.
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Figure 6.13: The relationship between the insertion radii of a child and its parent. (a) When a skinny triangle
is split, the child’s insertion radius is at least B times larger than that of its parent. (b) When a subsegment is
encroached upon by the circumcenter of a skinny triangle, the child’s insertion radius may be a factor of

√
2

smaller than the parent’s, as this worst-case example shows. (c, d) When a subsegment is encroached upon by
a vertex in an incident segment, the relationship depends upon the angle α separating the two segments.

• If v and p lie on incident segments separated by an angle α where 45◦ ≤ α < 90◦, the vertex a
(for “apex”) where the two segments meet obviously cannot lie inside the diametral circle of s; see
Figure 6.13(c). Because s is encroached upon by p, p lies on or inside its diametral circle. To find
the worst-case (smallest) value of rv/rp, imagine that rp and α are fixed; then rv = |vp| is minimized
by making the subsegment s as short as possible, subject to the constraint that p cannot fall outside
its diametral circle. The minimum is achieved when |s| = 2rv. Basic trigonometry shows that |s| ≥
rp/ cosα, and therefore rv ≥ rp/(2 cosα).

• If v and p lie on incident segments separated by an angle αwhere α ≤ 45◦, then rv/rp is minimized not
when p lies on the diametral circle, but when v is the orthogonal projection of p onto s, as illustrated
in Figure 6.13(d). Hence, rv ≥ rp sinα. "

Lemma 38 limits how quickly the insertion radii can decrease through a sequence of descendants of a
vertex. If vertices with ever-smaller insertion radii cannot be generated, then edges shorter than existing
features cannot be introduced, and Delaunay refinement is guaranteed to terminate.

Figure 6.14 expresses this notion as a flow graph. Vertices are divided into three classes: input ver-
tices (which are omitted from the figure because they cannot participate in cycles), free vertices inserted
at circumcenters of triangles, and segment vertices inserted at midpoints of subsegments. Labeled arrows
indicate how a vertex can cause the insertion of a child whose insertion radius is some factor times that of its
parent. If the graph contains no cycle whose product is less than one, termination is guaranteed. This goal
is achieved by choosing B to be at least

√
2, and ensuring that the minimum angle between input segments

is at least 60◦. The following theorem formalizes these ideas.

Theorem 39. Let lfsmin be the shortest distance between two nonincident entities (vertices or segments) of
the input PSLG1.

1Equivalently, lfsmin = minu lfs(u), where u is chosen from among the input vertices. The proof that both definitions are
equivalent is omitted, but it relies on the recognition that if two points lying on nonincident segments are separated by a distance d,
then at least one of the endpoints of one of the two segments is separated from the other segment by a distance of d or less. Note
that lfsmin is not a lower bound for lfs(·) over the entire domain; for instance, a segment may have length lfsmin, in which case the
local feature size at its midpoint is lfsmin/2.
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Figure 6.14: Flow diagram illustrating the worst-case relation between a vertex’s insertion radius and the insertion
radii of the children it begets. If no cycles have a product smaller than one, Ruppert’s Delaunay refinement
algorithm will terminate. Input vertices are omitted from the diagram because they cannot contribute to cycles.

Suppose that any two incident segments are separated by an angle of at least 60◦, and a triangle is
considered to be skinny if its circumradius-to-shortest edge ratio is larger than B, where B ≥

√
2. Ruppert’s

algorithm will terminate, with no triangulation edge shorter than lfsmin.

Proof: Suppose for the sake of contradiction that the algorithm introduces an edge shorter than lfsmin into
the mesh. Let e be the first such edge introduced. Clearly, the endpoints of e cannot both be input vertices,
nor can they lie on nonincident segments. Let v be the most recently inserted endpoint of e.

By assumption, no edge shorter than lfsmin existed before v was inserted. Hence, for any ancestor a of v
that is a mesh vertex, ra ≥ lfsmin. Let p = p(v) be the parent of v, and let g = p(p) be the grandparent of v
(if one exists). Consider the following cases.

• If v is the circumcenter of a skinny triangle, then by Lemma 38, rv ≥ Brp ≥
√

2rp.

• If v is the midpoint of an encroached subsegment and p is the circumcenter of a skinny triangle, then
by Lemma 38, rv ≥ rp/

√
2 ≥ Brg/

√
2 ≥ rg. (Recall that p is rejected.)

• If v and p lie on incident segments, then by Lemma 38, rv ≥ rp/(2 cosα). Because α ≥ 60◦, rv ≥ rp.

In all three cases, rv ≥ ra for some ancestor a of v in the mesh. It follows that rv ≥ lfsmin, contradicting
the assumption that e has length less than lfsmin. It also follows that no edge shorter than lfsmin is ever
introduced, so the algorithm must terminate. "

By design, Ruppert’s algorithm terminates only when all triangles in the mesh have a circumradius-to-
shortest edge ratio of B or better; hence, at termination, there is no angle smaller than arcsin 1

2B . If B =
√

2,
the smallest value for which termination is guaranteed, no angle is smaller than 20.7◦. Section 6.4 describes
a way to improve this bound.
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What about running time? A constrained Delaunay triangulation can be constructed in O(n log n)
time [34], where n is the size of the input PSLG. Once the initial triangulation is complete, well-implemented
Delaunay refinement algorithms invariably take time linear in the number of additional vertices that are in-
serted. Ruppert (personal communication) exhibits a PSLG on which his algorithm takes Θ(h2) time, where
h is the size of the final mesh, but the example is contrived and such pathological examples do not arise in
practice.

6.3.4 Proof of Good Grading and Size-Optimality

Theorem 39 guarantees that no edge of a mesh produced by Ruppert’s algorithm is shorter than lfsmin.
This guarantee may be satisfying for a user who desires a uniform mesh, but it is not satisfying for a user
who requires a spatially graded mesh. What follows is a proof that each edge of the output mesh has
length proportional to the local feature sizes of its endpoints. Hence, edge lengths are determined by local
considerations; features lying outside the disk that defines the local feature size of a point can only weakly
influence the lengths of edges that contain that point. Triangle sizes vary quickly over short distances where
such variation is desirable to help reduce the number of triangles in the mesh. Readers may skip this section
without affecting their understanding of the rest of the chapter.

Lemma 38 was concerned with the relationship between the insertion radii of a child and its parent.
The next lemma is concerned with the relationship between lfs(v)/rv and lfs(p)/rp. For any vertex v, define
Dv = lfs(v)/rv. Think of Dv as the one-dimensional density of vertices near v when v is inserted, weighted
by the local feature size. One would like this density to be as small as possible. Dv ≤ 1 for any input vertex,
but Dv tends to be larger for a vertex inserted late.

Lemma 40. Let v be a vertex with parent p = p(v). Suppose that rv ≥ Crp (following Lemma 38). Then
Dv ≤ 1 + Dp/C.

Proof: By Lemma 37, lfs(v) ≤ lfs(p)+ |vp|. By definition, the insertion radius rv is |vp| if p is a mesh vertex,
whereas if p is a rejected circumcenter, then rv ≥ |vp|. Hence, we have

lfs(v) ≤ lfs(p) + rv

= Dprp + rv

≤
Dp

C
rv + rv.

The result follows by dividing both sides by rv. "

Lemma 40 generalizes to any dimension, because it relies only upon Lemma 37. Ruppert’s first main
result follows.

Lemma 41 (Ruppert [102]). Consider a mesh produced by Ruppert’s algorithm. Suppose the quality bound
B is strictly larger than

√
2, and the smallest angle between two incident segments in the input PSLG is

strictly greater than 60◦. There exist fixed constants DT ≥ 1 and DS ≥ 1 such that, for any vertex v inserted
(or considered for insertion and rejected) at the circumcenter of a skinny triangle, Dv ≤ DT , and for any
vertex v inserted at the midpoint of an encroached subsegment, Dv ≤ DS . Hence, the insertion radius of
every vertex has a lower bound proportional to its local feature size.
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Proof: Consider any non-input vertex v with parent p = p(v). If p is an input vertex, then Dp = lfs(p)/rp ≤
1. Otherwise, assume for the sake of induction that the lemma is true for p, so that Dp ≤ DT if p is a
circumcenter, and Dp ≤ DS if p is a midpoint. Hence, Dp ≤ max{DT ,DS }.

First, suppose v is inserted or considered for insertion at the circumcenter of a skinny triangle. By
Lemma 38, rv ≥ Brp. Thus, by Lemma 40, Dv ≤ 1 + max{DT ,DS }/B. It follows that one can prove that
Dv ≤ DT if DT is chosen so that

1 +
max{DT ,DS }

B
≤ DT . (6.1)

Second, suppose v is inserted at the midpoint of a subsegment s. If its parent p is an input vertex or lies
on a segment not incident to s, then lfs(v) ≤ rv, and the theorem holds. If p is the circumcenter of a skinny
triangle (considered for insertion but rejected because it encroaches upon s), rv ≥ rp/

√
2 by Lemma 38, so

by Lemma 40, Dv ≤ 1 +
√

2DT .

Alternatively, if p, like v, is a segment vertex, and p and v lie on incident segments, then rv ≥ rp/(2 cosα)
by Lemma 38, and thus by Lemma 40, Dv ≤ 1 + 2DS cosα. It follows that one can prove that Dv ≤ DS if
DS is chosen so that

1 +
√

2DT ≤ DS , and (6.2)
1 + 2DS cosα ≤ DS . (6.3)

If the quality bound B is strictly larger than
√

2, Inequalities (6.1) and (6.2) are simultaneously satisfied
by choosing

DT =
B + 1

B −
√

2
, DS =

(1 +
√

2)B
B −
√

2
.

If the smallest input angle αmin is strictly greater than 60◦, Inequalities (6.3) and (6.1) are satisfied by
choosing

DS =
1

1 − 2 cosαmin
, DT = 1 +

DS
B
.

