Howe Work 01

due 2018-12-02

Please send pdf of your homework to si@wias-berlin.de please include your student ID in the title of your email.

Problem 1 (4 credit), Simplices and Simplicial Complex

Let σ be a k-simplex. The \emptyset ((-1)-simplex) and σ are called *trivial faces* of σ . All other faces of σ are called *proper* faces of σ .

The *boundary* of σ , denoted as $bd\sigma$, is the union of all proper faces of σ . The *interior* of σ is $\sigma - bd\sigma$. For an example, Figure 1 shows the boundary and interior of a triangle (a 2-simplex).

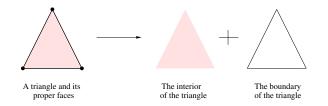


Figure 1: The interior and boundary of a triangle.

Let \mathcal{K} be a non-empty two-dimensional simplicial complex. The underlying space of \mathcal{K} , denoted as $|\mathcal{K}|$, is the union of all simplices of \mathcal{K} , see Figure 2.

A partition of a $|\mathcal{K}|$ is a cell complex \mathcal{C} which is a collection of cells (including the \emptyset) such that:

- (i) the intersection of every two cells of C is also a cell of C, and
- (ii) the union of cells equal to $|\mathcal{K}|$.

Claim: The interior of simplices of \mathcal{K} partition the underlying space of \mathcal{K} .

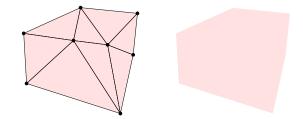


Figure 2: A 2d simplicial complex (left) and its underlying space (right).

Question: Is the above claim true or false? Please give your reasons to support your answer.

Problem 2 (4 credit), Euler's Formula

Given a triangulation \mathcal{T} of a point set S in \mathbb{R}^2 . Let the number of vertices, edges, and triangles in \mathcal{T} are v, e, and f, respectively. Since we do not count the exterior of $|\mathcal{T}|$ as a face of \mathcal{T} , By Euler's formula, we have the following equality

$$v - e + f = 1.$$

Every triangle of \mathcal{T} has three edges, every interior edge of \mathcal{T} belongs two triangles, hence we have

$$3f = 2e - h,$$

where h is the number of edges of \mathcal{T} which lies on the convex hull of S. Since h > 0, we have

3f < 2e.

Check whether the following inequalities hold for \mathcal{T} or not. (Hint: If it is false, show a counter example is enough).

- (1) f < 2v 2;
- (2) e < 3v 3;
- (3) $2e \ge 3v;$
- (4) $v \le 2f 4;$
- (5) $e \leq 3f 6;$

Problem 3 (4 credit), Planar Graphs

A graph is *complete* if it contains maximum number of edges, which is $\binom{|V|}{2}$. For example, Figure 3 shows three complete graphs of 4 vertices. Show that the complete graph of 5 vertices is not planar. (**Hint**: it is an application of the Euler's formula.)

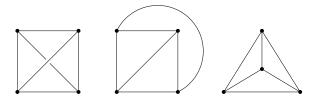


Figure 3: Three complete graph of 4 vertices.