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Abstract. We introduce the notion of generalized Delaunay triangulation of a 
planar straight-line graph G = (V, E) in the Euclidean plane and present some 
characterizations of the triangulation. It is shown that the generalized Delaunay 
triangulation has the property that the minimum angle of the triangles in the 
triangulation is maximum among all possible triangulations of the graph. A general 
algorithm that runs in O(I VI 2) time for computing the generalized Delaunay triangu- 
lation is presented. When the underlying graph is a simple polygon, a divide-and- 
conquer algorithm based on the polygon cutting theorem of Chazelle is given that 
runs in O( I V I logl VI) time. 

1. Introduction 

A triangulation of a set of points is a straight-line maximally connected planar 
graph G = (V, E),  whose vertices are the given set of points and whose edges do 
not intersect each other except at the endpoints. Each face, except the exterior 
one, of the graph is a triangle. Triangulations of  a set of points in the plane have 
been extensively studied and have applications in closest point problem [6, 14, 
21, 28], finite element method [1]-[3], stress analysis of  two-dimensional continua 
[8], and interpolation [15, 16, 23, 25, 26]. In this paper we shall consider the 
Delaunay triangulation [23], [28] which has the property that the circumcircle 
of any triangle does not contain any other point in its interior. It has been shown 
[23], [28] that the Delaunay triangulation of  a set of N points in the plane can 
be constructed in O(N log N)  time, which is asymptotically optimal by a result 
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of  Shamos and Hoey [28] who have shown that any triangulation algorithm can 
also sort. In a sense, a triangulation embeds the given set of points by containing 
it as its set of vertices. It is natural to see if it can be generalized so as to embed 
an arbitrary planar straight-line graph (PSLG) which may or may not be con- 
nected. Indeed, a triangulation of a simple polygon with N vertices can be found 
in O(N log N)  time [4], [5], [9]. With slight modifications, the approach given 
in [9] can be extended to find a triangulation which embeds a PSLG with N 
vertices in O(N log N)  time. Along this line we shall address the problem of 
finding a Delaunay-like triangulation which embeds a given PSLG and satisfies 
a certain property similar to the circumcircle property mentioned earlier. For any 
given PSLG G, there are a number of  possible triangulations T(G).  We are 
interested in the following two criteria based on which triangulations T(G)  are 
constructed: (i) the circle criterion as given in Definition 2, and (ii) the maxmin 
angle criterion, i.e., the minimum measure of  angles of  all the triangles in a 
triangulation is maximized. As will be shown later, these two criteria are equivalent 
and the resulting triangulation is the generalized Delaunay triangulation, to be 
defined later. 

What motivates the consideration of the generalized Delaunay triangulation 
stems from a problem in terrain interpolation. Given a terrain surface z =f(x, y) 
for which some of  the function values are known at irregularly scattered points, 
we want to find a triangular faceted surface to approximate on the set of  points 
whose functional values are known. Each triangle of  the triangulation will 
correspond to a triangular faceted plane in three-dimensional space. The collec- 
tion of triangular faceted planes is then used to approximate the terrain surface. 
The functional value of  a point p = (x, y) is then linearly interpolated by the 
functional values of  the vertices of the triangle in the triangulation which contains 
p in its interior. 

The performance of this interpolation depends heavily on the choice of the 
triangular grid. Intuitively, the Delaunay triangulation can be viewed as one in 
which the triangles look more like equilateral triangles and is believed to provide 
the best triangular grid for this purpose. However, information other than just a 
set of points is often available, especially in geographical interpolation. For 
example, the boundary of  a lake and the ridge of a mountain range are also 
located. Then it would be nice if the triangular grid could preserve the additional 
information as well. This leads us to consider the construction of a "nice" 
triangulation for a set of  points and line segments. The generalized Delaunay 
triangulation defined below can be viewed as a triangular grid that retains the 
edges o f  the original graph and, whenever it is not obstructive to the original 
graph, tries to capture the flavour of the Delaunay triangulation as much as 
possible. 

This paper is organized as follows. In the next section we give the definition 
and some characterizations of  the generalized Delaunay triangulation (GDT). A 
quadratic algorithm is given in Section 3 that computes the G D T ( G )  of  any 
PSLG G. In Section 4 we consider a special case when the edges in G form a 
simple polygon and provide an O(1VI log[ V l) algorithm for computing the GDT. 
Finally, we discuss possible directions for further research. 
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2. Preliminaries 

We first give a formal definition of the generalized Delaunay triangulation of  a 
PSLG G = ( V, E)  [17] and then derive certain interesting properties of  the gen- 
eralized Delaunay triangulation. 