One of these choices will dominate, depending on the values of B and αmin. In either case, if B >
√

2 and
αmin > 60◦, there are values of DT and DS that satisfy all the inequalities. "

Note that as B approaches
√

2 or α approaches 60◦, DT and DS approach infinity. In practice, the
algorithm is better behaved than the theoretical bound suggests; the vertex density approaches infinity only
after B drops below one.

Theorem 42 (Ruppert [102]). For any vertex v of the output mesh, the distance to its nearest neighbor w is
at least lfs(v)/(DS + 1).

Proof: Inequality (6.2) indicates that DS > DT , so Lemma 41 shows that lfs(v)/rv ≤ DS for any vertex v. If
v was added after w, then the distance between the two vertices is rv ≥ lfs(v)/DS , and the theorem holds. If
w was added after v, apply the lemma to w, yielding

|vw| ≥ rw ≥
lfs(w)

DS
.

By Lemma 37, lfs(w) + |vw| ≥ lfs(v), so

|vw| ≥
lfs(v) − |vw|

DS
.
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Lake Superior PSLG. Triangulated with no minimum angle.

Triangulated with 5◦ minimum angle. Triangulated with 15◦ minimum angle.

Triangulated with 25◦ minimum angle. Triangulated with 34.2◦ minimum angle.

Figure 6.15: Meshes generated with Ruppert’s algorithm for several different angle bounds. The algorithm does
not terminate for angle bounds of 34.3◦ or higher on this PSLG.

It follows that |vw| ≥ lfs(v)/(DS + 1). "

To give a specific example, consider triangulating a PSLG (having no acute input angles) so that no angle
of the output mesh is smaller than 15◦; hence B " 1.93. For this choice of B, DT " 5.66 and DS " 9.01.
Hence, the spacing of vertices is at worst about ten times smaller than the local feature size. Away from
boundaries, the spacing of vertices is at worst seven times smaller than the local feature size.

Figure 6.15 illustrates the algorithm’s grading for a variety of angle bounds. Ruppert’s algorithm typi-
cally terminates for angle bounds much higher than the theoretically guaranteed 20.7◦, and typically exhibits
much better vertex spacing than the provable worst-case bounds imply.

Ruppert [102] uses Theorem 42 to prove the size optimality of the meshes his algorithm generates, and
his result has been improved by Mitchell [83]. Mitchell’s theorem is stated below, but the lengthy proof is
omitted.
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Theorem 43 (Mitchell [83]). Let lfsT (p) be the local feature size at p with respect to a triangulation T
(treating T as a PSLG), whereas lfs(p) remains the local feature size at p with respect to the input PSLG.
Suppose a triangulation T with smallest angle θ has the property that there is some constant k1 ≥ 1 such
that for every point p, k1lfsT (p) ≥ lfs(p). Then the cardinality (number of triangles) of T is less than k2
times the cardinality of any other triangulation of the input PSLG with smallest angle θ, where k2 ∈ O(k2

1/θ).
"

Theorem 42 can be used to show that the precondition of Theorem 43 is satisfied by meshes generated
by Ruppert’s algorithm (with k1 ∝ DS ). Hence, the cardinality of a mesh generated by Ruppert’s algorithm
is within a constant factor of the cardinality of the best possible mesh satisfying the angle bound. However,
the constant factor hidden in Mitchell’s theorem is much too large to be a meaningful guarantee in practice.

6.4 Chew’s Second Delaunay Refinement Algorithm

Compared to Ruppert’s algorithm, Chew’s second Delaunay refinement algorithm [37] offers an improved
guarantee of good grading in theory, and splits fewer subsegments in practice. This section shows that the
algorithm exhibits good grading and size optimality for angle bounds of up to 26.5◦ (compared with 20.7◦
for Ruppert’s algorithm).

Chew’s paper also discusses triangular meshing of curved surfaces in three dimensions, but I consider
the algorithm only in its planar context.

6.4.1 Description of the Algorithm

Chew’s second Delaunay refinement algorithm begins with the constrained Delaunay triangulation of a
segment-bounded PSLG, and eliminates skinny triangles through Delaunay refinement, but Chew does not
use diametral circles to determine if subsegments are encroached. Instead, it may arise that a skinny triangle
t cannot be split because t and its circumcenter c lie on opposite sides of a subsegment s. (Lemma 36 does
not apply to Chew’s algorithm, so c may even lie outside the triangulation.) Although Chew does not use
the word, let us say that s is encroached when this circumstance occurs.

Because s is a subsegment, inserting a vertex at c will not remove t from the mesh. Instead, c is rejected,
and all free vertices that lie inside the diametral circle of s and are visible from the midpoint of s are deleted
from the triangulation. (Input vertices and segment vertices are not deleted.) Then, a new vertex is inserted
at the midpoint of s. The constrained Delaunay property is maintained throughout all vertex deletions and
insertions. Figure 6.16 illustrates a subsegment split in Chew’s algorithm.

If several subsegments lie between t and c, only the subsegment nearest t is split. If no subsegment lies
between t and c, but c lies precisely on a subsegment, then that subsegment is considered encroached and
split at its midpoint.

Chew’s second algorithm produces a mesh that is not guaranteed to be Delaunay (only constrained
Delaunay). For the few applications that require truly Delaunay triangles, Ruppert’s algorithm is preferable.
For the majority of applications, however, Chew has two advantages. First, some subsegment splits are
avoided that would otherwise have occurred, so the final mesh may have fewer triangles. Consider two
contrasting examples. In Figure 6.6 (bottom), the segments are so short that few are ever encroached, so
Ruppert and Chew generate virtually the same mesh. In Figure 6.17, the segments are long compared to
their local feature sizes, and Chew produces many fewer triangles.
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t

c

Figure 6.16: At left, a skinny triangle and its circumcenter lie on opposite sides of a subsegment. At right, all
vertices in the subsegment’s diametral circle have been deleted, and a new vertex has been inserted at the
subsegment’s midpoint.

Figure 6.17: A PSLG, a 559-triangle mesh produced by Ruppert’s algorithm, and a 423-triangle mesh produced
by Chew’s second algorithm. No angle in either mesh is smaller than 25◦.

The second advantage is that when a subsegment is split by a vertex v with parent p, a better bound can
be found for the ratio between rv and rp than Lemma 38’s bound. This improvement leads to better bounds
on the minimum angle, the edge lengths, and the mesh cardinality.

6.4.2 Proof of Termination

If no input angle is less than 60◦, Chew’s algorithm terminates for any bound on circumradius-to-shortest
edge ratio B such that B ≥

√
5/2 " 1.12. Therefore, the smallest angle can be bounded by up to

arcsin(1/
√

5) " 26.56◦.

By the reasoning of Lemma 36, if a triangle and its circumcenter lie on opposite sides of a subsegment,
or if the circumcenter lies on the subsegment, then some vertex of the triangle (other than the subsegment’s
endpoints) lies on or inside the subsegment’s diametral circle. Hence, Chew’s algorithm never splits a
subsegment that Ruppert’s algorithm would not split. It follows that the inequalities in Lemma 38 are as
true for Chew’s algorithm as they are for Ruppert’s algorithm. However, Chew will often decline to split a
subsegment that Ruppert would split, and thus splits fewer subsegments overall. A consequence is that the
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Figure 6.18: (a) The case where exactly one vertex is in the semicircle. (b) The case where more than one
vertex is in the semicircle.

relationship between the insertion radii of a subsegment midpoint and its parent can be tightened.

Lemma 44. Let θ = arcsin 1
2B be the angle bound below which a triangle is considered skinny. Let s be a

subsegment that is encroached because some skinny triangle t and its circumcenter c lie on opposite sides of
s (or c lies on s). Let v be the vertex inserted at the midpoint of s. Then one of the following four statements
is true. (Only the fourth differs from Lemma 38.)

• rv ≥ lfs(v);

• rv ≥ rp/(2 cosα), where p is a vertex that encroaches upon s and lies in a segment separated by an
angle of α ≥ 45◦ from the segment containing s;

• rv ≥ rp sinα, where p is as above, with α ≤ 45◦; or

• there is some vertex p (which is deleted from inside the diametral circle of s or lies precisely on the
diametral circle) such that rv ≥ rp cos θ.

Proof: Chew’s algorithm deletes all free vertices inside the diametral circle of s that are visible from v. If
any vertex remains visible from v inside the diametral circle, it is an input vertex or a segment vertex. Define
the parent p of v to be the closest such vertex. If p is an input vertex or lies on a segment not incident to
the segment that contains s, then lfs(v) ≤ rv and the lemma holds. If p lies on an incident segment, then
rv ≥ rp/(2 cosα) for α ≥ 45◦ or rv ≥ rp cos θ for α ≤ 45◦ as in Lemma 38.

Otherwise, no vertex inside the diametral circle of s is visible after the deletions, so rv is equal to the
radius of the diametral circle. This is the reason why Chew’s algorithm deletes the vertices: when v is
inserted, the nearest visible vertices are the subsegment endpoints, and no short edge appears.

Mentally jump back in time to just before the vertex deletions. Assume without loss of generality that t
lies above s, with c below. Following Lemma 36, at least one vertex of t lies on or inside the upper half of
the diametral circle of s. There are two cases, depending on the total number of vertices on or inside this
semicircle.

If the upper semicircle encloses only one vertex u visible from v, then t is the triangle whose vertices
are u and the endpoints of s. Because t is skinny, u must lie in the shaded region of Figure 6.18(a). The
insertion radius ru cannot be greater than the distance from u to the nearest endpoint of s, so rv ≥ ru cos θ.
(For a fixed rv, ru is maximized when u lies at the apex of the isosceles triangle whose base is s and whose
base angles are θ.) Define the parent of v to be u.

