
Triangle: Engineering a 2D Quality Mesh Generator
and Delaunay Triangulator

Jonathan Richard Shewchuk
School of Computer Science
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

jrs@cs.cmu.edu

1 Introduction
Triangle is a C program for two-dimensionalmesh genera-

tion and construction of Delaunay triangulations, constrained
Delaunay triangulations, and Voronoı̈ diagrams. Triangle
is fast, memory-efficient, and robust; it computes Delau-
nay triangulations and constrained Delaunay triangulations
exactly. Guaranteed-quality meshes (having no small an-
gles) are generated using Ruppert’s Delaunay refinement
algorithm. Features include user-specified constraints on
angles and triangle areas, user-specified holes and concav-
ities, and the economical use of exact arithmetic to im-
prove robustness. Triangle is freely available on the Web
at “http://www.cs.cmu.edu/ quake/triangle.html” and from
Netlib. This paper discusses many of the key implementation
decisions, including the choice of triangulation algorithms
and data structures, the steps taken to create and refine a
mesh, a number of issues that arise in Ruppert’s algorithm,
and the use of exact arithmetic.

2 Triangulation Algorithms and Data
Structures
A triangular mesh generator rests on the efficiency of its

triangulation algorithmsand data structures, so I discuss these
first. I assume the reader is familiar with Delaunay triangu-
lations, constrained Delaunay triangulations, and the incre-
mental insertion algorithms for constructing them. Consult
the survey by Bern and Eppstein [2] for an introduction.
There are many Delaunay triangulation algorithms, some

ofwhich are surveyed and evaluated by Fortune [7] and Su and
Drysdale [18]. Their results indicate a rough parity in speed
among the incremental insertion algorithm of Lawson [11],
the divide-and-conquer algorithm of Lee and Schachter [12],
and the plane-sweep algorithm of Fortune [6]; however, the

Supported in part by the Natural Sciences and Engineering Research Council
of Canada under a 1967 Science and Engineering Scholarship and by the
National Science Foundation under Grant ASC-9318163.

implementations they study were written by different peo-
ple. I believe that Triangle is the first instance in which all
three algorithms have been implemented with the same data
structures and floating-point tests, by one person who gave
roughly equal attention to optimizing each. (Some details
of how these implementations were optimized appear in Ap-
pendix A.)
Table 1 compares the algorithms, including versions that

use exact arithmetic (see Section 4) to achieve robustness,
and versions that use approximate arithmetic and are hence
faster but may fail or produce incorrect output. (The robust
and non-robust versions are otherwise identical.) As Su and
Drysdale [18] also found, the divide-and-conquer algorithm is
fastest, with the sweepline algorithm second. The incremen-
tal algorithm performs poorly, spending most of its time in
point location. (Su and Drysdale produced a better incremen-
tal insertion implementation by using bucketing to perform
point location, but it still ranks third. Triangle does not use
bucketing because it is easily defeated, as discussed in the
appendix.) The agreement between my results and those of
Su and Drysdale lends support to their ranking of algorithms.
An important optimization to the divide-and-conquer algo-

rithm, adapted fromDwyer [5], is to partition the verticeswith
alternating horizontal and vertical cuts (Lee and Schachter’s
algorithm uses only vertical cuts). Alternating cuts speed the
algorithm and, when exact arithmetic is disabled, reduce its
likelihood of failure. One million points can be triangulated
correctly in a minute on a fast workstation.
All three triangulation algorithms are implemented so as to

eliminate duplicate input points; if not eliminated, duplicates
can cause catastrophic failures. The sweepline algorithm
can easily detect duplicate points as they are removed from
the event queue (by comparing each with the previous point
removed from the queue), and the incremental insertion al-
gorithm can detect a duplicate point after point location. The
divide-and-conquer algorithm begins by sorting the points by
their -coordinates, after which duplicates can be detected
and removed. This sorting step is a necessary part of the
divide-and-conquer algorithm with vertical cuts, but not of
the variant with alternating cuts (which must perform a se-
quence of median-finding operations, alternately by and



Delaunay triangulation timings (seconds)
Number of points 10,000 100,000 1,000,000

Point distribution Uniform Boundary Tilted Uniform Boundary Tilted Uniform Boundary Tilted
Algorithm Random of Circle Grid Random of Circle Grid Random of Circle Grid
Div&Conq, alternating cuts

robust 0.33 0.57 0.72 4.5 5.3 5.5 58 61 58
non-robust 0.30 0.27 0.27 4.0 4.0 3.5 53 56 44

Div&Conq, vertical cuts
robust 0.47 1.06 0.96 6.2 9.0 7.6 79 98 85
non-robust 0.36 0.17 failed 5.0 2.1 4.2 64 26 failed