Definition 1. For any PSLG G =  (V, E), a triangulation T(G)  of  G is a PSLG 
G'  = ( V, E ' ) ,  where E c E ' ,  such that no edges can be added without intersecting 
an existing edge. 

Definition 2. For any PSLG G = ( V, E) the generalized Delaunay triangulation 
(GDT) of (3, denoted by G D T ( G )  is a triangulation T(G)  = (V, E ' )  in which the 
circumcircle of each face or triangle AviVjVk, denoted by O(v,  vj, vk) does not 
contain in its interior any other vertex which is visible from the vertices vi, vj, 
and Vk of  the triangle. The edges of  the set E ' -  E are called Delaunay edges, 
and the edges of  E are called sides. The vertices u and v, u, v e V are visible 
from each other if the line segment u, v does not intersect an edge of E at an 
interior point. 

Figure 1 shows the G D T  of  a graph G with Delaunay edges shown in dotted 
line. Note that for graphs G = (V, d'), the G D T ( G )  becomes the conventional 
Delaunay triangulation of  a set V of  points. The following lemma, which relates 
the numbers of  triangles and edges to the number of  vertices in V, can be 
established fairly easily. 

Lemma 1. Given any PSLG G = ( V, E ), any triangulation T(G)  has 2(l Vl - 1) - B 
triangles, and 3([ V[- 1)-  B edges, where B is the number of vertices that are on 
the convex hull of the set V of points and [ V[ denotes the cardinality of V. 

We now establish the relationship between the circle criterion and the maxmin 
angle criterion for the Delaunay triangulation. Given a strictly convex quadri- 
lateral abcd so that the four vertices are not cocircular, there are two possible 

',' ', ; ,-" ', il_,'" 
• , < 7 - - - - . . . '  '. 

Fig. 1, Generalized Delaunay Triangulation of a PSLG. 
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triangulations as shown in Fig. 2(a). If the quadrilateral is not convex or one of 
the diagonals is a side, i.e., an edge of the given graph, then only one triangulation 
is possible (Fig. 2(b)). If  we use the circle criterion, i.e., if the circumcircle of 
Aabc contains vertex d, then vertex d is connected to vertex b, otherwise vertices 
a and c are connected. The resulting triangulation is the Delaunay triangulation 
of  the quadrilateral. However, if the maxmin angle criterion is used, i.e., if the 
minimum angle of  the two triangles is to be maximized, the resulting triangulation 
must also satisfy the circle property, as shown below. 

Lemma 2. Let abcd be a convex quadrilateral such that vertex c is outside the 
circle O(a, b, d). The minimum angle of the triangulation obtained by adding 
diagonal b, d is strictly larger than the minimum angle obtained by adding diagonal 
a, C. 

Proof. As shown in Fig. 3 let 01 be the smallest angle and let edge b, c inter- 
sect O(a,b ,d )  at c'. It is clear that angle ~acd<~ac 'b=~adb .  Thus, the 
minmum angle of the triangles in the triangulation obtained by adding diagonal 
a, c is smaller than the minimum angle in the triangulation obtained by adding 
diagonal b, d. The other cases in which the smallest angle is not 01 can be shown 
similarly. [] 

Indeed, based on this result, Lawson [ 16] devised a local optimization procedure 
(LOP) to construct the Delaunay triangulation for a set of N points. The LOP 
works as follows. Suppose e is an internal edge, in contrast to the edges on the 
convex hull, of  a triangulation and Q is the quadrilateral formed by two triangles 
having e as the common edge. Consider the circumcircle of one of the triangles 
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Fig. 2. Triangulation of quadrilateral. 
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Fig. 3. Illustration for the proof of Lemma 2. 

