
Robust Adaptive Floating-Point Geometric Predicates
Jonathan Richard Shewchuk
School of Computer Science
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

jrs@cs.cmu.edu

Abstract
Fast C implementations of four geometric predicates, the

2D and 3D orientation and incircle tests, are publicly avail-
able. Their inputs are ordinary single or double precision
floating-point numbers. They owe their speed to two fea-
tures. First, they employ new fast algorithms for arbitrary
precision arithmetic that have a strong advantage over other
software techniques in computations that manipulate values
of extended but small precision. Second, they are adaptive;
their running time depends on the degree of uncertainty of
the result, and is usually small. These algorithms work on
computers whose floating-point arithmetic uses radix two
and exact rounding, including machines that comply with
the IEEE 754 floating-point standard. Timings of the pred-
icates, in isolation and embedded in 2D and 3D Delaunay
triangulation programs, verify their effectiveness.
1 Introduction
Algorithms that make decisions based on geometric tests,

such as determiningwhich side of a line a point falls on, often
fail when the tests return false answers because of roundoff
error. The easiest solution to many of these robustness prob-
lems is to use software implementations of exact arithmetic,
albeit often at great expense. The goal of improving the speed
of correct geometric calculations has received much recent
attention, but the most promising proposals take integer or
rational inputs, typically of small precision. These methods
do not appear to be usable if it is convenient or necessary to
use ordinary floating-point inputs.
This paper describes two techniques for implement-

ing fast exact (or extended precision) geometric calcu-
lations, and demonstrates them with implementations of
four commonly used geometric predicates, the 2D and
3D orientation and incircle tests, available on the Web at
“http://www.cs.cmu.edu/ quake/robust.html”. The orienta-
tion test determines whether a point lies to the left of, to the
Supported in part by the Natural Sciences and Engineering Research Council
of Canada under a 1967 Science and Engineering Scholarship and by the
National Science Foundation under Grant ASC-9318163.

right of, or on a line or plane; it is an important predicate used
in many (perhaps most) geometric algorithms. The incircle
test determines whether a point lies inside, outside, or on a
circle or sphere, and is used for Delaunay triangulation [8].
Inexact versions of these tests are vulnerable to roundoff er-
ror, and the wrong answers they produce can cause geomet-
ric algorithms to hang, crash, or produce incorrect output.
Although exact arithmetic banishes these difficulties, it is
common to hear reports of implementations being slowed by
factors of ten or more as a consequence. For these reasons,
computational geometry is an important arena for evaluating
extended precision arithmetic schemes.
The first technique is a set of algorithms, several of them

new, for performing arbitrary precision arithmetic. They dif-
fer from traditional methods in two ways. First, they gain
speed by relaxing the usual requirement that extended preci-
sion numbers be normalized to fixed digit positions. Second,
there is no cost to convert floating-point numbers to a special-
ized extended precision format. The method has its greatest
advantage in computations that process values of extended
but small precision (several hundred or thousand bits), and
seems ideal for computational geometry. The method was
largely developed by Priest [12, 13], who designed similar
algorithms that run on a wide variety of floating-point archi-
tectures, with different radices and rounding behavior. I have
made significant speed improvements by relaxing Priest’s
normalization requirement and optimizing for radix two with
exact rounding. This specialization is justified by the wide
acceptance of the IEEE 754 floating-point standard.
The second technique is to exploit features of the predi-

cates that frequently make it possible for them to return cor-
rect answers without completing an exact computation. The
orientation and incircle tests evaluate the sign of a matrix
determinant. It is significant that only the sign, and not the
magnitude, of the determinant is needed. Fortune and Van
Wyk [5] take advantage of this fact by using a floating-point
filter: the determinant is first evaluated approximately, and
only if forward error analysis indicates that the sign of the
approximate result cannot be trusted does one use an exact
test. I carry their suggestion to its logical extreme by comput-
ing a sequence of successivelymore accurate approximations
to the determinant, stopping only when the accuracy of the
sign is assured. To reduce computation time, each approx-
imation reuses a previous, less accurate computation if it is
economical to do so. This adaptive approach is described in
Section 4, and its application to the orientation and incircle

tests is described in Section 5.

2 Related Work
There are several exact arithmetic schemes designed

specifically for computational geometry; most are methods
of exactly evaluating the sign of a determinant. Clarkson [3]
proposes an algorithm for using floating-point arithmetic to
evaluate the sign of the determinant of a small matrix of in-
tegers. A variant of the modified Gram-Schmidt procedure
is used to improve the conditioning of the matrix, so that the
determinant can subsequently be evaluated safely by Gaus-
sian elimination. The 53 bits of significand available in IEEE
double precision numbers are sufficient to operate on 10 10
matrices of 32-bit integers. Clarkson’s algorithm is natu-
rally adaptive; its running time is small for matrices whose
determinants are not near zero1.
Recently, Avnaim, Boissonnat, Devillers, Preparata, and

Yvinec [1] proposed an algorithm to evaluate signs of deter-
minants of 2 2 and 3 3 matrices of -bit integers using
only and 1 -bit arithmetic, respectively. Surprisingly,
this is sufficient even to implement the insphere test (which
is normally written as a 4 4 or 5 5 determinant), but
with a handicap in bit complexity; 53-bit double precision
arithmetic is sufficient to correctly perform the insphere test
on points having 24-bit integer coordinates.
Fortune and Van Wyk [5, 6] propose a more general ap-

proach (not specific to determinants, or even to predicates)
that represents integers using a standard exact arithmetic
technique with digits of radix 223 stored as double precision
floating-point values. (53-bit double precision significands
make it possible to add several products of 23-bit integers
before it becomes necessary to normalize.) Rather than use a
general-purpose arbitrary precision library, they have devel-
oped LN, an expression compiler that writes code to evaluate
a specific expression exactly. The size of the operands is
arbitrary, but is fixed when LN generates a C++ implemen-
tation of the expression. An expression can thus be used
to generate several functions, each for arguments of differ-
ent bit lengths. Because the expression and the bit lengths
of all operands are known in advance, LN can tune the ex-
act arithmetic aggressively, eliminating loops, function calls,
and memory management. The running time of the function
thus produced depends on the bit complexity of the inputs.
Fortune andVanWyk report an order-of-magnitude speed im-
provement over the use of libraries (for equal bit complexity).
Furthermore, the expression compiler garners another speed
improvement by installing floating-point filters wherever ap-
propriate, calculating static error bounds automatically.
Karasick, Lieber, and Nackman [9] report their experi-

ences optimizing a method for determinant evaluation using
rational inputs. Their approach reduces the bit complexity

