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Randomized Incremental Construction of 
Delaunay and Voronoi Diagrams 1 

Leonidas  J. Guibas ,  2'3 D o n a l d  E. Knu th ,  2 and M i c h a  Shar i r  4'5 

Abstract. In this paper we give a new randomized incremental algorithm for the construction of 
planar Voronoi diagrams and Delaunay triangulations. The new algorithm is more "on-line" than 
earlier similar methods, takes expected time O(n\log n) and space O(n), and is eminently practical to 
implement. The analysis of the algorithm is also interesting in its own right and can serve as a model 
for many similar questions in both two and three dimensions. Finally we demonstrate how this 
approach for constructing Voronoi diagrams obviates the need for building a separate point-location 
structure for nearest-neighbor queries. 
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1. Introduction.  The  Voronoi diagram of n sites in the plane arid its dual,  the 
Delaunay tesselation, are a m o n g  the most  i m p o r t a n t  cons t ruc t ions  in two-d imen-  
s ional  c o m p u t a t i o n a l  geometry.  Thei r  proper t ies ,  as well as a lgor i thms for their  
const ruct ion ,  are  extensively covered in the s t anda rd  t ex tbooks  of the field, such 
as [13] or  [26], and  in numerous  papers ,  e.g., [20]. The or iginal  papers  on the 
subject  are  [29] and [30] by Vorono i  (circa 1907), and  [10] and  [11] by  D e l a u n a y  
(circa 1932). Because of  the prac t ica l  impor t ance  of the Vorono i  and  De launay  
d iagrams,  some of the a lgor i thms for cons t ruc t ing  them have been carefully 
implemented  and  widely tested in practice.  These d iagrams  are impor t an t  tools  in 
app l ica t ions  ranging  from finite e lement  codes to pa t t e rn  classif icat ion in statist ics 
to m o t i o n  p lann ing  in robot ics ,  etc. Analogs  of these d iagrams  exist in higher  
d imensions  as well. T h o u g h  the h igher -d imens iona l  d iag rams  are  still very useful, 
a lot less is known  abou t  efficient a lgor i thms  for their  cons t ruc t ion  because their  
topo log ica l  s t ructure  is significantly ha rde r  to analyze.  

In  the p lane  it is k n o w n  that  the wors t -case  complex i ty  of  comput ing  such a 
d i ag ram for n sites is | log n). In teres t ing d iv ide -and-conquer  [20] and plane-  
sweep [16] a lgor i thms  are avai lable  tha t  a t ta in  this bound.  Both have in fact been 
implemented  and  used in practice.  The implementa t ions  of  these me thods  have 
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been gradually simplified over the years, but they still remain codes of significant 
programming complexity. For this reason a number of people have continued to 
implement a simpler method that is based on incrementally adding the sites one 
at at time, and updating the diagram at each step. For a detailed description of 
this method see [18] or [-20]. Unfortunately, as we will see later, there are situations 
where the complexity of the incremental method can be as high as ~)(n2). In 
practice, however, these bad situations seem to be rare--most people report a 
linear, or nearly so, running time. This has been formally proven in case the sites 
are drawn under some uniform distribution assumptions [4], [12]. Our point of 
departure in this paper is a simple proof that, for any collection of n sites (regardless 
of their distribution), if we randomize over the sequence of their insertions by the 
incremental algorithm, then the expected total number of structural changes that 
happen to the diagram is only O(n), and the overall cost of the algorithm is 
O(n log n). Thus we show that an easily implemented incremental algorithm works 
optimally for any data set, as long as we randomize the insertion sequence of the 
sites. 

Similar results have been recently obtained by Clarkson and Shot [9], and also 
by Chew [7] and by Mehlhorn et al. [24]. Using a standard transformation that 
lifts the given sites to the paraboloid of revolution z = x 2 + y2 (see Section 4.1 
and [13] for details), the problem of computing the Delaunay triangulation of the 
given sites reduces to that of computing the (lower) convex hull of the transformed 
sites. Clarkson and Shot ['9] show that by inserting the sites one by one in random 
order, and by maintaining a certain conflict 9raph between the edges of the current 
hull and the sites yet to be inserted, the incremental construction of the hull can 
be implemented to run in O(n log n) expected time. Mehlhorn et al. [24] adapt 
this technique to compute "abstract Voronoi diagrams" in an incremental and 
randomized fashion. Chew [7] uses a slightly different (and simplified) analysis 
technique, but his algorithm appears to lack one of the crucial steps (namely, 
point location of newly inserted sites--see below) needed to achieve an expected 
O(n log n) time complexity. 

Our paper follows the general approach of an incremental randomized construc- 
tion, but it differs from the above techniques in the following aspects: 

(i) The proof of the bounds on the expected performance of the algorithm is 
considerably simpler than that given in [9]. We also obtain more information 
concerning the behavior of the algorithm, such as the linear bound mentioned 
above on the expected number of structural changes that occur during the 
construction, together with probabilistic estimates on whether a particular 
triangle or edge ever arises during the incremental construction. As a matter 
of fact, many ingredients of our proof can be used to obtain simple derivations 
of similar bounds on the performance of a variety of incremental randomized 
algorithms. 

(ii) The algorithm itself is simpler and more "on line." It requires no auxiliary 
data structures referencing as yet uninserted sites (such as the conflict graph 
of [9]). The main reason for maintaining such a structure is to avoid having 
to search for the current Delaunay triangle containing the next site to be added 
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(see Section 3 and [20] for details). However, combining our incremental 
algorithm with a recent interesting randomized approach to point location by 
Seidel [28], we show that, if we keep all the incremental versions of the 
triangulation "on top" of one another, we obtain a data structure that already 
facilitates fast point location, at least in an amortized sense, allowing us to 
locate the next site in the current triangulation in expected O(log n) amortized 
time. This yields an overall O(n log n) expected time for the construction of 
the triangulation. 

Our analysis is based on the notion of the scope of the triangle spanned by 
three sites X, Y, and Z. This is defined to be equal to the number of sites contained 
in the interior of the circumcircle of the triangle X YZ. (In particular, 0-scope 
triangles are Delaunay triangles in the final triangulation.) In Section 2 we analyze 
the probability that a triangle X Y Z  will arise as a Delaunay triangle at some stage 
during the incremental construction, and obtain bounds on this probability in 
terms of the scope of X YZ. Then by an argument based on random sampling, 
similar to that used by Clarkson and Shor [9], we estimate the number of triples 
of sites defining triangles whose scope is at most k. By combining these results we 
can conclude that the expected total number of triangles that ever arise as 
Delaunay triangles during the incremental construction, and therefore the total 
number of structural changes in the diagram, is linear in the number of sites n. 

We also develop another analysis technique, in which we analyze how the 
algorithm manipulates edges connecting pairs of sites, rather than triangles, as 
above. We extend the notion of scope to edges an edge X Y is said to have 
symmetric scope k if there exists a circle passing through X and Y and containing 
in its interior exactly k sites to the left of X Y and exactly k sites to the right. We 
then derive bounds on the probability that an edge with symmetric scope k ever 
appears in the triangulation, and on the number of edges with symmetric scope 
at most k. This analysis is somewhat more complicated than the analysis of 
triangles, but it is combinatorially quite interesting. Furthermore, it enables us to 
obtain sharp bounds on Certain refined aspects of the construction. For example, 
suppose that the Delaunay diagram of m sites is already computed and n additional 
sites are to be added. We show that if these new sites are added in random order~ 
then the total number of structural changes in the diagram has expected value 
O(m log n + n), and that this bound is tight in the worst case. 

Returning now to the incremental algorithm, we need to address the issue of 
how such an algorithm performs point location for each site. In other words, when 
a new site is to be added, the algorithm must locate the triangle containing the 
new site in the Delaunay triangulation of the already inserted sites. Although fancy 
structures for doing this are available, implementors who switched to the incre- 
mental method because of its simplicity also wanted a comparably simple piece 
of code to accomplish the point-location task. A number of different heuristic ideas 
have been tried [7], [20]. Another way of achieving this would be to maintain 
some sort of conflict graph (such as in [9]), appropriately adapted to the case of 
Delaunay triangulation. However, we show that none of these techniques is 
necessary. If we just maintain all versions of the triangulation on top of one 
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another, together with appropriate links between overlapping "old"  and "new" 
triangles, we obtain a structure in which the next site can be located by simply 
tracing all triangles that contain it, in chronological order of their creation. This 
is a similar idea to the Delaunay tree proposed by Boissonnat and Teillaud 
[5]--see Section 3 for more details. We show that the expected number of triangles 
that need to be traced per site, summed over all sites, in only O(n log n), so that 
the expected total cost of point location is O(n log n), when averaged over all 
insertion orderings of the sites. From a well-known lower bound for sorting, we 
can prove that this is best possiblel even for a randomized algorithm. 

One nice feature of the incremental method and the analysis below is that it 
can be extended to higher dimensions. In Section 4 we give a randomized 
incremental alg_orithm for computing the convex hull of n sites in three dimensions, 
which is a considerably simplified version of Clarkson and Shor's technique [-9]. 
The algorithm and its analysis are a fairly direct translation of our two-dimensional 
algorithm for the Delaunay triangulation in the plane. Of much greater interest 
is the question of computing Voronoi and Delaunay diagrams in three dimensions. 
We prove that the expected total number of structural changes during a ran- 
domized incremental construction of a three-dimensional diagram is O(n2), i.e., 
asymptotically the same as the worst-case size of the final diagram. However, the 
design of an actual efficient algorithm for doing so remains unresolved. In three 
and higher dimensions the whole issue of output sensitive algorithms arises, and 
we explore some basic aspects of this subject. Specifically, we obtain a more refined 
bound on the expected number of structural changes, in terms of the expected size 
of the diagrams of random subsets of the sites of certain sizes. 