in Q. If the circle contains the other vertex, replace e by the other diagonal of  
Q, otherwise leave e as it is. An edge of the triangulation is said to be locally 
optimal if the application of the LOP to it would not swap it. The edges on the 
convex hull are locally optimal by default. Initially the convex hull of the set of 
points is obtained and an initial triangulation of  the convex hull is constructed 
either by the procedure described below or by other methods. (See, e.g. [22].) 
The points not on the convex hull are added to the triangulation one at a time. 
Suppose that the new point p is contained in triangle Aabc. First p is connected 
to the vertices of  the triangle a, b, and c to form three new triangles. Each of  

these triangles, in general, will form a quadrilateral with a neighboring triangle. 
The LOP is then applied to each of these quadrilaterals. Whenever a new triangle 
is created by swapping the two diagonals of  the quadrilateral on which the LOP 
is applied, the same LOP will be applied to the newly created quadrilateral. In 
this manner the LOP is repeatedly applied until all the edges in the triangulation 
are locally optimal. It has been shown [16], [17] that this process terminates and 
the resultant triangulation after all N points have been added is the Delaunay 
triangulation of  the set of  points. The overall time required is O(N:), since for 
each point one needs to spend linear time for locating the triangle containing 
the point and for applying the LOP to the edges of  the triangulation. 

Note that the above LOP can be applied to any triangulation as we elaborate 
below. Consider any triangulation T(G)  of a PSLG G = ( V, E).  Assume by default 
that the edges in E are locally optimal. We examine first the effect of  each 
application of LOP to an internal edge of T(G).  Let Nt denote the number of  
triangles in T(G).  Recall that the number of  triangles in any triangulation of  G 
is a constant when the graph G is given (Lemma 1). For each triangulation T(G)  
we define a characteristic vector CT with N, components, each of  which corre- 
sponds to a triangle and is the measure of  the minimum angle of  the triangle. 
These values are sorted in nondecreasing order. Given triangulations T(G)  and 
T'(G),  we define T(G)  < T ' (G)  if and only if the associated characteristic vector 
of T, Cr, is lexicographically less than Cr,. 
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L e m m a  3. Given a triangulation T(G),  if  an application of the LOP to an edge 
e results in a swapping of the edge with another edge e' and thus producing a new 
triangulation T'(G),  then T ( G ) < T ' ( G ) .  

Proof. Let the two triangles of  T sharing edge e have the minimum angles 
appear as two components of  Cr, say CTj and CTk, j <  k. Thus CT, <--CTk. 
Since a swap was made, from Lemma 2 the smaller of  the two smallest angles 
o f  the two new triangles resulting from the swap is strictly greater than Cr,. 
Thus, it follows that Cr  must be lexicographically less than CT, and hence 
T(G)  < T ' (G) .  [] 

L e m m a  4. The edges of a triangulation T(G) of a PSLG G = ( V, E)  are locally 
optimal i f  and only i f  each triangle of T(G) satisfies the circle property, i.e., 
circumcircle of  any triangle Aabc of T(G) does not contain in its interior any vertex 
of V visible from all three vertices a, b, and c. 

Proof. Suppose that all triangles of T(G)  satisfy the circle property. Since by 
definition of local optimality, we need only to consider internal edges that are 
not in E. Consider Aabc such that b, c is an internal edge and is shared by Abcd. 
I f  both Aabc and Abcd satisfy the circle property, i.e., vertex d~ O(a, b, c) and 
vertex a ~ O(b, c, d), application of LOP to b, c will not swap it. Thus, all edges 
are locally optimal. To show the converse suppose that all edges are locally 
optimal and that the circumcircle K of  Aabc contains a point p visible from a, 
b, and c. Let 8 be the distance from p to its nearest edge, say a, c (Fig. 4). Assume 
that among all triangles of T whose circumcircles contain p as an interior point, 
none has an edge which is at a distance less than 8 from p. Since p is on the 
opposite side of a,'-'~ from b, the edge a, c must be shared with another triangle 
Aacq, and vertex q cannot be interior to K, as this would contradict the hypothesis 
that a, C is locally optimal. The vertex q cannot be in the cross-lined region as 
shown in Fig. 4, or Aacq would contain p in its interior. Thus, one of  the edges, 
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I 

Fig. 4. Illustration for the proof of I.emma 4. 
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a, q and c, q is at a distance less than 8 from p. I f  we can show that the circumcircle 
of Aacq also contains p in its interior, then we would have a contradiction that 
Aabc is the triangle with an edge at the smallest distance from p. Note that the 
circumcircle K '  of  Aacp must contain b in its interior and the quadrilateral abcp 
lies entirely in the intersection of K and K'.  Since the portion of  K '  that lies on 
the same side of  h, d as p, lies totally in K, the vertex q, which is outside of  K, 
must be exterior to K'.  Thus, the circumcircle of  Aacq must contain p in its 
interior, since for any convex quadrilateral abcd if O(a, b, c) does not contain 
vertex d, then O(a, b, d) must contain vertex c. [] 

Theorem 1. A triangulation T(G) of a PSLG G = ( V, E) is a generalized Delaunay 
triangulation if and only if its characteristic vector is lexicographically maximum. 