1Themethod presented in Clarkson’s paper does not work correctly if the
determinant is exactly zero, but Clarkson (personal communication) notes
that it is easily fixed. “By keeping track of the scaling done by the algorithm,
an upper bound can be maintained for the magnitude of the determinant of
the matrix. When that upper bound drops below one, the determinant must
be zero, since the matrix entries are integers, and the algorithm can stop.”

of the inputs by performing arithmetic on intervals (with low
precision bounds) rather than exact values. The determinant
thus evaluated is also an interval; if it contains zero, the
precision is increased and the determinant reevaluated. The
procedure is repeated until the interval does not contain zero
(or contains only zero), and the sign of the result is certain.
Their approach is thus adaptive, although it does not appear
to use the results of one iteration to speed the next.
Because the Clarkson and Avnaim et al. algorithms are

effectively restricted to low precision integer coordinates, I
do not compare their performancewith that ofmy algorithms,
though theirs may be faster. Floating-point inputs are more
difficult to work with than integer inputs, partly because of
the potential for the bit complexity of intermediate values
to grow more quickly. (The Karasick et al. algorithm also
suffers this difficulty, and is probably not competitive against
the other techniques discussed here, although it may be the
best existing alternative for algorithms that require rational
numbers, such as those computing exact line intersections.)
When it is necessary for an algorithm to use floating-point
coordinates, the aforementionedmethods are not currently an
option (although it might be possible to adapt them using the
techniques of Section 3). I amnot aware of any prior literature
on exact determinant evaluation that considers floating-point
operands.
3 Arbitrary Precision Floating-Point
3.1 Background
Most modern processors support floating-point numbers

of the form significand 2exponent. The significand is
represented by a -bit binary number of the form
(where each denotes a single bit), plus one additional bit
for the sign. This paper does not address issues of overflow
and underflow, so I allow the exponent to be an integer in the
range . (Fortunately, many applications have inputs
that fall within a circumscribed exponent range and will not
overflow or underflow.) See the survey by Goldberg [7]
for a detailed explanation of floating-point storage formats,
particularly the IEEE 754 standard.
Most arbitrary precision libraries store numbers in a

multiple-digit format, consisting of a sequence of digits (usu-
ally of large radix, like 232) coupled with a single exponent.
A freely available example of the multiple-digit approach is
Bailey’sMPFUN package [2], a sophisticated portablemulti-
precision library that uses digits of machine-dependent radix
(usually 224) stored as single precision floating-point values.
An alternative is the multiple-term format, wherein a num-
ber is expressed as a sum of ordinary floating-point words,
each with its own significand and exponent [12]. This ap-
proach has the advantage that the result of an addition like
2300 2 300 (which may well arise in a determinant compu-
tation with machine precision floating-point inputs) can be
stored in two words of memory, whereas the multiple-digit
approach will use at least 601 bits to store the sum, and incur
a corresponding speed penalty when performing arithmetic
with it.
For the algorithms herein, each arbitrary precision value is

expressed as an expansion2 2 1, where
each is called a component of and is represented by a
floating-point value with a -bit significand. To impose some
structure on expansions, they are required to be nonoverlap-
ping and ordered bymagnitude (largest, 1 smallest). Two
floating-point values and are nonoverlapping if the least
significant nonzero bit of is more significant than the most
significant nonzero bit of , or vice-versa; for instance, the
binary values 1100 and 10 1 are nonoverlapping, whereas
101 and 10 overlap3. The number zero does not overlap any
number. An expansion is nonoverlapping if all its compo-
nents are mutually nonoverlapping. Note that a number may
be represented bymany possible nonoverlappingexpansions;
consider 1100 10 1 1001 0 1 1000 1 0 1. A
nonoverlapping expansion is desirable because it is easy to
determine its sign (take the sign of the largest component)
or to produce a crude approximation of its value (take the
largest component).
Multiple-term algorithms can be faster than multiple-digit

algorithms because the latter require expensive normaliza-
tion of results to fixed digit positions, whereas multiple-term
algorithms can allow the boundaries between terms to wan-
der freely. Boundaries are still enforced, but can fall at any
bit position. In addition, it usually takes time to convert an
ordinary floating-point number to the internal format of a
multiple-digit library, whereas that number is an expansion
of length one. Conversion overhead can be significant for
small extended precision calculations.
The central conceptual difference between standard mul-

tiple-digit algorithms and the algorithms described herein is
that the former perform exact arithmetic by keeping the bit
complexity of operands small enough to avoid roundoff error,
whereas the latter allow roundoff to occur, then account for
it after the fact. To measure roundoff quickly and correctly, a
certain standard of accuracy is required from the processor’s
floating-point units. The algorithms presented herein rely
on the assumption that addition, subtraction, and multipli-
cation are performed with exact rounding. This means that
if the exact result can be stored in a -bit significand, then
the exact result is produced; if it cannot, then it is rounded
to the nearest -bit floating-point value (with ties broken ar-
bitrarily). For instance, in four-bit arithmetic the product
111 101 100011 is rounded to 1 001 25. Through-
out this paper, the symbols , , and represent -bit
floating-point addition, subtraction, and multiplication with
exact rounding. A number is said to be expressible in bits
if it can be expressed with a -bit significand, not counting
the sign bit or the exponent.
Algorithms for addition and multiplication of expansions

follow. The (rather lengthy) proofs of all theorems are omit-
ted, but are available in a full-length version of this paper.