We also obtain a number of results in combinatorial geometry about Voronoi 
edges of higher order in two or three dimensions. For  example, we obtain a new 
proof of the fact that in the plane there is always a pair of sites such that any 
circle through these two sites always contains at least a fixed fraction of all the sites. 

Finally in Section 5 we given another application of the idea of keeping all 
versions of the incremental structure "one on top of the other." We give a method 
for building the Voronoi diagram of n sites in the plane incrementally, while 
maintaining all intermediate results appropriately linked together. The result is a 
structure whose expected size is O(n) if we randomize over the sequence of insertion 
of the sites, and which can be used for efficient point location in the final Voronoi 
diagram. Thus no further preprocessing is necessary to answer nearest-neighbor 
queries. We prove that, for any fixed point p in the plane, we can trace through 
the incremental structure and locate the final Voronoi region containing p in 
O(log 2 n) expected time. We believe that this query time is actually O(log n), and 
that the idea of linking together all versions of a randomized incremental structure 
will find further applications in the future. 

2. The Number of Structural Changes. In this section we analyze the expected 
number of structural changes that a Delaunay triangulation undergoes during a 
randomized incremental construction. The first two subsections prove by in- 
dependent arguments, based on the Delaunay faces and edges respectively, that 
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the expected number of changes is linear in the number of sites to be inserted (and 
the implied constant of proportionality is reasonably small). The third subsection 
analyzes the situation where some sites have already been inserted and we 
randomize over the insertion ordering of the additional set of sites only. 

In what follows we use the well-known facts that any triangulation of n points 
in the plane contains 2n - h - 2 triangles and 3n - h - 3 edges, where h denotes 
the number of points on the convex hull. To avoid monotony of language we 
sometimes refer to the n given points as "sites." In some contexts the word "point"  
may refer to an arbitrary point of the plane, but the word "site" will always refer 
to one of the original given points. 

2.1. Analysis of  the Triangle Probabilities. Consider a set N of n points in the 
plane, no three collinear and no four on a circle (these are the usual nondegeneracy 
conditions for Delaunay/Voronoi computations; they guarantee that the Delaunay 
diagram is actually a triangulation). The Delaunay triangulation of N is composed 
of the set of edges X Y  (X, Y ~ ) ,  such that there is a circle through X and Y 
containing no other point. Alternatively, it consists of those triangles X YZ 
(X, Y, Z ~ ~)  whose circumcircle contains no site in its interior. These basic facts 
are discussed in all standard treatments of the subject (see [13], [26], or [20]). It 
is possible to show that even for degenerate point sets the upper bounds derived 
here will hold; a general technique for doing so has been recently introduced by 
Jaromczyk and Swiatek [21]. 

Define the scope of a triangle X Y Z  to be the number of sites contained in the 
interior of its circumcircle. The scope of a triangle can assume values between 0 and 
n - 3, and triangles of zero scope are precisely the Delaunay triangles. As we will 
see, this turns out to be a key concept in our analysis. 

Suppose we insert the sites one at a time in random order, and maintain the 
Delaunay triangulation as we go. A triangle X Y Z  with a small scope is likely to 
appear as a Delaunay triangle at some stage during the incremental process--this 
occurs when we insert its three vertices before we insert any of the sites in the 
interior of the circumcircle of X Y Z .  A triangle with a large scope is less likely to 
appear as a Delaunay triangle. More precisely, we have: 

LEMMA 2.1. Let X Y Z  be a triangle spanned by three sites X, Y, Z, and having 
scope k. Then the probability that X Y Z  will ever arise as a Delaunay triangle during 
the incremental insertion of the sites is 6/(k + 1)(k + 2)(k + 3). 

PROOF. Triangle X YZ will appear as a Delaunay triangle if and only if we insert 
X, Y, and Z before we insert any of the k sites lying inside of the circumcircle of 
X YZ. The probability that this will happen in a random insertion permutation 
of the sites is 3! k!/(k + 3)! = 6/(k + 1)(k + 2)(k + 3). [] 

Let T k denote the set of triangles X YZ whose scope is k, for 0 _< k _< n - 3. Let 
T_< k = Uk=o Tj. 
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LEMMA 2.2. The number of triangles XYZ  whose scope is at most k is 

II ~ k l l  = O(n(k + 1)2). 

PROOF. The proof is based on the probabilistic technique of Clarkson and Shor 
[9]. Draw a random sample N of r (r > 3) among the given sites. Let D(N) denote 
the set of Delaunay triangles X YZ. The expected number of such triangles is 

E[IID(~)II] = ~ Prob[XYZ ~ D(~)] 
X Y Z  

n--3 
= ~ ~ Prob[XYZeD(~)] 

j=O XYZr 

k 
>_ ~ ~ Prob[XYZ �9 D(~)]. 

j=O xyZeTj 

For a fixed triangle X YZ e T i, the probability that it is a triangle of D(N) is 
equal to the probability that X, Y, and Z are chosen in ~ ,  and that none of the 
j sites in the interior of the circumcircle of this triangle are chosen. This probability 

( ) / ( : )  ( n - k - 3 ) ~ ( : )  
n - j  - 3 which is > when j < k. Since IID(~)II is 

is r - 3  ' - r - 3  - 

always at most 2r, we obtain the inequality 

k 

2r > EI'IID(~)II] ~ ~ [I Tjll 
j=O 

n -- k - 3 )  
r - 3  

(:) 

or equivalently 

II r_~ll--- 
:) 

= 2riB(n- 1, k + 2, r -  3, 2), 

where 

B(N, M, s, t) �9 

The best upper bound is obtained when we choose r so that B(n - 1, k + 2, r - 3, 
2) is minimized. 



Randomized Incremental Construction of Delaunay and Voronoi Diagrams 387 

In general, we have that for successive values of s the ratio B(N, M, s + 1, t)/ 
B(N, M, s, t) = t(N -- M + 1)/M. Hence the minimum of B(N, M, s, t) for fixed N, 
M, and t occurs when s = [t(N - M + 1)/MJ. 

In our case the best upper bound is therefore obtained when 

r = [_2n/(k + 2)_] + 1 

(if this makes r < 3 the result of the lemma is obvious and we can stop). Otherwise 
we get the bound 

n - t  n - - 2  n - 3  n - 4  n - k - 2  
B ( n -  1, k + 2, r - -  3,2) = 

r - 1  r - 2  n - r  n - r - 1  n - r - k + l  

< \ r - - 2 J  \ n - r - k +  l 

< \ 2n Z - ~ - -  1 + = O((k + 1)2). [] 

REMARK. The O-constant we get from this analysis is about e2/2 ~ 3.6, but the 
actual constant is probably less. 

THEOREM 2.3. The expected number of  triangles that appear as Delaunay triangles 
during the incremental construction o f  the Delaunay triangulation is O(n). 

PROOF. In what follows we abbreviate "triangle X Y Z  appears as a Delaunay 
triangle during the incremental construction" to " X Y Z  appears.,' The expected 
number in question is 

n - - 3  

[Prob[XYZ appears] = }-" ~ Prob[XYZ appears-] 
XYZ j = 0 XYZe  Tj 

n - 3  6 

=Z Z 
j=o xrzerj (J -b 1)(j -4- 2)(/-I- 3) 

.-3 [I Till = 6 ~  
j=o ( / +  1)(i + 2)(/+ 3) 

I "T<-J [' []~J-Xl' ,3) 1 -< tlToll + 6  Z (j+ 1)(/+2)(/+3)-(/+ 1)(/+2)(.]+ 
j>-I 

= 18 ~ II~jil 
j_~o ( / +  1)(/+ 2)(j + 3)(/+ 4) 

= 0 n .j~__ = O(n). [] 
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Y 
Fig. 1. A difficult case for the incremental algorithm (points X, Y, and P are used in Section 3). 

REMARK. The actual O-constant we get from this calculation is about 3e 2 ~ 22; 
again this appears to be a significant overestimate of the true constant of 
proportionali ty.  

REMARK. If the order of insertion of the points is not random, it is possible that 
(~(n 2) triangles will appear as Delaunay triangles. To see this, consider the 
following example, related to an example introduced in [17]: Let ~ be a set of 
n = 2m points, half of which lie on the negative portion of the x-axis, and the 
other half lie on the positive portion of the line y = 1. If we first insert all the 
lower points, and then insert the upper points from right to left, it is easily seen 
that each new point with y = 1 needs to be connected by Delaunay edges to each 
of the points on the x-axis (see Figure 1). Thus quadratically many Delaunay edges 
and triangles will arise in this case. 

REMARK. It would be interesting also to obtain estimates for the variance of the 
number of triangles that appear, and for the probability that the number of 
triangles that arise exceeds the expected value by more than some constant 
multiple. 

REMARK. The analysis presented here applies with minor modifications to Delau- 
nay triangulations under other metrics, by replacing circles with the appropriate 
balls in the given metric. 