Proof. If the characteristic vector of T(G)  is lexicographically maximum, appli- 
cation of LOP to any edge of T(G)  will not swap it and hence all the edges must 
be locally optimal. This implies from Lemma 4 that T(G) is the GDT(G).  
Conversely, if T(G)  is a GDT(G)  then it must satisfy the circle property and 
from Lemma 4 it follows that the edges in a T(G)  are locally optimal. Suppose 
now that there exists a trangulation T'(G) which is lexicographically maximum, 
but T ' ( G ) ~  T(G).  Since T'(G) is lexicographically maximum, no edges will be 
swapped when the LOP is applied to any internal edge. Hence all edges in T ' (G) 
must be locally optimal. Since T ' (G) # T(G),  there must exist a Delaunay edge 
a, d in T ' (G)  that intersects Aabc o f T ( G ) .  We may assume that a, d is the edge 
closest to vertex c among those that intersect Aabc. Let the intersection of a, d 
and b, c be denoted p (Fig. 5). Note that the edge b, c of T(G)  intersected by 
a, d must be a Delaunay edge, and vertices b and c and vertices a and d are 
visible from each other. We shall show that a - ~  cannot be locally optimal and 

K 

K' 

dge in E 

Fig. 5. Both edges a ~  and ~ cannot be locally optimal. 
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hence cannot be a Delaunay edge as claimed. We claim that there exist two 
vertices b '  and c'  in G that lie on different sides of  a, d such that vertices a, c', 
d and b '  form a convex quadrilateral and they are all visible from one another. 
I f  vertex c is visible f rom d then c'= c, otherwise we can find in Acdp a vertex 
c'  which is visible from both a and d, since vertices b and c and vertices a and 
d are visible and no side of  E intersects ~ or b, c. For example, vertex c' can 
be chosen from the endpoints of  sides of  E that lie in Acdp so that it is closest 
to a, d. Similarly, vertex b'  can be found. Consider K = O(a, c', d) and K ' =  
O(a, b', d). It is obvious that K w K '  contains the circle B(a, d) with a, d as the 
diameter, and B(a, d) contains the quadrilateral ac'db'. That is, any circle that 
passes through vertices a and d will either contain vertex c' or vertex b'. Note 
that a, d must be an edge shared by two triangles in T'(G). In fact, one of  these 
two triangles must be A ac'd, since other choices of  triangles would contain vertex 
c '  in the interior or violate the assumption that a, d is the closest edge to vertex 
c. (Recall that vertex c' is closest to a---,~.) Therefore a, d cannot be locally optimal, 
a contradiction. Thus, T (G)  must be lexicographically maximum. [] 

Corollary 1. I f  no four points of V in a PSLG G = ( V, E) are cocircular, the 
generalized Delaunay triangulation G D T ( G )  is unique, and furthermore, it satisfies 
the maxmin angle property and the smallest angle of the triangles in G D T ( G )  
is maximum among all possible triangulation T(G) .  

3. A General Algorithm 

So far we have concentrated on the characterizations of  the generalized Delaunay 
triangulation. Let us now turn our focus on the problem of constructing G D T ( G )  
of  a given PSLG G = (V, E). We shall present below an O( I V[ 2) algorithm for 
computing the G D T ( G )  of  a given PSLG G = ( V, E). The main idea is to compute 
for each vertex v ~ V, the Delaunay edges incident with it. We begin by proving 
the following lemma, on which the algorithm is based. 

l e m m a  5. For any PSLG G = ( V, E),  an edge v, t is a Delaunay edge in G D T ( G )  
i f  and only i f  v and t are visible from each other and there exists a circle passing 
through v and t that does not contain any vertex visible from both v and t. 

