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Abstract
I discuss algorithms based on bistellar flips for inserting and delet-
ing constraining (d − 1)-facets in d-dimensional constrained De-
launay triangulations (CDTs) and weighted CDTs, also known as
constrained regular triangulations. The facet insertion algorithm is
likely to outperform other known algorithms on most inputs. The
facet deletion algorithm is the first proposed for d > 2, short of
recomputing the CDT from scratch. An incremental facet insertion
algorithm that begins with an unconstrained Delaunay triangula-
tion can construct the CDT of a ridge-protected piecewise linear
complex with nv vertices in O(n

bd/2c+1
v log nv) time. Hence, in

odd dimensions, CDT construction by incremental facet insertion
is within a factor of log nv of worst-case optimal. Perhaps the most
important feature of these algorithms is that they are relatively easy
to implement.
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F.2.2 [Analysis of Algorithms and Problem Complexity]: Non-
numerical Algorithms and Problems
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Algorithms, Theory
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1. Introduction
A constrained Delaunay triangulation (CDT) is a variation of a

Delaunay triangulation that is constrained to respect the shape of a
domain—perhaps an object to be rendered, or a domain to be simu-
lated by a numerical method like the finite element method. CDTs
have desirable properties that make them useful in interpolation and
numerical analysis, including their tendency to favor “round” tetra-
hedra over “skinny” (high aspect ratio) tetrahedra, their suitability
for interpolation [25], and their mathematical properties that allow
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Delaunay refinement algorithms [4, 22] to generate meshes that
have provably good characteristics.

A regular triangulation is a triangulation that can arise as a side
view of a convex polytope. Delaunay triangulations are a special
case of regular triangulations. A constrained regular triangulation
is a triangulation that arises as a side view of a polytope that is
locally convex everywhere except at the faces that are constrained
to be part of the triangulation. (This notion is formalized shortly.)

Cheng et al. [2] have shown that regular triangulations are useful
in three-dimensional mesh generation. Constrained regular trian-
gulations are even more useful because of their ability to respect
the shape of a domain. Another use for constrained regular trian-
gulations, as this paper shows, is that they help in reasoning about
algorithms for updating CDTs based on elementary geometric op-
erations known as bistellar flips.

This paper discusses flip-based algorithms for updating and con-
structing CDTs and constrained regular triangulations. The algo-
rithms are relatively simple (as compared to sweep algorithms [23]),
yet are fast in odd dimensions, and are probably the best exist-
ing choice for practical three-dimensional CDT construction. Flip-
based CDT construction takes O(n

bd/2c+1
v log nv) time, where nv

is the number of vertices in the input and d is the dimension. This is
within a factor of log nv of worst-case optimal in odd dimensions.

A CDT is a triangulation of an underlying input called a piece-
wise linear complex (PLC), following Miller, Talmor, Teng, Walk-
ington, and Wang [17]. A PLC X is a set of facets of dimensions
0 through d. The 0-facets are vertices, and every vertex of a CDT
of X is a vertex in X . Each higher-dimensional facet is a polytope
(roughly speaking), possibly with holes, slits, and isolated vertices
in it, as Figure 1 shows. Formally, a k-facet is a union of open con-
vex k-polytopes lying in a common k-flat, although sometimes it is
more convenient to think of the closure of the k-facet. A facet may
be nonconvex and may have any number of faces. A facet need not
be connected.

Figure 1: Each facet of a PLC (left) may have holes, slits, and inte-
rior vertices, which may be used to enforce the presence of specific
faces (perhaps so that boundary conditions may be applied) or to
support intersections with other facets. The right illustration is the
constrained Delaunay tetrahedralization of the PLC.



A PLC must obey the same requirements as any type of complex:
every lower-dimensional face of a facet in X is a facet in X , and
every nonempty intersection of two facets in X is either a lower-
dimensional facet in X or one of the two original facets.

The facets of dimension 1 through d − 1 are called constraining
facets, as they constrain the CDT: for a triangulation T to be a CDT
of X , each constraining facet of X must be a union of faces of T .
(A full definition of CDT appears in Section 2.)

The union of the d-facets of X is the triangulation domain, the
region of space a user wishes to triangulate. X must contain the
faces of the d-facets, so the triangulation domain is facet-bounded.

Updating a CDT is in some ways like updating a Delaunay trian-
gulation, but there are catches. The first catch is that every modifi-
cation is done in the context of an underlying PLC. It is not usually
possible to determine how a CDT will change when a vertex or
facet is inserted or deleted without knowing the PLC that deter-
mines it. Every incremental operation changes the PLC and the
CDT together. The second catch is that the modified PLC might
not have a CDT (or even a triangulation).

To insert a constraining facet into a CDT is to add the facet to the
underlying PLC, and to update the CDT so it respects the new facet.
To delete a constraining facet from a CDT is to remove the facet
from the underlying PLC, and to update the CDT so it is no longer
constrained by the facet (and it becomes “closer” to Delaunay).

Section 4 describes facet insertion and deletion algorithms that
modify a CDT through a sequence of bistellar flips—topological
transformations that locally replace one small set of d-simplices
with another. (Flip-based vertex insertion and deletion are already
more or less covered in the literature [10, 23]—see the end of Sec-
tion 2.) These algorithms have the advantage of being especially
easy to implement, for two reasons. First, they are substantially
simpler than sweep algorithms. Second, the triangulation always
maintains the geometric and topological relationships between dif-
ferent pieces of the mesh data structure. By contrast, incremental
algorithms not based on flips typically require auxiliary data struc-
tures to keep track of dangling pieces while holes are being retrian-
gulated.

These algorithms can be cast as a kinetic data structure [11] for
maintaining the constrained regular triangulation of a set of vertices
whose “heights” change linearly with time. Intuitively, it is easy to
visualize the unconstrained case: a kinetic algorithm maintains the
lower boundary of the convex hull of a set of vertices in Ed+1 as
they move parallel to the xd+1-axis. When two (or more) facets of
the convex hull become parallel, or a vertex recedes into the hull’s
interior, the hull is locally updated by a bistellar flip.

Kinetic maintenance of constrained regular triangulations is sim-
ilar, but requires extra care to ensure that the dynamically changing
PLC does not enter a configuration for which no constrained reg-
ular triangulation exists. The algorithms FLIPINSERTFACET and
FLIPDELETEFACET, described in Section 4, schedule the vertex
heights in a sneaky way so as to insert or delete a (d − 1)-facet. If
f is the facet being inserted or deleted, and X and Xf are the PLCs
without and with f respectively, these algorithms work if both X
and Xf have CDTs.

2. Weighted Constrained Delaunay
Triangulations

Consider the Euclidean space Ed+1, and let x1, x2, . . . , xd+1 be
the coordinate axes. Ed is the subspace of Ed+1 orthogonal to the
xd+1-axis.

A d-dimensional triangulation is regular if and only if it is the
vertical projection of one “side” of some (d + 1)-dimensional con-
vex polytope. Specifically, let P be any nondegenerate convex
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Figure 2: Left: The parabolic lifting map. In this example, a two-
dimensional vertex set V is lifted to a paraboloid in E3. A lifted
Delaunay triangulation is the lower boundary of the convex hull of the
lifted vertices. Right: A lifted CDT T +. The paraboloid is inverted to
more clearly show its topography. The bold edges are constraining
edges that are not Delaunay. They are mapped to reflex edges of
the lifted surface.

polytope in Ed+1. Say that a d-face f of P is downward-facing
if a vector normal to f pointing away from P has a negative xd+1-
coordinate. Suppose that every downward-facing d-face of P is
a simplex. Let T be the d-dimensional triangulation formed by
vertically projecting the downward-facing faces of P onto Ed (by
dropping the xd+1-coordinate of each vertex). T is a regular trian-
gulation.

The best-known regular triangulation is the Delaunay triangula-
tion. The regularity of Delaunay triangulations is demonstrated by
the well-known lifting map of Edelsbrunner and Seidel [9]. Let V
be a set of vertices in Ed for which a Delaunay triangulation is
sought. The lifting map projects each vertex in V to a vertex on
a paraboloid in a space one dimension higher, as Figure 2 (left) il-
lustrates. Specifically, each vertex v = (vx1

, vx2
, . . . , vxd

) ∈ V
maps to a point v+ = (vx1

, vx2
, . . . , vxd

, v2
x1

+v2
x2

+· · ·+v2
xd

) in
Ed+1. Each pair of vertices v and v+ are called companions, and
v+ is the lifted companion of v. Let V + be the set of lifted com-
panions of the vertices of V . The Delaunay triangulation of V is
regular because it has the same combinatorial structure as the lower
convex hull of V +. Each downward-facing d-face of the convex
hull of V + maps to a Delaunay d-simplex of V . This connection
is routinely used to transform any (d+ 1)-dimensional convex hull
algorithm into a d-dimensional Delaunay triangulation algorithm.

A weighted Delaunay triangulation is similar to a Delaunay tri-
angulation, but each vertex v ∈ V is assigned a real-valued weight
wv . A vertex v is mapped to a point v+ = (vx1

, vx2
, . . . , vxd

,
v2

x1
+ v2

x2
+ · · · + v2

xd
− wv). The weighted Delaunay triangu-

lation of V is the projection of the downward-facing faces of the
convex hull of the lifted points V +. Every regular triangulation is
a weighted Delaunay triangulation if the right weights are chosen,
so I use the terms interchangeably.