2.2. Analysis of the Edge Probabilities. Since the number of triangles that ever 
appear during the incremental construction is O(n), it follows that the total number 
of edges that ever appear as Delaunay edges is also linear. Below we give a refined 
analysis of the edge probabilities. We introduce the concept of the symmetric scope 
of an edge that is strongly related to the probability that the edge will appear at 
some point during the random incremental process and is analogous to the scope 
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C 
B D 

N 

Fig. 2. A Delaunay triangulation of 14 points. 

of a triangle defined above. This refined analysis is interesting in its own right; it 
also allows us to obtain bounds in certain situations for which a triangle-based 
analysis is not sufficient (see Section 2.3). 

For  the edge-based analysis, it will be instructive to focus on a particular 
example of a Delaunay diagram. Figure 2 shows a set of fourteen points in the 
plane with their Delaunay triangulation. 

Given two points X and IT, we can imagine a family of circles with parameter 
t that pass through X and Y and through the point that lies t units to the right 
of the line XY,  on the perpendicular bisector of X and Y. As t runs from 0 to 0% 
these circles sweep past all the other points in a definite order. For  example, when 
X Y  = NB in the 14-point arrangement above, this order turns out to be 

L G A  C E H J D M I K F .  

Points A, E, J, K, F lie to the left of NB, and the other points lie to the right; we 
can conveniently represent the situation by writing 

(1) A3 E5 J7 K l l  F12 I L1 G2 C 4 H 6 D8 M 9 110, 

where the subscripts indicate the relative order and the vertical line represents NB. 
Each pair of points defines a different ordering. For  example, the ordering for 

NL is 

B1 A2 F3 E4 J5 K6 ] M7 Hs 19 Dlo Cll Glz. 

In this case all the subscripts on the left turn out to be less than all the subscripts 
on the right; this condition is necessary and sufficient for the given edge X Y  to 
be part of the final Delaunay triangulation. 

Suppose we input the t4 points A . . . . .  N of our example in random order and 
maintain Delaunay triangulations as we go. What is the probability that NB will 
be an edge of the triangulation at some time during this process? Using the 
information in (1), we can express this probability as the sum of the probabilities 
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of the following mutually disjoint events: 

{ N , F } B { L , G , C , H , D , M , I }  
{ N , K } B { F , L , G , C , H , D , M , I }  
{ N , J } B { K , F , L , G , C , H }  
{ N , E } B { J , K , F , L , G , C }  
{ N , A } B { E , J , K , F , L , G }  

{N} S {A, E, J, K, F} 

{B,F} N {L, G, C, H, D, M, I} 
{B,K} N {F, L, G, C, H, D, M, I} 
{B, J} U {K, F, L, G, C, H} 
{B, e} N {J, K, V, L, G, C) 
{B, A} N {E, J, K, F, L, G} 

{B} N {A, E, J, K, F}. 

Here "{N, J} B {K, F, L, G, C, H}" means, for example, that points N and J 
appear before B, which appears before K, F, L, G, C, and H. (In that case, the 
edge NB will be in the Delaunay triangulation when B first appears.) The 
probability of the event {X~ . . . . .  Xk} Y {Z~, . . . ,  Z~} is k! l!/(k + l + 1)!. Hence, if 
we write 

(2) 

(3) 

ak = 2/(k + 1)(k + 2), 

b k = 4/(k + 1)(k + 2)(k + 3) = ak -- ak+,, 

the probabilities of the pairs of events on the six lines above are respectively bT, 

bs, b6, b6, b6, as. 
The pattern of subscripts in (1) can be represented by a zig-zag path that runs 

from (0, 5) to (7, 0) (see Figure 3). Here the kth step of the path goes downward if 
subscript k appears on the left of the vertical line; otherwise the kth step goes to 
the right. The successive coordinates of the path count the number of points to 
the right and left of NB that lie inside the circle at time t, as t as t increases from 
0 t o  oo. 

In general, if there are l points {Pl . . . . .  p~} to the left of X Y  and r points 
{ql . . . . .  qr} to the right, we can construct a similar zig-zag path from (0,/) to (r, 0). 
The probability that X Y lies in a Delaunay triangulation at some time, when the 
l + r + 2 points are input sequentially in random order, will be the sum of l + 1 
pairs of mutually disjoint events: 

(4) 

{X, p,} Y {ql . . . . .  qxl} {Y, p,} X {ql . . . . .  qx,} 
(X,  p,_ 1} Y {Pt, q, . . . . .  qx:} { Y, P,- 1) X {Pl, q l , . . . ,  qx~} 

{X,p~} ]Z{p2 . . . .  ,Pl, ql . . . . .  qx,} {Y, Pl} Jf {P2 , . . . ,P , ,q l , ' . ' , q~ ,}  
{X} Y {Pl . . . . .  Pz} {Y} X {pl, . . . ,  p~}, 

where Xk is the x-coordinate of the kth-from-last vertical step of the path. (The 
values of Xl . . . . .  x 5 in the example above are respectively 7, 7, 4, 3, 2.) The final 
pair of events will occur with probability ag the kth pair, for 1 < k _< l, will occur 
with probability bxk+k_ 1. 

In particular, when edge X Y is part of the overall Delaunay triangulation, the 
path runs from (0, l) to (0, 0) to (r, 0); hence Xk = 0 for all k, and the total probability 
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(o,s) , , 

391 

is 

(o,o) (7,o) 

Fig. 3. A zig-zag path corresponding to an edge. 

bo + b l  + "'" + b t - 1  + at = (ao - a l )  + (al - -  a2)  + " "  -F (al-1 - -  at) q- al 

= a o =  1. 

The minimum probability,  given l and r, occurs when Xk = r for all k; it is 

(5) br + bi+r  + ""  + hi+r_ 1 + a z = a I + a~-- al+~. 

We can express the probabil i ty in a more  intuitive and more  symmetric way by 
putt ing the "weight"  c i+j  into the unit square bounded  by (i,j), (i + 1,j), ( i , j  + 1), 
and (i + 1,j  + 1), where 

c k = 12/(k + 1)(k + 2)(k + 3)(k + 4) = b k - bk+  1. 

The probabil i ty is then 1 minus the sum of all the weights under  the zig-zag path. 
For  instance, the weights under  our  example path (see Figure 4) sum to 

(C O "~ C 1 -~- " ' "  -]- C6) "l- (C 1 + 6' 2 "[- " ' "  -~- C7) + (C 2 + " ' "  -~- C5) 

+ (c3 + c4 + c5) + (c4 + c5) 

= (bo - b7) d- (b 1 - bs) + (b 2 - -  b6) q- (b 3 - b6) q- (b 4 - b6) 

= 1 -- (by + bs + b6 q- b 6 + b 6 + a s ) .  

C4 CS 

Ca C4 

C2 ca 

CI C2 

CO Cl 

c6 cv Ca c9 Clo 

c5 c~ e7 ca ca 

c4 cs i c6 cr ca 

ca c4 c5 c6 

c2 ca c4 cs c6 

Fig. 4. The weights under a path. 
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An equivalent formula for the probability is ai + a r - a~+, plus the sum of all 
weights above the zig-zag path, in the t x r rectangle that encloses all possible 
paths, 

Notice that the area under the zig-zag path is the number of inversions of the 
permuation represented by the subscripts of (1). This property holds in general; 
the path defines a partition of the inversions. Our example X Y - - N B  has 23 
inversions, and the partition is 7 + 7 + 4 + 3 + 2. A Delaunay edge is an edge 
that has no inversions. If there are comparatively few inversions, the probability 
is high that X Y  will be included as a Delaunay edge during the process; if there 
are comparatively many inversions, the probability is low. However, we will see 
that another measure of "non-Delaunayhood" is more relevant than the total 
number of inversions. 

Define the symmetric scope of edge XY to be the unique integer w such that 
(w, w) lies on the zig-zag path associated with XY. In geometric terms, the 
symmetric scope is w if and only if there exists a circle passing through X Y  whose 
interior contains exactly w points to the right of X Y and exactly w points to the 
left. For example, the symmetric scope of N B  in our 14-point illustration is 3; 
there is a circle through N B  that contains J, K, F on the left and L, G, C on the 
right. 

Notice that 0 < w < min(l, r) <_ (l + r)/2 = n/2 - 1 < l_n/21, and that edges of 
zero scope are true Delaunay edges. The concept of symmetric scope turns out to 
be the key tool in our edge-based analysis, because it provides a canonical 
classification of edges in which most edges have a fairly large scope, and because 
a symmetric scope of w implies that all inversions in the square bounded by (0, 0), 
(0, w), (w, 0), and (w, w) are present. (The same idea has proved to be important in 
the theory of partitions, where w is called the width of the "Durfee square;" see 
p. 28 of [2].) 

LEMMA 2.4. The probability that edge X Y  appears as a Delaunay edye durin9 a 
random incremental procedure is at most 4/(w + 1)(w + 2), when w is the symmetric 

scope o f  X Y. 

PROOF. We know that the probability is 1 -  c(XY) ,  where c (XY)  is ~ci+s" 
summed over all pairs (i, j) lying below the zig-zag path corresponding to X Y. The 
smallest possible c(X Y), given w, corresponds to the path from (0,/) to (0, w) to 
(w, w) to (w, 0) to (w, r). This sums to 1 - 2aw + a2w by (5), because it corresponds 
to the minimum probability when l = r = w. Hence the probability for X Y  is at 
most 

2aw -- a2w <_ 2aw = 4/(w + 1)(w + 2). [] 

REMARK. The tight upper bound 2a~ - a2w ---- 3.5W -2 q- O(w -3) derived in this 
proof has a corresponding lower bound azw = 0.5w-2 + O(w-3), obtained by 
subtracting from the upper bound ~{c i+s[min( i , j )<  w and max(i , j )> w} = 
2 ~W=-oX ~,~=w ci+s = 2 ~W_~ol bi+ w = 2(aw - azw). Thus the probability for X Y  is 
| 
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Let Ew denote the set of edges X Y whose symmetric scope is w, and let 
E<k = Uk=0 Ew. Thus, E 0 = E<o is the set of Delaunay edges. When w > [_n/2J, 

the set Ew is empty and E<w contains all (~ )  edges. 