Proof. I f  v,-~ is a Delaunay edge, then v and t must be visible from each other 
and there exists a triangle A tuv in G D T ( G )  with v, t as an edge. Since the triangle 
satisfies the circle property, the claim follows. Conversely, suppose there exists 
a circle K passing through vertices v and t and K does not contain any vertex 
visible from both v and t. We now move the center of  K along the perpendicular 
bisector o f  V,t until the first vertex u visible f rom both v and t is on the circle. 
Note that the size of  the circle changes as its center moves. The circle O(t, u, v) 
obtained by enlarging K certainly satisfies the circle property, for if it contained 
a vertex u '  visible from all three vertices t, u, and v in the interior, it would not 
be the first circle found in this manner. Hence v, t is a Delaunay edge, and so 
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are edges t, u and v, u. The existence of vertex u can be argued simply by the 
fact that the set of  vertices visible from vertex, say v, must contain at least one 
vertex other than t and that among the vertices in the set we can always find one 
which is also visible from t and satisfies the claimed property. [] 

We now proceed to find for each vertex v ~ V the set So of vertices visible 
from v, i.e., So = {ul u is visible from v}. The graph obtained by connecting v to 
all u e So for each u ~ V is called the visibility graph and it has been shown that 
the visibility graph can be computed in O(1 V] 2) time [12]. Once the visibility 
glaph is obtained, we shall eliminate those edges that are not Delaunay edges 
based on the above lemma. 

We note that the vertices in Sv for v are ordered by angles around v when 
they are computed [12]. We first find u e Sv such that the edge u, v is the shortest. 
Since the circle K with u, v as the diameter is totally contained in the circle of  
radius d(u,  v) and centered at v, no vertex in So is interior to K. (Fig. 6(a)). It 
follows from Lemma 5 that u, v must be a Delaunay edge. We then scan the 
vertices in S~ around vertex v in counterclockwise order starting with the vertex 
after u. The procedure is similar to the Graham scan [10], [27] for computing 
the convex hull of  the set So. We take three consecutive vertices x, y, z at a time, 
and these three vertices along with vertex v form a quadrilateral vxyz. At each 
step we apply the LOP to the edge v , y  of  the quadrilateral, if  v , y ~ E .  I f  
z ~ O(v,  x, y ) ,  the vertex y is deleted from S~, since edge v, y is not a Delaunay 
edge (Fig. 6(b)). Once vertex y is deleted from So, we need to backtrack to 
consider vertices w, x, and z, since deletion o f y  may make edge v, x non-Delaunay. 
We summarize it as follows. 

Procedure Scan (So, u) 
(Comment:  Let the vertices be ordered as u l = u ,  u 2 , . . . ,  uk, uk+l=u~, where 

k - - I S d > 2 . )  
(Comment:  SUCC(u~)= ui+l, and PRED(u i )=  ui-1.) 
(Comment:  Note that v, u is a Delaunay edge.) 
1. x ~ u ;  y<--SUCC(x); z , - -SUCC(y) 
2. while z ~ x do 
3. begin ifv,  y ~ E o r z ~ O ( v , x , y )  

then x ~- y; y ,,- z; z <-- SUCC(y) 
else i f  f~I Y ~ E 

then begin delete y 
i f  x ~ u then y ~- x; x ~ PRED(y)  

else y ,,- z; z ,,- SUCC(y) 
end 

end 

It is easy to see that in a single scan the edges in S~ that remain are Delaunay 
edges and the total time spent is O(]S~I). Since Eo[Sv[ = 0([ V[2), we thus have 
the following. 
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Fig. 6. Computing Delaunay edges incident with vertex v. 

Theorem 2. Given a PSLG G = ( V, E), the generalized Delaunay triangulation 
GDT(G) can be computed in O( I VI 2) time. 

We remark that the above algorithm actually takes O([ V] 2) time and space 
due to the computation of  the visibility graph [12]. But we can easily obtain an 
O([Vi21og I vD time and O(fVD space algorithm by using a straightforward 
approach (see, e.g., [17]) to computing the visibility set S~ for each vertex v ~ V 
and then apply procedure Scan to each set S~. 
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4. A Special CaseDSimple Polygons 

We consider the problem of finding the generalized Delaunay triangulation of a 
simple polygon, i.e., finding GDT(G) where G = (V, E) is a simple cycle. When 
the polygon is monotone, Yeung [30] provides an O(N log N) time algorithm 
where N = I V[, using a straightforward divide-and-conquer scheme. In this section 
we show that the generalized Delaunay triangulation of an arbitrary simple 
polygon can also be computed by divide-and-conquer paradigm, except that it 
rests on a crucial result, the polygon cutting theorem, of Chazelle [4]. 

