
TRIANGULATIONS IN R2

HANG SI

Contents

Introduction 1
1. Definitions and Combinatorial Properties 2
1.1. Euclidean spaces 2
1.2. Simplicial complexes 3
1.3. Triangulations of point sets 5
1.4. Planar graphs and Euler’s formula 6
2. Incremental Construction 8
2.1. Convex hull construction 9
2.2. A line-sweep triangulation algorithm 11
3. Delaunay Triangulations 11
3.1. Voronoi diagrams 12
3.2. The empty circumcircle property 14
3.3. The lifting transformation 16
3.4. Lawson’s edge flip algorithm 18
3.5. Randomized incremental flip algorithm 22
3.6. Point location 25
References 26

Introduction

Triangulations appear in many different parts of mathematics and computer science
since they are the natural way to decompose a region of space into smaller, easy-to-handle
pieces. For example, all meshes in this lecture are triangulations of geometric objects
which are topological metrical spaces and not necessarily in the Euclidean metric.

This chapter is devoted to the simplest object – triangulations in the plane. We first
give the mathematical definitions of triangulations, and then learn how to efficiently
construct them.

Typically, given a set of points in space, we would like to connect them in a nice way.
The meaning of ?nice? depends on the applications in which the triangulations to be
used. Geometrically, one would like to connect the nearest neighbours and to avoid small
angles. This leads to the well-known Delaunay triangulations, which have many of these
nice properties. We will study both theoretical and efficient algorithms to construct
Delaunay triangulations in the plane.

1

2 HANG SI

The geometric structure of Delaunay triangulation is better understood by its relation
to the convex hull of point sets in one dimensional higher. This leads to a general class
of triangulations called weighted Delaunay triangulations in which the Delaunay trian-
gulation is just a special object of it. Such triangulations have many optimal geometric
and combinatorial properties. We will prove a fundamental properties about weighted
Delaunay triangulation, proven by Edelsbrunner, the acyclic theorem. We will generalise
the well-know randomized incremental flip algorithm – to construct weighted Delaunay
triangulations and show it is correct for any dimensions.

1. Definitions and Combinatorial Properties

1.1. Euclidean spaces. Euclidean space is actually a flat and non-curvy space. In
Euclidean geometry, the surface is always assumed to be flat. If it become curved or
spherical, then it comes under non-Euclidean geometry. An example of two-dimensional
Euclidean space is a piece of paper.

One way to think of a k-dimensional Euclidean space Ek is as a set of k-tuples
(x1, · · · , xk) of real numbers xi, 1 < i < k, called points satisfying certain relation-
ships, expressible in terms of distance and angle. This distance function is called the
Euclidean metric. It makes the Euclidean space a metric space. It is sufficient to define
the Euclidean geometry.

We will use the standard way to define the Euclidean space as a k-dimensional real
vector space Rk equipped with an inner product ‖ · ‖. Note that a Euclidean space is
not technically a vector space but rather an affine space, on which a vector space acts
by translations. There is no canonical choice of the origin in the space.

The 2-dimensional Euclidean space is called the Euclidean plane. The position of a
point p in a Euclidean plane (E2) is a two-dimensional real vector. The Euclidean norm
(or magnitude) of a vector p = (x, y) is defined as

‖p‖ =
√
x2 + y2.

The distance between two points p1 = (x1, y1) and p2 = (x2, y2) in the Euclidean plane
is the Eucdliean length of the vector p1 − p2,

d(p1, p2) =
√

(x2 − x1)2 + (y2 − y1)2.
The angle θ between two edges ab and ac in the Euclidean plane can be obtained

through the Law of Cosine

θ = arccos
d(a, b)2 + d(a, c)2 − d(b, c)2

2 ∗ d(a, b) ∗ d(a, c)
.

We use the Euclidean distance function ‖ · ‖ to define an open d-ball,

Bd(p, r) = {x ∈ Rd | ‖x− p‖ < r},
as the set of all points closer than a given distance r from a given point p. The natural
topology of Rd is a system of open sets, where each open set is a union of open balls. An
open set in Rd is any union of open balls in Rd. Obviously, any finite intersection of a
set of open balls is also an open ball (which may be an empty ball Bd(p, 0)).

TRIANGULATIONS IN R2 3

1.2. Simplicial complexes. We use simpical complex as the fundamental tool to model
geometric shapes and spaces. Because of their combinatorial nature, simplical complexes
are perfect data structure for geometric modelling algorithms.

A point set in Rd is convex if with any two points vi,vj it also contains the straight
line segment [vi,vj] = {(1 − λ)vi + λvj : 0 ≤ λ ≤ 1}. The convex hull of a not
necessarily convex set V , denoted as conv(V), is the smallest convex set containing V .

conv(V) =

{
k∑

i=0

λivi

∣∣∣ vi ∈ V, λi ∈ R, λi ≥ 0,

k∑

i=0

λi = 1

}
.

Let V be a finite set of k+ 1 points. The affine hull of V , aff(V), is the smallest affine
subspace that contains V , i.e.,

aff(V) =

{
k∑

i=0

λivi

∣∣∣ vi ∈ V, λi ∈ R,
k∑

i=0

λi = 1

}
.

The dimension of aff(V) is the dimension of the corresponding linear subspace. A set of
k + 1 points v0, ...,vk ∈ Rd is affinely independent if its affine hull has dimension k.

A geometric k-simplex σ in Rd is the convex hull of a collection of k + 1 affinely
independent points in Rd. The dimension of σ is dim(σ) = k. For example, the (−1)-
simplex is the empty set (∅), a 0-simplex is a vertex (or point), a 1-simplex is an edge,
a 2-simplex is a triangle, and a 3-simplex is a tetrahedron, see Figure 1.

0 321
Figure 1. From left to right are a 0-simplex (a point), a 1-simplex (an
edge), a 2-simplex (a triangle), and a 3-simplex (a tetrahedron).

A face τ of σ is the convex hull of any subset of the vertices of σ. It is again a simplex.
τ = ∅ and τ = σ are the two trivial faces of σ, all others are proper faces of σ. We write
τ ≤ σ or τ < σ if τ is a face or a proper face of σ. The number of l-faces of σ is equal
to the number of ways we can choose l + 1 from k + 1 points, which is

(
k+1
l+1

)
. The total

number of faces is
k∑

l=−1

(
k + 1

l + 1

)
= 2k+1.

The union of all proper faces of a simplex σ is called the boundary bd(σ) of σ. The
interior int(σ) of σ is σ − bd(σ), see Figure 2. Note that a point (a 0-simplex) has no
proper face, i.e., the boundary of a point is ∅. Therefore the interior of a point is the
point itself.

A geometric simplicial complex K in Rd is a finite collection of simplices, such that
any two simplices are either disjoint or meet in a common face which is also in K. More

4 HANG SI

vertex (0−face)

boundary

interior

edge (1−face)

Figure 2. The boundary and interior of a 2-simplex (a triangle).

formally,

(i) any face of a simplex σ ∈ K is also in K, and
(ii) the intersection of any two simplices σ, τ ∈ K is a face of both σ and τ .