LEMMA 2.5. The number IIE~kll of edges X Y  whose symmetric scope is at most k 
is O(n(k + 1)). 

PROOV. The proof is analogous to that of Lemma 2.2. We draw a random sample 
by choosing r of the given points, where r is a parameter to be chosen later. 

We now let D(~) denote the set of Delaunay edges of the sample ~.  The expected 
number of such edges is 

k 

(6) E[IJD(~')IL] > ~ ~ Prob[XY~D(~)] ,  
w = 0  XY~Ew 

arguing as before. We also know that the total number of Delaunay edges in the 
sample is always at most 3r. 

Suppose X Y  is an edge of E w. If w is fairly small, the edge X Y  is pretty likely 
to be Delaunay, provided that points X and Y are in the sample and the sample 
is not too large, because the absence of only a few points can guarantee that X Y 
will be Delaunay. Indeed, the definition of symmetric scope tells us that there is 
a set ~ x r  of 2w points, w to the left of X Y  and w to the right, for which some 
circle through X and Y encloses precisely these 2w points. Thus we have the lower 
bound 

P r o b [ X Y e  D(~)]  > Prob[{X,  Y} _ ~ _ ~ \ ~ x r ]  = 

i 

n - 2w - 2 )  

r - 2 

(:) 
Putting these estimates together yields 

k 

3 ~ EI-IID(~)II]  ~ 
w = O  

k 

>-2 
w = 0  

n -- 2w - 2)  
r - 2 IEgwll 

r - 2 IIEwll 
n -- 2k - 2 )  

r - - 2  IIg<kll 

(:) C) 
In other words, we have derived an upper bound o n  [IE_<kl [ that depends on the 
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sample size r: 

3r(~)  3n(~ -- i )  

I lg_<k l l  < - - 3nB(n - 1, 2k + 1, r - 2, 1). (n 
The general analysis of B(N, M, s, t) in Lemma 2.2 tells us that the best bound 

is obtained by setting r =  [_n/(2k+ 1)J + 1; for that choice we obtain 
I lE_<k II = O(n(k + 1)). The actual implied O-constant we get from this calculation is 
about 6e ~ 16. [] 

An analog of Theorem 2.3 for the total number of edges can now easily be 
proven. The overall O-constant thus obtained is about 65. This constant could be 
significantly reduced by slight refinements of the analysis. Incidentally, the 14-point 
example introduced above has IlEoll, ]lEll I . . . . .  IIEsll = 30, 29, 17, 8, 5, 2, respec- 
tively; the two edges with symmetric scope 5 are AM and EI. The expected number 
of Delaunay edges in a randomized incremental procedure turns out to be 44.559 
in that example, suggesting that the actual proportionality constant is much 
smaller than what we derived. (The 14-point example also has II Toll, II T1 I1 . . . . .  
IlTllll = 17, 32, 42, 44, 47, 44, 40, 33, 28, 18, 12, 7; hence its expected number of 
Delaunay triangles is 34.592.) 

2.3. Adding Points to an Already Existing Set. Suppose we have a set of m points, 
2, whose Delaunay triangulation has already been constructed. We are then given 
another set, ~ ,  of n points, and wish to insert these points one by one in random 
order, and maintain the Delaunay triangulation of the combined set, until we 
finally obtain the triangulation of .~ u ~.  What is the expected number of edges 
that will appear as Delaunay edges during this process? An appropriate modifica- 
tion of the proof technique used in Section 2.2 yields: 

THEOREM 2.6. In the above situation, the expected number of edges (or triangles) 
that appear in the Delaunay triangulation is O(m log n + n). This bound is tight in 
the worst case. 

PROOF. Let us redo Lemmas 2.4 and 2.5; as before, we can dispose of degenerate 
configurations by a special argument. First, we redefine the scope of an edge X Y  
as follows: 

(i) If there exists a circle that passes through XY, contains exactly k of the points 
of N on the left of XYand  exactly k points on the right, and does not contain 
any point of ~., then the scope of X Y  is k. 

(ii) If there does not exist a circle passing through X Y  and free of points of .~, 
then the scope is + oe. 

(iii) If none of the first two cases arises, then there has to exist a unique circle that 
passes through X, Y and a point q of 2, contains l points of N on the same 



Randomized Incremental Construction of Delaunay and Voronoi Diagrams 395 

side of X Y  as q, contains k > l points of ~ on the other side, and does not 
contain any point of .~ in its interior. In this case we define the scope of X Y  
to be k. 

Note that the new definition of scope is no longer symmetric. Note also that the 
definition makes sense also in case either X or Y belongs to 2. 

LEMMA 2.7. For a fixed edge XY,  where both X and Y belong to ~ ,  the probability 
that X Y  appears in the Delaunay triangulation during the incremental process is 
O(1/(k + 1)2), where k is the new scope of XY.  

PROOF. Let the permutation of points in .~ t3 ~ ordered by the circle-sweeping 
order associated with X Y be 

wl . . . . .  ~ l Z l  . . . . .  z, ,  

where W1, . . . ,  W~ lie to the left of X Y a n d  ZI, . . . ,  Z t lie to the right. Let # be the 
largest index such that W~ ~ ~ (kt = 0 if no such point exists), and let v be the 
smallest index such that Z v ~ ~ (v = t + 1 if no such point exists). 

It is easily seen that the event of X Y  appearing as a Delaunay edge is now 
the union of only some of the pairs of events considered previously. Specifically, 
if rj denotes the length of the j th  row from the bottom below the zig-zag path 
associated with XY,  then the only pairs of events that have nonzero probability 
are of the form 

{X, W~_j+I} Y {W,_j+ 2 . . . . .  W~, Z1, . . . ,  Z~j}, 

{Y, w~-j+ d x {w~_j+: . . . . .  ~ ,  z~ . . . . .  zr, ) 

providedj  < s - # + 1 and rj < v (and {X} Y {W~,..., IV,} or {Y} X {W~,...,  W~}, 
if # = 0). 

Let us consider separately each of the three possible cases in the definition of 
the scope of X Y: 

�9 In case (i) we have k < s - ~ + 1 and r~ > k for all j < k. Arguing as in the proof 
of Lemma 2.4, it is easily checked that the probability that X Y  appears as an 
edge is O(1/(k + 1)2). 

�9 In case (ii) the probability that X Y  appears as an edge is clearly 0. 
�9 In case (iii), let us assume, without loss of generality, that the point q lies to the 

left of XY. Then only the first I pairs of events in which X Y  appears as an edge 
can have nonzero probability, and for each of these pairs we have r 2 > k. Thus 
the probability that X Y  appears as an edge can be bounded by 

~1 ( E  l ) ((  1 ) 
brj+j-1 < bk = O +-1) 3 = O j= 1 j= k q- 1) 2 " 

This completes the proof of the lemma. [] 
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LEMMA 2.8. For a fixed edge X I1, where X ~ ~ and Y E 2, the probability that X Y 
appears in the Delaunay triangulation during the incremental process is O(1/(k + 1)), 
where k is the new scope of X Y. 

PROOF. The proof proceeds in a manner analogous to the proof of the preceding 
lemma. The only difference is that in each pair of events that make X Y  appear as 
an edge, one event, namely that in which X is chosen before Y, is impossible, and 
in the other event the choice of Y before X is already guaranteed. This makes the 

1 instead of brj+j- ~ (here we think of the events probability of the j th  event 7arj+i- 
ordered in the same sequence as in the previous subsection). The assertion of the 
lemma now follows in much the same way as above; we leave it to the reader to 
work out the details. []  

Next we need to extend Lemma 2.5 to the current case: 

LEMMA 2.9. Let k be a finite integer. The number of edges X Y  of scope at most k, 
where both X and Y belong to ~,  is O(m(k + 1) 2 + n(k + 1)). In case one of X,  Y 
belongs to ~ and one to 2, the number of such edges is O(m(k + 1) + n). 

PROOF. Let ~(2) (resp. E(<2}) denote the set of edges of scope j (resp. at most j) 
connecting two points in ~ ,  and let E} 1) (resp. E~}) denote the set of edges of scope 
j (resp. at most j) connecting a point of N to a point of 2. 

Consider first the case where both X and Y belong to ~.  The argument is very 
similar to that used in the proof of Lemma 2.5, except for the following technical 
differences: 

1. We draw a random sample ~ of r points of r but consider the Delaunay 
triangulation of 2 u ~.  This triangulation has at most 3(m + r) edges. 

2. In the expression for E[IID(.~ w ~)11] we can ignore edges X Y  having infinite 
scope, because they can never show up as edges of this triangulation. 

3. For  an edge X Y ~  E} 2) (withj < + oe), there exists a circle passing through X Y  
and containing in its interior ar most 2j points of ~ and no point of 2. Thus 
if we manage to choose X, Y in ~ ,  but not to choose any of these points, the 
edge X Y will appear as a Delaunay edge. This enables us to obtain the same 
lower bound on the probability that X Y  appears as an edge of D(2 u ~). 