In [4] Chazelle has shown that given a simple polygon P with N vertices, two 
vertices a and b can be found in O(N) time such that a, b lies entirely in P and 
each of the two simple subpolygons of P resulting from the "cut" by a, b, has 
at least N/3  vertices. With this polygon cutting theorem it is possible to triangulate 
(the interior of) a simple polygon in O(N log N) time [4]. This triangulation 
procedure can be used to construct a decomposition tree for the simple polygon. 
The decomposition tree is a binary tree in which the root represents the simple 
polygon P and the leaves represent triangles in the interior of P. Each node, 
escept the root, represents a polygon which is a proper subset of its parent and 
has at least one-third of its vertices. At each node we store the "cut," called 
diagonal, which results in decomposing the corresponding polygon to the smaller 
polygons represented by its sons. Note that the tree has height O(log N). A 
decomposition tree of the polygon shown in Fig. 7(a) is depicted in Fig. 7(b), 
where the internal nodes represent subpolygons specified as circular lists and 
associated with each internal node is a diagonal; the leaves correspond to triangles 
in the decomposition. 

Assume that a simple polygon decomposition tree is constructed by using the 
polygon cutting theorem. Suppose the simple polygon represented by the root is 
divided into two subpolygons Qt and Q, by the diagonal. We recursively construct 
the GDT(Qt) and GDT(Q~) for the two subpolygons Q~ and Q,, respectively. If 
these two triangulations can be merged to form GDT(P) in linear time, the overall 
time required for the construction of GDT(P) is O(N log N). 

We now describe below the merge process which is similar to the merge 
algorithm described in [23]. 

Procedure Merge (GDT(QI), GDT(Qr), ~ )  
(Comment: GDT(G) is maintained as a doubly connected edge list (DCEL) [27] 

so that the edges incident with any vertex can be traversed in either 
counterclockwise or clockwise order.) 

(Comment: v~, v~ is the diagonal shared by GDT(Q~) and GDT(O,).) 
(Comment: It computes, given GDT(Qt) and GDT(Q,), the GDT(Q) where Q 

is the union of the polygons Qz and Q,.) 
1. Find Av~vjv~ E GDT(Qt) and Av~v~v, ~ GDT(Q,). 
2. If there is no vertex in Qt visible from v, that lies in O(vi, vj, vr), then v~, vj 

is a Delaunay edge. 
Return (GDT(Q)), where GDT(Q) is just the union of GDT(Qt) and 
GDT(Q,). 
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Decomposition tree of a simple polygon based on polygon cutting theorem. 

3. Let T~ = {Vk,, Ok2,. . . ,  Vk,} be the set of  vertices of  Qt that are visible from v, 
and are in O(vi,  v~, v,). Let B(vt,  v,) be the smallest circle that passes through 
vr e Tv. and v, and that is totally contained in and tangent to O(v~, vj, v,) at v,. 

(Comment: No vertices in Tv. are inside B ( v ,  v~).) 
(Comment: Note that v,, v, called the base, is a Delaunay edge and it intersects 

v,, vj and possibly many others in GDT(Qt),  and cuts polygon Q into two 
subpolygons Qi and Qj, where vi e Qi and v s ~ Qj.) 

4. Insert the base v ,  v, into the edge lists of vt and v, in GDT(Q~) and GDT(Q,) ,  
respectively. Delete those edges of GDT(Q~) that intersect v ,  v, from corre- 
sponding edge lists accordingly. 

5. Assume now that edge vt, vr is positioned horizontally and v, and v, are at 
the left and right ends respectively. We now concentrate on the problem of 
computing GDT(Qj),  since GDT(Q~) can be computed similarly. Let 
v,., v,,, v,, Vr~ . . . .  ,V,, V,,. be Delaunay edges in GDT(Q,)  incident on v, in 
clockwise direction and they are above the line v,, Yr. Similarly, let 
v,, vt,, vt, v t2 , . . . ,  v,, v,. be Delaunay edges in GDT(Qj) incident on v, in 
counterclockwise direction and above v,, v,. 
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6. Scan the edges incident with vr in clockwise direction, and let O(v, ,  v,q, v,,+,) 
be the first circle which does not contain v,, 1 <- q -< m - 1. I f  no such circle 
exists, let vrq = y r .  Delete the edges v~, v~, w = 1, 2 . . . . .  q - 1, f rom GDT(Q,)  
since they are not Delaunay edges. 