Sweepline
non-robust 0.78 0.62 0.71 10.8 8.6 10.5 147 119 139

Incremental
robust 1.15 3.88 2.79 24.0 112.7 101.3 545 1523 2138
non-robust 0.99 2.74 failed 21.3 94.3 failed 486 1327 failed

Table 1: Timings for triangulation on a DEC 3000/700 with a 225 MHz Alpha processor, not including I/O. Robust and non-robust
versions of the Delaunay algorithms triangulated points chosen from one of three different distributions: uniformly distributed
random points in a square, random approximately cocircular points, and a tilted 1000 1000 square grid.

-coordinates). Hence, the timings in Table 1 for divide-
and-conquer with alternating cuts could be improved slightly
if one could guarantee that no duplicate input points would
occur; the initial sorting step would be unnecessary.
Should one choose a data structure that uses a record to

represent each edge, or one that uses a record to represent
each triangle? Triangle was originally written using Guibas
and Stolfi’s quad-edge data structure [10] (without the Flip
operator), then rewritten using a triangle-based data structure.
The quad-edge data structure is popular because it is elegant,
because it simultaneously represents a graph and its geometric
dual (such as a Delaunay triangulation and the corresponding
Voronoı̈ diagram), and because Guibas and Stolfi give de-
tailed pseudocode for implementing the divide-and-conquer
and incremental Delaunay algorithms using quad-edges.
Despite the fundamental differences between the data

structures, the quad-edge-based and triangle-based imple-
mentations of Triangle are both faithful to the Delaunay tri-
angulation algorithms presented by Guibas and Stolfi [10]
(I did not implement a quad-edge sweepline algorithm), and
hence offer a fair comparison of the data structures. Perhaps
the most useful observation of this paper for practitioners
is that the divide-and-conquer algorithm, the incremental al-
gorithm, and the Delaunay refinement algorithm for mesh
generation were all sped by a factor of two by the triangular
data structure. (However, it is worth noting that the code
devoted specifically to triangulation is roughly twice as long
for the triangular data structure.) A difference so pronounced
demands explanation.
First, consider the different storage demands of each data

structure, illustrated in Figure 1. Each quad-edge record
contains four pointers to neighboring quad-edges, and two
pointers to vertices (the endpoints of the edge). Each triangle
record contains three pointers to neighboring triangles, and

Figure 1: A triangulation(top) and its corresponding represen-
tations with quad-edge and triangular data structures. Each
quad-edge and each triangle contains six pointers.

three pointers to vertices. Hence, both structures contain six
pointers.1 A triangulation contains roughly three edges for
every two triangles. Hence, the triangular data structure is
more space-efficient.
It is difficult to ascertain with certainty why the triangular

data structure is superior in time as well as space, but one can
make educated inferences. When a programmakes structural
changes to a triangulation, the amount of time used depends in
part on the numberof pointers that have to be read andwritten.

1Both the quad-edge and triangle data structures must store not only
pointers to their neighbors, but also the orientations of their neighbors, to
make clear how they are connected. For instance, each pointer from a
triangle to a neighboring triangle has an associated orientation (a number
between zero and two) that indicates which edge of the neighboring triangle
is contacted. An important space optimization is to store the orientation
of each quad-edge or triangle in the bottom two bits of the corresponding
pointer. Thus, each record must be aligned on a four-byte boundary.

2



Figure 2: How the triangle-based divide-and-conquer algo-
rithm represents an isolated edge (left) and an isolated tri-
angle (right). Dashed lines represent ghost triangles. White
vertices all represent the same “vertex at infinity”; only black
vertices have coordinates.

This amount is smaller for the triangular data structure; more
of the connectivity information is implicit in each triangle.
Caching is improved by the fact that fewer structures are
accessed. (For large triangulations, any two adjoining quad-
edges or triangles are unlikely to lie in the same cache line.)
Because the triangle-based divide-and-conquer algorithm

proved to be fastest, it is worth exploring in some depth. At
first glance, the algorithm and data structure seem incompat-
ible. The divide-and-conquer algorithm recursively halves
the input vertices until they are partitioned into subsets of
two or three vertices each. Each subset is easily triangulated
(yielding an edge, two collinear edges, or a triangle), and the
triangulations are merged together to form larger ones. If one
uses a degenerate triangle to represent an isolated edge, the
resulting code is clumsy because of the need to handle special
cases. One might partition the input into subsets of three to
five vertices, but this does not help if the points in a subset
are collinear.
To preserve the elegance of Guibas and Stolfi’s presenta-