Using these observations, the analysis in the proof of Lemma 2.5 now yields 

(.2 ) 
l l g ~ l l  = O • ' (m + r) , 

where r = In~k_]. This implies immediately the bound asserted in the first part of 
the lemma. 

As to the proof of the second part of the lemma, let us suppose that X ~ ~ and 
Y~ ~. The analysis is similar to the one just outlined, except that now, to make 
an edge X Y of scope j appear as an edge of D(2 w ~), it suffices to choose X in 
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and not to choose any of the at most 2j points of N lying in the corresponding 
circle (that is, we do not have to worry about choosing Y--it has already been 
"chosen" in 2). It is easy to show that the modified analysis gives 

, = O(: ,m § 

for r = [_n/kJ. Again, the asserted bound follows. [] 

Now we can complete the proof of the theorem. Arguing in an analogous manner 
to the proof of Theorem 2.3, we show that the expected number of edges, adjacent 
to at least one point of N, that appear as Delaunay edges during the incremental 
process is 

0 ( j +  1) 2 j ~ l  = 0  ( j +  1) 3 + ~ ( j + l ) z j .  

The preceding lemma implies that this bound is 

+ + + 

REMARK. The same result can be obtained by a "backward analysis" similar to 
that given by Chew in [7], or in the proof of Theorem 5.4 of Section 5. 

We next show that this bound is tight in the worst case. Similar to the example 
given after Theorem 2.3, let ~ be a set of m points lying on the negative portion 
of the x-axis, and let ~ be a set of n points lying on the positive portion of the 
line y = 1. If we add the points of ~ one by one in any order, then every time we 
add a point that is currently leftmost, it will have to be connected to each point 
of ~ by a Delaunay edge. Since the expected number of right-to-left maxima in a 
random permutation of n points is | n), it follows that the expected number 
of edges that will appear in the Delaunay triangulation during insertion of the 
points of N in random order is | log n + n). This completes the proof of the 
theorem. [] 

3. An Efficient Incremental Algorithm. In this section we present a randomized 
incremental algorithm for calculating the Delaunay triangulation of a set of n 
points in the plane. The analysis of the algorithm makes use of and extends the 
probabilistic techniques developed in the preceding section. 

The idea of the algorithm is quite simple. Suppose we have already inserted j 
points of ~ ,  and are about to insert the (j + 1)st point, P. Suppose we already 
know the Delaunay triangle A (in the current triangulation) containing P. Then 
updating the triangulation in the presence of P is straightforward: we connect P 
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to the three vertices of A, and test each edge e of A as to whether it is still a valid 
Delaunay edge. For  this it suffices to test whether P lies in the circumcircle of the 
triangle A' lying on the other side of e. If not, no update of the triangulation 
beyond e is necessary. Otherwise we delete e, connect P to the third vertex of the 
triangle A', and examine the two other edges of A' for validity. We continue this 
way until all edges that we encounter are valid, and then we stop. We remark that 
if P lies outside the convex hull of the first j points, the above triangle-flipping 
procedure requires some modifications. We can handle this issue by adding to 
three dummy points "at  infinity," f~l, ~2, f~3, whose spanning triangle contains 
all sites in N, and by starting the incremental construction with the triangle 
fllf~2fl 3. It is easily verified that the bounds derived in the preceding section do 
not change asymptotically when the construction is modified in this manner. 

Thus we can write a high-level description of the algorithm as follows: 

(Initialize the triangulation to the single triangle ~'~1~"~2~'~3 ); 
for k *-- 1 to n do 

begin ( Select a random point P that has not previously been selected ); 
( F i n d  the triangle ABC containing P ); 
( Replace ABC by the three triangles PAB, PBC, PCA ); 
X ~ A ;  
repeat ( Let Y be the third vertex of the triangle to the right of PX,  in 

the current triangulation ); 
progress *-- true; 
if X and Y not both infinite then 

begin ( F i n d  Z # P such that Z Y X  is in the current triangula- 
tion ); 

if in(P, X, Y, Z) then 
begin (F l ip  triangles P X Y  and Z Y X  to obtain P X Z  and 

PZY); 
progress ~ false; 
end; 

end; 
if progress then X .-- Y; 

until X = A and progress; 
end. 

Here the test in(A, B, C, D) is true if D is on the left of the oriented circle that goes 
from A to B to C to A. In terms of coordinates, 

in(A, B, C, D) yA i) 
,~  det YB x 2 + y 2  

Yc x2 + y 2 > 0 .  

\xD y. x~ + y~ 

If one or two of A, B, C, D is infinite, an appropriate limiting determinant should 
be calculated. A discussion of this and similar tests, as well as a proof of the 
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validity of this algorithm appears in [20]. The triangulation can be maintained 
conveniently by using a simple form of the quad-edge data structure described in 
Section 4.1 of that paper. 

The triangle-flipping procedure takes constant time for each edge it manipulates, 
including newly inserted edges (incident to P) and old edges that are deleted. Since 
an edge, once deleted, will never be re-introduced into the triangulation, the total 
expected work in updating the triangulation in this manner is O(n), as follows 
from the previous section. 

However, a major difficulty remains--how do we determine the Delaunay 
triangle containing P? We cannot afford to use point-location techniques, because 
they are not that simple to implement, and, worse still, we need to use dynamic 
point location, since we constantly update the triangulation. Although such 
techniques have recently been developed [27], they are complicated, and their 
update time, O(log 2 n), is too high. The other techniques mentioned in the 
introduction are also not ideal, because they require the maintenance of auxiliary 
data structures referencing points not yet inserted, which tends to complicate the 
algorithm. 

Instead, we use the following simple approach. We maintain all versions of the 
triangulation on top of one another. More precisely, whenever we replace some 
triangle Y Z W  by new triangles, we leave Y Z W  as part of the structure, mark it 
as "old," and maintain a pointer from Y Z W  to each of the newly generated 
triangles that partially overlaps it. Notice that the number of these new triangles 
is either two (when the deletion of YZWis  caused by an edge flip) or three (when 
a new site X falls inside YZW, splitting it into three new triangles). It follows that 
the expected total number of pointers, and thus the expected size of the data 
structure, is only O(n). (Note that this structure also contains "intermediate" 
triangles that have been generated during the insertion of a site and were then 
removed during the same insertion step; however, it is easily checked that the 
number of such triangles is also only linear in n--we can charge each of these 
triangles to the edge whose flipping has eliminated the triangle, and observe that 
no edge is charged more than once.) 

When a new site P is to be added, we locate it in the current triangulation by 
tracing all triangles containing P in the chronological order of their creation. We 
start at the first enclosing triangle ~'~1~r'~2~c)3, and at each step check the two or 
three pointers from the present triangle to find the next newer triangle containing 
P, until we reach a triangle belonging to the current Delaunay triangulation. 6 

6 This will require the use of another  geometric predicate discussed in [20], the cc(A, B, C) test, defined 
to be true if the triangular path from A to B to C to A is oriented counterclockwise. In terms of 
coordinates this can be implemented as 

cc(A,B, C) .r det x n YB > 0 ,  

\ X c  Yc 

similar to the in(A, B, C, D) test above. 
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What is the expected cost of this procedure? Consider the process of locating 
the site P as we insert it into the triangulation. Let X YZ be a triangle that is 
traced during the location of P. There is only one such triangle in the current 
triangulation, so we may assume that X Y Z  is "old." By construction, X Y Z  was 
removed from the triangulation at some earlier stage, due to one of the following 
events: 

(i) A new site W has been inserted inside XYZ,  causing it to be split into three 
subtriangles. 

(ii) An edge flip has replaced X Y Z  and an adjacent triangle, say ZYW, by a pair 
of new triangles XYW, XWZ.  

In case (i) the triangle X YZ was Delaunay before W was inserted. In case (ii) 
either X Y Z  was Delaunay, or Z Y W w a s  Delaunay, in which case X must have 
been the newly inserted site, and both X and P lie within the circumcircle of Z YW. 
Thus we can charge the tracing of an old triangle XYZ,  during the insertion of 
P, either to the (earlier) removal of X YZ from the triangulation, or to the removal 
of an adjacent triangle. In either case, the charged triangle was Delaunay prior to 
the insertion step that has caused it to be removed, and P lies within the 
circumcircle of that triangle. 

It follows that a triangle X Y Z  of scope k can be charged by at most k sites. 
It is also plain that no triangle can be charged more than once by the same site. 
Moreover, a necessary condition that a triangle X Y Z  is charged at all is that it 
arises as a Delaunay triangle at some stage during the incremental construction. 
Hence, the expected cost of locating all sites as they are inserted incrementally is 
at most 

0 n + ~ ~ j. Prob[XYZ arises as a Delaunay triangle] 
j=O XYZ~Tj 

= O  n + 6  
j= o (J + 1)(j + 2)(j + 3 

IIZ~jII = 0 n + n- ~ - -  = O(n log n). 
= 0  n +  _ , ( j + 2 ) ( j + 3 ) ( j + 4  j = o j + l  

We thus obtain the summary result: 

THEOREM 3.1. The incremental algorithm described above calculates the Delaunay 
triangulation of a set of n points in the plane in randomized expected time O(n log n) 
and linear expected storage. 

REMARK. Note that the bound in the preceding theorem is best possible, in the 
algebraic decision-tree model of computation, because we can reduce sorting to 
the problem of constructing the Delaunay triangulation of n points lying on some 
convex curve, and it is well known that the expected time complexity of any 
randomized sorting algorithm, in this model of computation, is ff2(n log n). It is 
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interesting to carry out the reduction from sorting and apply the above incremental 
algorithm to obtain a new randomized expected O(n log n) sorting algorithm. 
Specifically, given the real numbers Xl, . . . ,  x,, we transform them to the points 
(xi, x2), i = 1 . . . .  , n, and apply the incremental algorithm to this set of points. The 
reader may find it interesting to work out the details of the resulting sorting 
algorithm, which is strongly related to Quicksort. 