7. Scan the edges incident with v, in counterclockwise direction, and let 
O(v~, vt~, v,,+~) be the first circle which does not  contain v,, 1 < z < n - 1. I f  no 
such circle exists, let v,, be v , .  Delete the edges v ,  yr., w = 1, 2 , . . . ,  z -  1, f rom 
GDT(Q~) since they are not Delaunay edges. 

8. I f  v,~ = vj and v,q = vj, then we are done,  i.e., the computa t ion of  GDT(Qj)  is 
completed.  Otherwise, we have obtained a quadrilateral v,vw, v,~ as shown in 
Fig. 8. Use the maxmin angle criterion on the quadrilateral to decide if v~, v,: 
or  v,, v~ is a Delaunay  edge. If  v~, v,~ is a Delaunay  edge, v, = v, .  If  v,, v~ is 
a De taunay  edge, v~ = v~. In either case we obtain a new base v,, v,~ or  v,, v , .  
Go  to Step 4, with either v~, v, z or v,, v~ replacing the old base v,, v~. 

We now prove a few lemmas that establish the correctness o f  the above 
procedure.  

L e m m a  6. I f  no vertex of  Qt visible from Vr lies in O ( v .  vj, v,), then vi, v l is a 
Delaunay edge. (Step 2.) 

Proof Consider  the circle O(vi, vj, v~). Since it must  satisfy the circle property 
in GDT(Q~), it cannot  contain any vertex vt~ Qz that  is visible f rom v .  v i and 
vz. Suppose now that vi, vj were not  a Delaunay edge. Then there must  exist a 
vertex vq E Qr visible f rom v~, vj and vt that  is contained in O ( v .  vj, v~). Referring 
to Fig. 9, vertex vq must  lie on different sides o f  v .  vj from vt, for otherwise vq 
is, by simplicity of  the polygon,  invisible f rom either v~ or vj. Furthermore vertex 
vq, together with Avivjv~, must form a convex quadrilateral,  and hence it must 
be contained in O ( v .  vj, vr). Since O ( v .  vj, v,) satisfies the circle property in 
GDT(Qr) ,  vq must  be invisible f rom v.. That  is, vq, vr must  intersect a side of  
the polygon,  Since no side o f  the polygon can intersect v~, v,, we can find a vertex 
v. ~ Q~ visible from all three vertices v .  vj and vr such that it lies in O ( v .  vj, v,), 
a contradiction.  [ ]  

Vt z 

Fig. 8. Illustration of the scanning procedure in Step 8. 
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v, I t edge in E 

Fig. 9. Illustration for the proof of  Lemma 6. 

Lemma 7. The base vt, v~ found in Step 4 is a Delaunay edge. 

Proof Since the circle B(vt,  v,) is the smallest circle, it cannot contain any 
vertex v , ~ Q t  visible from v~. Moreover, B(v, ,  v~) is totally contained in 
O(v~, vi, v~) and so it does not contain any vertex u ~ Q, visible from v,. We 
therefore conclude that B(v,,  v~) does not contain any vertex of  Q visible from 
v~ and that v,, v~ is a Delaunay edge by Lemma 5. [] 

Lemma 8. Let v~ be a vertex above'v,, vr: l f  v~, vt and v~, v~ are Delaunay edges 
in GDT(Q) ,  then VwE {Vr,, V~2, . . . , V~, V,,, V~ . . . .  , V,o}, i.e., Vw must be adjacent 
to either v, or v, in GDT(Qt)  or GDT(Q,)  respectively. 

Proof Since Av~v,v~ is a triangle in GDT(Q ) ,  O(v~, v~, v~) does not contain 
any vertex visible from vt, Vw and v~. Therefore, if v~ ~ Q~, v~, v, is a Delaunay 
edge in GDT(Q, ) ,  otherwise, v~, v, is a Delaunay edge in GDT(QI).  The claim 
follows. [] 

Lemma 9. One of  the two edges v~, v,~ and v ,  vr, obtained in Step 8 is a Delaunay 
edge. 