If the upper semicircle encloses more than one vertex visible from v, consider Figure 6.18(b), in which
the shaded region represents points within a distance of rv from an endpoint of s. If some vertex u lies in
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the shaded region, then ru ≤ rv; define the parent of v to be u. If no vertex lies in the shaded region, then
there are at least two vertices visible from v in the white region of the upper semicircle. Let u be the most
recently inserted of these vertices. The vertex u is at a distance of at most rv from any other vertex in the
white region, so ru ≤ rv; define the parent of v to be u. "

Lemma 44 extends the definition of parent to accommodate the new type of encroachment defined in
Chew’s algorithm. When a subsegment s is encroached, the parent p of its newly inserted midpoint v is
defined to be a vertex on or inside the diametral circle of s, just as in Ruppert’s algorithm.

Chew’s algorithm can be shown to terminate in the same manner as Ruppert’s. Do the differences
between Chew’s and Ruppert’s algorithms invalidate any of the assumptions used in Theorem 39 to prove
termination? The most important difference is that vertices may be deleted from the mesh. When a vertex is
deleted from a constrained Delaunay triangulation, no surviving vertex finds itself adjoining a shorter edge
than the shortest edge it adjoined before the deletion. (This fact follows because a constrained Delaunay
triangulation connects every vertex to its nearest visible neighbor.) Hence, each vertex’s insertion radius still
serves as a lower bound on the lengths of all edges that connect the vertex to vertices older than itself.

If vertices can be deleted, are we certain that the algorithm will run out of places to put new vertices?
Observe that vertex deletions only occur when a subsegment is split, and vertices are never deleted from
segments. Theorem 39 sets a lower bound on the length of each subsegment, so only a finite number of
subsegment splits can occur. After the last subsegment split, no more vertex deletions occur, and eventually
there will be no space left for new vertices. Therefore, Theorem 39 and Lemma 41 hold for Chew’s algorithm
as well as Ruppert’s.

The consequence of the bound proven by Lemma 44 is illustrated in the flow graph of Figure 6.19. Recall
that termination is guaranteed if no cycle has a product less than one. Hence, a condition of termination is
that B cos θ ≥ 1. As θ = arcsin 1

2B , the best bound that satisfies this criterion is B =
√

5/2 " 1.12, which
corresponds to an angle bound of arcsin(1/

√
5) " 26.56◦.

6.4.3 Proof of Good Grading and Size Optimality

The main point of this section is to demonstrate that Chew’s algorithm offers better theoretical guarantees
about triangle quality, edge lengths, and good grading than Ruppert’s. (We should not forget, though, that
it is Ruppert’s analysis technique that allows us to draw this conclusion.) Whereas Ruppert only guarantees
good grading and size optimality for angle bounds less than about 20.7◦, Chew can make these promises
for angle bounds less than about 26.5◦, and offer better bounds on edge lengths for the angle bounds where
Ruppert’s guarantees do hold. However, the differences are not as pronounced in practice as in theory.
Readers whose interests are purely practical may skip this section without affecting their understanding of
the rest of the chapter.

Let’s compare Chew’s algorithm.

Lemma 45. Consider a mesh produced by Chew’s algorithm. Suppose the quality bound B is strictly larger
than

√
5/2, and the smallest angle between two incident segments in the input PSLG is strictly greater than

60◦. There exist fixed constants DT ≥ 1 and DS ≥ 1 such that, for any vertex v inserted at the circumcenter
of a skinny triangle, Dv ≤ DT , and for any vertex v inserted at the midpoint of an encroached subsegment,
Dv ≤ DS .
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Figure 6.19: Flow diagram for Chew’s algorithm.

Proof: Essentially the same as the proof of Lemma 41, except that Lemma 44 makes it possible to replace
Inequality (6.2) with

DS ≥ 1 +
DT

cos θ

≥ 1 +
2BDT√
4B2 − 1

(6.4)

If the quality bound B is strictly larger than
√

5/2, Inequalities (6.1) and (6.4) are simultaneously satis-
fied by choosing

DT =

(

1 + 1
B

) √
4B2 − 1

√
4B2 − 1 − 2

, DS =

√
4B2 − 1 + 2B
√

4B2 − 1 − 2
.

DT and DS must also satisfy Inequality (6.3), so larger values of DT and DS may be needed, as in
Lemma 41. However, If B >

√
5/2 and αmin > 60◦, there are values of DT and DS that satisfy all the

inequalities. "

Theorem 42, which bounds the edge lengths of the mesh, applies to Chew’s algorithm as well as Rup-
pert’s, but the values of DT and DS are different. As in Section 6.3.4, consider triangulating a PSLG (free
of acute angles) so that no angle of the output mesh is smaller than 15◦. Then DT " 3.27, and DS " 4.39,
compared to the corresponding values of 5.66 and 9.01 for Ruppert’s algorithm. Hence, the spacing of ver-
tices is at worst a little more than five times the local feature size, and a little more than four times the local
feature size away from segments.

Because the worst-case number of triangles is proportional to the square of DS , Chew’s algorithm is
size-optimal with a constant of optimality almost four times better than Ruppert’s algorithm. However,
worst-case behavior is never seen in practice, and the observed difference between the two algorithms is less
dramatic.





Chapter 7

Three-Dimensional Delaunay Refinement
Algorithms

Herein I discuss Delaunay refinement algorithms for generating tetrahedral meshes. The generalization of
Chew’s and Ruppert’s ideas to three dimensions is relatively straightforward, albeit not without complica-
tions. The basic operation is still the Delaunay insertion of a vertex at the circumcenter of a simplex, and
the result is still a mesh whose elements have bounded circumradius-to-shortest edge ratios.

In three dimensions, however, such a mesh is not entirely adequate for the needs of interpolation or
finite element methods. As Dey, Bajaj, and Sugihara [45] illustrate, most tetrahedra with poor angles have
circumcircles much larger than their shortest edges, including the needle, wedge, and cap illustrated in
Figure 7.1. But there is one type called a sliver or kite tetrahedron that does not.

The canonical sliver is formed by arranging four vertices, equally spaced, around the equator of a sphere,
then perturbing one of the vertices slightly off the equator, as Figure 1.11 illustrates. A sliver can have

Needle / Wedge Cap Sliver
Figure 7.1: Tetrahedra with poor angles. Needles and wedges have edges of greatly disparate length; caps
have a large solid angle; slivers have neither, and can have good circumradius-to-shortest edge ratios. Needles,
wedges, and caps have circumspheres significantly larger than their shortest edges, and are thus eliminated
when additional vertices are inserted with a spacing proportional to the shortest edge. A sliver can easily survive
in a Delaunay tetrahedralization of uniformly spaced vertices.

103



104 Jonathan Richard Shewchuk

an admirable circumradius-to-shortest edge ratio (as low as 1√
2
!) yet be considered awful by most other

measures, because its volume and its shortest altitude can be arbitrarily close to zero, and its dihedral angles
can be arbitrarily close to 0◦ and 180◦. Slivers have no two-dimensional analogue; any triangle with a small
circumradius-to-shortest edge ratio is considered “well-shaped” by the usual standards of finite element
methods and interpolation.

Slivers often survive Delaunay-based tetrahedral mesh generation methods because their small circum-
radii minimize the likelihood of vertices being inserted in their circumspheres (as Figure 7.1 illustrates). A
perfectly flat sliver whose edge lengths are lfsmin about the equator and

√
2lfsmin across the diagonals is

guaranteed to survive any Delaunay refinement method that does not introduce edges smaller than lfsmin,
because every point in the interior of its circumsphere is a distance less than lfsmin from one of its vertices;
no vertex can be inserted inside the sphere.

Despite slivers, Delaunay refinement methods are valuable for generating three-dimensional meshes.
Slivers having good circumradius-to-shortest edge ratios typically arise in small numbers in practice. As
Section 7.3 will demonstrate, the worst slivers can often be removed by Delaunay refinement, even if there is
no theoretical guarantee. Meshes with bounds on the circumradius-to-shortest edge ratios of their tetrahedra
are an excellent starting point for mesh smoothing and optimization methods that remove slivers and improve
the quality of an existing mesh. The most notable of these is the sliver exudation algorithm of Cheng, Dey,
Edelsbrunner, Facello, and Teng [30], which is based on weighted Delaunay triangulations. Even if slivers
are not removed, the Voronoi dual of a tetrahedralization with bounded circumradius-to-shortest edge ratios
has nicely rounded cells, and is sometimes ideal for use in the control volume method [81].

In this chapter, I present a three-dimensional generalization of Ruppert’s algorithm that generates tetra-
hedralizations whose tetrahedra have circumradius-to-shortest edge ratios no greater than the bound B =√

2 " 1.41. If B is relaxed to be greater than two, then good grading can also be proven. Size-optimality,
however, cannot be proven.
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(a) (b)

Figure 7.2: (a) Any facet of a PLC may contain holes, slits, and vertices. (b) When a PLC is tetrahedralized,
each facet of the PLC is partitioned into triangular subfacets, which respect the holes, slits, and vertices.

F S

Figure 7.3: The orthogonal projections of points and sets of points onto facets and segments.

7.1 Definitions

Tetrahedral mesh generation necessarily divides each facet of a PLC, like that depicted in Figure 7.2(a),
into triangular faces, as illustrated in Figure 7.2(b). Just as the triangulation edges that comprise a segment
are called subsegments, the triangular faces that comprise a facet are called subfacets. The bold edges in
Figure 7.2(b) are subsegments; other edges are not. All of the triangular faces visible in Figure 7.2(b) are
subfacets, but most of the faces in the interior of the tetrahedralization are not.

Frequently in this chapter, I use the notion of the orthogonal projection of a geometric entity onto a line
or plane. Given a facet or subfacet F and a point p, the orthogonal projection projF(p) of p onto F is the
point that is coplanar with F and lies in the line that passes through p orthogonally to F, as illustrated in
Figure 7.3. The projection exists whether or not it falls in F.