tion of the divide-and-conquer algorithm, each triangulation
is surrounded with a layer of “ghost” triangles, one triangle
per convex hull edge. The ghost triangles are connected to
each other in a ring about a “vertex at infinity” (really just
a null pointer). A single edge is represented by two ghost
triangles, as illustrated in Figure 2.
Ghost triangles are useful for efficiently traversing the con-

vex hull edges during the merge step. Some are transformed
into real triangles during this step; two triangulations are sewn
together by fitting their ghost triangles together like the teeth
of two gears. (Some edge flips are also needed. See Fig-
ure 3.) Each merge step creates only two new triangles; one
at the bottom and one at the top of the seam. After all the
merge steps are done, the ghost triangles are removed and the
triangulation is passed on to the next stage of meshing.
Precisely the same data structure, ghost triangles and all, is

used in the sweepline implementation to represent the grow-
ing triangulation (which often includes dangling edges). De-
tails are omitted.
Augmentations to the data structure are necessary to sup-

port the constrained triangulations needed for mesh genera-

Figure 3: Halfway through a merge step of the divide-and-
conquer algorithm. Dashed lines represent ghost triangles
and triangles displaced by edge flips. The dotted triangle
at bottom center is a newly created ghost triangle. Shaded
trianglesare non-Delaunayandwill be displacedby edge flips.

tion. Constrained edges are edges that may not be removed in
the process of improving the quality of amesh, and hencemay
not be flipped during incremental insertion of a vertex. One
ormore constrained edges collectively represent an input seg-
ment. Constrained edges may carry additional information,
such as boundary conditions for finite element simulations.
(A future version of Triangle may support curved segments
this way.) The quad-edge structure supports such constraints
easily; each quad-edge is simply annotated to mark the fact
that it is constrained, and perhaps annotated with extra in-
formation. It is more expensive to represent constraints with
the triangular structure; I augment each triangle with three
extra pointers (one for each edge), which are usually null but
may point to shell edges, which represent constrained edges
and carry additional information. This eliminates the space
advantage of the triangular data structure, but not its time
advantage. Triangle uses the longer record only if constraints
are needed.

3 Ruppert’s Delaunay Refinement
Algorithm
Ruppert’s algorithm for two-dimensional quality mesh

generation [15] is perhaps the first theoretically guaranteed
meshing algorithm to be truly satisfactory in practice. It
produces meshes with no small angles, using relatively few
triangles (though the density of triangles can be increased
under user control) and allowing the density of triangles
to vary quickly over short distances, as illustrated in Fig-
ure 4. (Chew [3] independently developed a similar algo-

3



Figure 4: A demonstration of the ability of the Delaunay re-
finement algorithm to achieve large gradations in triangle size
while constraining angles. No angles are smaller than 24 .

rithm.) This section describesRuppert’sDelaunay refinement
algorithm as it is implemented in Triangle.
Triangle’s input is a planar straight line graph (PSLG),

defined to be a collection of vertices and segments (where
the endpoints of every segment are included in the list of
vertices). Figure 5 illustrates a PSLG defining an electric
guitar. Although the definition of “PSLG”normally disallows
segment intersections (except at segment endpoints), Triangle
can detect segment intersections and insert vertices.
The first stage of the algorithm is to find the Delaunay

triangulation of the input vertices, as in Figure 6. In general,
some of the input segments aremissing from the triangulation;
the second stage is to insert them. Triangle can force themesh
to conform to the segments in one of two ways, selectable by
the user. The first is to insert a newvertex corresponding to the
midpoint of any segment that does not appear in themesh, and
use Lawson’s incremental insertion algorithm to maintain the
Delaunay property. The effect is to split the segment in half,
and the two resulting subsegments may appear in the mesh.
If not, the procedure is repeated recursively until the original
segment is represented by a linear sequence of constrained
edges in the mesh.
The second choice is to simply use a constrainedDelaunay

triangulation (Figure 7). Each segment is inserted by delet-
ing the triangles it overlaps, and retriangulating the regions
on each side of the segment. No new vertices are inserted.
For reasons explained in Section 3.1, Triangle uses the con-
strained Delaunay triangulation by default.
The third stage of the algorithm,which diverges fromRup-

pert [15], is to remove triangles from concavities and holes
(Figure 8). A hole is simply a user-specified point in the
plane where a “triangle-eating virus” is planted and spread
by depth-first search until its advance is halted by segments.
(This simple mechanism saves both the user and the imple-
mentation from a common outlook wherein one must define
oriented curveswhose insides are clearly distinguishable from
their outsides. Triangle’smethodmakes it easier to treat holes
and internal boundaries in a unified manner.2) Concavities

2I imagine computational geometers replying, “Of course,” engineers
responding, “Hmm,” and solid modeling specialists recoiling in horror.