Proof. We first show that O(v,,  vr, vr,) cannot contain any vertex in Qr visible 
from vr and yrs. Since vt ~ O(vr, v~,_,, vr,) and v, ~ O(v~, vr,, vr,+ l) by assumption 
and O( v,, v~_, , v,~) u O( v,, v~, vr~+,)contains O( v,, vr, vr,), no vertex in Qr visible 
from vr and  v,, is contained in O(v,, vr, v,q). Similarly, we can show that 
O(v~, v,, vtz) cannot contain any vertex in QI visible from v, and v', z. Next we 
show if v,, v~, is selected in Step 8 when the maxmin angle criterion is applied, 
O(v, ,  v~, v~o) does not contain any vertex in Qt visible from v ,  and hence v,, v~q 
is a Delaunay edge. Since v,, v, is a Delaunay edge by Lemma 7, v~ ~ B(v~, v,). 
By assumption, O(v,,  vt, vt~) contains v , .  Thus, since O(v,,  v~, v,~) u B(v, ,  v~) 
contains O(vt,  v,, v,q), no vertex in Qt visible from vt can be contained in 
O(v,,  v~, v,,). The other case when v,, v,~ is selected in Step 8 can be shown 
similarly. [] 
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Now, let us analyze the running time of the algorithm. In the merge process, 
assume that GDT(Q~) and GDT(Qr) are the two Delaunay triangulations and 
have one edge in common. The vertices in Qt visible from Vr can be found in 
O(m) time when m is the number of vertices in Qt [7], [19]. All edges in GDT(QI) 
or GDT(Qr) are checked at most once. And, those deleted edges are not considered 
again. Therefore, since the total number of edges in GDT(Q~) and GDT(Qr) is 
O(N) and the number of edges added is also O(N), the time for the merge 
process is O(N). The polygon cutting theorem [4] guarantees that the depth of 
the simple polygon decomposition tree is O(log N). Based on the divide-and- 
~onquer technique, we can construct the Delaunay triangulation of a simple 
polygon with N points in O(N log N) time. 

Theorem 3. Given a simple polygon P with N vertices, the generalized Delaunay 
triangulation GDT(P) can be completed in O( N log N) time. 

Proof. The above algorithm computes the Delaunay triangulation of the interior 
of the polygon P. The exterior of the polygon can be triangulated in a similar 
manner as follows. We first compute the convex hull of the simple polygon in 
O(N) time [11], [18], [24]. Each new hull edge vi, vj and a portion of the 
boundary of P will define a new simple polygon. These new simple polygons can 
then be triangulated in a total of O(N log N) time. The theorem follows. [] 

5. Conclusion 

We have given characterizations of the generalized Delaunay triangulation of a 
planar straight-line graph G = (V, E) and presented a general algorithm for 
computing the generalized Delaunay triangulation which runs in O(I VI 2) time. 
If the graph G is a simple polygon with N vertices, an O(N log N) algorithm 
based on the polygon cutting theorem of Chazelle [4] is given, providing yet 
another triangulation algorithm for simple polygons. The latter algorithm can be 
applied to the case where the underlying graph is connected. 

Recall that the Delaunay triangulation of a set of points in the plane is normally 
considered as the dual graph of the Voronoi diagram of the set of points [28]. 
Efficient algorithms for constructing the Voronoi diagram can then be used to 
obtain the Delaunay triangulation. However, the connection between the notion 
of generalized Delaunay triangulation for a straight-line planar graph and the 
notion of generalized Voronoi diagram for line segments [13], [20], [29] is not 
clear. The crux in computing the generalized Delaunay triangulation for discon- 
nected planar graph is that of converting the graph to a connected one by 
introducing "new" Delaunay edges thereby the above algorithm can be applied. 
With that in mind one needs to consider the Voronoi polygon associated with 
the end vertices of the graph in the Voronoi diagram to see if any Delaunay edge 
incident with the end vertices can be found. Since the generalized Voronoi 
algorithm for n line segments can be constructed in O(n log n) time [13], [29], 
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it  m a y  r e n d e r  an  O([ V[ l o g  [ V[) a l g o r i t h m  for  c o m p u t i n g  the  g e n e r a l i z e d  D e l a u n a y  

t r i a n g u l a t i o n  o f  an  a rb i t r a ry  p l a n a r  s t ra igh t - l ine  g r a p h  G = ( V, E ) .  W e  i n t e n d  to 

ca r ry  o n  the  i n v e s t i g a t i o n  in  the  future .  
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