Similarly, the orthogonal projection projS (p) of p onto a segment or subsegment S is the point that is
collinear with S and lies in the plane through p orthogonal to S .

Sets of points, as well as points, may be projected. If F and G are facets, then projF(G) is the set
{projF(p) : p ∈ G}.

7.2 A Three-Dimensional Delaunay Refinement Algorithm

In this section, I describe a three-dimensional Delaunay refinement algorithm that produces well-graded
tetrahedral meshes satisfying any circumradius-to-shortest edge ratio bound greater than two. Miller, Tal-
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mor, Teng, Walkington, and Wang [82] have developed a related algorithm that does not use Delaunay
refinement.

7.2.1 Description of the Algorithm

Three-dimensional Delaunay refinement takes a facet-bounded PLC as its input. Tetrahedralized and unte-
trahedralized regions of space must be separated by facets so that, in the final mesh, any triangular face not
shared by two tetrahedra is a subfacet.

Many approaches to tetrahedral mesh generation permanently triangulate the input facets as a separate
step prior to tetrahedralizing the interior of a region. The problem with this approach is that these indepen-
dent facet triangulations may not be collectively ideal for forming a good tetrahedralization. For instance, a
feature that lies near a facet (but not necessarily in the plane of the facet) may necessitate the use of smaller
subfacets near that feature. The present algorithm uses another approach, wherein facet triangulations are
refined in conjunction with the tetrahedralization. The tetrahedralization process is not beholden to poor
decisions made earlier.

Any vertex inserted into a segment or facet during Delaunay refinement remains there permanently.
However, keep in mind that the edges that partition a facet into subfacets are not permanent, are not treated
like subsegments, and are subject to flipping (within the facet) according to the Delaunay criterion.

The algorithm’s first step is to construct a Delaunay tetrahedralization of the input vertices. Some input
segments and facets might be missing (or partly missing) from this mesh. As in two dimensions, the tetrahe-
dralization is refined by inserting additional vertices into the mesh, using an incremental Delaunay tetrahe-
dralization algorithm such as the Bowyer–Watson algorithm [20, 128] or three-dimensional flipping [66, 96],
until all segments and facets are recovered and all constraints on tetrahedron quality and size are met. Vertex
insertion is governed by three rules.

• The diametral sphere of a subsegment is the (unique) smallest sphere that contains the subsegment.
A subsegment is encroached if a vertex other than its endpoints lies inside or on its diametral sphere.
(This definition of encroachment is slightly stronger than that used by Ruppert’s algorithm, to ensure
that all unencroached subsegments are strongly Delaunay. This makes it possible to form a CDT, and
also strengthens an upcoming result called the Projection Lemma.) A subsegment may be encroached
whether or not it actually appears as an edge of the tetrahedralization. If a subsegment is missing
from the tetrahedralization, it is not strongly Delaunay and thus must be encroached. Any encroached
subsegment that arises is immediately split into two subsegments by inserting a vertex at its midpoint.
See Figure 7.4(a).

• The equatorial sphere of a triangular subfacet is the (unique) smallest sphere that passes through the
three vertices of the subfacet. (The equator of an equatorial sphere is the unique circle that passes
through the same three vertices.) A subfacet is encroached if a non-coplanar vertex lies inside or on
its equatorial sphere. If a subfacet is missing from the tetrahedralization, and it is not covered by other
faces that share the same circumcircle, then it is encroached. (The question of what subfacets should
not be missing from the tetrahedralization will be considered shortly.) Each encroached subfacet
is normally split by inserting a vertex at its circumcenter; see Figure 7.4(b). However, if the new
vertex would encroach upon any subsegment, it is not inserted; instead, all the subsegments it would
encroach upon are split.
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(a) (b) (c)

Figure 7.4: Three operations for three-dimensional Delaunay refinement. (a) Splitting an encroached subseg-
ment. Dotted arcs indicate where diametral spheres intersect faces. The original subsegment is encroached
because there is a vertex in its diametral sphere. In this example, the two subsegments created by bisecting
the original subsegment are not encroached. (b) Splitting an encroached subfacet. The triangular faces shown
are subfacets of a larger facet, with tetrahedra (not shown) atop them. A vertex in the equatorial sphere of a
subfacet causes a vertex to be inserted at its circumcenter. In this example, all equatorial spheres (included the
two illustrated) are empty after the split. (c) Splitting a skinny tetrahedron. A vertex is inserted at its circumcenter.

• A tetrahedron is said to be skinny if its circumradius-to-shortest edge ratio is larger than some bound
B. (By this definition, not all slivers are considered skinny.) Each skinny tetrahedron is normally split
by inserting a vertex at its circumcenter, thus eliminating the tetrahedron; see Figure 7.4(c). However,
if the new vertex would encroach upon any subsegment or subfacet, then it is not inserted; instead,
all the subsegments it would encroach upon are split. If the skinny tetrahedron is not eliminated as a
result, then all the subfacets its circumcenter would encroach upon are split. (A subtle point is that, if
the tetrahedron is eliminated by subsegment splitting, the algorithm should not split any subfacets that
appear during subsegment splitting, or the bounds proven later will not be valid. Lazy programmers
beware.)

Encroached subsegments are given priority over encroached subfacets, which have priority over skinny
tetrahedra. These encroachment rules are intended to recover missing segments and facets, and to ensure
that all vertex insertions are valid. Because all facets are segment-bounded, Lemma 36 shows that if there
are no encroached subsegments, then each subfacet circumcenter lies in the containing facet. One can also
show (with a similar proof) that if there are no encroached subfacets, then each tetrahedron circumcenter
lies in the mesh.

Missing subsegments are recovered by stitching, described in Section 6. If a subsegment is missing from
a Delaunay triangulation, then the subsegment is not strongly Delaunay, so there must be a vertex (other than
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Facet Triangulation

MeshPLC

Figure 7.5: The top illustrations depict a rectangular facet and its triangulation. The bottom illustrations depict
the facet’s position as an interior boundary of a PLC, and its progress as it is recovered. Most of the vertices and
tetrahedra of the mesh are omitted for clarity. The facet triangulation and the tetrahedralization are maintained
separately. Shaded triangular subfacets in the facet triangulation (top center) are missing from the tetrahedral-
ization (bottom center). The bold dashed line (bottom center) represents a tetrahedralization edge that passes
through the facet. A missing subfacet is recovered by inserting a vertex at its circumcenter (top right and bottom
right). The vertex is independently inserted into both the triangulation and the tetrahedralization.

its endpoints) on or inside its diametral circle. This observation is important because it unifies the theoretical
treatment of missing subsegments and encroached subsegments that are not missing.

When no encroached subsegment remains, missing facets are recovered in an analogous manner. The
main complication is that if a facet is missing from the mesh, it is difficult to say what its subfacets are.
With segments there is no such problem; if a segment is missing from the mesh, and a vertex is inserted at
its midpoint, one knows unambiguously where the two resulting subsegments are. But how may we identify
subfacets that do not yet exist?

The solution is straightforward. For each facet, it is necessary to maintain a two-dimensional Delau-
nay triangulation of its vertices, independently from the tetrahedralization in which we hope its subfacets
will eventually appear. By comparing the triangles of a facet’s triangulation against the faces of the tetra-
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Figure 7.6: If a tetrahedron is Delaunay, the circumcircle of each of its faces is empty, because each face’s
circumcircle is a cross-section of the tetrahedron’s circumsphere.

hedralization, one can identify subfacets that need to be recovered. For each triangular subfacet in a facet
triangulation, look for a matching face in the tetrahedralization; if the latter is missing, insert a vertex at
the circumcenter of the subfacet (subject to rejection if subsegments are encroached), as illustrated in Fig-
ure 7.5. The new vertex is independently inserted into both the facet triangulation and the tetrahedralization.
Similarly, the midpoint of an encroached subsegment is independently inserted into the tetrahedralization
and into each facet triangulation that contains the subsegment.

In essence, Ruppert’s algorithm (and the present algorithm) uses the same procedure to recover seg-
ments. However, the process of forming a one-dimensional triangulation is so simple that it passes unno-
ticed.

Which vertices of the tetrahedralization need to be considered in a facet triangulation? It is a fact, albeit
somewhat nonintuitive, that if a facet appears in a Delaunay tetrahedralization as a union of faces, then the
triangulation of the facet is determined solely by the vertices of the tetrahedralization that lie in the plane
of the facet. If a vertex lies near a facet, but is not coplanar with the facet, it may cause a subfacet to
be missing (as in Figure 7.5, bottom center), but it cannot otherwise affect the shape of the triangulation.
Why? Suppose a subfacet of a facet appears in the tetrahedralization. Then the subfacet must be a face of
a Delaunay tetrahedron. The subfacet’s circumcircle is empty, because its circumcircle is a cross-section of
the tetrahedron’s empty circumsphere, as illustrated in Figure 7.6. Therefore, if a facet appears as a union
of faces in a Delaunay tetrahedralization, then those faces form a two-dimensional Delaunay triangulation
of the facet. Because the Delaunay triangulation is unique (except in nondegenerate cases), vertices that do
not lie in the plane of the facet have no effect on how the facet is triangulated.

Furthermore, because each facet is segment-bounded, and segments are recovered (in the tetrahedral-
ization) before facets, each facet triangulation can safely ignore vertices that lie outside the facet (coplanar
though they may be). A triangulation need only take into account the segments and vertices in the facet. The
requirements set forth in Section 4.5.1 ensure that all of the vertices and segments of a facet must be explic-
itly identified in the input PLC. The only additional vertices to be considered are those that were inserted in
segments to help recover those segments and other facets. The algorithm maintains a list of the vertices on
each segment, ready to be called upon when a facet triangulation is initially formed.

Unfortunately, if a facet’s Delaunay triangulation is not unique because of cocircularity degeneracies,
then the facet might be represented in the tetrahedralization by faces that do not match the independent facet
triangulation, as Figure 7.7 illustrates. (If exact arithmetic is not used, nearly-degenerate cases may team
up with floating-point roundoff error to make this circumstance more common.) An implementation must
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Figure 7.7: A facet triangulation and a tetrahedralization may disagree due to cocircular vertices. This occurrence
should be diagnosed and fixed as shown here.

detect these cases and correct the triangulation so that it matches the tetrahedralization. (It is not always
possible to force the tetrahedralization to match the triangulation.)

To appreciate the advantages of this facet recovery method, compare it with the most popular method [61,
129, 99]. In many tetrahedral mesh generators, facets are inserted by identifying points where the edges of
the tetrahedralization intersect a missing facet, and inserting vertices at these points. The perils of so doing
are illustrated in Figure 7.8. In the illustration, a vertex is inserted where a tetrahedralization edge (bold
dashed line) intersects the facet. Unfortunately, the edge intersects the facet near one of the bounding
segments of the facet, and the new vertex creates a feature that may be arbitrarily small. Afterward, the
only alternatives are to refine the tetrahedra near the new vertex to a small size, or to move or remove the
vertex. Some mesh generators cope with this problem by smoothing the vertices on each facet after the facet
is competely inserted.

The encroachment-based facet recovery method does not insert such vertices at all. A vertex considered
for insertion too close to a segment is rejected, and a subsegment is split instead. This would not necessarily
be true if edge-facet intersections were considered for insertion, because such an intersection may be near
a vertex lying on the segment, and thus fail to encroach upon any subsegments. Subfacet circumcenters are
better choices because they are far from the nearest vertices, and cannot create a new small feature without
encroaching upon a subsegment.

Of course, an even better idea is to form a conforming CDT of the input PLC as soon as all the segments
have been recovered by stitching, thereby recovering the facets without inserting additional vertices. This
measure helps to mitigate (but not eliminate) the unwanted effects of small exterior feature sizes. For the
purposes of analysis, however, it is instructive to consider the variant of the algorithm that uses unconstrained
Delaunay triangulations.

When no encroached subsegment or subfacet remains, every input segment and facet is represented by a
union of edges or faces of the mesh. The first time the mesh reaches this state, all exterior tetrahedra (lying
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Figure 7.8: One may recover a missing facet by inserting vertices at the intersections of the facet with edges
of the tetrahedralization, but this method might create arbitrarily small features by placing vertices close to seg-
ments.

in the convex hull of the input vertices, but outside the region enclosed by the facet-bounded PLC) should
be removed prior to splitting any skinny tetrahedra. This measure prevents the problems that can arise if
superfluous skinny tetrahedra are split, such as overrefinement and failure to terminate because of exterior
small angles and spurious small angles formed between the PLC and its convex hull.

One further amendment to the algorithm is necessary to obtain the best possible bound on the circum-
radius-to-shortest edge ratios of the tetrahedra. It would be nice to prove, in the manner of Lemma 38, that
whenever an encroached subfacet is split at its circumcenter, the insertion radius of the newly inserted vertex
is no worse than

√
2 times smaller than the insertion radius of its parent. Unfortunately, this is not true for

the algorithm described above.

Consider the two examples of Figure 7.9. If a subfacet that contains its own circumcenter is encroached,
then the distance between the encroaching vertex and the nearest vertex of the subfacet is no more than√

2 times the circumradius of the subfacet. This distance is maximized if the encroaching vertex lies at a
pole of the equatorial sphere (where the poles are the two points of the sphere furthest from its equator), as
illustrated in Figure 7.9(a). However, if a subfacet that does not contain its own circumcenter is encroached,
the distance is maximized if the encroaching vertex lies on the equator, equidistant from the two vertices of
the longest edge of the subfacet, as in Figure 7.9(b). Even if the encroaching vertex is well away from the
equator, its distance from the nearest vertex of the subfacet can still be larger than

√
2 times the radius of

the equatorial sphere. (I have confirmed through my implementation that such cases do arise in practice.)

Rather than settle for a looser guarantee on quality, one can make a small change to the algorithm that
will yield a

√
2 bound. When several encroached subfacets exist, they should not be split in arbitrary order.

If a vertex p encroaches upon a subfacet f of a facet F, but the projected point projF(p) does not lie in f ,
then splitting f is not the best choice. One can show (with the following lemma) that there is some other
subfacet g of F that is encroached upon by p and contains projF(p). (The lemma assumes that there are
no encroached subsegments in the mesh, as they have priority.) A better bound is achieved if the algorithm
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Figure 7.9: The relationship between the insertion radii of the circumcenter of an encroached subfacet and the
encroaching vertex. Crosses identify the location of an encroaching vertex having maximum distance from the
nearest subfacet vertex. (a) If the encroached subfacet contains its own circumcenter, the encroaching vertex
is no further from the nearest vertex of the subfacet than

√
2 times the circumradius of the subfacet. (b) If the

encroached subfacet does not contain its own circumcenter, the encroaching vertex may be further away.
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Figure 7.10: Two properties of encroached Delaunay subfacets. (a) If a vertex p encroaches upon a Delaunay
subfacet f of a facet F, but its projection into the plane containing F lies outside F, then p encroaches upon some
subsegment s of F as well. (b) If a vertex p encroaches upon a subfacet f of a Delaunay triangulated facet F,
but does not encroach upon any subsegment of F, then p encroaches upon the subfacet(s) g of F that contains
projF(p).

splits g first and delays the splitting of f indefinitely.

Lemma 46 (Projection Lemma). Let f be a subfacet of the Delaunay triangulated facet F. Suppose that f
is encroached upon by some vertex p, but p does not encroach upon any subsegment of F. Then projF(p)
lies in the facet F, and p encroaches upon a subfacet of F that contains projF(p).

Proof: First, I prove that projF(p) lies in F, using similar reasoning to that employed in Lemma 36. Suppose
for the sake of contradiction that projF(p) lies outside the facet F. Let c be the centroid of f ; c clearly lies
inside F. Because all facets are segment-bounded, the line segment connecting c to projF(p) must intersect
some subsegment s in the boundary of F. Let S be the plane that contains s and is orthogonal to F, as
illustrated in Figure 7.10(a).

Because f is a Delaunay subfacet of F, its circumcircle (in the plane containing F) encloses no vertex
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Figure 7.11: Each subfacet’s equatorial sphere dominates the triangular prism defined by extending the subfacet
orthogonally.

of F. However, its equatorial sphere may enclose vertices—including p—and f might not appear in the
tetrahedralization.

It is apparent that p and projF(p) lie on the same side of S, because the projection is orthogonal to F.
Say that a point is inside S if it is on the same side of S as c, and outside S if it is on the same side as p and
projF(p). The circumcircle of f cannot enclose the endpoints of s, because f is Delaunay in F. Furthermore,
the circumcenter of f lies in F by Lemma 36. It follows that the portion of f ’s equatorial sphere outside S
lies entirely inside or on the diametral sphere of s (as the figure demonstrates). Because p is inside or on the
equatorial sphere of f , p also lies inside or on the diametral sphere of s, contradicting the assumption that p
encroaches upon no subsegment of F.

It follows that projF(p) must be contained in some subfacet g of F. (The containment is not necessarily
strict; projF(p) may fall on an edge interior to F, and be contained in two subfacets.) To complete the proof
of the lemma, I shall show that p encroaches upon g. If f = g the result follows immediately, so assume that
f ! g.

Again, let c be the centroid of f . The line segment connecting c to projF(p) must intersect some edge
e of the subfacet g, as illustrated in Figure 7.10(b). Let E be the plane that contains e and is orthogonal to
F. Say that a point is on the g-side if it is on the same side of E as g. Because the triangulation of F is
Delaunay, the portion of f ’s equatorial sphere on the g-side lies entirely inside or on the equatorial sphere
of g. The point p lies on the g-side or in E (because projF(p) lies in g), and p lies inside or on the equatorial
sphere of f , so it must also lie inside or on the equatorial sphere of g, and hence encroaches upon g. "

One way to interpret the Projection Lemma is to imagine that the facet F is orthogonally extended to
infinity, so that each subfacet of F defines an infinitely long triangular prism (Figure 7.11). Each subfacet’s
equatorial sphere dominates its prism, in the sense that the sphere contains any point in the prism that lies
within the equatorial sphere of any other subfacet of F. If a vertex p encroaches upon any subfacet of F,
then p encroaches upon the subfacet in whose prism p is contained. If p encroaches upon some subfacet of
F but is contained in none of the prisms, then p also encroaches upon some boundary subsegment of F.
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Figure 7.12: Two incident facets separated by a dihedral angle of nearly 180◦. What is the local feature size at
p?

In the latter case, because encroached subsegments have priority, subsegments encroached upon by p
are split until none remains. The Projection Lemma guarantees that any subfacets of F that were encroached
upon by p are eliminated in the process.

On the other hand, if p lies in the prism of a subfacet g, and no subsegment is encroached, then splitting
g is a good choice. As a result, several new subfacets will appear, at least one of which contains projF(p); if
this subfacet is encroached, then it is split as well, and so forth until the subfacet containing projF(p) is not
encroached. The Projection Lemma guarantees that any other subfacets of F that were encroached upon by
p are eliminated in the process.

7.2.2 Local Feature Sizes of Piecewise Linear Complexes

Because the shape of a facet is versatile, the definition of local feature size does not generalize straightfor-
wardly. Figure 7.12 demonstrates the difficulty. Two facets F and G are incident at a segment S , separated
by a dihedral angle of almost 180◦. The facets are not convex, and they may pass arbitrarily close to each
other in a region far from S . What is the local feature size at the point p? Because F and G are incident,
a ball (centered at p) large enough to intersect two nonincident features must have diameter as large as the
width of the prongs. However, the size of tetrahedra near p is determined by the distance separating F and
G, which could be arbitrarily small. The straightforward generalization of local feature size does not account
for this peccadillo of nonconvex facets.