Some faces of the convex hull of V + might not be simplicial,
because some selection of d + 2 or more of the lifted vertices may
lie on a common non-vertical d-dimensional hyperplane. (Observe
that vertices that lie on a common vertical hyperplane are of no con-
cern, because a vertical face cannot be downward-facing. This is
good news, because there may be many coplanar vertices in the in-
put.) These non-simplicial faces can be triangulated in any compat-
ible manner, so V has more than one weighted Delaunay triangula-
tion. Section 5 describes a simple way of perturbing the weights to
simulate the nondegeneracy condition wherein no d + 2 vertices of
V + lie on a common non-vertical hyperplane, thereby guarantee-
ing that the constructed triangulation is regular.



If its weight is sufficiently small, a vertex v+ might not lie in the
lower surface of the convex hull of V +, in which case the vertex v
is absent from the weighted Delaunay triangulation of V . Then v
is said to be submerged. If every vertex has a weight of zero, the
weighted Delaunay triangulation is the Delaunay triangulation, and
no vertex is submerged, because every point of the paraboloid is in
the lower convex hull of the paraboloid.

Simplices, like vertices, have companions. If s is a k-simplex
with vertices v0, v1, . . . , vk, then its lifted companion s+ is the k-
simplex in Ed+1 whose vertices are v+

0 , v+
1 , . . . , v+

k . Note that s+

is flat; it does not curve to fit the paraboloid.
Let s be any simplex (embedded in Ed) whose vertices are in V .

The simplex s is regular if s+ is a face of the lower convex hull
of V + (hence s appears in every weighted Delaunay triangulation
of V ). In other words, there exists a d-dimensional hyperplane h
in Ed+1 such that h includes s+, and every vertex of V + not in
s+ lies above h. The hyperplane h is called a witness to the regu-
larity of s. In weighted Delaunay triangulations, a witness serves
the same purpose that a circumsphere serves in ordinary Delaunay
triangulations.

The simplex s is semiregular if s+ is included in a face of the
lower convex hull of V +. If s is semiregular but not regular, it
lies in a nonsimplicial face of the convex hull, and appears in at
least one weighted Delaunay triangulation of V . There exists a d-
dimensional hyperplane h in Ed+1 that is a witness to the semireg-
ularity of s: h includes s+, and every vertex of V + lies in or above
h. If all the weights are zero, “semiregular” is equivalent to “De-
launay” and “regular” is equivalent to “strongly Delaunay.”

What about constrained triangulations? Let X be a weighted
PLC—a PLC whose vertices are assigned weights. There are appli-
cations where it is convenient for vertices with insufficient weight
to be left out. Some vertices are allowed to be submerged (as their
weights dictate), but some are not because they support constrain-
ing facets. A vertex of X is submersible if it does not lie on a
segment in X , or if it is an endpoint of exactly two segments in
X and those segments are collinear. In the latter case, think of the
two segments as a single 1-facet of X . A row of collinear segments
might form one 1-facet with many submersible vertices in it.

A simplex s respects a facet f if s ∩ closure(f) is a union of
faces of s. This union may be the empty set, s itself, a lower-
dimensional face, or the melding of several faces of s, possibly of
mixed dimension. For example, a nonconvex facet might intersect
two or even three edges of a triangle without including the triangle’s
interior. A simplex s respects X if it respects every constraining
facet in X after agglomerating the segments of X into 1-facets as
discussed above.

Say that the visibility between two points p and q in Ed is oc-
cluded if there is a constraining (d − 1)-facet f in X such that p
and q lie on opposite sides of the hyperplane that includes f , and
the line segment pq intersects the closure of f . If either p or q lies in
the hyperplane that includes f , then f does not occlude the visibil-
ity between them. Facets in X of dimension less than d − 1 do not
occlude visibility. The points p and q are visible from each other
(equivalently, can see each other) if there is no occluding (d − 1)-
facet of X .

A simplex s whose vertices are in X is constrained regular if

• s respects X , and

• there exists a d-dimensional hyperplane hs in Ed+1 that in-
cludes s+, such that every vertex v of X that is visible from
any point in the relative interior of s, but is not a vertex of s,
lifts to a point v+ above hs. (The hyperplane hs is a witness
to the constrained regularity of s.)

The second condition is a bit difficult to visualize, because one

must simultaneously picture the vertices in Ed, where visibility is
determined, and in Ed+1, where witness hyperplanes are defined.
Think of it this way: if some lifted vertex v+ lies below the hy-
perplane through a lifted simplex s+, then s is not regular. But if
some constraining (d − 1)-facet of X occludes the view of v from
inside s, s may still be constrained regular and appear in the tri-
angulation. The shaded triangle in Figure 2 (right) is an example
(note that the paraboloid in the figure is inverted for clarity). As the
figure shows, each constraining (d − 1)-simplex of the CDT that
is not constrained regular is mapped to a reflex ridge in the lifted
surface.

The term constrained semiregular means the same thing as con-
strained regular, except that any lifted vertex may lie in (but not be-
low) hs. Any constrained regular simplex is constrained semireg-
ular, but the converse is not true. If all the weights are zero, “con-
strained semiregular” is equivalent to “constrained Delaunay.”

A weighted CDT T of X is a triangulation that fills X (i.e. the
union of the simplices in T is the union of the facets in X) wherein
every simplex is constrained semiregular within the lowest-dimen-
sional facet of X that includes it. Every simplex of T that does
not lie in a constraining facet is therefore constrained semiregu-
lar in X , as defined above. However, if a simplex s in T is in-
cluded in a k-facet f of X with k < d, then s is not required
to be constrained semiregular in X . Rather, s is a simplex in the
k-dimensional weighted CDT of f . The definition of “weighted
CDT” is therefore recursive in the dimension.

In a weighted CDT, like in a weighted Delaunay triangulation,
some of the vertices may be submerged. If all the weights are zero,
every vertex is regular, so no vertex is submerged.

Throughout this paper, the terms “PLC” and “CDT” refer to both
unweighted and weighted PLCs and CDTs, except where otherwise
noted. A hyperface is a (d − 1)-simplex and a ridge is a (d − 2)-
simplex.

One of the difficulties of working with CDTs is that not every
PLC has one (except in the two-dimensional unweighted case).
However, every ridge-protected PLC has a CDT. (See elsewhere
[21] for a proof in the unweighted case; it is also true for weighted
PLCs.) In two dimensions, a PLC X is ridge-protected if every
non-submersible vertex in X is regular. All unweighted two-dimen-
sional PLCs are ridge-protected; hence the success of CDTs in two
dimensions. In three dimensions, X is ridge-protected if every con-
straining 1-facet in X is a union of regular edges. (Observe that this
condition implies that every non-submersible vertex is regular.) In
higher dimensions, X is ridge-protected if every constraining facet
in X of dimension d − 2 or less is a union of regular simplices.

A constraining simplex of X is a simplex in the CDT of a con-
straining facet in X . If a CDT of X exists, every constraining facet
in X is therefore a union of constraining simplices of X . Note that
a constraining simplex of X is not necessarily in X .

Ridge-protection implies that a weighted Delaunay triangulation
(unconstrained) of the vertices of X contains all the constrain-
ing k-simplices of X for k ≤ d − 2, but might not respect the
(d − 1)-facets of X . Therefore, only the (d − 1)-facets need to
be inserted. If a PLC is not ridge-protected, it can be made ridge-
protected with the addition of carefully chosen vertices with care-
fully chosen weights. If the PLC is unweighted and must remain
unweighted, there is an algorithm for the three-dimensional case
that makes a PLC ridge-protected by adding vertices that are placed
so that the CDT of the augmented PLC does not have unreasonably
short edges [24]. This algorithm is a good first step for guaranteed-
quality mesh generation [22].

Because constraining facets of dimensions 1 through d−2 do not
affect visibility, their insertion or deletion does not change the CDT
of a PLC, except perhaps to change whether or not a CDT exists.



Figure 3: Basic bistellar flips in one, two, and three dimensions
appear above the line. “Degenerate” bistellar flips appear below the
line. White arrows connect degenerate flips to the lower-dimensional
flips they are based on.

Therefore, general CDT maintenance can be done with four incre-
mental operations, namely the insertion and deletion of vertices and
(d− 1)-facets. The vertex insertion algorithm of Edelsbrunner and
Shah [10] for regular triangulations is easily adapted to weighted
CDTs, simply by modifying the algorithm so it never performs a
flip that breaks through a constraining facet. Vertex insertion takes
O(msi) time, where msi is the number of d-simplices deleted by
the operation. The simple sweep algorithm for vertex deletion in
CDTs [23] can be adapted so that it effects all structural changes
through a sequence of flips. Vertex deletion takes O(msf log msf )
time, where msf is the number of d-simplices constructed by the
operation. This leaves the insertion and deletion of (d − 1)-facets,
which are covered in Section 4.

3. Bistellar Flips
Bistellar flips can be classified as nondegenerate and degenerate

flips. A nondegenerate bistellar flip in Ed retriangulates the convex
hull of d+2 vertices by replacing a collection of k d-simplices with
d+2−k different d-simplices. For instance, in three dimensions, a
bistellar flip can replace two tetrahedra with three, three with two,
one with four, or four with one. The one-to-four and four-to-one
flips have the effect of inserting or deleting a vertex, respectively.