Figure 5: Electric guitar PSLG.

Figure 6: Delaunay triangulation of vertices of PSLG. The
triangulation does not conform to all of the input segments.

Figure 7: Constrained Delaunay triangulation of PSLG.

Figure 8: Triangles are removed from concavities and holes.

Figure 9: Conforming Delaunay triangulation with 20 mini-
mum angle.

4



Figure 10: Segments are split recursively (while maintaining
the Delaunay property) until no segments are encroached.

Figure 11: Each bad triangle is split by inserting a vertex at
its circumcenter and maintaining the Delaunay property.

are recognized from unconstrained edges on the boundary of
the mesh, and the same virus is used to hollow them out.
The fourth stage, and the heart of the algorithm, refines

the mesh by inserting additional vertices into the mesh (using
Lawson’s algorithm to maintain the Delaunay property) until
all constraints on minimum angle andmaximum triangle area
are met (Figure 9). Vertex insertion is governed by two rules.

The diametral circle of a segment is the (unique) smallest
circle that contains the segment. A segment is said to
be encroached if a point lies within its diametral circle.
Any encroached segment that arises is immediately split
by inserting a vertex at its midpoint. The two resulting
subsegments have smaller diametral circles, and may or
may not be encroached themselves. See Figure 10.

The circumcircle of a triangle is the unique circle that
passes through all three vertices of the triangle. A tri-
angle is said to be bad if it has an angle too small or
an area too large to satisfy the user’s constraints. A bad
triangle is split by inserting a vertex at its circumcenter
(the center of its circumcircle); the Delaunay property
guarantees that the triangle is eliminated (see Figure 11).
If the new vertex encroaches upon any segment, the ver-
tex is deleted (reversing the insertion process) and all the
segments it encroached upon are split.

Encroached segments are given priority over bad triangles.
A queue of encroached segments and a queue of bad trian-
gles are initialized at the beginning of the refinement stage
and maintained throughout; every vertex insertion may add
new members to either queue. The former queue rarely con-
tains more than one segment except at the beginning of the
refinement stage, when it may contain many.

Figure 12: Demonstration of the refinement stage. The first
two images are the input PSLG and its constrained Delaunay
triangulation. In each image, highlighted segments or trian-
gles are about to be split, and highlighted vertices are about
to be deleted. Note that the algorithm easily accommodates
internal boundaries and holes.

The refinement stage is illustrated in Figure 12. Rup-
pert [15] proves that this procedure halts for an angle con-
straint of up to 20 7 . In practice, the algorithm generally
halts with an angle constraint of 33 8 , but often fails to
terminate given an angle constraint of 33 9 . It would be
interesting to discover why the cutoff falls there.
3.1 Selected Implementation Issues

Triangle removes extraneous triangles fromholes and con-
cavities before the refinement stage. This presents no prob-
lem for the refinement algorithm; the requirement that no
segment be encroached and the Delaunay property together
ensure that the circumcenter of every triangle lies within the
mesh. (Roundoff error might perturb a circumcenter to just
outside the mesh, but it is easy to identify the conflicting
edge and treat it as encroached.) An advantage of removing
triangles before refinement is that computation is not wasted
refining triangles that will eventually be deleted.
A more important advantage is illustrated in Figure 13.

If extraneous triangles remain during the refinement stage,
overrefinement can occur if very small features outside the
object being meshed cause the creation of small triangles
inside the mesh. Ruppert suggests solving this problem by
using the constrained Delaunay triangulation, and ignoring
interactions that take place outside the region being triangu-
lated. Early removal of triangles provides a nearly effortless

5



Figure 13: Two variations of the Delaunay refinement algo-
rithm with a 20 minimum angle. Left: Mesh created using
segment splitting and late removal of triangles. This illustra-
tion includes external triangles, just prior to removal, to show
why overrefinement occurs. Right: Mesh created using con-
strainedDelaunay triangulationand early removal of triangles.

Figure 14: Two meshes with a 33 minimum angle. The left
mesh, with 290 triangles, was formed by always splitting the
worst existing triangle. The rightmesh, with 450 triangles, was
formed by using a first-come first-split queue of bad triangles.

way to accomplish this effect. Segments that would normally
be considered encroached are ignored (Figure 13, right), be-
cause encroached segments are diagnosed by noticing that
they occur opposite an obtuse angle in a triangle.
Another determinant of the number of triangles in the final

mesh is the order in which bad triangles are split, especially
when a strong angle constraint is used. Figure 14 demon-
strates how sensitive the refinement algorithm is to the order.
For this example with a 33 minimum angle, a heap of bad
triangles indexed by their smallest angle confers a 35% re-
duction in mesh size over a first-in first-out queue. (This
difference is typical for large meshes with a strong angle con-
straint, but thankfully disappears for small meshes and small

a
30° 30°

30°
30°

30°
30°

b

Figure 15: In any triangulation with no angles smaller than
30 , the ratio cannot exceed 27.

constraints.) The discrepancy probably occurs because cir-
cumcenters of very bad triangles are likely to split more bad
triangles than circumcenters of mildly bad triangles. Unfor-
tunately, a heap is slow for large meshes, especially when
small area constraints force all of the triangles into the heap.
Delaunay refinement usually takes time in practice, but
use of a heap increases the complexity to log .
Triangle’s solution, chosen experimentally, is to use 64

FIFO queues, each representing a different interval of angles.
It is counterproductive (in practice) to orderwell-shaped trian-
gles by their worst angle, so one queue is used forwell-shaped
but too-large triangleswhose angles are all roughly larger than
39 . Triangles with smaller angles are partitioned among the
remaining queues. When a bad triangle is chosen for splitting,
it is taken from the “worst” nonempty queue. This method
yields meshes comparablewith those generated using a heap,
but is only slightly slower than using a single queue. During
the refinement phase, about 21,000newvertices are generated
per second on a DEC 3000/700. These vertices are inserted
using the incremental Delaunay algorithm, but are inserted
much more quickly than Table 1 would suggest because a
triangle’s circumcenter can be located quickly by starting the
search at the triangle.
3.2 A Negative Result on Quality Triangulations

For any angle bound 0, there exists a PSLG such
that it is not possible to triangulate without creating a new
corner (not present in ) having angle smaller than . Here,
I discuss why this is true.
Ruppert’s proof that his Delaunay refinement algorithm

terminatesmakes use of the assumption that all interior angles
are 90 or larger. This condition is often violated in practice,
so he suggests handling small interior angles by surrounding
each vertex of an acute angle with a ring of shield edges. As
the negative result stated above suggests, there are PSLGs for
which shield edges fail, and for which no construction can
succeed. Fortunately, all such PSLGs I am aware of have
an interior angle much smaller than , so failure is generally
predictable.
The reasoning behind the result is as follows. Suppose a

segment in a conforming triangulation has been split into two
subsegments of lengths and , as illustrated in Figure 15.
Mitchell [13] proves that if the triangulation has no angles
smaller than , then the ratio has an upper bound of
2 cos 180 . (This bound is tight if 180 is an integer;

6



Figure 15 offers an example where the bound is obtained.)
Hence any bound on the smallest angle of a triangulation
imposes a limit on the gradation of triangle sizes along a
segment (or anywhere in the mesh).
A problem can arise if a small angle occurs at the in-

tersection point of two segments of a PSLG, as illustrated
in Figure 16 (top). The small angle cannot be improved, of
course, but one does not wish to create any new small an-
gles. Assume that one of the segments is split by a point ,
which may be present in the input or may be inserted to help
achieve the angle constraint elsewhere in the triangulation.
The insertion of forces part of the region between the two
segments to be triangulated (Figure 16, center), which can
cause a new point to be inserted on the segment containing
. Let and as illustrated. If the angle bound
is maintained, the length cannot be large; the ratio is
bounded below

sin
sin

cos
sin
tan

If the region above the segments is part of the interior
of the PSLG, the fan effect demonstrated in Figure 15 may
necessitate the insertion of another vertex between and
(Figure 16, bottom); this circumstance is unavoidable if the
product of the bounds on and given above is less
than one. For an angle constraint of 30 , this condition
occurs when is about six tenths of a degree. Unfortunately,
the new vertex creates the same conditions as the vertex ,
but closer to ; the process will cascade, eternally creating
smaller and smaller triangles in an attempt to satisfy the angle
constraint. No algorithm can produce a finite triangulation
of such a PSLG without violating the angle constraint. (It is
amusing to consider whether the angle constraint can be met
if one is allowed an infinite number of triangles.)
If some PSLGs do not have quality triangulations, what