REMARK. What about an actual, comparably efficient, randomized algorithm for 
computing the Delaunay triangulation of ~ w ~,  as in Section 2.3? There is of 
course an obvious and naive solution--dismantle the triangulation of ~ and 
construct the desired diagram from scratch. This will take expected time O((m + n) 
log(m + n)). Curiously enough, unless m is much larger than n, this is the best 
asymptotic bound we can achieve. Indeed, the lower bound in Theorem 2.6 and 
the previous remark imply a lower bound of fl((m + n) log n) on the expected 
complexity of any randomized algorithm for an incremental construction of the 
desired triangulation, even assuming that the triangulation of .~ is already 
available. 

REMARK. The fact that the incremental algorithm needs quadratically many 
structural updates in the worst case has led some researchers to couple the 
incremental method with certain simple point-location algorithms that also take 
quadratic time in the worst case; see, for instance, [18]. The unfortunate thing 
about those point location methods is that they take ~(n a/2) time even if we 
randomize over the sequence of sites and assume uniform distribution. 

REMARK. The above analysis shows that the average expected cost of locating a 
site is O(log n). Unfortunately, there are situations where the expected number of 
triangles that are traced when locating a specific site P is linear in n. To see such 
an example, consider the following configuration, involving n - 3 points lying on 
the negative part of the x-axis, and three additional points X at (0, 1), Y at (1, 1), 
and P at (0.5, 1 - e), for a sufficiently small positive e; see again Figure 1 (but now 
ignore all sites on or near y = 1 except X, Y, and P). Suppose the three top sites 
are inserted in the order Y, X, P (this event occurs with some constant positive 
probability that does not depend on n), and suppose further that m of the bottom 
sites have already been inserted before X is inserted. Then the insertion of X will 
create m new Delaunay edges, connecting X to all bottom sites; moreover, during 
this insertion step all the triangles X Yb, where b ranges over all bottom sites, will 
be generated and, with the exception of the rightmost such triangle, immediately 
removed from the triangulation. Then, when P is inserted, the algorithm will need 
to trace all these triangles in order to locate P. Since the expected value of m is 
| the claim follows. 

REMARK. The preceding example raises the issue of modifying our point-location 
precedure so that it takes expected O(log n) time to locate any newly inserted site, 
or, for that matter, to locate any point q. One possible approach toward this goal 
might be not to keep around intermediate triangles in our data structure, but only 



402 L.J. Guibas, D. E. Knuth, and M. Sharir 

those that are Delaunay in some version of the triangulation. Then, when tracing 
the triangles containing a newly inserted site P, we can move from one version of 
the triangulation to another by performing binary search through the new triangles 
in the latter version (all of which are incident to the same previously inserted site). 
In our current strategy, we may in effect carry out a sequential search through 
these triangles (this is the case in the preceding example). However, we do not 
know whether this improved strategy will always take only O(log n) expected time. 
We will see some similar ideas used in Section 5. 

REMARK. As remarked in the introduction, the first instance of the idea of linking 
together all the Delaunay triangles that ever arise in the incremental construction 
is the Delaunay tree, proposed by Boissonnat and Teillaud [5]. In the details their 
construction differs substantially from ours-- they need to maintain several more 
pointers. 

4. Generalizations and Applications 

4.1. Incremental Construction of  Convex Hulls in Three Dimensions. The Delau- 
nay triangulation of a set ~ of n points in the plane is a special case of the convex 
hull of a set of n points in three dimensions. This is shown by the following 
transformation: Lift each point (x, y) ~ ~ to the point (x, y, x 2 + y2), that is onto 
the convex surface z = x 2 + y2, defining a paraboloid of~evolution. Let ~ denote 
the resulting set, and let L H ( ~  denote the lower convex hull o f ~ ;  this is the portion 
of the convex hull of ~ consisting of all faces whose outward normals point 
downward. It is well known (see [20]) that the vertical projection of L H ( ~  ~) onto 
the xy-plane gives the Delaunay triangulation of ~.  

Hence a natural extension of our problem is: given a set ~ of n points in three 
dimensions, no three collinear and no four coplanar, we want to construct the 
lower convex hull of ~ ,  starting with the empty set and adding the points of 
one by one in random order. We show that this can be done in randomized 
expected time O(n log n), by providing an algorithm that is simpler (and has a 
considerably simpler analysis) than the recent algorithm of Clarkson and Shor 
[9] mentioned in the introduction. As above, our first goal is to estimate the 
number of triangles X Y Z  that appear as lower hull faces at some point during 
the process. 

It is easy to modify the analysis of Section 2.1 so that it applies to this case as 
well. For  a fixed triangle X Y Z  spanned by three points of ~ ,  we define its scope 
to be k if there are k points of ~' lying below the plane containing X Y Z .  Clearly, 
triangles of scope 0 are exactly the faces of the lower hull. It is now easy to extend 
Lemma 2.1 to this set-up--the proof is essentially identical. Lemma 2.2 is also 
proved in a similar fashion, making use of the fact that the number of faces 
bounding the convex hull of r points in 3-space is O(r), We thus obtain: 

THEOREM 4.1. During an incremental construction of the lower convex hull of n 
points in 3-space, where the points are inserted one by one in random order, the 
expected overall number of faces that appear on the lower hull at any stage during 
the process is O(n). 
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Next we describe an actual incremental randomized algorithm of constructing 
the lower convex hull of a set of n points. As above, we require no auxiliary 
structures. When a point P is inserted, we first locate the face A of the current 
lower hull lying directly above it. (If P lies above the hull, no action is needed 
and P is simply discarded; also, as before, we start the process with a dummy 
triangle l)lf~2f~ 3 lying sufficiently high above all the points in ~.) We then add 
P to the hull using a propagation step that is similar to that in the construction 
of the Delaunay triangulation. That is, we remove A from the hull, and connect 
P to the three vertices of A. We now inspect each newly generated triangle together 
with its adjacent triangle that lies further from P. If this pair of triangles "bend 
downward," i.e., the lower dihedral angle between them is less than 180 ~ , then we 
replace this pair by the opposite pair, and continue to propagate further, until no 
downward bends are found. Special treatment is required in case a pair of triangles 
that bend downward is such that their xy-projection forms a nonconvex quad- 
rilateral. In this case we replace this pair by only a single triangle incident to P 
(this is the case when a site is being removed from the lower hull). We omit further 
details. 

The point-location procedure is implemented as in the case of Delaunay 
triangulation. That is, we maintain all faces that are generated during the 
incremental process on top of one another. Whenever a face is removed from the 
hull, we store in it pointers to the (one, two, or three) new faces whose xy- 
projections partially overlap that of the old face. Theorem 4.1 implies that the 
expected size of this structure is O(n). When a new point P is added to the hull, 
we locate it by tracing all faces that lie above or below P in chronological order 
of their creation, starting with the virtual face ~')1~'~2~'~3, and following the 
appropriate pointers. (If P is found to lie above any of these faces, we stop the 
tracing and discard P.) The analysis of the expected cost of locating all points as 
they are inserted is very similar to that given in Section 3, although more care is 
needed to handle some of the structural changes that can arise here but were not 
possible in the case of Delaunay triangulation. 

In an entirely symmetric fashion we can also build the upper convex hull of the 
n points in this fashion. Putting the two together, we conclude that: 

THEOREM 4.2. The randomized incremental procedure 9iven above for the construc- 
tion of the eonvex hull of n points in 3-space takes expected time O(n log n) and 
expected space O(n). 

REMARK. Our result is somewhat stronger than that of Clarkson and Shor 1-9], 
because we obtain in addition a linear bound on the expected number of hull 
updates that are required by the algorithm. However, it is possible to use their 
method to derive such a linear bound as well [8]. In addition, our method is more 
"on line" than theirs, since we only require a random permutation of the points 
and no other precomputation or auxiliary structures referencing sites not yet 
inserted (such as thei': conflict graph). 

REMARK. As above, a similar analysis can be given based on edges. 
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REMARK, Of course all this implies that we can compute the furthest-point 
Voronoi diagram [20] (and its dual triangulation) within the same time and space 
bounds. This is the upper hull of the lifted points (x, y, x 2 + y2). We again omit 
further details. 

4.2. Combinatorial AppBcations. Going back to the case of Delaunay triangula- 
tions, we can make a few observations concerning our proof techniques. Regarding 
Lemma 2.5, let us apply it with k - an, for some sufficiently small constant fraction 
cc The lemma implies that there are at most O(c~n 2) edges whose symmetric scope 
is at most k. Hence, if c~ is sufficiently small, there has to exist at least one edge 
whose scope is greater than k. In other words, we have shown that for any set of 
n points in the plane there exist a pair of these points so that any circle passing 
through them contains at least c~n points in its interior. This result is already 
known, and the constant that we get is not the best possible--Edelsbrunner et al. 
[15] have obtained a better estimate, using related techniques. 

Lemma 2.5 also implies the following result, obtained independently in [1]. The 
j-order Voronoi diagram of the sites is the partition of the plane according to 
the j nearest neighbors of each point [13]. 

LEMMA 4.3. The overall number of pairs X,  Y such that the j-order Voronoi diagram 
contains a region whose set of sites includes both X and Y, for j = 1 . . . .  , k, is O(nk). 

PROOF. Let X, Y be a pair of sites that are both associated with one region of 
the j-order Voronoi diagram, but not with any region of any lower-order Voronoi 
diagram. From the definition of such a diagram it follows that there exists a circle 
passing through XYwhich containsj  - 1 other points in its interior. Suppose that 
a of these points lie to the right of XYand  b = j  - 1 - a points lie to the left, and 
suppose without loss of generality that a > b. If a = b, then we have established 
that XYcEu_I ) / z .  Otherwise push the circle to the left, while maintaining its 
contact with X, Y. In this process, some points on the right may leave the interior 
of the circle and some additional points on the left may enter this interior. 
Eventually we will obtain a circle containing the same number of points on the 
left and on the right, and this number clearly cannot exceed j. 

We have just shown that the edge X Y  defined by the pair X, Y must have 
symmetric scope at most k in the final Delaunay triangulation, so the total number 
of such pairs is O(kn), by Lemma 2.5. [] 

REMARK. It is interesting to contrast this result with the bound O(nk 2) on the 
maximum total size of all j-order Voronoi diagrams, for j = 1 . . . . .  k (see [13]). 
The apparent contradiction is resolved by noting that a pair X, Ycan be associated 
with a single region in many (actually linearly many) Voronoi diagrams. 

REMARK. Extending Lemma 2.5 to the case of convex hulls in 3-space, we obtain 
the corollary that the number of edges X Y connecting pairs among n given points 
in 3-space, such that there exists a plane passing through X Y  and containing at 
most k points below it, is O(kn). Again, this has to be contrasted with the bound 
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| 2) on the maximum number of triangles X YZ spanned by triples of the given 
points and having the property that the plane containing X Y Z  has at most k of 
the points below it (see [9]). 

4.3. Delaunay Triangulations in Three Dimensions. Finally, consider the exten- 
sion of our results to Delaunay triangulations in 3-space. We have a set ~ of n 
sites in 3-space, and we wish to maintain its Delaunay triangulation as we add 
the points one by one in random order. The problem is to estimate the number 
of tetrahedra X Y Z W  spanned by quadruples of the sites in :~ and appearing 
during the process in the Delaunay triangulation. The condition for this to happen 
is that, by the time and last of X, Y, Z, W is added, none of the sites lying in the 
interior of the circumsphere of X Y Z W  has yet been inserted. (As before, if the 
circumsphere contains no site in its interior, then X Y Z W  appears in the final 
Delaunay triangulation.) 

As above, define the scope of a tetrahedron XYZWspanned by four of the sites 
to be equal to the number of sites contained in the interior of the circumsphere 
of XYZW. An easy extension of the analysis presented in Section 2 yields: 

LEMMA 4.4. The probability that a tetrahedron X Y Z W  appears as a Delaunay 
tetrahedron during the incremental process is 24/(k + 1)(k + 2)(k + 3)(k + 4), where 
k is the scope of XYZW. 

LEMMA 4.5. The number of tetrahedra X Y Z W  spanned by quadruples of sites 
and having scope at most k is O(n2(k + 1)2). 

PROOF. Apply an analysis similar to that of Lemma 2.2, and use the fact that 
the number of tetrahedra appearing in the Delaunay triangulation of r sites 
is O(r2). [] 

Now arguing as in the proof of Theorem 2.3, we obtain: 

THEOREM 4.6. The expected number of tetrahedra that appear in the Delaunay 
triangulation of a set of n points in 3-space during the incremental construction is 
O(n2). 

REMARK. Similar results were obtained in [9]. 

REMARK. In three dimensions, the bound O(r 2) on the size of D(:~), although 
attainable in the worst case, is often too high. A challenging open problem is 
whether we can extend the preceding theorem to assert that the expected number 
of tetrahedra appearing in the triangulation during the process is proportional, 
or at least very close, to the actual size of the final Delaunay triangulation. 
Unfortunately, this is not possible in general. As a counterexample, consider a set 

consisting of 2n + 1 points, n of which lie on the x-axis, n others lie on the line 
x = 0, z = 1, and the last point ( lies at (0, 0, 1). It is easy to see that, without the 
point (, the Delaunay triangulation is indeed of size | 2) Oust pair up pairs of 
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consecutive points, one pair on each of the two lines to obtain Delaunay  
tetrahedra). Moreover ,  any subset of the points of size r, not  containing ( and 
having at least a fraction of  its points lying on each of  the two skewed lines, will 
have a Delaunay  tr iangulation of  size | However,  if we space the points on 
the two lines sufficiently far apart  we can guarantee that  the circumspheres of  all 
these Delaunay  ter trahedra contain ( and therefore, as soon as ( is added, the 
complexity of the tr iangulation goes down to linear size. Thus, even though the 
output  size (or the final triangulation) is linear, the expected number  of tetrahedra 
appearing during the process will be quadratic.  

Is there any hope for improvement?  It appears that the crucial parameter  is not  
the final output  size, but  the expected size of the Delaunay  tr iangulation of  samples 
of large cardinality. If we denote by F(r) this expected value for samples of  size r, 
then a variant of Lemma 2.2 can be used to show that the number  of tetrahedra 
with scope at most  k is O(k4F(n/k)). The proof  technique of  Theorem 2.3 then 
yields: 

THEOREM 4.7. The expected number o f  tetrahedra that appear in the Delaunay 
triangulation of  a point set in 3-space during the incremental construction, is 

where F(r) is the expected number o f  tetrahedra in the Delaunay triangulation of  a 
sample whose size is r. 

REMARK. A challenging task is to extend the techniques in Section 3 to obtain 
a simple randomized incremental a lgori thm for constructing three-dimensional 
Delaunay  triangulations. Two main challenges arise: 

(i) Obta in  a tetrahedron-flipping procedure to update the diagram as a new point  
is inserted, v 

(ii) Obta in  an efficient point- location mechanism to accompany  these flips, such 
as storing pointers from tetrahedra being removed to newly generated tetra- 
hedra overlapping them, and locate a new site by tracing these pointers. 

7 An elementary flip in three dimensions is as follows: we are given two disjoint tetrahedra ABCD and 
ABCE sharing a common face ABC. Furthermore, the line segment DE cuts the face ABC. Then we 
replace ABCD and ABCE by the three tetrahedra DEAB, DEBC, and DECA (or we do the reverse of 
this transformation). Now in two dimensions, if ABC and BCD are two disjoint triangles sharing edge 
BC, and D lies inside the circumcircle of ABC, then AD must cut BC, so the flip (ABC, BCD) 
(ABD, ADC) is topologically legal. Unfortunately in three dimensions we can have a situation where 
E is inside the circumsphere of ABCD, but the flip (ABCD, ABCE) ~ (DEAB, DEBC, DECA) is not 
valid, since DE does not cut the triangle ABC. 

Very recently, Barry Joe proved that the incremental tetrahedron-flipping procedure always works to 
produce the Delaunay triangulation in three dimensions (in particular, the topologically illegal situation 
described above cannot arise). Edelsbrunner and Shah have generalized this result to arbitrary regular 
triangulations in three dimensions (unpublished manuscripts). 
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REMARK. An intriguing open problem raised in view of the preceding theorem 
is: Given a set ~ of n points in 3-space, whose Delaunay triangulation is large, 
can we add to it a small number of extra points so that the new set has a small 
(say, linear size) Delaunay triangulation? Some results in this direction have been 
obtained very recently [6]. An even further challenging goal is to add points to 

so as to obtain a set for which the expected size of the Delaunay triangulation 
of a sample of size r is small, say linear in r, for all "sufficiently large" values of r. 

REMARK. Similar to the results in two dimensions, we can show that, given a set 
of n points in 3-space, there always exists a triple of these points so that all 

spheres passing through three points contain at least a positive fraction of the 
points of ~.  This result has already been obtained by Bfirfiny et al. [3]. 

5. Randomized Incremental Construction of Voronoi Diagrams. In Section 3 we 
discussed an incremental randomized technique for computing the Delaunay 
triangulation of n sites in the plane. Because of the duality between Delaunay 
triangulations and Voronoi diagrams, a simple adaptation of our technique can 
also be used to compute the Voronoi diagram of n sites in the plane, within the 
same time and space bounds. (Under the duality Delaunay vertices correspond to 
Voronoi regions and vice versa, and Delaunay edges to Voronoi edges.) We can 
either build the Voronoi diagram only at the end, once we have the final Delaunay 
triangulation, or we can build the Voronoi diagram itselfincrementally, updating 
it as the sites are added one at a time. The updating operations are all easily 
derived from the corresponding operations on the Delaunay triangulations. In 
fact, such incremental methods for Voronoi diagrams are commonly implemented. 

We often construct Voronoi diagrams in order to use them for further process- 
ing. For  example, the Voronoi diagram is usually computed as a means of solving 
the nearest-neighbor problem for n sites in the plane. However, once we have the 
Voronoi diagram we are not done when it comes to this application. In order to 
get efficient nearest-neighbor query time, we need to build on top of the Voronoi 
diagram a point-location structure. Several such structures are known that take 
O(n) preprocessing time, use O(n) storage, and allow point-location queries to be 
made in O(log n) time. The structures of [22] or [14] are well-known examples, 
though neither is especially simple to implement. 

In this section our goal is to show that if we keep around all the intermediate 
Voronoi structures arising during the incremental construction process, and 
appropriately link them together, then we have an (expected) linear-size data 
structure that can be used for efficient point location in the final Voronoi diagram. 
Specifically, we show that the expected size of our structure is O(n), and that, for 
any point p in the plane, the expected cost of locating the Voronoi region 
containing p is O(log / n). The structure is Similar to that used to do point location 
for incremental Delaunay in Section 3. Now, however,we derive our query bound 
for any fixed point p in the plane. Similar constructions can be given for point 
location in arrangements of lines or planes built by randomized incremental 
techniques. These are discussed elsewhere [19]. 
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The basic idea of our technique is to subdivide the Voronoi regions into smaller 
cells, so that during the incremental construction the number of different cells 
covering any particular point p is small. Such a finer subdivision is necessary. If 
the final region of site s has f2(n) sides and p is very close to s, then the full Voronoi 
region in which p lies will change f~(n) times, no matter in what order the sites 
are inserted. 

We use a radial triangulation of each Voronoi region, obtained by connecting 
the defining site by line segments to each of the vertices of the region. Thus all of 
our cells are triangles. We say that such a triangle is based on the corresponding 
Voronoi edge. An example is shown in Figure 5(a). A crucial feature of this finer 
subdivision is that each cell depends on only a constant number of the sites (four, 
to be exact). 

We now describe how our point-location structure 5 ~ is built by connecting 
together such radial triangles as they arise during the incremental Voronoi 
construction. It is easiest to visualize 5e if we think of a series of n parallel and 
"aligned" planes in space, each plane containing one of the sites, in the (random) 
order in which the sites were inserted. For convenience we label the sites as 1, 
2 . . . . .  n, in their insertion order. On plane i we store all the new triangles created 
when the site i was first inserted. These include not only the triangles triangulating 
the Voronoi region of i at that time, but also new triangles created in neighboring 
regions that were affected by the addition of site i. Furthermore, all triangles 
destroyed by the insertion of site i are made to point to the plane containing i. 
We write V~(j), for j < i, to denote the Voronoi region of site j immediately after 
the insertion of site i and abbreviate V~(i) to V(i). The following lemmas clarify the 
structure of 5 e. 

LEMMA 5.1. When site i is inserted, the Voronoi region V~(j) corresponding to site 
j, for j < i, can be affected at most by being intersected with a half-plane. 

PROOF. The new region of site j is the old region intersected with the half-plane 
consisting of points closer to site j than site i (see Figure 5(b)). [] 

Thus the insertion ,of site i creates a new Voronoi region for i by carving off 
portions from the regions of other sites. A subregion of each such unlucky site 
is sliced off by a line segment. These segments are portions of bisectors involving 
site i and proceed circularly around i to form the boundary of V(i), while the 
boundaries of the sliced-off pieces of old regions form a tree partitioning the 
interior of V(i). 

With this understanding we can now examine more carefully the process of 
triangle destruction and creation (see Figure 5(b)). The triangles destroyed during 
the insertion of site i are exactly the triangles cut by the bisector segments discussed 
above (no old triangle can be completely covered by the new region V(i), as each 
such triangle has a vertex on an old site j , j  < i). Notice that all destroyed triangles, 
except for at most two per region, are based on Voronoi edges corresponding to 
a pair of Voronoi regions that were adjacent before the insertion of site i, but 
cease to be adjacent afterward. The exceptional triangles in a region are the ones 
where the bisector segment slicing that region terminates. 
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The original radial triangulation 
of the Voronoi region for site J 

I of site 

(a) 

after the insertion 
i 

(b) 

Interlor type triangles exterior type triangles 

Fig. 5. Updating the radial triangulation of a Voronoi cell. 

The newly created triangles when site i is inserted are of two types (see Figure 
5(b)). For each site j whose Voronoi region is carved up by some bisector segment 
arising from i there will be exactly three new triangles that need to be created, as 
in Figure 5(b) (except for degeneracies--then only one or two new triangles might 
be created). This is the exterior type of triangle: there are three triangles of this 
type per neighbor of i in the Voronoi diagram of the first i sites. The remaining 
new triangles, those of the interior type, are those corresponding to the radial 
triangulation of V(i). Conceptually we place all of these triangles on the parallel 
plane corresponding to site i. Notice that their number is proportional to the 
number of sides t in V(i) (it is at most 4t, in fact, by our analysis). 

So to summarize, our point-location structure 5 ~ consists of the planes of newly 
created triangles associated with the insertion of each site. On each plane i the 
triangles of the interior type on that plane are stored in an array ordered polarly 
around the site i. The triangles of the exterior type are just linked with the 
corresponding (by sharing a base) triangles of the interior type. With each triangle 
we also store the name of the site whose insertion destroys that triangle, or a 
special marker if that triangle partly survies all the way to the final Voronoi 
diagram. 

THEOREM 5.2. The expected size of the structure 5O for any group of n sites (under 
random ordering of the insertions) is O(n). 
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PROOF. When site i is inserted we can pay for all the triangle destruction and 
creation out of the structural changes that happen in the corresponding Delaunay 
triangulation. 

A destroyed triangle of region V~(j) whose Voronoi edge is fully covered up by 
V(i) corresponds to a Delaunay edge that must be deleted. A Delaunay edge cannot 
be charged more than twice in this fashion--it  corresponds to the base for two 
triangles. 

A destroyed triangle of region V~(j) whose Voronoi edge survives in the new 
diagram will give rise to a new triangle. Then we can charge the destruction of 
such a triangle to the new Delaunay edge {i,j} that will be created. In fact, we 
can charge each new Delaunay edge {i,j} at most six times and pay for all the 
triangle creation as well. We charge the edge {i,j} from triangles based on it as 
follows: 

�9 Two charges from destroyed triangles, portions of whose Voronoi edges survive. 
�9 Three charges from the new triangles in the Voronoi region V~(j) (exterior type). 
�9 One charge from the new radial triangle created in,the region V(i) (interior type). 

Thus the destruction and creation can be paid out of the total number of 
structural changes in the Delaunay triangulation during the insertion process, 
which we know to be O(n). The linking of triangles, etc., clearly also takes only 
O(n) space. [] 

THEOREM 5.3. The above structure can be built in O(n log n) expected time. 

PROOF. Every operation we need for the incremental construction of 5 e parallels 
one of the steps we go through during the incremental construction of the 
Delaunay triangulation or the Voronoi diagram. We omit the easy details. 
Therefore the same time bound applies. [] 

THEOREM 5.4. Let p be any fixed point of the plane. I f  the point-location structure 
5 a is constructed by inserting the sites in random order, then the expected cost of 
searching through 5 a to locate the radial triangle containing p in the final Voronoi 
diagram is O(log 2 n). 

PROOF. We first show that the expected number of triangles covering p in 5 a is 
O(log n). To see this it is best to think of the insertion algorithm as running 
backward in time. In the final Voronoi diagram the point p lies in some triangle. 
This triangle is determined by four of the sites. Thus, unless one of these sites was 
the last one to be inserted, the same triangle will already have existed in the 
Voronoi diagram of the first n - 1 sites. This implies that the probability that the 
last site to be inserted caused the triangle containing p to change is at most 4In. 
From this it follows that the expected number of triangles containing p during the 
whole process is O(1 + �89 + �89 + ... + 1/n) = O(log n). 8 

8 In fact, in [5] it is shown that the expected number of Delaunay triangles whose circumcircle contains 
P is O(log n). 
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In the structure 5 a we need to trace through all the triangles containing p. Say 
we are at a triangle containing p on plane j. This triangle refers us to the insertion 
tha t  destroys it, say that of site i. On the plane of site i we locate the triangle 
containing p as follows. Since a triangle of site j is destroyed by the insertion of 
site i, it follows that i and j will be neighbors when i is inserted. We first do a 
radial binary search among all the interior triangles around i in V(i) in order to 
find the sector containing p. Then we compare p with the bisector line of sites i 
and j. If i is closer to p than j, then the earlier binary search has identified the 
(interior) triangle containing p in V(i) and we are done. Otherwise we sequentially 
compare p with each of the (at most) three new (exterior) triangles of V~(j) situated 
on the other side of the {i,j} bisector. The base of the interior triangle determined 
by the radial binary search points to these exterior triangles. One of them must 
contain p, and we are again done. 

Since we trace through O(log n) triangles, visit O(log n) planes, and we have a 
worst-case cost of O(log n) to locate a point in a plane, the overall expected cost 
is O(log 2 n). [] 

REMARK. It is tempting to try to reduce this to O(log n). Notice that instead of 
storing with a triangle on plane j just the name of the vertex i whose insertion 
destroys it, we can store instead a pointer to the interior triangle on plane i 
bordered by the bisector of i and j. Then we can test p against this bisector first 
and, ifj  is still closer to p, locate the new exterior triangle containing p in constant 
time. The difficulty is in the other case. When i is closer to p the interior triangle 
containing p in V(i) need not be well correlated with the interior triangle containing 
p in V(j) that we started from. Figure 6 shows an example. 

REMARK. We might hope that a sequential walk through interior triangles will 
amortize to constant time per triangle, but this is not so. A counterexample can 
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be given using a point p close to a site whose region has f~(n) sides in the final 
diagram, as before. 

A three-dimensional analog of this method can be used for constructing the 
convex hull of n points in space so that in the end we have a structure that can 
be used to answer queries about (other) points lying inside or outside the hull. 
Again, if we randomize over the sequence of insertions the overall expected size 
of our structure will be O(n), and the expected query cost for any particular point 
will be O(log z n). 
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