A degenerate bistellar flip is a flip that would be nondegenerate
in a lower dimensionality, applied to lower-dimensional faces of
a triangulation. A three-dimensional example is the insertion of a
vertex into an edge. The vertex insertion replaces the edge with two
edges, and is in essence a one-dimensional flip. However, every
tetrahedron that shares the edge is divided into two tetrahedra, and
the number of tetrahedra that share the edge could be arbitrarily
large. Therefore, a degenerate flip can remove and create many d-
simplices. A catalogue of bistellar flips for 1 ≤ d ≤ 3 appears in
Figure 3.

The flip algorithms described in Section 4 use flips to main-
tain the constrained regular simplices of a PLC with dynamically
changing vertex weights. Say that a hyperface f , sandwiched be-
tween two d-simplices s and t in a triangulation, is locally regular
if the lifted d-simplices s+ and t+ adjoin each other at a dihedral

s

W

W +

Figure 4: The bottom faces of a tetrahedron triangulate four vertices
in the plane. Reversing the orientation of the tetrahedron (by moving
its vertices vertically) switches to the other triangulation.

angle, measured from above, of less than 180◦. In other words, the
apex of t+ lies above the witness hyperplane of s, and vice versa.
For convenience, say that every hyperface included in only one d-
simplex is locally regular as well.

It follows from a generalization of the Delaunay Lemma [7] that
a triangulation that fills X , respects X , and has no submerged ver-
tices is a weighted CDT if and only if every hyperface is a con-
straining simplex or is locally semiregular. Each flip algorithm
waits until a non-constraining hyperface of the triangulation is no
longer locally regular, then performs a flip that restores the local
regularity of the non-constraining hyperfaces and therefore pro-
duces an updated CDT.

Let W be a minimal affinely dependent subset of vertices in Ed.
Minimal affinely dependent means that although the vertices in W
are affinely dependent, if any vertex is removed from W , the re-
maining vertices are affinely independent. Let j + 2 be the number
of vertices in W ; j cannot exceed d.

One way to characterize a bistellar flip, useful for understanding
regular triangulations, is to look at the set of lifted companions W +

of the vertices in W . Suppose the vertex weights are chosen so
that the vertices in W+ are affinely independent. Then the convex
hull of W+ is a (j + 1)-simplex s, as Figure 4 illustrates. Two
possible triangulations of W are seen by looking at s from directly
below, and from directly above. The downward-facing faces of s,
projected down to Ed, form the regular triangulation of W . The
upward-facing faces of s are not regular.

Suppose the vertices in W+ are moving linearly. At some point
in time, s may become flattened (Figure 4, center). At this instant,
the nondegeneracy condition is not satisfied: the vertices in W +

lie on a common non-vertical hyperplane. If the vertices continue
moving, the downward-facing faces and the upward-facing faces
of s trade places, and the triangulation of W that was formerly not
regular becomes regular.

Lawson [15] shows that these are the only two ways to triangu-
late W . The two triangulations are characterized by Radon’s The-
orem [18], which states that there is exactly one way to partition
W into two disjoint sets W1 and W2 so that conv(W1) intersects
conv(W2). Figure 5 shows examples of these disjoint sets and the
Radon points conv(W1) ∩ conv(W2). One triangulation of W
consists of the j-simplices T1 = {conv(W − {w}) : w ∈ W2},
and all their faces. Observe that all these j-simplices share the
face conv(W1). The other triangulation of W is composed of
T2 = {conv(W − {w}) : w ∈ W1} and their faces. These j-
simplices share the face conv(W2).

A bistellar flip replaces T1 with T2 or vice versa. At least one of
W1 and W2 has no more than bj/2c + 1 vertices. Every bistellar
flip either removes or creates a simplex of dimension bj/2c or less,
namely conv(W1) or conv(W2). A degenerate flip either removes
or creates at least one simplex of dimension bd/2c or less for every
2d + 2 d-simplices it removes or creates. These facts are handy for
bounding the total number of flips that can occur.

If j < d, the flip is degenerate. In a d-dimensional triangulation
T , one cannot simply replace T1 with T2 in isolation, because the
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W1 W2

Figure 5: Four examples of Radon points (white circles) and the
flips related to them.

FLIP(T, g)
{ T is a triangulation. g is a hyperface to flip. This procedure
assumes g can be flipped. Comments below identify places
where this assumption could fail. }

Let s and t be the d-simplices that include g
WR ⇐ ∅
WC ⇐ { the vertices of s and t not shared by g}
j ⇐ d
for each ridge (i.e. (d − 2)-simplex) r of g

v ⇐ the vertex of g not shared by r
θ ⇐ the exterior dihedral angle of s ∪ t at r
if θ > 180◦

WR ⇐ WR ∪ {v}
else if θ < 180◦

WC ⇐ WC ∪ {v}
else j ⇐ j − 1 { v not in minimal affinely dep. subset }

TR ⇐ {conv(WR ∪ WC − {v}) : v ∈ WC}
TC ⇐ {conv(WR ∪ WC − {v}) : v ∈ WR}
if j = d
{ note: if the simplices in TR are absent from T ,

the flip cannot be performed }
Delete each d-simplex in TR from T
Add each d-simplex in TC to T

else
{ degenerate flip; the members of TR, TC are j-simplices }
Let y be any simplex in TR

for each (d − j − 1)-simplex z such that conv(y ∪ z) is
a d-simplex of T

{ note: if the simplices deleted below are absent from T ,
the flip cannot be performed }

for each j-simplex y′ in TR

Delete the d-simplex conv(y′ ∪ z) from T
for each j-simplex y′ in TC

Add the d-simplex conv(y′ ∪ z) to T

Figure 6: Algorithm for performing a bistellar flip (except the flips
that insert a new vertex). An implementation should not calculate θ;
rather, the tests “θ <> 180◦” should branch based on the results of
a vertex orientation test.

members of T1 are faces of d-simplices in T which must be flipped
as well, as the degenerate examples in Figure 3 illustrate. The de-
tails are embodied in the last six lines of the pseudocode for the
FLIP procedure in Figure 6.

FLIP determines what type of bistellar flip to perform to remove
a hyperface g and the two d-simplices s and t that share it. The
procedure first determines the vertex sets WR, the vertices of the
common face removed by the flip, and WC , the vertices of the com-
mon face created by the flip. Let W = WR ∪ WC . FLIP removes
the simplices TR = {conv(W − {v}) : v ∈ WC}, and creates
the simplices TC = {conv(W − {v}) : v ∈ WR}. If g was lo-

0 0

0

1

1
1

(a) (b)

Figure 7: Stuck triangulations. (a) Several views of Joe’s example
of seventeen tetrahedra for which no triangular face that is not locally
Delaunay can be flipped. (b) Edelsbrunner and Shah’s example of
seven triangles for which no edge that is not locally regular (dashed
edges) can be flipped. Imagine that you are viewing the lifted trian-
gulation from directly underneath, and larger nodes are closer to you.
The number next to each vertex is the xd+1-coordinate to which it is
lifted (i.e. its distance from you). The regular triangulation of these
vertices is the outer triangle; the inner vertices should be submerged.

cally regular before the flip occurred, then the simplices in TR (plus
their lower-dimensional faces) formed the weighted Delaunay tri-
angulation of W . FLIP is called at the moment when g is no longer
locally regular. At that moment, the shared face conv(WR) is no
longer constrained regular, so neither conv(WR) nor any simplex
that includes it can remain in the CDT. After the flip, the simplices
in TC , plus their lower-dimensional faces, are the weighted Delau-
nay triangulation of W instead. TR and TC are j-dimensional, so
if j < d, FLIP removes every d-simplex that has a face in TR, and
creates new d-simplices that each have a face in TC .

There are several circumstances annotated in the code in which
it might be impossible to perform a flip that eliminates g, because
the initial triangulation is missing some of the simplices needed for
a flip to take place. CDTs introduce more such cases, because flips
are not allowed to penetrate constraining facets.

The main obstacle to designing a flip algorithm is that the algo-
rithm might get stuck if it cannot perform a flip that makes progress
toward a CDT. This is true even for unconstrained regular triangula-
tions. Figure 7(a) depicts Joe’s example [12] of a tetrahedralization
whose locally non-Delaunay faces cannot be flipped. Figure 7(b) is
a two-dimensional example of Edelsbrunner and Shah [10], wherein
a flip algorithm gets stuck while trying to produce a weighted De-
launay triangulation. (For the special case of two-dimensional un-
weighted PLCs, flipping locally non-Delaunay edges always yields
a CDT eventually [14, 16].)

Joe [13] shows that, if just one vertex (at a time) is inserted into
a Delaunay triangulation of any dimension, flips can restore the
regularity of the triangulation without needing a priority queue to
avoid getting stuck. Edelsbrunner and Shah [10] show that the same
is true for regular triangulations. Unfortunately, these results do
not extend to facet insertion or deletion. The flip algorithms in the
next section avoid getting stuck by using a priority queue to control
the order in which flips occur, and scheduling the vertex weights
carefully to ensure that constraining facets are respected.

For these algorithms, a critical aspect of scheduling is that the
vertex weights must be perturbed. The purpose of the weight per-
turbations is to ensure that the retriangulation performed at any in-
stant in time is never more complicated than a bistellar flip. Sec-
tion 5 describes a symbolic perturbation method that ensures that
the flip algorithms are correct. Each update algorithm requires that
the input triangulation is a weighted CDT consistent with the per-
turbation method.