are the implications for shielding? Triangle implements a
variant of shielding known as “modified segment splitting us-
ing concentric circular shells” (see Ruppert [15] for details),
which is generally effective in practice for PSLGs that have
small angles greater than 5 , and often for smaller angles.
Shielding is useful even though it cannot solve all problems.
On the other hand, the Delaunay refinement algorithm does
not know to use careful arrangements of triangles as in Fig-
ure 15 to manage small input angles, and therefore can fail
to terminate even on PSLGs for which a quality triangulation
exists. Hence, Triangle prints a warning message when an-
gles smaller than five degrees appear between input segments.
The smaller an angle is, and the greater the number of small
angles in a PSLG, the less likely Triangle is to terminate. An
interesting question for futurework is how to determinewhen
and where it is wise to weaken the angle constraint so that
termination can be ensured.
This problem presents another motivation for removing

triangles from holes and concavities prior to applying the
Delaunay refinement algorithm. Holes with small angles
might cause the algorithm to fail if triangles are not removed

q

q
o

o
p

p
ab

r
o

Figure 16: Top: A difficult PSLG with a small interior angle .
Center: The point and the angle constraint necessitate the
insertion of the point . Bottom: The point and the angle
constraint necessitate the insertion of the point . The process
repeats eternally.

until after refinement. Concave objects can be particularly
dastardly, because a very small angle may occur between a
defining segment of the object and an edge of the convex hull.
The user, unaware of the effect of the convexhull edge, would
be mystified why the Delaunay refinement algorithm fails to
terminate on what appears to be a simple PSLG. (In fact, this
is how the issues described in this section first became evident
to me.) Early removal of triangles from concavities avoids
this problem.

4 Correct Adaptive Tests
The correctness of the incremental and divide-and-conquer

algorithms depends on reliable orientation and incircle tests.
The orientation test determines whether a point lies to the left
of, to the right of,or on a line; it is used inmany (perhapsmost)
geometric algorithms. The incircle test determines whether
a point lies inside, outside, or on a circle. Inexact versions

7



Figure 17: Left: A Delaunay triangulation (two of the guitar’s
tuning screws). Right: An invalid triangulation created by
Triangle with exact arithmetic disabled.

of these tests are vulnerable to roundoff error, and the wrong
answers they produce can cause geometric algorithms to hang,
crash, or produce incorrect output. Figure 17 demonstrates a
real example of the failure of Triangle’s divide-and-conquer
algorithm.
The easiest solution to many of these robustness problems

is to use software implementations of exact arithmetic, al-
beit often at great expense. It is common to hear reports
of implementations being slowed by factors of ten or more
as a consequence. The goal of improving the speed of cor-
rect geometric calculations has received much recent atten-
tion [4, 8, 1], but the most promising proposals take integer
or rational inputs, often of limited precision. These methods
do not appear to be usable if it is convenient or necessary to
use ordinary floating-point inputs.
Triangle includes fast correct implementations of the ori-

entation and incircle tests that take floating-point inputs. They
owe their speed to two features. First, they employ new
fast algorithms for arbitrary precision arithmetic that have a
strong advantage over other software techniques in computa-
tions that manipulate values of extended but small precision.
Second, they are adaptive; their running time depends on the
degree of uncertainty of the result, and is usually small. For
instance, the adaptive orientation test is slow only if the points
being tested are nearly or exactly collinear.
The orientation and incircle tests both work by comput-

ing the sign of a determinant. Fortune and Van Wyk [8]
take advantage of the fact that only the sign is needed by
using a floating-point filter: the determinant is first evaluated
approximately, and only if forward error analysis indicates
that the sign of the approximate result cannot be trusted does
one use an exact test. Triangle’s adaptive implementations
carry this suggestion to its logical extreme by computing a
sequence of successively more accurate approximations to
the determinant, stopping only when the accuracy of the sign
is assured. To reduce computation time, some of these ap-
proximations can reuse previous, less accurate computations.
Shewchuk [16] presents details of the arbitrary precision
arithmetic algorithms and the adaptivity scheme, and pro-
vides empirical evidence that multiple-stage adaptivity can
significantly improve on two-stage adaptivity when difficult
point sets are triangulated.

Using the adaptive tests, Triangle computes Delaunay tri-
angulations, constrainedDelaunay triangulations, and convex
hulls exactly, roundoff error notwithstanding. Table 1 shows
that the robust tests usually incur only a 10% to 30% over-
head, though more time may be needed for points sets with
many near-degeneracies. One exception is the divide-and-
conquer algorithm with vertical cuts. Because this algorithm
repeatedly merges tall, thinly separated triangulations, it per-
forms many orientation tests on nearly-collinear points, and
hence the robust version is much slower than the non-robust
version. The variant that uses alternating cuts encounters
nearly-collinear points less often; hence, its robust version
suffers a smaller speed handicap, and its non-robust version
is less likely to fail.
Of course, adaptive tests do not solve all robustness prob-

lems. Geometric computations that produce new vertices,
including circumcenters and segment intersections, could be
performed exactly in principle, but the results would have
large bit complexity and would be inconvenient to manip-
ulate and expensive to store. Worse, vertices of arbitrarily
large bit complexity could eventually be produced in a cas-
cading effect when the Delaunay refinement algorithm inserts
circumcenters of triangles whose vertices were themselves
circumcenters. Hence, it is infeasible to make the algorithm
perfectly robust. Fortunately, the Delaunay refinement algo-
rithm is naturally stable with regard to floating-point roundoff
error. Problems arise only when triangles are refined to so
small a size that it is no longer possible to construct a circum-
center that is distinct from its triangle’s vertices.
I have not produced a robust version of the sweepline al-

gorithm for a somewhat technical reason. The sweepline
algorithmmaintains a priority queue (normally implemented
as a heap) containing two types of events: site events, where
the sweepline passes over an input point, and circle events,
where the sweepline reaches the top of a circle defined by
three consecutive vertices on the boundary of the triangula-
tion. Unfortunately, the -coordinate of such a circle top is
expensive to compute exactly, may be irrational, and has a
somewhat complicated exact representation. A robust imple-
mentation must keep the events correctly ordered, and hence
must replace the simple comparisons normally used to main-
tain a priority queue with a test that correctly compares two
circle tops. Even a fast adaptive version of such a test would
be so much slower than simple comparisons that event queue
maintenance, which is a dominant cost of the sweepline al-
gorithm, would become prohibitively expensive.

A Additional Implementation Notes
The sweepline and incrementalDelaunay triangulation im-

plementations compared by Su and Drysdale [18] each use
some variant of uniform bucketing to locate points. Buck-
eting yields fast implementations on uniform point sets, but
is easily defeated; a small, dense cluster of points in a large,
sparsely populated region may all fall into a single bucket.
I have not used bucketing in Triangle, preferring algorithms

8



that exhibit good performance with any distribution of input
points. As a result, Triangle may be slower than necessary
when triangulating uniformly distributed point sets, but will
not exhibit asymptotically slower running times on difficult
inputs.
Fortune’s sweepline algorithm uses two nontrivial data

structures in addition to the triangulation: a priority queue to
store events, and a balanced tree data structure to store the
sequence of edges on the boundary of the mesh. Fortune’s
own implementation, available fromNetlib, uses bucketing to
perform both these functions; hence, an log running
time is not guaranteed, and Su and Drysdale [18] found that
the original implementation exhibits 3 2 performanceon
uniform random point sets. By modifying Fortune’s code to
use a heap to store events, they obtained log running
time and better performance on large point sets (having more
than 50,000 points). However, bucketing outperforms a heap
on small point sets.
Triangle’s implementation uses a heap as well, and also

uses a splay tree [17] to store mesh boundary edges, so that
an log running time is attained, regardless of the dis-
tribution of points. Not all boundary edges are stored in the
splay tree; when a new edge is created, it is inserted into the
tree with probability 0 1. (The value 0 1 was chosen empiri-
cally to minimize the triangulation time for uniform random
point sets.) At any time, the splay tree contains a random
sample of roughly one tenth of the boundary edges. When
the sweepline sweeps past an input point, the point must be
located relative to the boundary edges; this point location in-
volves a search in the splay tree, followed by a search on the
boundary of the triangulation itself.
Splay trees adjust themselves so that frequently accessed

items are near the top of the tree. Hence, a point set organized
so that many new vertices appear at roughly the same loca-
tion on the boundary of the mesh is likely to be triangulated
quickly. This effect partly explains why Triangle’s sweepline
implementation triangulates points on the boundary of a cir-
cle more quickly than the other point sets, even though there
are many more boundary edges in the cocircular point set
and the splay tree grows to be much larger (containing
boundary edges instead of ).
Triangle’s incremental insertion algorithm for Delaunay

triangulation uses the point location method proposed by
Mücke, Saias, and Zhu [14]. Their jump-and-walk method
chooses a random sample of 1 3 vertices from the mesh
(where is the number of nodes currently in themesh), deter-
mineswhich of these vertices is closest to the query point, and
walks through the mesh from the chosen vertex toward the
query point until the triangle containing that point is found.
Mücke et al. show that the resulting incremental algorithm
takes expected 4 3 time on uniform random point sets.
Table 1 appears to confirm this analysis. Triangle uses a sam-
ple size of 0 45 1 3; the coefficient was chosen empirically
to minimize the triangulation time for uniform random point
sets. Triangle also checks the previously inserted point, be-

cause in many practical point sets, any two consecutive points
have a high likelihood of being near each other.
A more elaborate point location scheme such as that sug-

gested by Guibas, Knuth, and Sharir [9] could be used (along
with randomization of the insertion order) to obtain an ex-
pected log triangulation algorithm, but the data struc-
ture used for location is likely to take up as much memory
as the triangulation itself, and unlikely to surpass the perfor-
mance of the divide-and-conquer algorithm; hence, I do not
intend to pursue it.
Note that all discussion in this paper applies to Triangle

version 1.2; earlier versions lack the sweepline algorithm and
many optimizations to the other algorithms.