The first property implies ∅ ∈ K. The second property implies that any two different
simplices in K have disjoint interiors, i.e., int(σ)∩ int(τ) = ∅. The dimension dim(K) of
K is the largest dimension of a simplex of K. The vertex set vert(K) of K is the set of
all vertices of K. Without the second property, K is an abstract simplical complex. Fig-
ure 3 illustrates a 3-dimensional geometric simplical complex and an abstract simplical
complex, respectively.

(1) (2)

Figure 3. (1) A three-dimensional geometric simplical complex. (2) An
abstarct simplical complex. (Figures from Wikipedia)

A subcomplex is a subset of K that is a simplicial complex itself. Observe that every
subset of a simplicial complex satisfies Condition (ii). To enforce Condition (i), we
add faces and simplices to the subset. The closure of a subset L ⊂ K is the smallest
subcomplex that contains L,

Cl L = {τ ∈ K | τ ∈ L}.
A particular subcomplex is the i-skeleton K(i) of K, which consists of all simplices σ ∈ K
whose dimension is i or less. Hence K(0) = vert(K) ∪ ∅.

1.2.1. Stars and links. We use special subsets to talk about the local structure of a
simplical complex. These subsets may or may not be closed. The star of a complex τ
consists of all simplices that contain τ , and the link consists of all faces of simplices in

TRIANGULATIONS IN R2 5

the star that do not intersect τ , i.e.,

St τ = {σ ∈ K | τ ≤ σ}
Lk τ = {σ ∈ Cl Stτ | τ ∩ σ = ∅}

Figure 4 illustrates these two definitions. Note that the star of τ is not a sub complex
(check it), while the link of τ is (validate it).

Vert

0

A

A

Figure 4. Star and link of a vertex. Left: the solid edges and the shaded
triangles belong to the star of the solid vertex. Right: the solid edges
and vertices belong to the link of the hollow vertex.

1.2.2. Underlying spaces. Let K be a simplicial complex. The underlying space |K| of K
is the union of all simplices of K, i.e., |K| =

⋃
σ∈K σ. Note that the underlying space

of any (geometric) simplical complex is a geometric domain (such as a polygon in the
plane or a polyhedron in 3d). This domain consists of a point set which are from the
simplices of the given simplicial complex.

We can give each simplex its natural topology as a subspace of Rd. We can then give
|K| a natural topology defined as: a subset A of |K| is closed iff A ∩ σ is closed for any
σ ∈ K. Alternatively, if K is finite, since |K| is embedded, we can consider the subspace
topology on K induced from Rd. Note that these two topologies are the same only if K is
finite. Otherwise, the first one is finer and more general than the second one. However,
in this class, we will talk about only finite simplicial complexes. Hence from now on
we consider the underlying space |K| of any finite simplicial complex equipped with the
natural induced homology form Rd (where K embeds into)

1.3. Triangulations of point sets. There are many possible simplicial complexes that
have the same underlying space. A simplicial complex gives a combinatorial structure
on its underlying space. It is then a triangulation of that space. We will use this idea to
define triangulations of geometric objects, such as point sets and polygonal domains.

Let S be a finite point set in the plane, a triangulation of S is a 2-dimensional simplical
complex T such that

(i) the vertices of T are in S; and
(ii) the underlying space |T | is the convex hull of S.

Figure 1.3 shows some triangulations of a point set. Note a triangulation does not need
to use all vertices of the point set.

6 HANG SI

S conv(S) T1

T2 T3 T4

Figure 5. A 2d point set S, the convex hull conv(S), and different
triangulations T1, . . . , T4 of S.

1.4. Planar graphs and Euler’s formula. A triangulation in the plane is a planar
graph, but it may not be maximally connected. The face outside the convex hull of this
triangulation is a k-polygon, and k ≥ 3. Using the Euler formula, we can get upper
bounds on the number of edges and faces of a triangulation in terms of the number of
vertices of its vertex set.

A graph G = (V,E) is a set V of vertices, and a set E of edges, each a pair of vertices
of V . A graph is simple if every edge has two distinct vertices and no two edges have the
same vertices. A simple graph is connected if there is a path (a sequence of edges) that
connecting every pair of its vertices. The smallest connect graph are trees, which are
characterised by having a unique simple path between every pair of vertices. Removing
any one edge disconnects the graph. A spanning tree of G = (V,E) is a tree (V, T) with
T ⊂ E. It has the same vertex set as the graph and uses a minimal set of edges necessary
to be connected. A graph is connected if and only if it has a spanning tree.

There are many drawings of a graph, some with and some without crossings. As
illustrated in 6. A graph is planar if it has an embedding in the plane without crossing
edges. Only graphs with relatively few edges can be drawn without crossings in the
plane.

Let G = (V,E) be a planar graph. It decomposes the plane into a set of regions, which
are called faces of G. Let v, e, and f denote the number of vertices, edges, and faces of
G. Euler formula is a linear relation between these numbers.

TRIANGULATIONS IN R2 7

Figure 6. From left to right: a drawing that is not an embedding, and
embedding with one curved edge, and a straight-line embedding.

Theorem 1.1 (Euler Formula). Every connected planar graph G = (V,E) satisfies

v − e+ f = 2.

This formula is well-known as the Euler formula for planar graphs and convex 3d
polytopes. There are plenty of proofs, see a collection of different proofs of this formula
by D. Eppstein’s “Geometry Junkyard” 1. Here we show a proof based on the dual graph
and spanning trees.

Proof. Let G = (V,E) be a connected planar graph. Define the dual graph G∗ = (V ∗, E∗)
of G, such that every vertex in V ∗ corresponds to a face of G, and every edge in E∗

corresponds to two adjacent faces of G. Let F be the set of faces of G, V ∗ and F are
bijective, and E∗ and E are bijective, see Figure 7.

Now each plane angle is formed by two edges, and each edge appears in four plane angles.
It follows that ρ = 2k, so (3) may be interpreted as a variant of (1) and can indeed be
seen as a precursor of Euler’s formula.

We come to Euler. His formula makes its first appearance in a letter to Goldbach, 14
November 1750 [8]. Maybe in the same year Euler submitted a corresponding note to
the Petersburg Academy. It appeared in the Academy’s Proceedings of 1752/53 which
were published only in 1758. Here is what Euler had to say: Consider any polyhedron,
let S be the number of its solid angles, H be the number of its “hedra” (i.e., facets),
and A be the number of its “acies” (i.e., edges). Then S + H = A + 2. Voilà! By the
way, Euler seems to be the first to speak about the edges of a polyhedron.

T

T

Fig. 3

Here is a charming proof of Euler’s formula, taken from David Eppstein’s “geometry
junkyard” [3]: Consider the 1-skeleton Γ of P (a planar graph) and in the same figure
(Fig. 3) the 1-skeleton Γ̂ of the “dual” P̂ of P . Let T be a spanning tree of Γ. T does not
contain any cycles, so it does not disconnect the plane. Since T is maximal, it follows
that there is a tree T̂ ⊂ Γ̂ such that each edge of P resp. P̂ appears either in T or
in T̂ . The vertices of T are the vertices of P . So T has f0 vertices and k := f0 − 1
edges. Similarly, the vertices of T̂ correspond to the facets of P , so T̂ has f2 vertices
and k̂ := f2 − 1 edges. Since k + k̂ = f1, formula (2) follows.

One of the pioneering figures in the higher-dimensional realm was the Swiss mathemati-
cian Ludwig Schläfli (1814–1895). He was less than well understood at his time, but
anyway, in his “Theorie der vielfachen Kontinuität” (written 1850–1852, printed only in
1901 [10]) he stated the following theorem, nowadays called the Euler-Poincaré relation:

Theorem For every d-dimensional convex polytope one has

f0 − f1 + . . . + (−1)d−1fd−1 = 1 − (−1)d. (4)

The first full proof of this theorem was given by Poincaré, as a consequence of his deve-
lopment of homology theory. The elementary “Ansatz” of Schläfli was only completed
by Bruggesser and Mani [1] in 1969. It uses the method of “shelling”, an induction
procedure adding facets to the boundary 1-by-1.

3

Figure 7. A proof of Euler formula using dual graph and spanning trees
(Figure from D. Eppstein).

Choose any spanning tree T of G. It has v vertices, and v−1 edges. The dual edges of
(G−T)∗ is also a spanning tree of G∗. The two spanning trees together have v−1+f−1
edges, i.e., v − 1 + f − 1 = e, which the above formula follows. �

1https://www.ics.uci.edu/~eppstein/junkyard/euler/

8 HANG SI

Euler formula is a topological and combinatorial property of that graph. It can be
used to show many interesting properties of planar graphs as well as three-dimensional
convex polytopes.

A triangulation is a planar graph, but it may not be maximally connected. The face
outside the convex hull of this triangulation is a k-polygon, and k ≥ 3. Using the Euler
formula, we can get upper bounds on the number of edges and faces of a triangulation
in terms of the number of vertices of its vertex set.

Let n, e, and f be the number of vertices, edges, and triangles of a triangulation T of
a point set S. In a triangulation T , every triangle have three edges, every interior edge
is shared by two faces, and every convex hull edge is shared by one face, we then have:

3f = 2e+ k,

where k is the number of edges on the convex hull of T . Since k > 0, then,

3f < 2e.

Using the Euler formula and the above inequality, we can bound the total number of
edges and faces of T , which are

e < 3n− 6,
f < 2n− 4.

The degree (or valency) of a vertex u in a planar graph G is the number of edges at
this vertex. Every edge of G has two distinct vertices (endpoints). The sum of vertex
degrees is twice the number of edges, which must less than 6n−12. It follows that every
planar graph has a vertex whose degree is less than 6.

1.4.1. Euler Characteristic. If a planar graph is not connected, i.e., it has more than
one connected component. The Euler formula does not hold anymore. In general, the
Euler characteristic of a d-dimensional simplical complex K is the alternating sum of the
number of simplices

χ = s0 − s1 + s2 − · · ·+ (−1)dsd,

where d is the dimension of K and si is the number of i-simplices in K. It is common to
omit the (−1)− simplex from the sum.

Let K be a two-dimensional simplicial complex, χ = v − e + f . We have seen that
for any simply connected planar graph, χ = 2. However, if a planar graph is not simply
connected, i.e., it has more than one connected component, then the right hand side of
the Euler formula is not necessarily 2 anymore.

2. Incremental Construction

In this section, we introduce a common and simple approach for building geometric
structures called incremental construction. In such an algorithm objects are added one
at a time and the structure is updated with each new insertion.

TRIANGULATIONS IN R2 9

2.1. Convex hull construction. We will begin with a presentation of how to incre-
mentally create the convex hull of a given point set. Then we show that triangulations
are just byproducts of the convex hull construction.

Recall that the convex hull of a set of points is the smallest convex set that contains
the points. The convex hull of a two-dimensional point set is a simple polygon. The
graph of a simple polygon is a cyclic sequence of vertices (or edges). It can be represented
by a doubly-linked data structure.

A common approach for building geometric structures is called incremental construc-
tion, that is objects (points) are added one at a time, and the structure (convex hull) is
updated with each new insertion.

The basic idea of an incremental convex hull algorithm is that points (objects) are
added one at a time, and the convex hull (geometric structure) is updated with each
new insertion. A new point is processed in three steps.

1 Locate the visible edges of the convex hull for the point. If the point lies in the
interior of the convex hull, there is no visible edge, and one can simply skip this
point, and go to process the next one.

2 If the point lies outside of the current convex hull, construct a cone from the new
point to all of its visible edges, see Figure 2.1 Left.

3 Delete the visible edges in Step 2, thus forming the convex hull with the new
point and the previously processed points, see Figure 2.1 Right.

The basic algorithm is given in 9.

visible edges

Figure 8. Incremental construction of convex hull.

Algorithm: IncrementalConvexHull(S)
Input: S = {p1,p2, . . . ,pn} is a set of n points in the plane;
Output: The convex hull of S;
1 initialize one triangle {p1,p2,p3};
2 for i = 4 to n do
3 if pi lies outside conv(p1, . . . ,pi−1); then
4 let Q be the set of all visible edges of pi;
5 create a cone formed by pi and edges in Q;
6 delete edges in Q;
7 endif
8 endfor

Figure 9. The incremental convex hull algorithm.

10 HANG SI

Remark. For the initial triangle to be valid, it is necessary to assume the general
position, i.e., p1,p2,p3 are not collinear.

2.1.1. The orient2d test. The geometric test for visible edges is a very important pred-
icates orient2d which takes three ordered points p, q, r in the plane, and test whether
they follow a counterclockwise or clockwise direction, see Figure 2.1.1. Note the orien-
tation depends on the order in which the points are given.

Figure 10. Orientations of three points in the plane (Figures by D. Mount).

Orientation is formally defined as the sign of the determinant of the points given in
homogeneous coordinates, i.e.,

orient2d(p,q, r) = sign(det(A)),

where

A =



px py 1
qx qy 1
rx ry 1




The result is positive if p,q, r follow a counterclockwise turn, it is negative they follow
a clockwise turn. It is zero if the three vertices are collinear. Note that the result of
det(A) is twice of the signed area of the triangle defined by the three points.

Remark. If two rows (or two columns) of A in above are interchanged to produce a
matrix, B, then: det(A) = −det(B). The signs of the above orient2d() test must be
also inverted.

2.1.2. Running time. The complexity of this algorithm can be estimated in terms of n,
the total number of points, and h, the number of points (edges) on the convex hull.

Since every step it needs to check whether the new point lies inside or outside the
convex hull, which is h, the running time is clearly O(nh). If h is small compared to n,
for instance, it is bounded by a constant, then this algorithm runs in linear time O(n).
If h is large, such that h = Ω(n), then the time complexity of this algorithm is O(n2).

We can clearly, improve this algorithm by presorting the given set S. A simple way is
to sort the point set along a fixed direction (for example, the x-axis), then use a (vertical)
line that sweeps over the plane from left to right. This guarantees that each newly added
point is outside the current hull. To efficiently obtain the set Q (in line 4), one could
start from the last newly created hull edge e. Then the set of all hull edges which are
visible by pi can be collected by a breadth search from e. The sort of a set of vertices
along the sweep line can be done in time O(n log n). The number of hull edges which
are visible by each pi is a constant independent of n. Thus this incremental algorithm
with a line sweep sorting constructs the convex hull in O(n log n) time.

TRIANGULATIONS IN R2 11

2.2. A line-sweep triangulation algorithm. By slightly modifying the incremental
convex hull algorithm in Figure 9 one can obtain a triangulation of S as well. Instead of
creating a cone (in line 5) and deleting the visible edges (in line 6), we create triangles by
joining each visible edge in Q and the point pi. This resulting a triangulation (instead
of the convex hull) of {p1, . . . ,pi}.

We then have a simple and efficient algorithm using line-sweeping [9] to construct
triangulations for a set of points. The basic idea is to sort the point set along a fixed
direction (for example, the x-axis), then use a (vertical) line that sweeps over the plane
from left to right. The triangulation is created online during the line sweeping. An
invariant is: at any moment in time, the partial triangulation contains all points to
the left of the line. When the line hits a new vertex (an event), the triangulation is
augmented by creating new triangles connecting to this new vertex. The algorithm is
given in Figure 11.

Algorithm: LineSweep(S, s)
Input: A set S of n points in R2, s is the normal of sweep line;
Output: A triangulation T of S;
1 sort the points in S into a sequence L := {p1, . . .pn} along s;
2 initialize T with only one triangle {p1,p2,p3};
3 for i = 4 to n do
4 let Q be the set of all visible edges of pi;
5 create new triangles to T by each edge in Q and pi;
6 endfor

Figure 11. The sweep line triangulation algorithm.

In line 1, the vertices in L are ordered in such a way, that no conflict will occur during
the algorithm. A simple order is the lexicographic (dictionary) order along the x- or
y-axis. For the initial triangle to be valid, it is necessary to assume the general position,
i.e., p1,p2,p3 are not collinear. To efficiently obtain the set Q (in line 4), one could start
from the last newly created triangle, which must contain a hull edge e. Then the set of
all visible edges of pi can be collected by a breadth search from e. Figure 12 illustrates
an example of this algorithm.

The sort of a set of vertices along the sweep line can be done in time O(n log n).
The number of visible edges of pi is a constant independent of n. The total number of
newly created triangles is less than 2n− 4. Thus this line sweep algorithm constructs a
triangulation in O(n log n) time.

3. Delaunay Triangulations

This section introduces the Delaunay triangulation of any point set in the plane. It
is introduced by the Russian mathematician Boris Nikolaevich Delone (1890–1980) in
1934 [3]. It is a triangulation with many nice properties. There are many ways to define
Delaunay triangulations. We first introduce them as duals of Voronoi diagrams, then
introduce other equivalent definitions while showing their properties. We discuss efficient
and simple algorithms to compute Delaunay triangulations.

12 HANG SI

Figure 12. The line-sweep algorithm yo construct a triangulation.

3.1. Voronoi diagrams. Voronoi diagrams are named after the Russian and Ukrainian
mathematician Georgy Feodosevich Voronoy (1868–1908) in 1907 [11]. It is also known
as Dirichlet tessellations (after German mathematician Peter Gustav Lejeune Dirichlet
(1805 – 1859)). Voronoi diagrams arise in nature in various situations. They are one of
the most fundamental data structures in computational geometry.

Figure 13. Voronoi diagrams.

Voronoi diagram divides the plane according to the nearest-neighbour rule: Each point
is associated with region of the plane closet to it.

Consider the simplest case of two points p and q in the plane. The set of points that
are at least as close to p as to q is the half-space:

Hpq = {x ∈ R2 : ‖x− p‖ ≤ ‖x− q‖},

TRIANGULATIONS IN R2 13

where ‖ · ‖ means Euclidean distance.
Let S be a set of n points (called sites) in R2. the Voronoi region of a site p ∈ S is

the set of points x ∈ R2 that are as close to p as to any other site in S, that is

Vp = {x ∈ R2 | ‖x− p‖ ≤ ‖x− q‖,∀q ∈ S},
where ‖ · ‖ means Euclidean distance.

The Voronoi region of p is the intersection of a set of half-spaces of points at least at
close to p as to q, Hpq = {x ∈ R2 : ‖x − p‖ ≤ ‖x − q‖}. It follows that it is a convex
polygonal region, possibly unbounded, with at most n− 1 edges.

Each point x ∈ R2 has at least one nearest site in S, so it belongs to at least one
Voronoi region. It follows that the Voronoi regions cover the entire plane. Two Voronoi
regions lie on opposite sides of the perpendicular bisector separating the two generating
points. The Voronoi regions together with their edges and vertices form the Voronoi
diagram of S [11], see Figure 14 Left.

p
q

x

Figure 14. From left to right, a Voronoi cell, the Voronoi diagram and
the dual Delaunay triangulation.

Voronoi diagrams have found numerous applications in Natural sciences and engineer-
ing. We just mention one case in geometry. A point location data structure can be built
on top of the Voronoi diagram in order to answer nearest neighbor queries, where one
wants to find the object that is closest to a given query point. Nearest neighbor queries
have numerous applications. For example, one might want to find the nearest hospital,
or the most similar object in a database.

A 2-dimensional Voronoi diagram is a planar graph with n regions and minimum
vertex degree 3. Each of the e edges has two vertices, and each of the v vertices belongs
to at least three edges. Hence 2e ≥ 3v. Euler formula n+ v − e = 2 implies e ≤ 3n− 6
and v ≤ 2n− 4. In average, the number of edges of each Voronoi regions is less than 6.

We get a dual diagram if we draw a straight line connecting p and q in S if their
Voronoi regions share a common line segment. In general, if no four sites of S share a
common circle, i.e., S is in general position, the dual diagram is a 2-dimensional simplicial
complex which decompose the convex hull of S. It is called the Delaunay triangulation
of S, see Figure 14 Right.

There is an ambiguity in the definition of Delaunay triangulation if four or more
Voronoi regions meet at a common point, i.e., four sites of S share a common circle.
Probabilistically, the chance of picking four points on the circle is zero because the

14 HANG SI

circle defined by first three points has zero measure in R2. A common way to say the
same thing is that four points in a common circle for a degeneracy or a special case, see
Figure 15 Left. An arbitrary small perturbation suffices to remove the degeneracy and
to reduce the special to general case, see Figure 15 Right.

Figure 15. To the left, four dotted Voronoi edges meet at a common
vertex and the dual Delaunay edges bound a quadrilateral. To the right,
in general case, only three Voronoi edges meet at a vertex and the De-
launay edges bound a triangle (Figure from [6]).

3.2. The empty circumcircle property. Alternatively, Delaunay triangulations can
be defined through the so-called empty circumcircle property. Recall that the circumcir-
cle, or circumscribing circle of a simplex σ is the circle that passes through all vertices
of σ. In plane, a triangle has a unique circumcircle, while an edge has infinitely many
circumcircles, see Figure 16 Left.

a Delaunay triangle

a Delaunay edge

circumcircle

circumcircle

circumcircle

circumcircle

circumcircles

Figure 16. Empty circumcircles and Delaunay simplices.

Let S be a set of n points (called sites) in R2. A simplex σ whose vertices are in S is
Delaunay if it has a circumcircle that encloses no site in S. We say, that σ has an empty
circumcircle, see Figure 16 Right.

Question: given a set of points, how to find all Delaunay simplics?
We describe an approach which was used by Delaunay himself. It is a process of

“growing empty balls” within a set of points.
If S is in general position, then the set of all Delaunay simplices of S form a simplical

complex whose union is the convex hull of S, it is the Delaunay triangulation of S.

TRIANGULATIONS IN R2 15

Figure 17. The empty circumcircle property of the Delaunay triangulation.

Note that if S is not in general position, then the set of all Delaunay simplices of S is
not a simplical complex. There are simplicies overlapping each other. In this case, one
could still obtain a Delaunay subduevsion by deleting all Delaunay simplifies which are
overlapping each other.

3.2.1. The in circle test. Given three non-collinear points a,b, c in R2, the geometric
predicate to test whether a point d lies inside, on, or outside the circumcircle of the
triangle abc is:

in circle(a,b, c,d) = sign(det(A)),

where

A =




ax ay a2x + a2y 1
bx by b2x + b2y 1
cx cy c2x + c2y 1
dx dy d2x + d2y 1




Note there are exactly two orientations of three points in the plane, which correspond to
the left-handed rule or the right-handed rule, respectively. It is up to the user to decide
which one is “positively” oriented (so the other one is “negatively” oriented).

16 HANG SI

Assume that the three points a,b, c are counterclockwise ordered in the plane (viewed
from a point above this plane). Then we have

in circle(a,b, c,d) > 0 −→ d lies inside ,
in circle(a,b, c,d) = 0 −→ d is co-circular,
in circle(a,b, c,d) < 0 −→ d lies outside

of the circle passing through a,b, c.

3.3. The lifting transformation. There is a fascinating relation between a Delaunay
triangulation in 2d and a convex hull in 3d. These two structures appear from quite
different concepts. In this section, we will establish their relation through a lifting and
projecting process.

Let S be a set of n points in R2. We now consider, for each point p = (px, py) ∈ S,
a point p′ = (px, py, pz) ∈ R3, where pz := p2x + p2y, i.e., p′ is a point on the paraboloid

z = x2 + y2 in R3, and p is the projection of p′ into the plane by removing its z-
coordinate. We call this map f : p ∈ R2 → p′ ∈ R3 the lifting map. The lifting map
that takes a point in the plane to a paraboloid in R3, see Figure 18 Left.

CG 2013 6.3. Termination of the Lawson Flip Algorithm: The Lifting Map

We will prove Theorem 6.10 in two steps: First we show that the program described
above always terminates and, therefore, is an algorithm, indeed (Section 6.3). Then we
show that the algorithm does what it claims to do, namely the result is a Delaunay
triangulation (Section 6.4).

6.3 Termination of the Lawson Flip Algorithm: The Lifting Map

In order to prove Theorem 6.10, we invoke the (parabolic) lifting map. This is the
following: given a point p = (x,y) 2 R2, its lifting `(p) is the point

`(p) = (x,y, x2 + y2) 2 R3.

Geometrically, ` “lifts” the point vertically up until it lies on the unit paraboloid

{(x,y, z) | z = x2 + y2} ✓ R3,

see Figure 6.8a.

(a) The lifting map. (b) Points on/inside/outside a circle are lifted to
points on/below/above a plane.

Figure 6.8: The lifting map: circles map to planes.

Recall the following important property of the lifting map that we proved in Exercise 5.17.
It is illustrated in Figure 6.8b.

Lemma 6.11 Let C ✓ R2 be a circle of positive radius. The “lifted circle” `(C) = {`(p) |

p 2 C} is contained in a unique plane hC ✓ R3. Moreover, a point p 2 R2 is strictly
inside (outside, respectively) of C if and only if the lifted point `(p) is strictly below
(above, respectively) hC.

Using the lifting map, we can now prove Theorem 6.10. Let us fix the point set P for
this and the next section. First, we need to argue that the algorithm indeed terminates
(if you think about it a little, this is not obvious). So let us interpret a flip operation in

71

cg-2013.pdfCG-Lecture-ETHZ

p

p0

z = x2 + y2

z = 0
p

p0

q0

q

r

r0

Figure 18. The lifting map: circles map to planes.

3.3.1. Planes and circles. We have the following fact which gives the relation between
circles in R2 and plane in R3, see Figure 18 Right.

Lemma 3.1. Consider 4 distinct points p, q, r, s in the plane, and let p′, q′, r′, s′ be
their respective projections on to paraboloid, z = x2 + y2. The point s lies within the
circumcircle of p, q, r if and only if s′ lies on the lower side of the plane passing through
p′, q′, r′.

Proof. Consider an arbitrary plane in R3, which we assume is tangent to the paraboloid
above the point p := (a, b) in the plane. Then the plane equation is:

nx(x− a) + ny(y − b) + nz(z − (a2 + b2)) = 0,

where (nx, ny, nz) is the normal of this plane. One can find the normal components by
the gradient of the equation z = x2 + y2. Thus nx = 2a, nx = 2b, and nz = −1. Thus,
the plane equation is

z = 2ax+ 2by − (a2 + b2).

If we shift the plane upwards by some positive amount ρ2 we get the plane

z = 2ax+ 2by − (a2 + b2) + ρ2.

TRIANGULATIONS IN R2 17

Since z = x2 + y2, we can eliminate z, giving

x2 + y2 = 2ax+ 2by − (a2 + b2) + ρ2.

This is equivalent to
(x− a)2 + (y − b)2 = ρ2.

This is a circle centered at (a, b) with a radius ρ. Thus, the intersection of a plane
with paraboloid produces a closed space curve (which turns out to be an ellipse), which
when projects back onto the (x, y) coordinate plane is a circle. Furthermore, the squared
radius (ρ) of the circle equals to the vertical distance between the lifting of the (a, b)
onto the paraboloid (whose distance is a2 + b2) and its lifting onto the plane (whose
distance is a2 + b2 + ρ2).

Thus, we conclude that the intersection of an arbitrary lower halfspace with the pa-
raboloid, when projected onto the (x, y) plane is the interior of a circle.

Consider the lifting of p, q, r onto the paraboloid, lifted points p′, q′, r′ define a plane,
the intersection of the plane and the paraboloid is an ellipse, and the projection of this
ellipse onto the (x, y) plane is just the circumcircle passing through p, q, r. The point s
lies within this circumcircle, if and only if its lifting s′ onto the paraboloid lies within
the lower halfspace of the plane passing through p′, q′, r′. �

3.3.2. Convex hulls and Delaunay triangulations. Due to the above fact, we can easily
show the nice relation between Delaunay triangulation and convex hulls.

Let S′ be the set of all sites resulting obtained by the lifting map on S. The convex
hull of S′ is a 3d convex polytope, denoted as conv(S′). A lower face of conv(S′) is a
face such that it is contained in a non-vertical plane in R3 and the whole polytope lies
vertically above this plane. The projection of the set of lower faces of conv(S′) into the
xy-plane gives a subdivision of the convex hull of S. If S is in general position, then
this subdivision is a simplical complex T which is the Delaunay triangulation of S, see
Figure 19.

z = 0

z = x2 + y2
a lower face

Figure 19. The projection of the lower faces of the convex hull is the
Delaunay triangulation.

18 HANG SI

3.3.3. Convex hulls and Voronoi diagrams. Given a point p = (a, b), the hyperplane
H(p) that is tangent to p’s lifting, namely, (a, b, a2 + b2), has the equation

z = 2ax+ 2by − (a2 + b2).

Now, consider an arbitrary point q = (α, β) in the plane, the vertical distance from q to
the paraboloid is α2 +β2. What is the vertical distance from q to H(p)? By substituting
(α, β) into the equation of H(p), we get 2aα + 2bβ − (a2 + b2). Let ∆(p, q) denote the
difference between these two vertical distances at point q,

∆(p, q) = α2 + β2 − (2aα+ 2bβ − (a2 + b2)) = (a− α)2 + (b− β)2.

This shows that ∆(p, q) equals precisely the power of the two-dimensional Euclidean
distance between p and q.

Consider two points p1 and p2 in the plane z = 0. We claim that q is closer to p1 if and
only if at the position q = (α, β) , the plane H(p1) lies above (closer to the paraboloid)
than H(p2). It simply follows from the above vertical distance formula.

Lemma 3.2. Let p1, p2, . . . , pn be a set of points in the plane z = 0. A point q belongs
to the Voronoi cell of the point pi, if and only if and only if H(pi) is the highest plane
(seen from z = +∞) at q.

Therefore, the Voronoi diagram of p1, p2, . . . , pn is simply the vertical projection, down
to z = 0, of the point-wise maxima of the downward facing half spaces H(pi). Or
equivalent , is the uppermost face of the arrangement defined by these planes.

3.4. Lawson’s edge flip algorithm. This section introduces a local condition for
edges, shows it implies a triangulation is Delaunay, and derives an algorithm based
on edge flipping. The correctness of this algorithm implies two important results of
planar triangulations, (1) among all triangulations of the same point set, the Delaunay
triangulation maximises the minimum angle; and (2) the set of all triangulations of the
point set is connected by edge flips.

3.4.1. Locally Delaunay lemma. Let K be a triangulation of a point set S in R2. An
edge ab ∈ K is locally Delaunay if either

(i) it is on the convex hull, or
(ii) it belongs two triangles, abc and abd, and d lies outside the circumcircle of

abc.

This definition is illustrated in Figure 20. A locally Delaunay edge is not necessary
a Delaunay edge. However, if every edge is locally Delaunay, then we can show that all
are Delaunay edges.

Theorem 3.1 (Delaunay Lemma). If every edge of K is locally Delaunay, then K is the
Delaunay triangulation of S.

Proof. We use a new concept of distance from a circle. The power distance of a circle
U with center u and radius r is: πU (x) := ‖x− u‖2 − r2. If x lies outside of this circle,
then this distance is the square length of the tangent line segment connecting x and U .
In any case, the distance is positive outside the circle, zero on the circle, and negative
inside the circle.

TRIANGULATIONS IN R2 19

Figure 20. To the left pipj is locally Delaunay and to the right it is not.

Let x ∈ R2 be a fixed point. We say a triangle abc lies in-front of another triangle
def if there is a half-line starting at x that first pass through abc and then through def ,
denoted as abc ≺x def . The following fact is crucial to prove the Delaunay Lemma:

If abc ≺x abd and ab is locally Delaunay, then πCabc
(x) < πCabd

(x), where Cabc is the
circumcircle of abc, see Figure 21.

x

a

b

q

pc

d

Figure 21. Edge ab is locally Delaunay implies that πCabc
(x) < πCabd

(x).

Define abc = t0 and write πt0(x) for the power distance of x from the circumcircle of
t0. Assume z is a vertex lies inside the circumcircle of abc, then we could find a sequence
of triangles starting from abc and ending at a triangle uvz, i.e.,

abc = t0 ≺x t1 ≺x · · · ≺x tm = uvz.

Now we have πtm(z) = 0, and πti(z) > 0, for i = m − 1, . . . , 0. But our assumption
means πt0(z) < 0, a contradiction. �

3.4.2. Edge flips. Given an edge ab, let the two triangles sharing at ab are abc and
abd. The union of these two triangles must be a convex quadrangle. We can flip ab to
cd. Formally, this means we remove ab, abc, and abd from the triangulation, and add
cd, cda, and cdb to the triangulation, see Figure 22.

If ab is not locally Delaunay, then cd is locally Delaunay. This fact can be easily
shown by the following fact: If ab is not locally Delaunay, the sum ∠acb+∠adb > 180o.
Then the sum ∠cad+ ∠cbd ≤ 180o.

20 HANG SI

Flips

c

b

d

a

c

b

a

d

ab is not locally Delaunay cd is locally Delaunay

Flips

Theorem If an edge is not locally Delaunay, and it can be flipped, then the resulting

new edge is locally Delaunay.

DELAUNAY TRIANGULATION

DELAUNAY FLIPS

We intend to prove that Del(P) can be obtained from any triangulation of P by Delaunay flips,
which consist in deleting the diagonal of a convex quadrilateral if it is not locally Delaunay, and
replacing it by the other diagonal of the quadrilateral.

Lemma 5. Consider a convex quadrilateral with diagonals ab and pq. Then:

ab is not locally Delaunay �� pq is locally Delaunay

a b

p

qab is not locally Delaunay

�� q � int(Cabp)

�� �aqp > �abp

�� b � ext(Capq)

�� pq is locally Delaunay

Seminar: Geometric Algorithms (MIRI), Facultat d’Informàtica de Barcelona, UPC

Hang Si si@wias-berlin.de An Introduction to Delaunay-based Mesh Generation and AdaptationJan. 19, 2017 17 / 63

Figure 22. The edge flips between ab and cd.

3.4.3. The algorithm. We can use edge flips as elementary operations to convert an
arbitrary triangulation K to the Delaunay triangulation. The algorithm uses a stack
to maintains all edges which may be locally non-Delaunay. Initially, all edges of K are
pushed on the stack.

Algorithm: LawsonFlip(L)
Input: a stack L of edges of a triangulation K;
Output: the modified triangulation K;
1 while L 6= ∅ do
2 pop an edge ab from L;
3 if ab is not locally Delaunay then;
4 flip ab to cd;
5 push edges ac, cb, db, da on L;
6 endif
7 endwhile

Figure 23. The Lawson edge-flip algorithm.

Figure 24. Lawson’s flip algorithm takes an arbitrary triangulation
(left) as input and returns the Delaunay triangulation (right).

TRIANGULATIONS IN R2 21

z = 0 z = 0

z = x2 + y2

Figure 25. The lifted view of the Lawson’s flip algorithm which trans-
forms a non-convex surface (left) in 3d into a convex one (right).

3.4.4. Termination and running time. Flipping ab to cd is likely gluing a tetrahedron
a′b′c′d′ from below to a′b′c′ and a′b′d′, see Figure 25.

The algorithm can be understood as gluing a sequence of tetrahedra. Once we glue
a′b′c′d′ we cannot glue another tetrahedron right below a′b′. In other words, once we
flip ab we cannot introduce ab again by some other flip. This implies that the Lawson’s
edge-flip algorithm will eventually terminate when all locally non-Delaunay edges are
flipped. By the Delaunay lemma, the triangulation is Delaunay. This also implies there
are at most as many flips as there are edges connecting n points, namely

(
n
2

)
. Each flip

takes constant time, hence the total running time is O(n2).

3.4.5. The MaxMin angle property. We illustrate an optimal property of the Delaunay
triangulation.

Theorem 3.2. Among all triangulation of a finite point set S ⊂ R2, the Delaunay
triangulation maximises the minimum angle.

Proof. A flip substitute two new triangles for two old triangles. It therefore changes six
of the angles, see Figure 26. The six old angles are:

α1, β1, γ1 + γ2, α2, β2, δ1 + δ2,

and the six new angles are

γ1, δ1, β1 + β2, γ2, δ2, α1 + α2.

We show that for each of the six new angles there is an old angle that is at least as
small. At first, γ1 ≥ α2, since both angles are opposite the same edge bd, and a lies
outside the circumcircle of bdc. Similarly, δ1 ≥ α1, γ2 ≥ β2, δ2 ≥ β1, and for trivial
α1 + α2 > α1, and β1 + β2 ≥ β1.

It follows that a flip does not decrease the smallest angle in a triangulation. Since we
can transform any triangulation K of S to the Delaunay triangulation, this implies that
the smallest angle in K is no larger than the smallest angle in the Delaunay triangulation.

�

22 HANG SI

Figure 26. Flipping edge ab to cd changes six of the angles.

3.4.6. The flip graph. One can use flips to traverse the set of all triangulations of S. We
can form a flip-graph G of S. Each triangulation is a node of G, and each edge of G
between two nodes u and v means there is a flip that changes the triangulation u to v.
Figure ?? shows an example. The termination of Lawson’s flip algorithm implies that
the flip-graph is connected. Moreover, one can go from any triangulation of S to any
other triangulation in less than O(n2) flips.

3.5. Randomized incremental flip algorithm. In this section, we introduce an al-
gorithm that construct Delaunay triangulations incrementally, using edge flips and ran-
domisation. After explain the algorithm, we present a detailed analysis of the expected
running time.

The basic step of this algorithm is to interleave flipping edges and adding points.
Denote the points in S ⊂ R2 as p1,p2, . . . ,pn, and assume general position. To reduce
the outside to the inside case, we start with a triangulation D0 that consists of a single
and sufficiently large triangle xyz. The algorithm is a for-loop adding the points in
sequence. After adding a point, it uses edge flips to satisfy the Delaunay lemma before
the next point is added. The algorithm is given in Figure 27.

Algorithm: IncrementalFlip(S = {p1, . . . ,pn})
Input: a sequence S of n points in R2;
Output: the Delaunay triangulation Dn of S;
1 initialize D0 with only one larger triangle xyz;
2 for i = 1 to n do
3 find the triangle τ ∈ Di−1 containing pi;
4 insert pi by splitting τ into three triangles containing pi;
5 initial the stack L with three link edges of pi;
6 LawsonFlip(L);
7 endfor
8 remove all triangles containing x, y, and z from Dn;

Figure 27. The incremental-flip algorithm.

TRIANGULATIONS IN R2 23

At the moment, we will assume the general position, i.e., each vertex pi lies exactly
in the interior of a triangle. The vertex insertion (line 4) is another elementary flip
operation, which split a triangle τ into three is also an elementary flip called 1-to-3, see
flip 28. The reserve of it is another elementary flip, 3-to-1 flip, which removes a vertex
from a triangle. We will discuss vertex insertion in great detail in Section ??.

p p

a 1-to-3 flip

a 3-to-1 flip

a

b

c

a

b

c

Figure 28. Vertex insertion by a 1-to-3 flip and deletion by a 3-to-1 flip.

3.5.1. Number of flips. The running time of this algorithm consists of two parts: (1) the
time to locate the triangle τ containing the vertex pi; and (2) the time to perform flips.
In this section, we study the total number of flips that will be done in this algorithm.
We consider two cases: the worst case and the expected case when vertices are inserted
in a random order.

Note that every new triangle in Di has pi as vertex. Indeed, if abc is a triangle in
Di−1 and its circumcircle does not contain pi, then it must be also a triangle in Di. This
implies that all flips during the insertion of pi occur right around pi, see Figure 29. This
implies the number of edges flips is related to the degree of pi, i.e. the number of edges
which have pi as a vertex. It is denoted as deg(pi). In the incremental flip algorithm,
each edge flip increases the degree of pi by 1. Since the initial degree of pi is 3 (creating
by splitting the triangle τ), then the number of edge flips to add pi in Di is equal to
deg(pi)− 3.

p

a

b

c

X

Figure 29. The Lawson’s flip algorithm after the vertex insertion. All
flipped edge must contain the new vertex pi.

24 HANG SI

We first consider the worst case. Figure 3.5.1 shows such an example. Assuming the
sequence of vertices is ordered first from left to right, then from bottom to top. The
degree of each successive vertices can be Θ(n), hence the total number of flips is Θ(n2).
This shows that if the insertion order of the vertices are chosen badly, the incremental
flip algorithm can take Θ(n2) time.

The Running Time of Vertex Insertion 51

Figure 3.8: Enclosing the vertices in a large triangular bounding box.

Figure 3.9: Each vertex insertion can delete Θ(n) triangles and create Θ(n) others.

Figure 3.9 illustrates the worst case. A single vertex insertion can delete Θ(n) triangles and create Θ(n)
others, taking Θ(n) time. Moreover, this dismal performance can be repeated for Θ(n) successive vertex
insertions. Therefore, the incremental insertion algorithm for constructing a Delaunay triangulation takes
Θ(n2) time if the vertices and their insertion order are chosen badly. The grid arrangement and vertex
ordering in the figure are common in practice.