For more discussion of bistellar flips, see Lawson [15], Edels-
brunner and Shah [10], and de Loera, Santos, and Urrutia [6].
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Figure 8: A two-dimensional example of inserting a facet into a CDT.
The algorithm works in any dimensionality.

4. Flip-Based Facet Insertion and Deletion
This section describes algorithms, based on bistellar flips, for in-

serting or deleting a (d−1)-facet. These algorithms work correctly
if both the initial and final PLCs (with and without the facet) have
CDTs.

Consider inserting a (d − 1)-facet f into a PLC X . Let Xf =
X ∪ {f}. The insertion of f is only possible if Xf is a valid
PLC, which implies that all the lower-dimensional faces of f are
present in X . Let T be the CDT of X . If X does not satisfy the
nondegeneracy condition—that is, if d + 2 vertices of X lift to
a common non-vertical hyperplane—then T is required to be the
CDT of X after X is perturbed as described in Section 5.

If every vertex of X appears in T , the algorithm FLIPINSERT-
FACET takes T as input and produces the CDT T f of Xf (if a
CDT exists). If vertices of X are submerged in T because their
weights are too small, the insertion of f might make some of them
be no longer submerged, but they do not appear in the triangula-
tion FLIPINSERTFACET produces. To produce the CDT of Xf ,
either the triangulation must be postprocessed to incrementally in-
sert the missing vertices, or the missing vertices must be removed
from Xf . (This is not a defect in FLIPINSERTFACET; rather, in-
serting the missing vertices at the end is the fastest apparent way to
compute T f . Of course, most applications want unweighted CDTs,
which do not have submerged vertices.)

A key observation is that inserting a facet does not create any
new visibilities (though it might eliminate some old ones), so ev-
ery simplex of T that respects f remains constrained regular, and
therefore remains in T f . Let R be the union of d-simplices of T
that do not respect f . The flip algorithm only performs flips in the
region R.

Let h be the hyperplane in Ed that includes f . Call the vertices
of X on one (arbitrary) side of h left vertices, and the vertices on
the other side right vertices. Vertices in h are neither. The flip
algorithm linearly decreases the weights of the vertices according
to their distance from h, and uses flips to maintain a locally regular
triangulation of R as the weights change. Figure 8 is a sequence of
snapshots of the algorithm at work.

For each vertex v in X , let its height kv be the xd+1-coordinate

to which v is lifted—namely ‖v‖2 − wv , where wv is the weight
of v. Each vertex v is assigned a time-varying height of kv(τ) =
kv + τd(v, h), where τ is the time and d(v, h) is the Euclidean
distance of v from h. (This choice of d(·, ·) is pedagogically use-
ful but numerically poor; a better choice for implementation is to
let d(v, h) be the distance of v from h along one coordinate axis,
preferably the axis most nearly perpendicular to h. This distance
is directly proportional to the Euclidean distance, but can be com-
puted without radicals.)

When a set of vertices is transformed affinely, its convex hull un-
dergoes no combinatorial change. Likewise, an affine transforma-
tion of the lifted vertices that changes only their xd+1-coordinates
does not topologically change the CDT. In the flip algorithm, how-
ever, each half of space undergoes a different affine transformation,
so the CDT changes near the hyperplane h as τ increases. Ob-
serve that an algorithm in which only the heights of the right ver-
tices change (at twice the speed) is equivalent, as is an algorithm in
which only the left vertex heights change. For numerical reasons,
it is better to raise only half the vertices.

Let X(τ) be a time-varying weighted PLC, which is identical
to X except that each right vertex v has a height of kv(τ). Any
simplex s of T that has no right vertex remains constrained regular
in X(τ) for all τ ≥ 0, because the witness hyperplane of s is
constant and no vertex height decreases. Because an algorithm that
raises only the left vertices is equivalent, any simplex of T that
has no left vertex also remains constrained regular in X(τ) for all
τ ≥ 0.

A simplex with no left or no right vertex remains always con-
strained regular. Recall that if a flip is initiated by a non-constrain-
ing hyperface losing its local regularity, the shared face conv(WR)
removed by the flip is not constrained regular. Thus, conv(WR)
has both a left vertex and a right vertex, and thus so does every
simplex removed by the flip. The algorithm FLIPINSERTFACET

removes only simplices that have a left and a right vertex and pass
through f ; all simplices outside the region R remain intact. In-
terestingly, the algorithm will work even if X(τ) does not have a
CDT for some values of τ > 0; the region R is always covered by
simplices that are constrained regular in X(τ).

More good news is that no simplex of T that lies in the boundary
of R has both a left vertex and a right vertex, because every simplex
in T respects f ’s lower-dimensional faces, which are present in X .
Therefore, the flip algorithm can restrict its attention to the region
R without fear that a flip will try to break through the boundary of
R.

As τ → ∞, the flip algorithm reaches a state where f is a union
of faces of the triangulation, and no further flips can occur. At
this time, the triangulation maintained by FLIPINSERTFACET is the
CDT of Xf , and the job is done.

Pseudocode for FLIPINSERTFACET appears in Figure 9. The
while loop dynamically maintains the triangulation T as τ increases
from 0 to ∞ and the lifted companions of the right vertices move
up. For certain values of τ , the following event occurs: some hy-
perface g in the region R is no longer locally regular at time τ ,
because the two d-simplices that include g have the same witness
hyperplane. Upon this event, an update operation replaces these
and other simplices that are no longer constrained regular with sim-
plices that are constrained regular immediately after time τ . Be-
cause of the perturbation method, a single bistellar flip suffices to
perform each update.

To ensure that it performs each bistellar flip at the right time, the
algorithm maintains a priority queue that stores any flip that might
occur. For each hyperface g that will be flipped at some time in the
future, the procedure CERTIFY determines when g might be flipped
and enqueues a flip event. The while loop repeatedly removes the



FLIPINSERTFACET(X,T, f)
{ X is a PLC. T is its CDT. f is the facet to insert. }

Identify a d-simplex in T that intersects the relative interior of
f by a rotary search around a ridge of f

Identify every d-simplex in T that intersects the relative interior
of f by depth-first search

for each hyperface g of T that intersects the relative interior of
f and has at least one vertex on each side of f

CERTIFY(g)
while priority queue Q is not empty

Remove 〈g′, τ〉 with minimum τ from Q
if g′ is still a hyperface of T

FLIP(T, g′)
for each hyperface g that lies in the boundary of

the retriangulated region and has at least one
vertex on each side of f

CERTIFY(g)
return T

CERTIFY(g)
Let s and t be the d-simplices that have g for a face
τ ⇐ the time at which hs = ht (s+ and t+ are cohyperplanar)
Insert 〈g, τ〉 into priority queue Q

Figure 9: Algorithm for inserting a (d− 1)-facet into a CDT. Works if
T is the CDT of the initial PLC X, and the final PLC Xf = X ∪ {f}

is a valid complex that has a CDT. CERTIFY assumes that each right
vertex v has height kv(τ) = kv + τd(v, h).

flip with the least time from the priority queue, and performs a flip
if the hyperface still exists (and was not eliminated by other flips).
When the queue is empty, the algorithm returns the triangulation
T f .

The algorithm FLIPDELETEFACET, whose pseudocode appears
in Figure 10, takes T f as input and produces T , essentially by re-
versing the insertion algorithm. The algorithm is guaranteed to suc-
ceed if X and Xf both have CDTs. (Deleting a facet does not
cause formerly submerged vertices to emerge, so FLIPDELETE-
FACET works correctly even if X and Xf have submerged ver-
tices.) There are a few things that make the deletion algorithm a
bit different from the insertion algorithm. First, the shape of the
region R is unknown at the start; it is only apparent when the al-
gorithm halts. Second, the algorithm begins with τ = −∞ and
ends with τ = 0, and each right vertex v is assigned a height
kv(τ) = kv − τd(v, h).

The correctness proof for FLIPINSERTFACET is omitted, but here
are a few highlights. By induction, the sequence of flips that FLIP-
INSERTFACET performs maintains the local semiregularity of all
hyperfaces inside the region R. By the Delaunay Lemma, after
each flip, the simplices in R form the CDT of the PLC defined by
restricting X(τ) to R and adding the boundary of R.

When the flips are done, the original vertex weights are restored.
This is an affine transformation of the lifted right vertices, so the
hyperfaces inside R remain locally semiregular, except the hyper-
faces in f (which are now constraining hyperfaces).

The non-constraining hyperfaces outside R and on the boundary
of R are locally semiregular because they respect f and they were
locally semiregular before f was inserted. By a final application of
the Delaunay Lemma, the whole triangulation is a CDT of Xf .

For an analysis of the running time, let mv be the number of
vertices in the region R, and let mleft and mright be the numbers
of left and right vertices in R (which are counted in mv as well).