To develop a more appropriate metric, I define a facet region to be any region of a facet visible from a
single point on its boundary. Visibility is defined solely within the facet in question; the vertices p and q are
visible to each other if the line segment pq lies entirely in the facet. Two facet regions on two different facets
are said to be incident if they are defined by the same boundary point. Figure 7.13 illustrates two incident
facet regions, and the point that defines them. Two points, one lying in F and one lying in G, are said to lie
in incident facet regions if there is any point on the shared boundary of F and G that is visible from both
points. They are said to be nonincident feature points (formally defined below) if no such point exists.

Similarly, if a segment S is incident to a facet F at a single vertex q, then S is said to be incident to the
facet region of F visible from q. If a vertex v is incident to a facet F, then v is said to be incident to the facet
region of F visible from v.

Two distinct points x and y are nonincident feature points if x lies on a feature (vertex, segment, or facet)
fx of X, y lies on a feature fy of X, and there is no point q ∈ fx ∩ fy such that the segment xq is entirely
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Figure 7.13: Shaded areas are two incident facet regions. Both regions are visible from the indicated point.
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Figure 7.14: Two incident facets separated by a dihedral angle of nearly 180◦. The definition of local feature size
should not approach zero near v, but it is nonetheless difficult to mesh the region between F and G near v.

contained in fx and the segment yq is entirely contained in fy. (Note that q may be x or y.) If such a point
q does exist, then x and y lie in incident vertices, segments, or facet regions of X. However, each point
may lie in several features simultaneously; so even if x and y lie in incident facet regions, they may still be
nonincident feature points (if they lie in nonincident segments, for instance).

Given a piecewise linear complex X, I define the local feature size lfs(p) at a point p to be the radius of
the smallest ball centered at p that intersects a pair of nonincident feature points.

Unfortunately, careful specification of which portions of facets are incident doesn’t solve all the prob-
lems attributable to nonconvex facets. Figure 7.14 demonstrates another difficulty. Again, two facets F and
G are incident at a segment S , separated by a dihedral angle slightly less than 180◦. One endpoint v of S is a
reflex vertex of F. The incident facet regions defined by the vertex v have the same problem we encountered
in Figure 7.12: the local feature size at point p may be much larger than the distance between facets F and
G at point p.

In this case, however, the problem is unavoidable. Suppose one chooses a definition of local feature size
that reflects the distance between F and G at p. As p moves toward v, lfs(p) approaches zero, suggesting
that infinitesimally small tetrahedra are needed to mesh the region near v. Intuitively and practically, a useful
definition of local feature size must have a positive lower bound. Therefore, lfs(p) cannot be proportional to
the distance between F and G at p.
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The mismatch between the definition of local feature size proposed here and the small distance between
F and G at p reflects a fundamental difficulty in meshing the facets of Figure 7.14—a difficulty that is
not present in Figure 7.12. In Figure 7.14, it is not possible to mesh the region between F and G at v
without resorting to poorly shaped tetrahedra. The facets of Figure 7.12 can be meshed entirely with well-
shaped tetrahedra. The three-dimensional Delaunay refinement algorithm discussed here outlaws inputs like
Figure 7.14, at least for the purposes of analysis.

Lemma 37, which states that lfs(v) ≤ lfs(u) + |uv| for any two points u and v, applies to this definition of
local feature size just as it applies in two dimensions. The only prerequisite for the correctness of Lemma 37,
besides the triangle inequality, is that there be a consistent definition of which pairs of points are nonincident
feature points.

7.2.3 Proof of Termination

The proof of termination for three-dimensional Delaunay refinement is similar to that of Ruppert’s two-
dimensional algorithm. Assume that in the input PLC, any two incident segments are separated by an angle
of 60◦ or greater. If a segment meets a facet at one vertex v, and the orthogonal projection of the segment
onto the facet intersects the interior of the facet region defined by v, then the angle separating the segment
from the facet must be no less than arccos 1

2
√

2
" 69.3◦. If the projection of the segment does not intersect

the interior of the facet, the Projection Lemma implies that no vertex on the segment can encroach upon any
subfacet of the facet without also encroaching upon a boundary segment of the facet, so the 69.3◦ separation
angle is unnecessary. However, there still must be a 60◦ separation between the segment and the segments
incident on v that bound the facet.

The condition for two incident facets is more complicated. If both facets are convex and meet at a
segment, then it is sufficient for the facets to be separated by a dihedral angle of 90◦ or greater. In general,
the two facets must satisfy the following projection condition.

For any point p where two facets F and G meet, let visp(F) be the facet region of F visible from p,
and define visp(G) likewise. By definition, visp(F) and visp(G) are incident facet regions. No point of the
orthogonal projection of visp(F) onto G may intersect the interior of visp(G). (Here, “interior” is defined
to exclude all boundaries, including isolated slits and input vertices in the interior of the facet.) Formally,
for any point p on F ∩ G, the projection condition requires that projG(visp(F)) ∩ interior(visp(G)) = ∅, or
equivalently, that projF(visp(G)) ∩ interior(visp(F)) = ∅.

The payoff of this restriction is that, by Lemma 46, no vertex in visp(F) may encroach upon a subfacet
contained entirely in visp(G) without also encroaching upon a subsegment of G or a subfacet of G not
entirely in visp(G). The converse is also true. The purpose of this restriction is so that no vertex can split
a subfacet in a facet region incident to a facet region containing that vertex. Otherwise, subfacets might be
split to arbitrarily small sizes through mutual encroachment in regions arbitrarily close to p.

The projection condition just defined is always satisfied by two facets separated by a dihedral angle of
exactly 90◦. It is also satisfied by facets separated by a dihedral angle greater than 90◦ if the facets meet each
other only at segments whose endpoints are not reflex vertices of either facet. (Recall Figure 7.14, which
depicts two facets that are separated by a dihedral angle greater than 90◦ but fail the projection condition
because v is a reflex vertex of F.)

The following lemma extends Lemma 38 to three dimensions. It is true if the algorithm never splits any
encroached subfacet f that does not contain the projection proj f (p) of the encroaching vertex p. (Even more



A Three-Dimensional Delaunay Refinement Algorithm 117

liberally, an implementation can easily measure the insertion radii of the parent p and its potential progeny,
and may split f if the latter is no less than 1√

2
times the former.)

The insertion radius is defined as before: rv is the length of the shortest edge incident to v immediately
after v is inserted. The parent of a vertex is defined as before, with the following amendments. If v is the
circumcenter of a skinny tetrahedron, its parent p(v) is the most recently inserted endpoint of the shortest
edge of that tetrahedron. If v is the circumcenter of an encroached subfacet, its parent is the encroaching
vertex closest to v (whether that vertex is inserted or rejected).

Lemma 47. Let v be a vertex, and let p = p(v) be its parent, if one exists. Then either rv ≥ lfs(v), or
rv ≥ Crp, where

• C = B if v is the circumcenter of a skinny tetrahedron;

• C = 1√
2

if v is the midpoint of an encroached subsegment or the circumcenter of an encroached
subfacet;

• C = 1
2 cosα if v and p lie on incident segments separated by an angle of α, or if v lies in the interior of

a facet incident to a segment containing p at an angle α, where 45◦ ≤ α < 90◦.

Proof: If v is an input vertex, the circumcenter of a tetrahedron (Figure 7.15(a)), or the midpoint of an
encroached subsegment, then it may be treated exactly as in Lemma 38. One case from that lemma is worth
briefly revisiting to show that nothing essential has changed.

If v is inserted at the midpoint of an encroached subsegment s, and its parent p = p(v) is a circumcenter
(of a tetrahedron or subfacet) that was considered for insertion but rejected because it encroaches upon
s, then p lies inside or on the diametral sphere of s. Because the tetrahedralization/facet triangulation
is Delaunay, the circumsphere/circumcircle centered at p encloses no vertices, and in particular does not
enclose the endpoints of s. Hence, rp ≤

√
2rv; see Figure 7.15(b) for an example where the relation

is equality. Note that the change from circles (in the two-dimensional analysis) to spheres makes little
difference. Perhaps the clearest way to see this is to observe that if one takes a two-dimensional cross-
section that passes through s and p, the cross-section is indistinguishable from the two-dimensional case.
(The same argument can be made for the case where p and v lie on incident segments.)

Only the circumstance where v is the circumcenter of an encroached subfacet f remains. Let F be the
facet that contains f . There are four cases to consider.

• If the parent p is an input vertex, or if v and p are nonincident feature points, then lfs(v) ≤ rv.

• If p is a tetrahedron circumcenter that was considered for insertion but rejected because it encroaches
upon f , then p lies strictly inside the equatorial sphere of f . Because the tetrahedralization is Delau-
nay, the circumsphere centered at p contains no vertices, including the vertices of f . The subfacet f
contains proj f (p); otherwise, the algorithm would choose a different encroached subfacet to split first.
The height of p above proj f (p) is no greater than rv, and the distance between proj f (p) and the nearest
vertex of f is no greater than rv (because proj f (p) lies in f ), so rp ≤

√
2rv. See Figure 7.15(c) for an

example where the relation is equality.

• If p was inserted on a segment that is incident to F at one vertex a, separated by an angle of α ≥ 45◦
(Figure 7.15(d)), the shared vertex a cannot lie inside the equatorial sphere of f because the facet F
is Delaunay triangulated. (This is true even if f does not appear in the tetrahedralization.) Because
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Figure 7.15: The relationship between the insertion radii of a child and its parent. (a) When a skinny tetrahedron
is split, the child’s insertion radius is at least B times larger than that of its parent. (b) When a subsegment is
encroached upon by a circumcenter, the child’s insertion radius may be a factor of

√
2 smaller than its parent’s.