Fortunately, there are better ways to order the vertex insertion operations. The randomized incremental
insertion algorithm inserts the vertices in random order, with each permutation of the vertices being equally
likely. Surprisingly, the expected number of triangles created by each successive vertex insertion operation
is less than six, as Theorem 21 below shows. The catch is that all the vertices must be known in advance, so
that a random permutation can be computed. The randomized algorithm is excellent for creating an initial
triangulation of the vertices of a domain, but its analysis does not apply to the vertices that are subsequently
generated during mesh generation, because their order cannot be randomized. Nevertheless, the theorem
provides intuition for why constant-time vertex insertion is so commonly observed in mesh generation.

Theorem 21. Let V be a set of n vertices in the plane. Let ⟨v1, v2, . . . , vn⟩ be a permutation of V chosen
uniformly at random from the set of all such permutations. For i ∈ [0, n], letTi be the Delaunay triangulation
constructed by inserting the first i vertices in order. When vi is inserted into Ti−1 to create Ti, the expected
number of new triangles (including ghost triangles) created is less than six. An expected total of O(n)
triangles are created and deleted during the n vertex insertions that construct Tn.

This theorem is most easily proved with backward analysis, a remarkable analysis technique that Sei-
del [110] summarizes thus: “Analyze an algorithm as if it was running backwards in time, from output to
input.” Imagine that instead of inserting a randomly chosen vertex into Ti−1, you are deleting a randomly
chosen vertex from Ti. Because a random permutation written backward is still a random permutation, each
vertex in Ti is deleted with equal probability.

Figure 30. Each vertex insertion can cause Θ(n) flips (example from [?]).

3.5.2. The expected number of flips. We next show if the vertices are inserted in a random
order, the expected total number of flips is only O(n). Random does not mean arbitrary
but rather that every permutation of the n points is equally likely. There are total n!
permutations. Let S1, . . . , Sm be the m = n! permutations of n points.

Let fi be the total number of flips resulted by the incremental-flip algorithm on Si.
The technique we use to analyse the algorithm is called the backward analysis developed
by Seidel [10].

Consider inserting the last point pn. The sum of degrees of all possible last points is
the same as the sum of degrees of all points in Dn (due to the uniqueness of the Delaunay
triangulation). The latter is equal to twice the number of edges, which is

n∑

i=1

deg(pi) ≤ 2(3n− 6) ≤ 6n.

Note that each of the last point appears (n − 1)! times in all the n! permutations.
Therefore the number of flips for adding all last points is at most:

Fn ≤ (6n− 3n)(n− 1)! ≤ 3n(n− 1)!,

where the −3n is due to the number of edges created by the point insertion is not counted
as the number of edge flips.

Then the total number of flips is:
∑n

i=1 fi = fn + fn−1 + · · ·+ f1
≤ 3n · (n− 1)! + 3(n− 1)(n− 1)! + · · ·+ 0
≤ 3n · n · (n− 1)!
= 3n · n!

The expected number of edge flips for adding n points is

E[
n∑

i=1

fi] ≤ 3n · n! · 1

n!
= 3n.

There is a simple way to say the same thing. If points are inserted in a random order,
the expected number of flips for the last point is at most 3. Hence the total number of
edge flips for adding n points is O(n).

3.6. Point location. The point location is another important fact for running time. In
this section, we first give a very simple scheme for point location. However, the worst
case runtime of algorithm is O(n) for locating one point. We then discuss several simple
and practical ways to overcome this.

3.6.1. Straight walk. A simple point location scheme is called “straight walk”. More
precisely, the algorithm starting from an arbitrary triangle σ ∈ Di, and search the
triangle τ that containing pi by walking along the ray starting from an interior point of
σ toward to pi.

Figure 31. Locating a point by straight line walk. (Images from [4]).

How much time will this searching algorithm uses? We assume that each triangle
is visited by only once. Then each point location will visit at most the number of
triangles of the triangulation which is less than 2n. One can show that this is possible
by the triangulation shown in Figure 3.6.1 Right. Hence the location of n points by this
algorithm may take O(n2) time. It is too slow. Hence, with this point location algorithm,
the randomized incremental flip algorithm still has the expected O(n2) runtime.

3.6.2. Jump and walk. Despite the nice theoretical guarantee of runtime, it is not prac-
tical to use additional data structure for point location.

On the other hand, the simple walk-through algorithm could work efficiently if it
could chose a “good” starting point which lies not too far away from the searching
point, then the walk will not taking too many steps. A simple way to achieve this is to
randomly sampling some points and select the nearest one, this is so-called the “jump-
and-walk” scheme [8]. They proposed a “jump-and-walk” method chooses a random

sample of O(n1/3) triangles from the current triangulation, and choose the closest one
as the starting triangle for locating points.

3.6.3. Pre-sorting. The most efficient way to realise this is to pre-sort the points accord-
ing to their spatial location such that the point to be located is not far from the last
inserted point. We will introduce several point sorting schemes in Section ??.

25

References

[1] F. Aurenhammer. Power diagrams: Properties, algorithms and applications. SIAM Journal on
Computing, 16(1):78–96, 1987.

[2] Long Chen and Jin-Chao Xu. Optimal Delaunay triangulations. Journal of Computational Mathe-
matics, 22(2):299–308, 2004.

[3] B. N. Delaunay. Sur la sphère vide. Izvestia Akademii Nauk SSSR, Otdelenie Matematicheskikh i
Estestvennykh Nauk, 7:793–800, 1934.

[4] Olivier Devillers, Sylvain Pion, and Monique Teillaud. Walking in triangulation. International Jour-
nal of Foundations of Computer Science, 13(2):181–199, 2002. INRIA Tec. Report No. 4120, 2001.

[5] H. Edelsbrunner. An acyclicity theorem for cell complex in d dimension. Combinatorica, 10(3):251–
260, 1990.

[6] Herbert Edelsbrunner. Geometry and topology for mesh generation. Cambridge University Press,
Cambridge, England, 2001.

[7] Damrong Guoy. Tetrahedral Mesh Improvement, Algorithms and Experiments. PhD thesis, Com-
puter Science in University of Illionois at Urbana-Champaign, 2001.

[8] Ernst P. Mücke, Isaac Saias, and Binhai Zhu. Fast randomized point location without preprocess-
ing in two- and three-dimensional Delaunay triangulations. In Proc. 12th annual Symposium on
Computational Geometry, pages 274–283, 1996.

[9] J. Nievergelt and F. P. Preparata. Plane-sweep algorithms for intersecting geometric figures. Com-
mun. ACM, 25(10):739–747, October 1982.

[10] R. Seidel. Constrained Delaunay triangulations and Voronoi diagrams with obstacles. In 1978-1988
Ten Years IIG, pages 178–191, 1988.

[11] G. Voronoi. Nouvelles applications des parametrès continus à la théorie de formas quadratiques.
Reine Angew. Math., 133:97–178, 1907.

26