FLIPDELETEFACET(Xf, T, f)
{ Xf is a PLC. T is its CDT. f is the facet to delete. }

for each hyperface g of T included in f
CERTIFY(g)

while priority queue Q is not empty
Remove 〈g′, τ〉 with minimum τ from Q
if g′ is still a hyperface of T

FLIP(T, g′)
for each hyperface g in the boundary of the region

retriangulated by the flip
if g is not a constraining hyperface of Xf − {f}

CERTIFY(g)
return T

CERTIFY(g)
Let s and t be the d-simplices that have g for a face
v ⇐ the vertex of t that is not a vertex of g
if v+ will lie below the witness hyperplane hs of s at time τ = 0

τ ⇐ the time at which hs = ht (i.e. v+ lies in hs)
Insert 〈g, τ〉 into priority queue Q

Figure 10: Algorithm for deleting a facet from a CDT. Works if T

is the CDT of the initial PLC Xf , and the final PLC Xf − {f} also
has a CDT. CERTIFY assumes that each right vertex v has height
kv(τ) = kv − τd(v, h).

Let msi and msf be the number of d-simplices in R before and
after a call to FLIPINSERTFACET or FLIPDELETEFACET. Let nv

be the number of vertices in T .

THEOREM 1. The worst-case running time of FLIPINSERTFA-
CET is in O((msf + mleftmrightm

bd/2c−1
v ) log mv + nv).

PROOF. Every bistellar flip either removes or creates a simplex
of dimension bd/2c or less; furthermore, it removes or creates at
least one for every 2d + 2 d-simplices it removes or creates. Be-
cause the vertex weights vary linearly with time, a simplex that
loses the constrained regular property will never regain it; so once
a simplex is removed, it is never created again. (The use of these
observations to derive upper bounds is inspired by Seidel [19].)

Every bd/2c-simplex that FLIPINSERTFACET removes has at
least one left vertex and at least one right vertex. The algorithm
removes fewer than mleftmrightm

bd/2c−1
v such bd/2c-simplices

from the region R over its lifetime (including those it both creates
and removes during execution).

The final triangulation of R has msf d-simplices, so the number
of bd/2c-simplices that FLIPINSERTFACET creates over its life-
time does not exceed O(msf ) plus the number it removes over its
lifetime.

Therefore, FLIPINSERTFACET removes and creates at most
O(msf + mleftmrightm

bd/2c−1
v ) d-simplices during its lifetime.

The time spent performing flips is linear in this number. Each flip
enqueues at most a constant number of events per d-simplex cre-
ated. Each event costs O(log mv) time to enqueue and dequeue.

The cost of Line 1 (identifying a simplex that intersects the rela-
tive interior of f ) is in O(nv). This is a pessimistic running time;
the worst case is achieved only if the initial ridge used for the search
is a ridge of Θ(nv) hyperfaces. All other costs are no greater than
the costs above. �

Miraculously, the worst-case time for any sequence of FLIPIN-
SERTFACET operations is no greater than the worst-case time for
one operation for which mv ∼ nv.



THEOREM 2. The worst-case running time of any sequence of
valid FLIPINSERTFACET operations applied consecutively to a tri-
angulation is in O(n

bd/2c+1
v log nv) (if Line 1 of FLIPINSERT-

FACET is implemented efficiently).

PROOF. A sequence of FLIPINSERTFACET operations, like a
single one, has the property that any simplex removed is never cre-
ated again. Therefore, the sequence of operations creates fewer
than n

bd/2c+1
v bd/2c-simplices, including those that are removed

before the sequence ends, and removes fewer than n
bd/2c+1
v . The

number of events enqueued is proportional to the number of d-
simplices created, which is proportional to the number of bd/2c-
simplices created and removed. Each event costs O(log nv) time
to enqueue and dequeue.

If the number of FLIPINSERTFACET operations exceeds
Ω(n

bd/2c
v log nv) (which is possible when d is odd but unlikely in

practice), the cost of Line 1 of FLIPINSERTFACET must be reduced.
This can be done by giving each constraining ridge of the triangula-
tion a balanced search tree listing the adjoining hyperfaces in rotary
order around the ridge. Thus, Line 1 executes in O(log nv) time.
The balanced trees are updated in O(log nv) time per hyperface
created or removed.

Line 2 (the depth-first search step) deserves attention because
a d-simplex can intersect the interior of a facet without being re-
moved by the facet’s insertion, if only the boundary of the d-simplex
intersects the facet. All the executions of Line 2 together take
O(n

bd/2c+1
v ) time, because the total number of d-simplices that

exist sometime during the sequence is in O(n
bd/2c+1
v ), and each

d-simplex intersects the relative interior of at most a constant num-
ber of (d − 1)-facets during its lifetime (not counting facets that
are inserted after the d-simplex is removed). All other costs are no
greater than the costs above. �

An O(n
bd/2c+1
v log nv)-time incremental algorithm for con-

structing a CDT of a ridge-protected PLC X follows from Theo-
rem 2. First, construct the weighted Delaunay triangulation of the
vertices in X in O(n

dd/2e
v ) time using an incremental convex hull

construction algorithm [5, 10]. Then insert the (d − 1)-facets one
by one.

How do flip algorithms compare to other algorithms in the lit-
erature? For unweighted two-dimensional PLCs, the fastest ways
to construct a CDT, or to incrementally insert a segment, are the
O(mv log mv)-time algorithms of Chew [3] and Seidel [20]. For
weighted two-dimensional PLCs, Aichholzer, Aurenhammer, and
Krasser [1] offer a flip algorithm that uses pseudo-triangulations
to construct weighted CDTs. Its running time is unclear. For di-
mensions above two, the only alternative to the flip algorithms is
a sweep-based algorithm called SWEEPCDT [23] (barring an un-
bearably slow gift-wrapping algorithm).

For constructing a CDT from scratch, SWEEPCDT takes
O(nvns) time, where ns is the number of d-simplices in the CDT.
Compare this with the O(n

bd/2c+1
v log nv) running time of flip-

based incremental CDT construction. In the worst case, SWEEP-
CDT is faster in even dimensions, where ns ∈ Θ(n

d/2
v ), and

flip-based CDT construction is faster in odd dimensions, where
ns ∈ Θ(n

dd/2e
v ). Recall that the greatest practical motivation for

the flip algorithms comes from three-dimensional applications.
Often ns is linear in nv , and both algorithms may run faster. Re-

call from Section 3 that a bistellar flip replaces the bottom faces of a
(d + 1)-simplex with its top faces. Because no face reappears after
it is removed, the sequence of flips performed during incremental
facet insertion is structurally similar to a (d + 1)-dimensional tri-
angulation. It has often been observed that many practical vertex

sets have linear-size Delaunay triangulations, and it seems likely
that many practical inputs for the incremental facet insertion algo-
rithm that have linear-size CDTs also engender only a linear num-
ber of flips. In the best case, for any d ≥ 2, incremental CDT con-
struction with FLIPINSERTFACET performs Θ(nv) flips and runs
in Θ(nv log nv) time. The optimistic running time of SWEEPCDT
is O(nvnf + n

1+1/d
v ), where nf is the number of constraining

(d − 1)-simplices of X . Commonly nf ∈ Θ(nv), though nf may
range from Ω(1) to O(ns).

There are inputs for which flip-based incremental CDT construc-
tion is asymptotically slower than SWEEPCDT, but these are surely
the minority of inputs in practice when d is odd. For even d, the
two algorithms may be more evenly matched.

Similar conclusions hold when FLIPINSERTFACET or SWEEP-
CDT is used to insert a single facet. In the best case, FLIPIN-
SERTFACET takes Θ(mv log mv) time, whereas removing the old
simplices from R and retriangulating R using SWEEPCDT takes
Θ(m2

v) time. In the worst case in two dimensions, FLIPINSERT-
FACET takes Θ(m2

v log mv + nv) time, and SWEEPCDT takes
Θ(m2

v + nv) time. In the worst case in three dimensions, FLIP-
INSERTFACET takes Θ(m2

v log mv + nv) time, and SWEEPCDT
takes Θ(m3

v + nv) time.
A disadvantage of incremental CDT construction is that a facet

cannot be inserted if its lower-dimensional faces are not already
present in the CDT. SWEEPCDT can compute the CDT of almost
any PLC that has a CDT (excepting some PLCs that fail to satisfy
the nondegeneracy condition), whereas incremental CDT construc-
tion cannot, although it works for all ridge-protected PLCs. This is
rarely a great disadvantage: although additional vertices might be
needed to make a PLC ridge-protected, most of these vertices are
probably needed to guarantee that the PLC has a CDT at all.

The running time of FLIPDELETEFACET is in O((msi + mleft·

mright m
bd/2c−1
v ) log mv) in the worst case, and in Θ(mv log mv)

in the best case. The nv term incurred by FLIPINSERTFACET is not
incurred here because FLIPDELETEFACET presumably has access
to pointers to the hyperfaces of T that represent f .

FLIPDELETEFACET is the first algorithm proposed for facet dele-
tion in CDTs, short of retriangulating the entire PLC from scratch.
One reason no previous algorithm exists is because it is difficult to
quickly identify which d-simplices are no longer constrained regu-
lar when a facet is deleted (i.e. what is the shape of R?). A brute-
force approach would compare every left vertex against every right
d-simplex and vice versa, with visibility tests against every con-
straining hyperface of R(τ) (including all R’s boundary simplices).
This would take Ω(m2

vmsi) time. FLIPDELETEFACET is usually
substantially more efficient.

5. Symbolic Perturbations in the
Flip Algorithms

Perturbations are an essential part of the flip algorithms because
they ensure that no more than one minimal affinely dependent sub-
set of the vertices lifts to a common non-vertical hyperplane at any
one instant in time. Thus, there is a clear order in which bistellar
flips can be performed without getting stuck. Note that any per-
turbation method is only effective if all geometric tests are robust
against numerical error (e.g. done with exact arithmetic).