2Note that this definition of expansion is slightly different from that
used by Priest [12]; whereas Priest requires that the exponents of any two
components of an expansion differ by at least , no such requirement is made
here.

3Formally, and are nonoverlapping if there exist integers and
such that 2 and 2 , or 2 and 2 .

Theorems 3 and 6 are the key new results.
3.2 Addition
An important basic operation in all the algorithms for per-

forming arithmetic with expansions is the addition of two
-bit values to form a nonoverlapping expansion (of length
two). Two such algorithms follow.
Theorem 1 (Dekker [4]) Let and be -bit floating-point
numbers such that . Then the following algorithm
will produce a nonoverlapping expansion such that

, where is an approximation to and
represents the roundoff error in the calculation of .

FAST-TWO-SUM
1
2 virtual
3 virtual
4 return

Note that the outputs and do not necessarily have
the same sign. Two-term subtraction (“FAST-TWO-DIFF”) is
implemented by the sequence ; virtual ;

virtual .
The difficulty with using FAST-TWO-SUM is the require-

ment that . If the relative sizes of and are
unknown, a comparison is required to order the addends be-
fore invokingFAST-TWO-SUM. In practice, it is faster onmost
processors to use the following algorithm.
Theorem 2 (Knuth [10]) Let and be -bit floating-point
numbers, where 3. Then the following algorithm will
produce a nonoverlapping expansion such that

.
TWO-SUM
1
2 virtual
3 virtual virtual
4 roundoff virtual
5 roundoff virtual
6 roundoff roundoff
7 return

Two-term subtraction (“TWO-DIFF”) is implemented by
the sequence ; virtual ; virtual

virtual; roundoff virtual ; roundoff
virtual; roundoff roundoff.
Having established how to add two -bit values,I turn to the

topic of how to add two arbitrary precision values expressed
as expansions. The algorithm LINEAR-EXPANSION-SUM be-
low sums two expansions in linear time.
A complicating characteristic of the algorithm is that there

may be spurious zero components scattered throughout the
output expansion, even if no zeros are present in the in-
put expansions. For instance, given the input expansions
1111 0 1001 and 1100 0 1, in four-bit arithmetic the
output expansion is 11100 0 0 0 0001. Interspersed
zeros in input expansions do no harm except to slow down
arithmetic, but this slowdown escalates quickly as expan-
sions grow. It is important for LINEAR-EXPANSION-SUM and
SCALE-EXPANSION to perform zero elimination, outputting a

TWO
SUM

TWO
SUM

TWO
SUM

FAST
TWO
SUM

FAST
TWO
SUM

FAST
TWO
SUM

FAST
TWO
SUM

12345

2345

5 4 3 2 1

2345 345

Figure 1: Operation of LINEAR-EXPANSION-SUM. The expansions
and are illustrated with their most significant components on the left.

maintains an approximate running total. The FAST-TWO-SUM
operations in the bottom row exist to clip a high-order bit off each
term, if necessary, before outputting it.

component (and incrementing an array index) only if it is not
zero. For simplicity, versions without zero elimination are
presented here, but my implementations eliminate zeros.
Priest [12] presents a similar algorithm (for processors

with arbitrary floating-point radix) that guarantees that the
components of the output expansion overlap by at most one
digit (i.e. one bit in binary arithmetic). An expensive renor-
malization step is required afterward to remove the overlap.
By contrast, my algorithm always produces a nonoverlapping
expansion, and no renormalization is needed. The algorithm
takes advantage of binary arithmetic and exact rounding, but
does not follow directly from Priest’s results.
Theorem 3 Let 1 and 1 be nonover-
lapping expansions of and -bit components, respec-
tively, where 3 and the components of both and
are ordered by increasing magnitude. The following algo-
rithm will produce a nonoverlapping expansion such that

1 , where the components of are also
in order of increasing magnitude, except that any of the
may be zero.

LINEAR-EXPANSION-SUM
1 Merge and into a single sequence ,

in order of nondecreasing magnitude
2 2 2 FAST-TWO-SUM 2 1
3 for 3 to
4 2 FAST-TWO-SUM 1
5 TWO-SUM 1
6 1
7
8 return

is an approximate sum of the first terms of ;
see Figure 1. It is possible to remove the FAST-TWO-SUM
operation from the loop, yielding an algorithm that requires
only six floating-point operations per iteration, but the pre-
conditions for correct behavior are too complex to explain
here.
3.3 Multiplication
The basic multiplication algorithm computes a nonover-

lapping expansion equal to the product of two -bit values.
The multiplication is performed by splitting each value into

TWO
PROD

TWO
PROD

TWO
PROD

TWO
PROD

1234

234 234

TWO
SUM

TWO
SUM

TWO
SUM

FAST
TWO
SUM

FAST
TWO
SUM

FAST
TWO
SUM

2345678

12345678

Figure 2: Operation of SCALE-EXPANSION. The expansions and
are illustrated with their most significant components on the left.

two halveswith half the precision, then performing four exact
multiplications on these fragments. The trick is to find a way
to split a floating-point value in two.
Theorem 4 (Dekker [4]) Let be a -bit floating-point
number, where 3. The following algorithm will pro-
duce a 2 -bit value hi and a nonoverlapping 2 1 -bit
value lo such that hi lo and hi lo.

SPLIT
1 2 2 1
2 big
3 hi big
4 lo hi
5 return hi lo

The claim may seem absurd. After all, hi and lo have
only 1 bits of significand between them; how can they
carry all the information of a -bit significand? The secret
is hidden in the sign bit of lo. For instance, the seven-bit
number 1001001 can be split into the three-bit terms 1010000
and 111. This property is fortunate, because even if is
odd, as it is in IEEE 754 double precision arithmetic, can
be split into two 2 -bit values.
Multiplication is performed by splitting and . The prod-

ucts hi hi, lo hi, hi lo, and lo lo can each be computed
exactly by the floating-point unit, producing four values. By
subtracting them from in a proper order, one is assured
the subtractions are exact and the result is the roundoff er-
ror of computing . Dekker [4] attributes the following
method to G. W. Veltkamp.
Theorem 5 (Veltkamp) Let and be -bit floating-point
numbers, where 4. The following algorithmwill produce
a nonoverlapping expansion such that .

TWO-PRODUCT
1
2 hi lo SPLIT
3 hi lo SPLIT
4 1 hi hi
5 2 1 lo hi
6 3 2 hi lo
7 lo lo 3
8 return

The following algorithm, which multiplies an expansion
by a floating-point value, is new.

Theorem 6 Let 1 be an ordered nonoverlapping
expansion of -bit components, and let be a -bit value
where 4. Then the following algorithm will produce a
nonoverlapping expansion such that 2

1 ,
where is also ordered, except that any of the may be
zero. (See Figure 2.)
SCALE-EXPANSION
1 2 1 TWO-PRODUCT 1
2 for 2 to
3 TWO-PRODUCT
4 2 1 2 2 TWO-SUM 2 2
5 2 2 1 FAST-TWO-SUM 2 1
6 2 2
7 return

3.4 Approximation
The sign of an expansion can be identified by examining

its largest component, but that component may be a poor ap-
proximation to the value of the whole expansion; it may carry
as little as one bit of significance. Such a component may
result, for instance, from cancellation during the subtraction
of two nearly-equal expansions.
AnAPPROXIMATE procedure is defined that sums an expan-

sion’s components in order from smallest to largest. Because
of the nonoverlapping property, APPROXIMATE produces an
approximation having error less than the magnitude of the
least significant bit of the approximation’s significand.
4 Adaptive Precision Arithmetic
Exact arithmetic is expensive, and should be avoidedwhen

possible. The floating-point filter suggested by Fortune and
Van Wyk [5], which tries to verify the correctness of the
approximate result (using error analysis) before resorting to
exact arithmetic, is quite effective. If the exact test is only
needed occasionally, an application can be made robust at
only a small cost in speed. One might hope to improve this
idea by computing a sequence of several increasingly accurate
results, testing each one in turn for accuracy. Alas, whenever
an exact result is required, one suffers both the cost of the
exact computation and the additional burden of computing
several approximate results in advance. Fortunately, it is
sometimes possible to use intermediate results as stepping
stones to more accurate results; work already done is not
discarded but is refined.
4.1 Making Arithmetic Adaptive
FAST-TWO-SUM, TWO-SUM, andTWO-PRODUCT each have

the feature that they can be broken into two parts: Line 1,
which computes an approximate result, and the remaining
lines, which calculate the roundoff error. The latter, more
expensive calculation can be delayed until it is needed, if it is
ever needed at all. In this sense, these routines can be made
adaptive, so that they only produce as much of the result as is
needed. I describe here how to achieve the same effect with
more general expressions.
Any expression composed of addition, subtraction, and

multiplication operations can be calculated adaptively in a
manner that defines a natural sequence of intermediate results

ax bybx ayax bx byay + yx 1 1 + yx1 1 + y2x 2 + y2x 2

(a) (b)

1 x1 x 2 y1 y2x 2 x1 x 2 y1 y1 y2 y2

C1

2C 2A

3C 43 C=A Component
Expansion
Two-Product

Expansion-Sum

x 2

1A

2

(c)

Figure 3: (a) Formula for the square of the distance between
two points and . (b) The lowest subexpressions in the
tree are expressed as the sum of an approximate value and a
roundoff error. (c) An incremental adaptive method for evalu-
ating the expression. The approximations 1 through 4 are
generated and tested in turn. 4 is exact.

whose accuracy it is appropriate to test. Such a sequence
is most easily described by considering the tree associated
with the expression, as in Figure 3(a). The leaves of this
tree represent floating-point operands, and its internal nodes
represent operations. Replace each node whose children are
both leaves with the sum , where represents the
approximate value of the subexpression, and represents
the roundoff error incurredwhile calculating (Figure 3(b)),
then expand the expression to form a polynomial.
In the expanded expression, the terms containing many

occurrences of variables are dominated by terms containing
fewer occurrences. As an example, consider the expression

2 2 (Figure 3), which calculates the
square of the distance between two points in the plane. Set

1 1 and 2 2. The resulting
expression, expanded in full, is

2
1

2
2 2 1 1 2 2 2

2
1

2
2

It is significant that each is small relative to its corre-
sponding . Exact rounding guarantees that ,
where 2 is called the machine epsilon, and bounds
the relative error error of any basic floating-
point operation. In IEEE 754 double precision arithmetic,

2 53; in single precision, 2 24.
The expanded expression above can be divided into three

parts, having magnitudes of 1 , , and 2 , respec-
tively. Denote these parts Φ0, Φ1, and Φ2. More generally,
for any expression expanded in this manner, let Φ be the

sum of all products containing of the variables, so thatΦ
has magnitude .
One can obtain an approximation with error no larger

than by exactly summing the first terms, Φ0 through
Φ 1. The sequence 1 2 of increasingly accurate
approximations can be computed incrementally; is the
exact sum of 1 and Φ 1. Members of this sequence are
generated and tested until one is sufficiently accurate.
An improvement is based on the observation that one can

obtain an approximation with error no larger than by
adding (exactly) to 1 a correctional term that approxi-
mates Φ 1 with ordinary floating-point arithmetic, to form
a new approximation , as illustrated in Figure 3(c). The
correctional term reduces the error from 1 to ,
so is nearly as accurate as but takes much less work
to compute. This scheme reuses the work done in computing
members of , but does not reuse the (much cheaper) correc-
tional terms. Note that 1, the first value computed by this
method, is an approximation toΦ0; if 1 is sufficiently accu-
rate, it is unnecessary to use any exact arithmetic techniques
at all. This first test is identical to Fortune and Van Wyk’s
floating-point filter.
This method does more work during each stage of the

computation than the first method, but typically terminates
one stage earlier. Although the use of correctional terms
is slower when the exact result must be computed, it can
cause a surprising improvement in other cases; for instance,
the robust Delaunay tetrahedralization of points arrayed in a
tilted grid (see Section 5.4) takes twice as long if the estimate
2 is skipped in the orientation and incircle tests, because 2
is much more expensive to produce.
The decomposition of an expression into an adaptive se-

quence as described above could be automated by an LN-like
expression compiler, but for the predicates described in the
next section, I have done the decomposition and written the
code manually. Note that these ideas are not exclusively ap-
plicable to the multiple-term approach to arbitrary precision
arithmetic. They can work with multiple-digit formats as
well, though the details differ.

5 Predicate Implementations
5.1 Orientation and Incircle
Let , , , and be four points in the plane whose coordi-

nates are machine-precision floating-point numbers. Define
a procedureORIENT2D that returns a positive value if
the points , , and are arranged in counterclockwise order,
a negative value if they are in clockwise order, and zero if
they are collinear. A more common (but less symmetric)
interpretation is that ORIENT2D returns a positive value if
lies to the left of the directed line ; for this purpose the
orientation test is used by many geometric algorithms.
Define also a procedure INCIRCLE that returns

a positive value if lies inside the oriented circle . By
oriented circle, I mean the unique (and possibly degenerate)
circle through , , and , with these points occurring in
counterclockwise order about the circle. (If the points occur

in clockwise order, INCIRCLE will reverse the sign of its
output, as if the circle’s exterior were its interior.) INCIRCLE
returns zero if and only if all four points lie on a common
circle.
These definitions extend to arbitrary dimensions. For in-

stance, ORIENT3D returns a positive value if lies
below the oriented plane passing through , , and . By
oriented plane, I mean that , , and appear in counter-
clockwise order when viewed from above the plane.
In any dimension, the orientation and incircle tests may be

implemented as matrix determinants. For example:

ORIENT3D

1
1
1
1

(1)

(2)

INCIRCLE

2 2 1
2 2 1
2 2 1
2 2 1

(3)

2 2
2 2
2 2

(4)

These formulae generalize to other dimensions in the obvi-
ous way. Expressions 1 and 2 can be shown to be equivalent
by simple algebraic transformations, as can Expressions 3
and 4. These equivalences are unsurprising because one
expects the results of any orientation or incircle test not to
change if all the points undergo an identical translation in the
plane. Expression 2, for instance, follows from Expression 1
by translating each point by .
For exact computation, the choice between Expressions 1

and 2, or between 3 and 4, is not straightforward. Expres-
sion 2 takes roughly 25% more time to compute in exact
arithmetic, and Expression 4 takes about 30% more time
than Expression 3. The disparity likely increases in higher
dimensions. Nevertheless, the mechanics of error estimation
turn the tide in the other direction. Important as a fast exact
test is, it is equally important to avoid exact tests whenever
possible. Expressions 2 and 4 tend to have smaller errors
(and correspondingly smaller error estimates) because their
errors are a function of the relative coordinates of the points,
whereas the errors of Expressions 1 and 3 are a function of
the absolute coordinates of the points.
In most geometric applications, the points that serve as

parameters to geometric tests tend to be close to each other.
Commonly, their absolute coordinates are much larger than
the distances between them. By translating the points so
they lie near the origin, working precision is freed for the
subsequent calculations. Hence, the errors and error bounds

Figure 4: Shaded triangles can be translated to the origin without
incurring roundoff error. In most triangulations, such triangles are the
common case.

for Expressions 2 and 4 are generally much smaller than for
Expressions 1 and 3. Furthermore, the translation can often
be done without roundoff error. Figure 4 demonstrates a toy
problem: suppose ORIENT2D is used to find the orientation
of each triangle in a triangulation. A well-known property
of floating-point arithmetic is that if two -bit floating-point
values have the same sign and differ by at most a factor of
two, their difference is expressible in bits. Hence, any
shaded triangle can be translated so that one of its vertices
lies at the origin without roundoff error; the white triangles
may or may not suffer from roundoff during such transla-
tion. If the complete triangulation is much larger than the
portion illustrated, only a small proportion of the triangles
(those near a coordinate axis) can suffer roundoff. Because
exact translation is the common case, my adaptive geometric
predicates test for and exploit this case.
Once a determinant has been chosen for evaluation, there

are several methods to evaluate it. A few are surveyed by
Fortune and Van Wyk [5]; only their conclusion is repeated
here. The cheapest method of evaluating the determinant of
a 5 5 or smaller matrix seems to be dynamic programming
applied to cofactor expansion. Evaluate the 2 determinants
of all 2 2 minors of the first two columns, then the 3
determinants of all 3 3 minors of the first two columns, and
so on. All four of my predicates use this method.
5.2 ORIENT2D
My implementation of ORIENT2D computes a sequence

of up to four results (labeled A through D) as illustrated
in Figure 5. The exact result D may be as long as sixteen
components, but zero elimination is used, so a length of two
to six components is more common in practice.

x cx b y c y ay cy b x cxa

B

Component
Expansion
Two-Diff

Two-Product

Expansion Sum

Expansion Diff

1w 2w

Estimate

A

C
D

B’

Figure 5: Adaptive calculations used by the 2D orientation test.
Dashed boxes represent nodes in the original expression tree.

A, B, and C are logical places to test the accuracy of the
result before continuing. In most applications, the majority
of calls to ORIENT2D will end with the approximation A. Al-
though the four-component expansion B, like A, has an error
of , it is a likely stopping point because B is exact if the
four subtractions at the bottom of the expression tree are per-
formed without roundoff error (corresponding to the shaded
triangles in Figure 4). Because this is the common case,
ORIENT2D explicitly tests whether all the roundoff terms are
zero. The corrected estimate C has an error bound of 2 .
If C is not sufficiently accurate, the exact determinant D is
computed.
There are two interesting features of this test, both ofwhich

arise because only the sign of the determinant is needed. First,
the correctional term added to B to form C is not added ex-
actly; instead, the APPROXIMATE procedure of Section 3.4
finds an approximation B of B, and the correctional term
is added to B with the possibility of roundoff error. The
consequent errors may be of magnitude B , and would
normally preclude obtaining an error bound of 2 . How-
ever, the sign of the determinant is only questionable if B is
of magnitude , so an 2 error bound for C can be
established.
The second interesting feature is that, if C is not sufficiently

accurate, no more approximations are computed before com-
puting the exact determinant. To understand why, consider
three collinear points; the determinant defined by these points
is zero. If a coordinate of one of these points is perturbed by
the least significant bit of its significand, the determinant typ-
ically increases to . Hence, one might guess that when
a determinant is no larger than 2 , it is probably zero.
This intuition seems to hold in practice for all four predicates

Double precision ORIENT2D timings in microseconds
Points Uniform Geometric Nearly

Method Random Random Collinear
Approximate (2) 0.15 0.15 0.16
Exact (1) 6.56 6.89 6.31
Exact (2) 8.35 8.48 8.13
Exact (1), MPFUN 92.85 94.03 84.97
Adaptive A (2), approx. 0.28 0.27 0.22
Adaptive B (2) 1.89
Adaptive C (2) 2.14
Adaptive D (2), exact 8.35
LN adaptive (2), approx. 0.32 n/a
LN adaptive (2), exact n/a 4.43

Table 1: Timings for ORIENT2D on a DEC 3000/700 with a 225
MHz Alpha processor. All determinants use the 2D version of either
Expression 1 or the more stable Expression 2 as indicated. Timings
for the adaptive tests are categorized according to which result was
the last generated. Timings of Bailey’s MPFUN package and Fortune
and Van Wyk’s LN package are included for comparison.

considered herein, on both random and “practical” point sets.
Determinants that don’t stopwith approximationC are nearly
always zero.
The error bound for A is 3 16 2

1 2 , where
1 and 2 are as indicated in Figure 5. This error bound has
the pleasing property that it is zero in the common case that all
three input points lie on a horizontal or vertical line. Hence,
although ORIENT2D usually resorts to exact arithmetic when
given collinear input points, it only performs the approximate
test in the two cases that occur most commonly in practice.
Table 1 lists timings for ORIENT2D, given random inputs.

Observe that the adaptive test, when it stops at the approxi-
mate result A, takes nearly twice as long as the approximate
test because of the need to compute an error bound. The ta-
ble includes a comparison with Bailey’s MPFUN [2], chosen
because it is the fastest portable and freely available arbi-
trary precision package I know of. ORIENT2D coded with
my (nonadaptive) algorithms is roughly thirteen times faster
than ORIENT2D coded with MPFUN.
Also included is a comparison with an orientation pred-

icate for 53-bit integer inputs, created by Fortune and Van
Wyk’s LN. The LN-generated orientation predicate is quite
fast because it takes advantage of the fact that it is restricted
to bounded integer inputs. My exact tests cost less than twice
as much as LN’s; this seems like a reasonable price to pay
for the ability to handle arbitrary exponents in the input.
These timings are not the whole story; LN’s static error

estimate is typically much larger than the runtime error esti-
mate used for adaptive stage A, and LN uses only two stages
of adaptivity, so the LN-generated predicates are slower in
some applications, as Section 5.4 will demonstrate. (It is
significant that for 53-bit integer inputs, my multiple-stage
predicates rarely pass stage B because the initial translation is
usually donewithout roundoff error;hence, the LN-generated
ORIENT2D often takes more than twice as long to produce an
exact result.) It must be emphasized, however, that these are
not inherent differences between LN’s multiple-digit integer

yc yd yb yd xc xdxb xd

Component
Expansion
Two-Diff

Two-Product

Scale-Expansion

Expansion-Sum

Expansion-Diff

192

za dz

A

24
24

2424

24

24

B

Estimate
B’

C D

24

Figure 6: Adaptive calculations used by the 3D orientation test.
Bold numbers indicate the length of an expansion. Only part of the
expression tree is shown; two of the three cofactors are omitted, but
their results appear as dashed components and expansions.

approach and my multiple-term floating-point approach; LN
could, in principle, employ the same runtime error estimate
and a similar multiple-stage adaptivity scheme.
5.3 ORIENT3D, INCIRCLE, and INSPHERE
Figure 6 illustrates the implementation of ORIENT3D. As

with ORIENT2D, A is the standard floating-point result, B
is exact if the subtractions at the bottom of the tree incur
no roundoff, C represents a drop in the error bound from

to 2 , and D is the exact determinant. The error
bounds are zero if all four input points share the same , ,
or -coordinate, so only the approximate test is needed in the
most common cases of coplanarity.
Table 2 lists timings for ORIENT3D, INCIRCLE, and IN-

SPHERE, given random inputs. In each case, the error bound
for A increases the amount of time required to perform the
approximate test in the adaptive case by a factor of 2 to 2 5.
The gap betweenmy exact algorithms andMPFUN is smaller
than in the case of ORIENT2D, but is still a factor of 3 to 7 5.
INCIRCLE is implemented similarly to ORIENT3D, as the

determinants are similar. The implementation of INSPHERE
differs from the other three tests in that, due to programmer
laziness, D is not computed incrementally from B; rather,
if C is not accurate enough, D is computed from scratch.

Double precision ORIENT3D timings in microseconds
Points Uniform Geometric Nearly

Method Random Random Coplanar
Approximate (2) 0.25 0.25 0.25
Exact (1) 33.30 38.54 32.90
Exact (2) 42.69 48.21 42.41
Exact (1), MPFUN 260.51 262.08 246.64
Adaptive A (2), approx. 0.61 0.60 0.62
Adaptive B (2) 12.98
Adaptive C (2) 15.59
Adaptive D (2), exact 27.29
LN adaptive (2), approx. 0.85 n/a
LN adaptive (2), exact n/a 18.11

Double precision INCIRCLE timings in microseconds
Points Uniform Geometric Nearly

Method Random Random Cocirc.
Approximate (4) 0.31 0.28 0.30
Exact (3) 71.66 83.01 75.34
Exact (4) 91.71 118.30 104.44
Exact (3), MPFUN 350.77 343.61 348.55
Adaptive A (4), approx. 0.64 0.59 0.64
Adaptive B (4) 44.56
Adaptive C (4) 48.80
Adaptive D (4), exact 78.06
LN adaptive (4), approx. 1.33 n/a
LN adaptive (4), exact n/a 32.44

Double precision INSPHERE timings in microseconds
Points Uniform Geometric Nearly

Method Random Random Cospher.
Approximate (4) 0.93 0.95 0.93
Exact (3) 324.22 378.94 347.16
Exact (4) 374.59 480.28 414.13
Exact (3), MPFUN 1,017.56 1,019.89 1,059.87
Adaptive A (4), approx. 2.13 2.14 2.14
Adaptive B (4) 166.21
Adaptive C (4) 171.74
Adaptive D (4), exact 463.96
LN adaptive (4), approx. 2.35 n/a
LN adaptive (4), exact n/a 116.74

Table 2: Timings for ORIENT3D, INCIRCLE, and INSPHERE on a DEC
3000/700. All determinants are Expression 1 or 3, or the more stable
Expression 2 or 4, as indicated.

Fortunately, C is usually accurate enough.
5.4 Triangulation
To evaluate the effectiveness of the adaptive tests in appli-

cations, I tested them in two of my Delaunay triangulation
codes. Triangle [14] is a 2D Delaunay triangulator and mesh
generator, publicly available from Netlib, that uses a divide-
and-conquer algorithm [11, 8]. Pyramid is a 3D Delaunay
tetrahedralizer that uses an incremental algorithm [15]. For
both 2D and 3D, three types of inputs were tested: uniform
randompoints, points lying (approximately) on the boundary
of a circle or sphere, and a square or cubic grid of lattice
points, tilted so as not to be aligned with the coordinate axes.
The latter two were chosen for their nastiness. The lattices
have been tilted using approximate arithmetic, so they are not
perfectly cubical, and the exponents of their coordinates vary

2D divide-and-conquer Delaunay triangulation
Uniform Perimeter Tilted
Random of Circle Grid

Input points 1,000,000 1,000,000 1,000,000
ORIENT2D calls
Adaptive A, approx. 9,497,314 6,291,742 9,318,610
Adaptive B 121,081
Adaptive C 118
Adaptive D, exact 3
Average time, s 0.32 0.38 0.33
LN approximate 9,497,314 2,112,284 n/a
LN exact 4,179,458 n/a
LN average time, s 0.35 3.16 n/a
INCIRCLE calls
Adaptive A, approx. 7,596,885 3,970,796 7,201,317
Adaptive B 50,551 176,470
Adaptive C 120 47
Adaptive D, exact 4
Average time, s 0.65 1.11 1.67
LN approximate 6,077,062 0 n/a
LN exact 1,519,823 4,021,467 n/a
LN average time, s 7.36 32.78 n/a
Program running time, seconds
Approximate version 57.3 59.9 48.3
Robust version 61.7 64.7 62.2
LN robust version 116.0 214.6 n/a

Table 3: Statistics for 2D divide-and-conquer Delaunay triangulation
of several point sets.

3D incremental Delaunay tetrahedralization
Uniform Surface Tilted
Random of Sphere Grid

Input points 10,000 10,000 10,000
ORIENT3D counts
Adaptive A, approx. 2,735,668 1,935,978 5,542,567
Adaptive B 602,344
Adaptive C 1,267,423
Adaptive D, exact 28,185
Average time, s 0.72 0.72 4.12
LN approximate 2,735,668 1,935,920 n/a
LN exact 58 n/a
LN average time, s 0.99 1.00 n/a
INSPHERE counts
Adaptive A, approx. 439,090 122,273 3,080,312
Adaptive B 180,383 267,162
Adaptive C 1,667 548,063
Adaptive D, exact
Average time, s 2.23 96.45 48.12
LN approximate 438,194 104,616 n/a
LN exact 896 199,707 n/a
LN average time, s 2.50 70.82 n/a
Program running time, seconds
Approximate version 4.3 3.0
Robust version 5.8 34.1 108.5
LN robust version 6.5 30.5 n/a

Table 4: Statistics for 3D incremental Delaunay tetrahedralization of
several point sets. The approximate code failed to terminate on the
tilted grid input.