(c) When a subfacet is encroached upon by the circumcenter of a skinny tetrahedron, and the subfacet contains
the orthogonal projection of the encroaching circumcenter, the child’s insertion radius may be a factor of

√
2

smaller than its parent’s. (d) When a subfacet is encroached upon by the midpoint of a subsegment, and the
corresponding facet and segment are incident at one vertex, the analysis differs little from the case of two incident
segments.

the segment and facet are separated by an angle of α, the angle ∠pav is at least α. Because f is
encroached upon by p, p lies inside its equatorial sphere. (If f is not present in the tetrahedralization,
p might lie on its equatorial sphere in a degenerate case.) Analogously to the case of two incident
segments (see Lemma 38), if α ≥ 45◦, then rv

rp
is minimized when the radius of the equatorial sphere

is rv = |vp|, and p lies on the sphere. (If the equatorial sphere were any smaller, it could not contain
p.) Therefore, rv ≥

rp
2 cosα . "

Lemma 47 provides the information one needs to ensure that Delaunay refinement will terminate. As
with the two dimensional algorithms, the key is to prevent any vertex from begetting a sequence of descen-
dants with ever-smaller insertion radii.
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Figure 7.16: Flow diagram illustrating the worst-case relation between a vertex’s insertion radius and the insertion
radii of the children it begets. If no cycle has a product smaller than one, the three dimensional Delaunay
refinement algorithm will terminate.

Figure 7.16 depicts a flow graph corresponding to Lemma 47. Mesh vertices are divided into four
classes: input vertices (which cannot contribute to cycles), segment vertices (inserted into segments), facet
vertices (inserted into facet interiors), and free vertices (inserted at circumcenters of tetrahedra). As we have
seen, free vertices can father facet vertices whose insertion radii are smaller by a factor of

√
2, and these facet

vertices in turn can father segment vertices whose insertion radii are smaller by another factor of
√

2. Hence,
to avoid spiralling into the abyss, it is important that segment vertices can only father free vertices whose
insertion radii are at least twice as large. This constraint fixes the best guaranteed circumradius-to-shortest
edge ratio at B = 2.

The need to prevent diminishing cycles also engenders the requirement that incident segments be sepa-
rated by angles of 60◦ or more, just as it did in the two-dimensional case. A segment incident to a facet must
be separated by an angle of at least arccos 1

2
√

2
" 69.3◦ so that if a vertex on the segment encroaches upon

a subfacet of the facet, the child that results will have an insertion radius at least
√

2 larger than that of its
parent. (Recall from Lemma 47 that rv ≥

rp
2 cosα .)

Theorem 48. Let lfsmin be the shortest distance between two nonincident feature points of the input PLC.
Suppose that any two incident segments are separated by an angle of at least 60◦, any two incident facet
regions satisfy the projection condition, and any segment incident to a facet region at one vertex is separated
from it by an angle of at least arccos 1

2
√

2
or satisfies the projection condition.

Suppose a tetrahedron is considered to be skinny if its circumradius-to-shortest edge ratio is larger than
B, where B ≥ 2. The three-dimensional Delaunay refinement algorithm described above will terminate, with
no tetrahedralization edge shorter than lfsmin.
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Proof: Suppose for the sake of contradiction that the algorithm introduces one or more edges shorter than
lfsmin into the mesh. Let e be the first such edge introduced. Clearly, the endpoints of e cannot both be input
vertices, nor can they lie on nonincident feature points. Let v be the most recently inserted endpoint of e.

By assumption, no edge shorter than lfsmin existed before v was inserted. Hence, for any ancestor a of v
that is a mesh vertex, ra ≥ lfsmin. Let p = p(v) be the parent of v, let g = p(p) be the grandparent of v (if one
exists), and let h = p(g) be the great-grandparent of v (if one exists). Because of the projection condition, v
and p cannot lie in incident facet regions. Consider the following cases.

• If v is the circumcenter of a skinny tetrahedron, then by Lemma 47, rv ≥ Brp ≥ 2rp.

• If v is the midpoint of an encroached subsegment or the circumcenter of an encroached subfacet, and
p is the circumcenter of a skinny tetrahedron, then by Lemma 47, rv ≥ 1√

2
rp ≥ B√

2
rg ≥

√
2rg.

• If v is the midpoint of an encroached subsegment, p is the circumcenter of an encroached subfacet,
and g is the circumcenter of a skinny tetrahedron, then by Lemma 47, rv ≥ 1√

2
rp ≥ 1

2 rg ≥ B
2 rh ≥ rh.

• If v and p lie on incident segments, then by Lemma 47, rv ≥
rp

2 cosα . Because α ≥ 60◦, rv ≥ rp.

• If v is the circumcenter of an encroached subfacet and p lies on a segment incident (at a single vertex)
to the facet containing v, then by Lemma 47, rv ≥

rp
2 cosα . Because α ≥ arccos 1

2
√

2
, rv ≥

√
2rp.

• If v is the midpoint of an encroached subsegment, p is the (rejected) circumcenter of an encroached
subfacet, and g lies on a segment incident (at a single vertex) to the facet containing p, then by
Lemma 47, rv ≥ 1√

2
rp ≥ 1

2
√

2 cosα
rg. Because α ≥ arccos 1

2
√

2
, rv ≥ rg.

• If v is the midpoint of an encroached subsegment, and p has been inserted on a nonincident segment
or facet region, then by the definition of parent, pv is the shortest edge introduced by the insertion of
v. Because p and v lie on nonincident entities, p and v are separated by a distance of at least lfsmin,
contradicting the assumption that e has length less than lfsmin.

In the first six cases, rp ≥ ra for some mesh vertex a that is an ancestor of p. It follows that rp ≥ lfsmin,
contradicting the assumption that e has length less than lfsmin. Because no edge shorter than lfsmin is ever
introduced, the algorithm must terminate. "

7.2.4 Proof of Good Grading

As with the two-dimensional algorithm, a stronger termination proof is possible, showing that each edge
of the output mesh has length proportional to the local feature sizes of its endpoints, and thus guaranteeing
nicely graded meshes. The proof makes use of Lemma 40, which generalizes unchanged to three or more
dimensions. Recall that the lemma states that if rv ≥ Crp for some vertex v with parent p, then their
lfs-weighted vertex densities are related by the formula Dv ≤ 1 + Dp

C , where Dv =
lfs(v)

rv
and Dp =

lfs(p)
rp

.

Lemma 49. Suppose the quality bound B is strictly larger than 2, and all angles between segments and
facets satisfy the conditions listed in Theorem 48, with all inequalities replaced by strict inequalities.

Then there exist fixed constants DT ≥ 1, DF ≥ 1, and DS ≥ 1 such that, for any vertex v inserted
(or rejected) at the circumcenter of a skinny tetrahedron, Dv ≤ DT ; for any vertex v inserted (or rejected)
at the circumcenter of an encroached subfacet, Dv ≤ DF; and for any vertex v inserted at the midpoint
of an encroached subsegment, Dv ≤ DS . Hence, the insertion radius of every vertex has a lower bound
proportional to its local feature size.
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Proof: Consider any non-input vertex v with parent p = p(v). If p is an input vertex, then Dp =
lfs(p)

rp
≤ 1

by Lemma 47. Otherwise, assume for the sake of induction that the lemma is true for p. In either case,
Dp ≤ max{DT ,DF ,DS }.

First, suppose v is inserted or considered for insertion at the circumcenter of a skinny tetrahedron. By
Lemma 47, rv ≥ Brp. Therefore, by Lemma 40, Dv ≤ 1 + max{DT ,DF ,DS }

B . It follows that one can prove that
Dv ≤ DT if DT is chosen sufficiently large that

1 +
max{DT ,DF ,DS }

B
≤ DT . (7.1)

Second, suppose v is inserted or considered for insertion at the circumcenter of a subfacet f . If its parent
p is an input vertex or if v and p are nonincident feature points, then lfs(v) ≤ rv, and the theorem holds. If p
is the circumcenter of a skinny tetrahedron (rejected because it encroaches upon f ), rv ≥

rp√
2

by Lemma 47,
so by Lemma 40, Dv ≤ 1 +

√
2DT .

Alternatively, if p lies on a segment incident to the facet containing f , then rv ≥
rp

2 cosα by Lemma 47,
and thus by Lemma 40, Dv ≤ 1 + 2DS cosα. It follows that one can prove that Dv ≤ DF if DF is chosen
sufficiently large that

1 +
√

2DT ≤ DF , and (7.2)
1 + 2DS cosα ≤ DF . (7.3)

Third, suppose v is inserted at the midpoint of a subsegment s. If its parent p is an input vertex or if v
and p are nonincident feature points, then lfs(v) ≤ rv, and the theorem holds. If p is the circumcenter of a
skinny tetrahedron or encroached subfacet (rejected because it encroaches upon s), rv ≥

rp√
2

by Lemma 47,
so by Lemma 40, Dv ≤ 1 +

√
2 max {DT ,DF}.

Alternatively, if p and v lie on incident segments, then rv ≥
rp

2 cosα by Lemma 47, and thus by Lemma 40,
Dv ≤ 1 + 2DS cosα. It follows that one can prove that Dv ≤ DS if DS is chosen sufficiently large that

1 +
√

2 max{DT ,DF} ≤ DS and (7.4)
1 + 2DS cosα ≤ DS . (7.5)

If the quality bound B is strictly larger than 2, Inequalities (7.1), (7.2), and (7.4) are simultaneously
satisfied by choosing

DT =
B + 1 +

√
2

B − 2
, DF =

(1 +
√

2)B +
√

2
B − 2

, DS =
(3 +

√
2)B

B − 2
.