Let X0(τ) be a linearly time-varying weighted PLC. X0(τ) is
geometrically identical to some base PLC X for every value of τ ;
only the vertex weights are different. Let W be a minimal affinely
dependent subset of vertices of X . Because their lifted compan-
ions W+ move along vertical linear trajectories, there are three
possibilities for when W+ can be affinely dependent (i.e. lie on a



common non-vertical hyperplane): never, at one time τW (at which
time a flip might occur), or always (i.e. for all values of τ ). The
third possibility is eliminated by the perturbations. Call the second
possibility a flip opportunity, denoted by γW .

The perturbation method, which adapts a suggestion of Edels-
brunner and Mücke [8, Section 5.4], visits the vertices one by one
in an arbitrary sequence and perturbs the weight of each by a tiny
quantity. The tiny quantities do not vary with τ . Intuitively, the first
vertex weight is perturbed by an infinitesimal quantity, the second
by the square of the infinitesimal quantity, the third by the cube, and
so on. For the sake of mathematical rigor, the following method
uses finite (but unspecified) perturbations. The goal is to separate
the flip opportunities so no two occur at the same time, yet choose
the perturbations small enough so the order in which two flip op-
portunities occur is not changed.

Let Xi(τ) be a time-varying PLC identical to X0(τ), except that
the first i vertex weights have fixed perturbations added. Each
Xi+1(τ) is constructed from Xi(τ) according to the following
rules. Xi+1(τ) is identical to Xi(τ) except that the weight of ver-
tex i + 1 is perturbed by a tiny (but nonzero) quantity chosen small
enough that

• for any flip opportunities γV and γW with τV < τW in Xi,
in Xi+1 the flip opportunity γV also precedes the flip oppor-
tunity γW ; and

• for any flip opportunity γW in Xi, if τW < 0, in Xi+1 the
flip opportunity γW also precedes time τ = 0; whereas if
τW > 0, in Xi+1 γW also follows time τ = 0. This con-
dition ensures that no d + 2 vertices of Xn(0) lift to a com-
mon non-vertical hyperplane, where n = nv is the num-
ber of vertices in X . Recall that FLIPINSERTFACET and
FLIPDELETEFACET each stop or start at time τ = 0.

The time at which a flip opportunity occurs varies linearly with
the values of the weight perturbations (because the vertex weights
vary linearly with time). Therefore, both conditions can always be
satisfied by making the perturbation small enough. Observe that
neither condition specifies what should happen if τV = τW or
τW = 0 in Xi. In these cases, a perturbation might modify the
flip opportunities so that τV 6= τW and τW 6= 0 in Xi+1—indeed,
that is the ideal outcome. In the final PLC Xn, no two flip oppor-
tunities in Xn occur at the same time, nor does any occur at time
τ = 0.

In the flip algorithms in Sections 4, X(τ) should be everywhere
replaced with Xn(τ).

The perturbations can be implemented symbolically without cal-
culating the actual amount each vertex is perturbed. It is only nec-
essary to know the order in which the vertex weights are perturbed,
and the sign of each perturbation.

The geometric predicates that the flip algorithms use either com-
pare the time when an event occurs with a fixed value, or compare
the times when two events occur. The latter test is used heavily
by the priority queue. There are several ways to incorporate per-
turbations into the events; the following is perhaps the easiest sug-
gestion. Each event record on the queue stores the time at which
the event occurs, but the time is not stored as a single number. In-
stead, each record stores the vertices of two d-simplices that share
a hyperface that will lose its local regularity.

Comparing the times at which two events occur is equivalent to
computing the sign of a polynomial over the vertex coordinates.
The polynomial is linear in the vertex weights. If the polynomial is
zero when the unperturbed vertex coordinates are substituted in, the
two events occur simultaneously in the unperturbed model. Simu-
late the perturbations as follows to disambiguate the result of the
test. Let V be the set of vertices whose weights appear in the poly-

nomial. Choose whichever vertex of V comes first in the pertur-
bation sequence, add an arbitrary constant with the right sign to
its weight (for this test only), and recompute the polynomial. The
magnitude of the constant is irrelevant (except for its effect on the
running time of the algorithm that robustly computes the sign of the
polynomial) because the polynomial is linear in each vertex weight.
If the result is nonzero, return it, because the other perturbations in
the sequence are much smaller and cannot reverse the sign.

If the polynomial still evaluates to zero, choose the vertex of V
that comes second in the sequence, add a constant to its weight,
and recompute the polynomial again. Repeat as necessary for each
vertex in the sequence, but return the first nonzero result. If the
final result is still zero after every vertex is perturbed, return zero.

The sequence of perturbations, and the sign of any particular
vertex’s perturbation, must remain consistent among all tests per-
formed throughout the execution of an algorithm. Moreover, if a
CDT provided as an input to a CDT update algorithm does not sat-
isfy the nondegeneracy condition, it should have been computed
using the same sequence and signs that the update algorithm uses.

How severe is this restriction? Every known CDT construction
algorithm for d > 2, including the gift-wrapping and sweep algo-
rithms, must use perturbations to guarantee its correctness when the
nondegeneracy condition is not satisfied. Hence, it seems reason-
able for any CDT update implementation to expect that the input
CDT is consistent with some weight perturbation of the input PLC.
Ideally, the implementation knows the identity of that perturbation.

What if the input to a CDT update implementation is a CDT that
is not consistent with the perturbations the implementation uses?
One can imagine “correcting” the input CDT so that it is consistent,
but the input CDT and the corrected CDT could be almost entirely
different, so correcting the input CDT might be as expensive as
computing the corrected CDT from scratch. If the underlying PLC
is not ridge-protected, it is possible that the PLC perturbed as the
implementation prefers does not have a CDT at all.

An ambitious CDT update implementation can try to compute
perturbations that are consistent with the input CDT. However,
some valid CDTs are not consistent with any set of perturbations.
(This is true even for unconstrained Delaunay triangulations.) But
if the input CDT is consistent with a set of perturbations of the form
described in this section, a simple greedy algorithm can find com-
patible perturbations. The greedy algorithm finds one vertex whose
weight can be perturbed without causing any simplex of the CDT to
stop being constrained semiregular, then finds another vertex that
can be perturbed next with a smaller perturbation, and so on.

6. Simultaneous Vertex Insertion and Deletion
Facet insertion and deletion is not the only operation for which

the techniques discussed here are useful. When dynamically up-
dating CDTs, the ability to simultaneously insert or delete multiple
vertices simultaneously may be needed. Consider the chicken-and-
egg problem illustrated in Figure 11. An application wishes to in-
sert a vertex v1 into a segment s1, but the presence of v1 will cause
a segment s2 to no longer be regular, and the modified PLC will not
have a CDT. This obstacle can be avoided by inserting a new vertex
v2 into s2, thereby splitting s2 into two subsegments that will both
be regular. However, if v2 is inserted first, s1 will no longer be reg-
ular. The vertices v1 and v2 must be inserted simultaneously. This
problem is motivated by a mesh generation algorithm for three-
dimensional PLCs that have small angles, in which circumstances
arise where arbitrarily many vertices must be inserted simultane-
ously to refine poor-quality elements [22].

Multiple vertices can be simultaneously inserted into (or deleted
from) the segments of a ridge-protected three-dimensional CDT
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Figure 11: A constrained Delaunay tetrahedralization in which nei-
ther v1 nor v2 can be inserted without losing the constrained De-
launay property, unless they are inserted simultaneously. The con-
straining segments s1 and s2 are reflex edges of the polyhedron.
Imagine the top and bottom vertices are slightly closer to you than
the others.
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Figure 12: Simultaneous insertion of two vertices into two constrain-
ing segments. If one vertex were inserted first, the other segment
would lose regularity. (In this two-dimensional example, the CDT
can be saved by a refusal to flip the segments, but the algorithm is
intended for three dimensions.)

by scheduling their weights so that each vertex bursts through the
lifted segment in which it is inserted at approximately time τ = 0
(subject to perturbations), and arrives at its final weight at exactly
time τ = 1, as Figure 12 illustrates. Details will appear in the
full-length paper.
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Appendix

A. Proof of Correctness of the Flip Algorithms
Note. This section is not in the version of the paper published in
the Nineteenth Annual Symposium on Computational Geometry.

I begin with several basic combinatorial results about PLCs and
CDTs that are needed for the algorithm proofs. They are presented
without proof.

LEMMA 3. Let p and q be two points in the triangulation do-
main of a PLC X , and suppose p and q can see each other. Suppose
no constraining facet of X contains p. Say that p′ is an ε-neighbor
of p if |pp′| ≤ ε. Then there is a positive constant ε such that every
ε-neighbor of p can see q. �

THEOREM 4. Suppose that no d + 2 vertices of a weighted
PLC X lift to a common non-vertical hyperplane. If it exists, the
weighted CDT of X is unique, and contains every constrained reg-
ular simplex of X . �

THEOREM 5 (DELAUNAY LEMMA). Let X be a (weighted)
PLC, and suppose no d + 2 vertices of X lift to a common non-
vertical hyperplane. A triangulation T whose vertices are the ver-
tices of X is a (weighted) CDT of X if and only if T fills X , T
respects X , and every hyperface of T is either locally regular or
included in a constraining (d − 1)-facet of X . �

The following theorem verifies a claim made in Section 3.