References
[1] Francis Avnaim, Jean-Daniel Boissonnat, Olivier Dev-

illers, Franco P. Preparata, and Mariette Yvinec. Eval-
uating Signs of Determinants Using Single-Precision
Arithmetic. 1995.

[2] Marshall Bern and David Eppstein. Mesh Generation
and Optimal Triangulation. Computing in Euclidean
Geometry (Ding-Zhu Du and Frank Hwang, editors),
Lecture Notes Series on Computing, volume 1, pages
23–90. World Scientific, Singapore, 1992.

[3] L. Paul Chew. Guaranteed-Quality Mesh Generation
for Curved Surfaces. Proceedings of the Ninth Annual
Symposium on Computational Geometry, pages 274–
280. Association for ComputingMachinery, May 1993.

[4] Kenneth L. Clarkson. Safe and Effective Determinant
Evaluation. 33rd Annual Symposium on Foundations
of Computer Science, pages 387–395. IEEE Computer
Society Press, October 1992.

[5] Rex A. Dwyer. A Faster Divide-and-Conquer Algo-
rithm for Constructing Delaunay Triangulations. Algo-
rithmica 2(2):137–151, 1987.

[6] Steven Fortune. A Sweepline Algorithm for Voronoı̈
Diagrams. Algorithmica 2(2):153–174, 1987.

[7] . Voronoı̈ Diagrams and Delaunay Triangula-
tions. Computing in Euclidean Geometry (Ding-Zhu
Du and Frank Hwang, editors), Lecture Notes Series on
Computing, volume 1, pages 193–233.World Scientific,
Singapore, 1992.

[8] Steven Fortune and Christopher J. Van Wyk. Efficient
Exact Arithmetic for Computational Geometry. Pro-
ceedings of the Ninth Annual Symposium on Com-
putational Geometry, pages 163–172. Association for
Computing Machinery, May 1993.

[9] Leonidas J. Guibas, Donald E. Knuth, andMicha Sharir.
Randomized Incremental Construction of Delaunay and
Voronoı̈ Diagrams. Algorithmica 7(4):381–413, 1992.

9



[10] Leonidas J. Guibas and Jorge Stolfi. Primitives for the
Manipulation of General Subdivisions and the Com-
putation of Voronoı̈ Diagrams. ACM Transactions on
Graphics 4(2):74–123, April 1985.

[11] C. L. Lawson. Software for 1 Surface Interpolation.
Mathematical Software III (John R. Rice, editor), pages
161–194. Academic Press, New York, 1977.

[12] D. T. Lee and B. J. Schachter. Two Algorithms for Con-
structing a Delaunay Triangulation. International Jour-
nal of Computer and Information Sciences 9(3):219–
242, 1980.

[13] Scott A. Mitchell. Cardinality Bounds for Triangula-
tions with Bounded Minimum Angle. Sixth Canadian
Conference on Computational Geometry, 1994.

[14] Ernst P. Mücke, Isaac Saias, and Binhai Zhu. Fast Ran-
domized Point Location Without Preprocessing in Two-
and Three-dimensional Delaunay Triangulations. Pro-
ceedings of the Twelfth Annual Symposium on Compu-
tational Geometry. Association for ComputingMachin-
ery, May 1996.

[15] Jim Ruppert. A Delaunay Refinement Algorithm for
Quality 2-Dimensional Mesh Generation. Journal of
Algorithms 18(3):548–585,May 1995.

[16] JonathanRichard Shewchuk.Robust Adaptive Floating-
Point Geometric Predicates. Proceedings of the Twelfth
Annual SymposiumonComputationalGeometry.Asso-
ciation for Computing Machinery, May 1996.

[17] Daniel Dominic Sleator and Robert Endre Tarjan. Self-
Adjusting Binary Search Trees. Journal of the Asso-
ciation for Computing Machinery 32(3):652–686, July
1985.

[18] Peter Su and Robert L. Scot Drysdale. A Compari-
son of Sequential Delaunay Triangulation Algorithms.
Proceedings of the Eleventh Annual Symposium on
Computational Geometry, pages 61–70. Association for
Computing Machinery, June 1995.

10