If the smallest angle αFS between any facet and any segment is strictly greater than arccos 1
2
√

2
" 69.3◦,

Inequalities (7.3) and (7.4) may be satisfied by choosing

DF =
1 + 2 cosαFS

1 − 2
√

2 cosαFS
, DS =

1 +
√

2
1 − 2

√
2 cosαFS

,

if these values exceed those specified above. In this case, adjust DT upward if necessary to satisfy Inequal-
ity (7.1).
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If the smallest angle αS S between two segments is strictly greater than 60◦, Inequality (7.5) may be
satisfied by choosing

DS =
1

1 − 2 cosαS S
,

if this value exceeds those specified above. In this case, adjust DT and DF upward if necessary to satisfy
Inequalities (7.1) and (7.2). "

Theorem 50. For any vertex v of the output mesh, the distance to its nearest neighbor is at least lfs(v)
DS+1 .

Proof: Inequality (7.4) indicates that DS is larger than DT and DF . The remainder of the proof is identical
to that of Theorem 42. "

To provide an example, suppose B = 2.5 and the input PLC has no acute angles. Then DT " 9.8,
DF " 14.9, and DS " 22.1. Hence, the spacing of vertices is at worst about 23 times smaller than the local
feature size. Note that as B approaches 2, αS S approaches 60◦, or αFS approaches arccos 1

2
√

2
, the values of

DT , DF , and DS approach infinity.

As Figure 7.17 shows, the algorithm performs much better in practice. The upper mesh is the initial
tetrahedralization after all segments and facets are inserted and unwanted tetrahedra have been removed
from the holes. (Some subsegments remain encroached because during the segment and facet recovery
stages, my implementation only splits an encroached subsegment if it is missing or it is encroached within
the facet currently being recovered.) In this example, as soon as all encroached subsegments and subfacets
have been eliminated (middle left), the largest circumradius-to-shortest edge ratio is already less than 2.1.
The shortest edge length is 1, and lfsmin =

√
5, so the spectre of edge lengths 23 times smaller than the local

feature size has not materialized. As the quality bound B decreases, the number of elements in the final
mesh increases gracefully until B drops below 1.05. With B = 1.04, the algorithm fails to terminate.

Figure 7.18 offers a demonstration of the grading of a tetrahedralization generated by Delaunay refine-
ment. A cube has been truncated at one corner, cutting off a portion whose width is one-millionth that of the
cube. Although this mesh satisfies a bound on circumradius-to-shortest edge ratio of B = 1.2, reasonably
good grading is apparent. For this bound there is no theoretical guarantee of good grading, but the worst
edge is 73 times shorter than the local feature size at one of its endpoints. If a bound of B = 2.5 is applied,
the worst edge is 9 (rather than 23) times smaller than the local feature size at one of its endpoints.

Unfortunately, the proof of good grading does not yield a size-optimality proof as it does in the two-
dimensional case. Gary Miller and Dafna Talmor (private communication) have pointed out the coun-
terexample depicted in Figure 7.19. Inside this PLC, two segments pass very close to each other without
intersecting. The PLC might reasonably be tetrahedralized with a few dozen tetrahedra having bounded
circumradius-to-shortest edge ratios, if these tetrahedra include a sliver tetrahedron whose four vertices are
the endpoints of the two interior segments. However, the best Delaunay refinement can promise is to fill
the region with tetrahedra whose edge lengths are proportional to the distance between the two segments.
Because this distance may be arbitrarily small, the algorithm is not size-optimal. If a Delaunay refine-
ment algorithm were developed that offered guaranteed bounds for the dihedral angles, and not merely the
circumradius-to-shortest edge ratios, then size-optimality might be proven using ideas like those with which
Mitchell and Vavasis [84, 85] demonstrate the size-optimality of their octree-based algorithms.
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Initial tetrahedralization after segment and facet
recovery. 71 vertices, 146 tetrahedra.

B = 2.095, θmin = 1.96◦, θmax = 176.02◦,
hmin = 1, 143 vertices, 346 tetrahedra.

B = 1.2, θmin = 1.20◦, θmax = 178.01◦,
hmin = 0.743, 334 vertices, 1009 tetrahedra.

B = 1.07, θmin = 1.90◦, θmax = 177.11◦,
hmin = 0.369, 1397 vertices, 5596 tetrahedra.

B = 1.041, θmin = 0.93◦, θmax = 178.40◦,
hmin = 0.192, 3144 vertices, 13969 tetrahedra.

Figure 7.17: Several meshes of a 10 × 10 × 10 PLC generated with different bounds (B) on circumradius-to-
shortest edge ratio. Below each mesh is listed the smallest dihedral angle θmin, the largest dihedral angle θmax,
and the shortest edge length hmin. The algorithm does not terminate on this PLC for the bound B = 1.04.
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Figure 7.18: At left, a mesh of a truncated cube. At right, a cross-section through a diagonal of the top face.

Figure 7.19: A counterexample demonstrating that the three-dimensional Delaunay refinement algorithm is not
size-optimal.

7.3 Sliver Removal by Delaunay Refinement

Although I have proven no theoretical guarantees about Delaunay refinement’s ability to remove sliver tetra-
hedra, it is nonetheless natural to wonder whether Delaunay refinement might be effective in practice. If one
inserts a vertex at the circumcenter of any tetrahedron with a small dihedral angle, will the algorithm fail to
terminate?

As Figure 7.20 demonstrates, Delaunay refinement can succeed for useful dihedral angle bounds. Each
of the meshes illustrated was generated by applying a lower bound θmin on dihedral angles, rather than a
circumradius-to-shortest edge ratio bound. However, the implementation prioritizes poor tetrahedra accord-
ing to their ratios, and thus slivers are split last. I suspect that the program generates meshes with fewer
tetrahedra this way, and that the likelihood of termination is greater. Intuitively, one expects that a vertex
inserted at the circumcenter of the tetrahedron with the largest ratio is more likely to eliminate more bad
tetrahedra.

Both meshes illustrated have dihedral angles bounded between 21◦ and 149◦. The mesh on the right
was generated with bounds on both tetrahedron volume and dihedral angle, so that enough tetrahedra were
generated to ensure that the mesh on the left wasn’t merely a fluke. (The best attainable lower bound drops
by 2.2◦ as a result.) Experiments with very large meshes suggest that a minimum angle of 19◦ can be
obtained reliably.
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B = 1.88, θmin = 23.5◦, θmax = 144.8◦,
hmin = 0.765, 307 vertices, 891 tetrahedra.

B = 2.02, θmin = 21.3◦, θmax = 148.8◦,
hmin = 0.185, 1761 vertices, 7383 tetrahedra.

Figure 7.20: Meshes created by Delaunay refinement with bounds on the smallest dihedral angle θmin. Also
listed for each mesh is its largest dihedral angle θmax and its shortest edge length hmin. Compare with Figure 7.17
on Page 123.

Chew [38] offers hints as to why slivers might be eliminated so readily. A sliver can always be eliminated
by splitting it, but how can one avoid creating new slivers in the process? Chew observes that a newly
inserted vertex can only take part in a sliver if it is positioned badly relative to a triangular face already
in the mesh. Figure 7.21 illustrates the set of bad positions. At left, a side view of the plane containing a
face of the tetrahedralization is drawn. A tetrahedron formed by the face and a new vertex can have a small
dihedral angle only if the new vertex lies within the slab depicted; this slab is the set of all points within
a certain distance from the plane. Late in the Delaunay refinement process, such a tetrahedron can only
arise if its circumradius-to-shortest edge ratio is small, which implies that it must lie in the region colored
black in Figure 7.21 (left). This disallowed region, depicted at right, is shaped like a ring with an hourglass
cross-section.

Chew shows that if the slab associated with each face is sufficiently thin, a randomized Delaunay re-
finement algorithm can avoid ever placing a vertex in the disallowed region of any face. The key idea is
that each new vertex is not inserted precisely at a circumcenter; rather, a candidate vertex is generated at a
randomly chosen location in the inner half of the circumsphere’s radius. If the candidate vertex lies in some
face’s disallowed region, the candidate is rejected and a new one generated in its stead.

The algorithm will eventually generate a successful candidate, because the number of nearby triangular
faces is bounded, and the volume of each disallowed region is small. If the sum of the volumes of the
disallowed regions is less than the volume of the region in which candidate vertices are generated, a good
candidate will eventually be found. To ensure that this condition is met, the slabs are made very thin.

Chew derives an explicit bound on the worst-case tetrahedron aspect ratio, which is too small to serve
as a practical guarantee. However, there is undoubtedly a great deal of slack in the derivation. Even if the
slabs are made thick enough to offer a useful bound on the minimum dihedral angle, the small volume of the
disallowed region suggests that the practical prospects are good. My non-randomized Delaunay refinement
implementation seems to verify this intuition. I have not yet tested whether randomization is helpful in
practice. Although randomization may reduce the frequency with which slivers are generated, the act of
inserting vertices off-center in circumspheres weakens the bound on circumradius-to-shortest edge ratio.

Unfortunately, my success in removing slivers is probably due in part to the severe restrictions on input
angles I have imposed. Practitioners report that they have the most difficulty removing slivers at the bound-
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Plane of

Circumcircle of
Triangular Face

Disallowed Region

Slab

Triangular
Face

Figure 7.21: Left: A side view of the plane containing a triangular face. In conjunction with this face, a newly
inserted vertex can form a sliver with both a bad dihedral angle and a good circumradius-to-shortest edge ratio
only if it is inserted in the disallowed region (black). Right: An oblique view of the disallowed region of a triangular
face.

ary of a mesh, especially near small angles. Mesh improvement techniques such as optimization-based
smoothing and topological transformations can remove some of the imperfections that cannot be removed
directly by Delaunay refinement.
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