THEOREM 6. Let X be a PLC, and let T be a triangulation
that respects X . Let g be a non-constraining hyperface of T . Let
WR and WC be the Radon subsets computed by the procedure
FLIP(T, g) as discussed in Section 3, and let W = WR ∪ WC .
Note that conv(WR) is a face of g (possibly g itself).

If g is not locally regular, then conv(WR) is neither regular nor
constrained regular.

PROOF. Let s and t be the d-simplices that contain g. Let hs be
the unique hyperplane that contains s+. As g is not locally regular,
every vertex of s and t (including every vertex in W ) lifts to a point
in or below hs.

The first claim is that conv(WR) is not regular; suppose for the
sake of contradiction that it is regular. Let hR be a witness to its
regularity. Every vertex of WC lifts to a point above hR.

WR and WC are a Radon partition of W . Let p be the Radon
point conv(WR)∩conv(WC), which lies in the relative interior of
conv(W ). Treat the hyperplane hs as a linear function that maps
any point q in Ed to a height hs(q), and treat hR similarly. Because
hs and hR both include conv(W+

R ), hs(p) = hR(p), as Figure 13
shows. However, hR(v) < hs(v) for every vertex v of WC . As
p lies in the relative interior of conv(WC), this is an impossibility.
By contradiction, conv(WR) is not regular. Nor is it constrained
regular: every vertex in W is visible from p because s and t both
contain p, and s and t respect X . �

The following theorem ensures that the flip algorithms, applied
to Xn(τ), never need to perform any retriangulation more compli-
cated than a bistellar flip, and that no two flips happen simultane-
ously.

THEOREM 7. Let V and W be two different minimal affinely
dependent subsets of vertices in X . Let V +(τ) be the set of lifted
companions of the vertices in V , with heights assigned according
to the perturbed PLC Xn(τ); and likewise let W+(τ) be the set
of lifted companions of the vertices in W . There is no time τ∗ for
which both of V +(τ∗) and W+(τ∗) are affinely dependent.
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Figure 13: The hyperplanes hs and hR intersect over the Radon
point p. If g is not locally regular, the simplex conv(WR) cannot be
regular because not every vertex of WC can lift to a point above
above hR.

PROOF. Neither V +(0) nor W+(0) is affinely dependent by
construction. As the weights vary linearly with time, each of V +(τ)
and W+(τ) is affinely dependent for at most one value of τ .

Because each of V and W is minimal affinely dependent, each of
them contains at least one vertex the other lacks. Let j be the index
of the first vertex in the perturbation order that is in only one of the
two sets. Suppose without loss of generality that vertex vj is in V .
The perturbation of the weight of vj changes the time at which the
flip opportunity γV occurs (because the time varies linearly with
the weight), but not the time at which γW occurs. If the two times
were equal prior to the perturbation, they are not equal for Xj(τ).

Next, suppose that for some i the flip opportunities γV and γW

occur at different times in Xi−1(τ). Then, by the choice of pertur-
bation quantities, the two flip opportunities occur at different times
in Xi(τ). The result follows by induction on i. �

The next lemma guarantees—under the right circumstances—
that when a flip opportunity occurs, the flip can actually happen;
the circumstances mentioned in Section 3 that might prevent a flip
from being possible do not occur. In the following theorem and the
rest of the appendix, X(τ) refers to the perturbed PLC Xn(τ).

LEMMA 8. Suppose some triangulation T is the CDT of X(τ)
for any τ− < τ < τ∗, where τ− and τ∗ are arbitrary real numbers.
Suppose some hyperface g of T is no longer locally regular at time
τ∗.

Let s and t be the d-simplices that have g for a face. Let W
be the minimal affinely dependent subset of the vertices of s and
t (there is only one such subset). Let WR and WC be the Radon
subsets of W computed by the procedure FLIP(T, g). Suppose that
no constraining facet of X(τ) includes conv(WR).

Then all of the d-simplices that FLIP attempts to delete are present
in T . Furthermore, FLIP transforms T into another triangula-
tion T ′ such that T ′ is the CDT of X(τ) for any τ that satisfies
τ∗ < τ < τ+, where τ+ is some number greater than τ∗.

PROOF. Let W+ be the set of lifted companions of the vertices
in W , with heights assigned according to their weights in X(τ∗).
Because τ∗ is the first moment at which g is no longer locally reg-
ular, W+ is minimal affinely dependent, just like W .

The vertices in WC include the two vertices of s and t not shared
with g. Let TR = {conv(W − {v}) : v ∈ WC}. Two of the
simplices in TR—call them ys and yt—are faces of s and t. (If the
flip is nondegenerate, ys = s and yt = t.) One condition for the
flip to be possible is that all the simplices in TR must be present in
T .
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Figure 14: If k does not include w, then w+ lies below k’s witness
hyperplane. Note that j and z may be simplices of any dimension.
They are depicted here as points because of the limitations of paper.

Let j be the dimension of each simplex in TR. Let y be any j-
simplex in TR that is also present in T . (There are at least two of
these, namely ys and yt.) Let z be any (d − j − 1)-simplex of T
such that the d-simplex conv(y ∪ z) appears in T . (Note that these
steps of the proof echo Lines 19–20 of FLIP. If j = d, then z is
the “empty simplex” and conv(y ∪ z) = y.) The goal of this proof
is to show that for every such choice of z, and for every y′ ∈ TR,
conv(y′ ∪ z) is a simplex of T , so the flip can be performed.

Because conv(y ∪ z) is in the CDT T , it is constrained regular
for any τ satisfying τ− < τ < τ∗; and as the motion of the lifted
vertices is continuous, conv(y ∪ z) is constrained semiregular at
time τ∗. Let hyz be the unique hyperplane in Ed+1 that serves as
a witness to the constrained semiregularity of conv(y ∪ z). Be-
cause hyz includes y+, because y+ has all but one of the vertices
of W+, and because W+ is minimal affinely dependent at time τ∗,
hyz includes W+. Other than the vertices of W and z, no vertex of
X(τ∗) lifts to a point in hyz , because if there were any other such
vertex, it could be used to construct a subset of vertices that contra-
dicts Theorem 7. Therefore, every vertex that is not in W nor z but
is visible from conv(y ∪ z) lifts to a point above hyz .

Let y′ be a simplex of TR other than y. Let j = y ∩ y′, and let
w be the vertex of y′ not shared by y; thus, y′ = conv(j ∪ w),
as illustrated in Figure 14. Because conv(j ∪ z) is a hyperface of
the d-simplex conv(y ∪ z), it is a face of T , and because T is a
triangulation of X , T contains a second d-simplex k that includes
conv(j ∪ z). The present lemma claims that T contains conv(y′ ∪
z), or equivalently that k = conv(y′ ∪ z). Suppose for the sake
of contradiction that k is some other simplex, as Figure 14 depicts.
Then the apex of k is some vertex other than w, and therefore the
apex lifts to a point above hyz . It follows that w+ (which lies in
hyz) lies below the witness hyperplane hk of k. Because T is a
CDT for τ− < τ < τ∗, k is constrained semiregular at time τ∗, so
w is not visible from the relative interior of k. The next goal is to
contradict this claim.

Let p be a point in the relative interior of conv(WR). Because
w and conv(WR) are faces of y′, and y′ (being in T ) respects X ,
w is visible from p; no facet of X can block the visibility. By
assumption, no constraining facet includes conv(WR), so no con-
straining facet contains p. By Lemma 3, there is a positive ε such
that every ε-neighbor of p can see w. Recall that conv(WR) is a
face of every simplex in TR, including y and y′, so it is a face of k.
Therefore, some point in the interior of k can see w, contradicting
the conclusion of the previous paragraph.

Therefore, for every y′ ∈ TR, conv(y′ ∪ z) is a simplex of T .

This argument holds for any valid choice of z, so every d-simplex
that the FLIP procedure tries to remove is present in T , and FLIP

will succeed.
Just prior to time τ∗, every hyperface of T is locally regular. At

time τ∗, only hyperfaces of T that include conv(WR) lose their lo-
cally regularity. There are only two ways to triangulate the void left
by the simplices removed by FLIP: with the original d-simplices
{conv(y′ ∪ z) : y′ ∈ TR, conv(y ∪ z) ∈ T}, or with the new
d-simplices {conv(y′ ∪ z) : y′ ∈ TC , conv(y ∪ z) ∈ T}. The
hyperfaces between the new d-simplices are locally regular for all
τ > τ∗. All the other non-constraining hyperfaces of the modified
triangulation are still locally regular at time τ∗ as a consequence
of Theorem 7. They remain locally regular at least until the next
flip opportunity occurs at some time τ+. By the Delaunay Lemma
(Theorem 5), the updated triangulation is the CDT of X(τ) for
τ∗ < τ < τ+. �

The next several lemmata build a case for the correctness of
FLIPINSERTFACET. A critical part is to show that FLIPINSERT-
FACET performs the flips necessary to maintain a CDT in the re-
gion R without getting stuck. (Recall that R is the union of the
simplices of T that cross the inserted facet f .)

To aid the proof, let R(τ) be a time-varying PLC defined as fol-
lows. The vertices of R(τ) are the vertices of Xn(τ) that lie in
R, and their time-varying weights are the same as in Xn(τ). R(τ)
has one d-facet, namely R. The constraining facets of R(τ) are the
simplices of T that either lie in the boundary of R, or lie in both
R and a constraining facet of X . In summary, R(τ) is much like
Xn(τ) except that everything outside the region R is omitted, and
the boundary of R is represented as constraining facets.