enough that LN cannot be used. (I could have used perfect
lattices with 53-bit integer coordinates, but ORIENT3D and
INSPHERE would never pass stage B; the perturbed lattices
occasionally force the predicates into stage C or D.)
The results for 2D, outlined in Table 3, indicate that the

four-stage predicates add about 8% to the total running time
for randomly distributed input points, mainly because of the
error bound tests. For themore difficult point sets, the penalty
may be as great as 30%. Of course, this penalty applies to
precisely the point sets that aremost likely to cause difficulties
when exact arithmetic is not available.
The results for 3D, outlined in Table 4, are somewhat less

pleasing. The four-stage predicates add about 35% to the total
running time for randomly distributed input points; for points
distributed approximately on the surface of a sphere, the
penalty is a factor of eleven. Ominously, however, the penalty
for the tilted grid is uncertain, because the tetrahedralization
program using approximate arithmetic failed to terminate. A
debugger revealed that the point location routine was stuck
in an infinite loop because a geometric inconsistency had
been introduced into the mesh due to roundoff error. Robust
arithmetic is not always slower after all.
6 Conclusions
As Priest points out, multiple-term algorithms can be used

to implement extended (but finite) precision arithmetic as
well as exact arithmetic; simply compress and then truncate
each result to a fixed number of components. Perhaps the
greatest potential of these algorithms is in providing a fast
and simple way to extend slightly the precision of critical
variables in numerical algorithms. Hence, it would not be
difficult to provide a routine that quickly computes the in-
tersection point of two segments with double precision end-
points, correctly rounded to a double precision result. Speed
considerations may make it untenable to accomplish this by
calling a standard extended precision library. The techniques
Priest and I have developed are simple enough to be coded
directly in numerical algorithms, avoiding function call over-
head and conversion costs.
A useful tool in coding such algorithms would be an ex-

pression compiler similar to Fortune and Van Wyk’s [5],
which converts an expression into exact arithmetic code,
complete with error bound derivation and floating-point fil-
ters. Such a tool might even be able to automate the process
of breaking an expression into adaptive stages as described
in Section 4.
It might be fruitful to explore whether the methods de-

scribed by Clarkson [3] and Avnaim et al. [1] can be ex-
tended by fast multiprecision methods to handle arbitrary
double precision floating-point inputs. One could certainly
relax their constraints on the bit complexity of the inputs;
for instance, the method of Avnaim et al. could be made
to perform the INSPHERE test on 64-bit inputs using expan-
sions of length three. Unfortunately, it is not obvious how
to adapt these integer-based techniques to inputs with wildly
differing exponents. It is also not clear whether such hy-
brid algorithmswould be faster than straightforward adaptiv-

ity. Nevertheless, Clarkson’s approach looks promising for
larger determinants. Although my methods work well for
small determinants, they are unlikely to work well for sizes
much larger than 5 5. Even if one uses Gaussian elimina-
tion rather than cofactor expansion (an important adjustment
for larger matrices [5, 9]), the adaptivity technique does not
scale well with determinants, because of the large number
of terms in the expanded polynomial. Clarkson’s technique
may be the only economical approach formatrices larger than
10 10.
Whether or not these issues are resolved in the near future,

researchers can make use today of tests for orientation and
incircle in two and three dimensions that are correct, fast, and
immediately applicable to double precision floating-point in-
puts. I invite working computational geometers to try my
code in their implementations, and I hope that it will save
them from worrying about robustness so they may concen-
trate on geometry.
References
[1] Francis Avnaim, Jean-Daniel Boissonnat, Olivier Devillers, Franco P.

Preparata, and Mariette Yvinec. Evaluating Signs of Determinants
Using Single-Precision Arithmetic. 1995.

[2] David H. Bailey. A Portable High Performance Multiprecision Pack-
age. Technical Report RNR-90-022, NASA Ames Research Center,
May 1993.

[3] Kenneth L. Clarkson. Safe and Effective Determinant Evaluation.
33rd Annual Symposium on Foundations of Computer Science, pages
387–395, 1992.

[4] T. J. Dekker. A Floating-Point Technique for Extending the Available
Precision. Numerische Mathematik 18:224–242, 1971.

[5] Steven Fortune and Christopher J. Van Wyk. Efficient Exact Arith-
metic for Computational Geometry. Ninth Annual Symposium on
Computational Geometry, pages 163–172, May 1993.

[6] . Static Analysis Yields Efficient Exact Integer Arithmetic for
Computational Geometry. To appear in Transactions on Mathematical
Software, 1996.

[7] David Goldberg. What Every Computer Scientist Should Know About
Floating-Point Arithmetic. ACM Computing Surveys 23(1):5–48,
March 1991.

[8] Leonidas J. Guibas and Jorge Stolfi. Primitives for the Manipulation
of General Subdivisions and the Computation of Voronoi Diagrams.
ACM Transactions on Graphics 4(2):74–123, April 1985.

[9] Michael Karasick, Derek Lieber, and Lee R. Nackman. Efficient De-
launay Triangulation Using Rational Arithmetic. ACM Transactions
on Graphics 10(1):71–91, January 1991.

[10] Donald Ervin Knuth. The Art of Computer Programming: Seminu-
merical Algorithms, second edition, volume 2. Addison Wesley, 1981.

[11] D. T. Lee and B. J. Schachter. Two Algorithms for Constructing a
Delaunay Triangulation. Int. J. Comput. Inf. Sci. 9:219–242, 1980.

[12] Douglas M. Priest. Algorithms for Arbitrary Precision Floating Point
Arithmetic. Tenth Symposium on Computer Arithmetic, pages 132–
143, 1991.

[13] . On Properties of Floating Point Arithmetics: Numerical Sta-
bility and theCost of AccurateComputations. Ph.D. thesis, Department
ofMathematics, University of California at Berkeley, November 1992.

[14] Jonathan Richard Shewchuk. Triangle: Engineering a 2D Quality
Mesh Generator and Delaunay Triangulator. First Workshop on Ap-
plied Computational Geometry. Association for Computing Machin-
ery, May 1996.

[15] David F.Watson. Computing the -dimensionalDelaunay Tessellation
with Application to Voronoi Polytopes. Computer Journal 24:167–172,
1981.