The first lemma offers a constructive proof that R(τ) has a CDT
for any τ ≥ 0—even if, for most values of τ > 0, Xn(τ) does not
have a CDT!

LEMMA 9. Let X be a PLC that has a CDT T , and let f be a
facet such that Xf = X ∪ {f} is a valid PLC. Let R be the union
of all d-simplices of T that do not respect f . Let X(τ) be the time-
varying PLC defined for use by FLIPINSERTFACET in Section 4,
with weights perturbed as discussed in Section 5. Assume that T is
consistent with the perturbations; that is, T is the CDT of Xn(0).
Let R(τ) be defined as above.

Then R(τ) has a unique CDT for every τ ≥ 0, except for a finite
number of values of τ during which a flip occurs. Furthermore, a
call to FLIPINSERTFACET(X,T, f) produces every such triangu-
lation, in sequence as they are ordered by τ .

PROOF. Consider the set of simplices in T that lie in the region
R. If a simplex s (of any dimension) in the region R has at least one
left vertex and one right vertex, then s is not a constraining simplex
of X , because X ∪ {f} is a complex and the relative interior of s
intersects f . If a simplex s does not have at least one left vertex
and one right vertex, then s is constrained regular in Xn(τ) for all
τ ≥ 0, as argued in Section 4. This includes every simplex that lies
in the boundary of R. Likewise, every simplex that does not have
both a left vertex and a right vertex is constrained regular in R(τ)
for all τ ≥ 0.

The lemma is proved by induction on the sequence of flips per-
formed by FLIPINSERTFACET. By assumption, R is a union of
d-simplices that are constrained regular in X , so these d-simplices
(and their faces) form a CDT of R(0), and the lemma holds for any
value of τ from zero until the first flip occurs.

Afterward, the algorithm maintains the following two invariants
at any time τ between flips.

• The triangulation maintained by the algorithm is the CDT of
R(τ).



• For every non-constraining hyperface f that will lose its lo-
cal regularity at some time in the future, there is an event on
the queue keyed by the time when the two d-simplices that
currently include f will have the same witness hyperplane.

It is straightforward to verify that the second invariant is maintained
by Lines 3–4 and 9–10 of FLIPINSERTFACET. The first invariant
is proven as follows.

By Theorem 7, the CDT of Xn(τ) undergoes only one local re-
triangulation at any one time, and that retriangulation is always a
bistellar flip (if a retriangulation is possible at all). Each call to
FLIP computes a vertex set WR, the vertices of the shared face that
the flip tries to remove. By Theorem 6, conv(WR) is no longer
constrained regular at the time τ∗ when the flip occurs. There-
fore, conv(WR) has at least one left vertex and one right vertex.
The same is true of every simplex removed by the flip, because
conv(WR) is a face of every one of them. It follows that the algo-
rithm never attempts to remove a boundary simplex of R(τ).

Because Xf is a complex, no constraining facet of X crosses
the facet f , so no constraining facet of R(τ) crosses f . Because
conv(WR) crosses f and respects R(τ), conv(WR) is not included
in any constraining facet of R(τ). Therefore, Theorem 8 applies,
and the new triangulation of R that the flip produces is the CDT
of R(τ) for τ∗ ≤ τ ≤ τ+, where τ+ is the next time that a non-
constraining hyperface loses its local regularity.

Because the invariants are maintained after each flip, the lemma
follows by induction on the sequence of flips. �

LEMMA 10. Suppose that the PLCs X and Xf = X ∪ {f}
(with their vertex weights perturbed as in Xn(0)) have CDTs. Let
R(τ) be the time-varying PLC defined above. There is a constant
τ∞ such that the CDT of R(τ) respects f for any τ > τ∞.

PROOF. By assumption, Xf has a CDT T f which respects f .
Let Tf be the subset of T f containing the simplices included in
f . By the definition of CDT, every simplex in Tf is constrained
regular in the lowest-dimensional facet of X that contains it. That
facet is either f or a face of f , so again by the definition of CDT,
Tf is a CDT of f . The perturbation method described in Section 5
ensures that no d + 2 vertices of Xf lift to a common non-vertical
hyperplane, so Tf is the only CDT of f by Theorem 4.

The lemma follows because each simplex of Tf is constrained
regular in R(τ) for some sufficiently large value of τ .

Let Xf be the (d−1)-dimensional PLC containing only f and its
faces. Let s be any (d−1)-simplex in Tf . Because Tf is the CDT of
f , there exists a witness hs to the constrained regularity of s in Xf .
Let τ∞ be a time sufficiently large that no flip opportunities occur
at or after time τ∞. For τ ≥ τ∞, s is constrained regular in R(τ)
too, because one may construct a witness Hs to the constrained
regularity of s in R(τ) as follows. Because R(τ) is d-dimensional,
Hs is a d-dimensional hyperplane in Ed+1, whereas hs is a (d−1)-
dimensional hyperplane that lies in the affine subspace of Ed+1

spanned by f and the xd+1-axis. Hs is constructed by extending
hs in a direction affinely independent of this subspace, as illustrated
in Figure 15. Choose this direction to be tilted so that the lifted
companion of every left vertex lies above Hs. Hs might then be
very steep, but it is not vertical, so if τ is sufficiently large, every
right vertex lies above Hs too.

Thus for a large value of τ every left vertex and every right vertex
lifts to a point above Hs, but what about a vertex v that is neither
left nor right, but lies in f? Because s is constrained regular in Xf ,
either v is a vertex of s, v is not visible from the relative interior of
s, or v’s lifted companion v+ lies above hs.

Thus every vertex of R(τ∞) visible from the relative interior of
s lifts to a point above Hs (except the vertices of s). Therefore, s
is constrained regular in R(τ∞). �
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Figure 15: The (d − 1)-dimensional hyperplane hs contains the
lifted constraining simplex s+. (In a higher-dimensional picture, hs

would be a witness to the constrained regularity of s within some
(d − 1)-facet.) When τ is large enough, hs can be extended by one
dimension to become Hs, a witness to the constrained regularity of
s in R(τ).

The main tool in proving the correctness of FLIPINSERTFACET

is the Delaunay Lemma. Because all the non-constraining hyper-
faces of the final triangulation are constrained regular, the final tri-
angulation is a CDT of Xf .

THEOREM 11. Suppose that the PLCs X and Xf have CDTs.
Suppose T is a CDT of X , and is consistent with the perturbations;
that is, T is the CDT of Xn(0). Then the algorithm FLIPINSERT-
FACET returns a CDT of Xf . (This CDT is also consistent with the
perturbations.)

PROOF. Let T∞ be the final triangulation produced by FLIPIN-
SERTFACET. Every non-constraining hyperface of the initial trian-
gulation T that lies outside the region R, or in the boundary of R,
is still constrained regular after f is inserted. FLIPINSERTFACET

does not modify any simplex outside of R or in the boundary of
R, so these hyperfaces are all present in T∞. Because they are
constrained regular, they are locally regular in T∞.

Let τ∞ be a time chosen sufficiently large that no flip opportuni-
ties occur for any τ ≥ τ∞. By Lemma 9, the simplices of T∞ that
lie in the region R form the CDT of R(τ∞). Therefore, every hy-
perface of T∞ inside R is locally regular in R(τ∞). By Lemma 10,
the CDT of R(τ) respects f , so these internal hyperfaces can be di-
vided into two classes: those that lie in f , which are constraining
simplices of Xf ; and those that lie on one side of f .

Let g be any hyperface inside R but not included in f . Suppose
without loss of generality g is to the left of f . Let s and t be the
two d-simplices that share g. As s and t respect f , s and t have no
right vertices. Because these vertices have the same weights in Xf

as in R(τ∞), f is locally regular in Xf as well.
It follows that every non-constraining hyperface of T∞ is locally

regular. By the Delaunay Lemma (Theorem 5), T∞ is the CDT of
the perturbed Xf . Every simplex that is constrained regular in the
perturbed Xf is constrained semiregular in the unperturbed Xf , so
T∞ is a CDT of the unperturbed Xf too. �



THEOREM 12. Suppose that the PLCs X and Xf have CDTs.
Suppose T f is a CDT of Xf , and is consistent with the perturba-
tions. (In other words, if the vertex weights of Xf are perturbed to
match the vertex weights of Xn(0), T f is still a CDT of Xf .) Then
the algorithm FLIPDELETEFACET returns a CDT of X . (This CDT
is also consistent with the perturbations.)

PROOF. FLIPDELETEFACET maintains the following two invari-
ants at any time τ between flips.

• The triangulation of R maintained by the algorithm is the
CDT of R(τ), where the vertex weights of R(τ) follow the
schedule for FLIPDELETEFACET discussed in Section 4.

• For every non-constraining hyperface that will lose its local
regularity by time τ = 0, there is an event on the queue keyed
by the time when the two d-simplices that currently include
the hyperface will have the same witness hyperplane.

It is straightforward to verify that the second invariant is main-
tained by Lines 1–2 and 7–9 of FLIPDELETEFACET. The first in-
variant is maintained because for any time τ at which FLIPINSERT-
FACET performs a flip, FLIPDELETEFACET performs the reverse
flip at time −τ . �


