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Abstract

Given a Brownian motion B, we consider the so-called statistical Skorohod embedding problem
of recovering the distribution of an independent random time T based on i.i.d. sample from BT . Our
approach is based on the genuine use of the Mellin transform. We propose a consistent estimator for
the density of T, derive its convergence rates and prove their optimality. Moreover we address the
question of asymptotic normality.
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1 Introduction

The so called Skorohod embedding (SE) problem or Skorohod stopping problem was first stated and
solved by Skorohod in 1961. This problem can be formulated as follows.

Problem 1.1 (Skorohod Embedding Problem). For a given probability measure µ on R, such that∫
|x|dµ(x) < ∞ and

∫
xdµ(x) = 0, find a stopping time T such that BT ∼ µ and BT∧t is a uniformly

integrable martingale.

The SE problem has recently drawn much attention in the literature, see e.g. Ob lój, [3], where the
list of references consists of more than 100 items. In fact, there is no unique solution to the SE problem
and there are currently more than 20 different solutions available. This means that from a statistical
point of view, the SE problem is not well posed. In this paper we study what we call statistical Skorohod
embedding (SSE) problem.

Problem 1.2 (Statistical Skorohod Embedding Problem). Based on i.i.d. sample X1, . . . , Xn from the
distribution of BT consistently estimate the distribution of the random time T ≥ 0, where B and T are
assumed to be independent.

The independence of B and T is needed to ensure the identifiability of the distribution of T from
the distribution of BT . In fact, due to the well-known scaling properties of the Brownian motion, the
SSE problem is closely related to the multiplicative deconvolution problem and the problem of volatility
estimation (see, e.g. Van Es et al [7], Van Es et al [6] and Van Es et al [5]). A standard approach to such
type of problems is to first make a log-transformation and then solve the resulting additive deconvolution
problem by means of the standard kernel density deconvolution technique. Our approach is different
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and makes use of the Mellin transform device, which, in view of the well known properties of the Mellin
transform, seems to be appropriate here. We construct a consistent estimator for the density of T and
derive its convergence rates in different norms. Furthermore, we show that the obtained rates are optimal
in minimax sense. The asymptotic normality of the proposed estimator is addressed as well. Let us stress
that the results on optimality of the rates and asymptotic normality can not be derived from the known
results on additive deconvolution problems.

The paper is organised as follows. In Section 2 we discuss some properties of the Mellin transform
and introduce our main estimation procedure. Section 3 is devoted to the convergence properties of the
estimator constructed in the previous section. In particular, we prove upper bounds for the pointwise
estimation risk and show that these upper bounds are optimal in minimax sense. In Section 4 asymptotic
normality of the proposed estimator is analysed. Some numerical examples can be found in Section 5.
Finally, all proofs are collected in Section 6.

2 Construction of the estimator for pT

Let B be a Brownian motion and let a random variable T ≥ 0 be independent of B. We then have,

(1) X := BT ∼
√
T B1

and the problem of reconstructing T is related to a multiplicative deconvolution problem. While for
additive deconvolution problems the Fourier transform plays an important role, here we can conveniently
use the Mellin transform.

Definition 2.1. Let ξ be a non-negative random variable with a probability density pξ, then the Mellin
transform of pξ is defined via

(2) M[pξ](z) := E[ξz−1] =

∫ ∞
0

pξ(x)xz−1 dx

for all z ∈ Sξ with Sξ =
{
z ∈ C : E[ξRez−1] <∞

}
.

Since pξ is a density, it is integrable and so at least {z ∈ C : Re(z) = 1} ⊂ Sξ. Under mild assumptions
on the growth of pξ near the origin, one obtains

{z ∈ C : 0 ≤ aξ < Re(z) < bξ} ⊂ Sξ

for some 0 ≤ aξ < 1 ≤ bξ. Then the Mellin transform (2) exists and is analytic in the strip aξ < Re z < bξ.
For example, if pξ is essentially bounded in a right-hand neighbourhood of zero, we may take aξ = 0
and bξ = 1. The role of the Mellin transform in probability theory is mainly related to the product of
independent random variables: in fact it is well-known that the probability density of the product of two
independent random variables is given by the Mellin convolution of the two corresponding densities. Due
to (1), the SSE problem is closely connected to the Mellin convolution. Suppose that the random time T
has a density pT which is essentially bounded in a right-hand neighbourhood of zero and fulfills∫ ∞

0

xδ pT (x) dx <∞(3)

for some δ > 0. Since S|B1| ⊃ {z ∈ C : Re(z) > 0} , we derive for 0 < Re(z) ≤ 1,

M[p|X|](z) = E
[
|B1|z−1

]
E
[
T (z−1)/2]

=M[p|B1|](z)M[pT ]((z + 1)/2) =
2(z−1)/2√

π
Γ(z/2)M[pT ]((z + 1)/2).
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As a result

M[pT ](z) =

√
π

2z−1
M[p|X|](2z − 1)

Γ(z − 1/2)
, 1/2 < Re(z) ≤ 1

and the Mellin inversion formula yields

pT (x) =
1

2π

∫ γ+i∞

γ−i∞
x−γ−ivM[pT ](γ + iv) dv(4)

=
1√
π

∫ ∞
−∞

x−γ−iv
M[p|X|](2 (γ + iv)− 1)

2γ+ivΓ(γ + iv − 1/2)
dv for 1/2 < γ ≤ 1, x > 0.

Furthermore, the Mellin transform of p|X| can be directly estimated from the data X1, . . . , Xn via the
empirical Mellin transform:

(5) Mn[p|X|](z) :=
1

n

n∑
k=1

|Xk|z−1, 1/2 < Re(z) ≤ 1,

where the condition Re(z) > 1/2 guarantees that the variance of the estimator (5) is finite. Note however
that the integral in (4) may fail to exist if we replaceM[p|X|] byMn[p|X|]. We so need to regularize the
inverse Mellin operator. To this end, let us consider a kernel K(·) ≥ 0 supported on [−1, 1] and a sequence
of bandwidths hn > 0 tending to 0 as n→∞. Then we define, in view of (5), for some 3/4 < γ ≤ 1,

(6) pn,γ(x) :=
1√
π

∫ ∞
−∞

x−γ−ivK(vhn)
Mn[p|X|](2(γ + iv)− 1)

2γ+ivΓ(γ − 1/2 + iv)
dv.

3 Convergence

For our convergence analysis, we will henceforth take the simplest kernel

K(y) = 1[−1,1](y),

but note that in principle other kernels may be considered as well. The next theorem states that pn,γ
converges to pT at a polynomial rate, provided the Mellin transform of pT decays exponentially fast. We
shall use throughout the notation an . bn if an is bounded by a constant multiple of bn, independently
of the parameters involved, that is, in the Landau notation an = O(bn), n→∞.

Theorem 3.1. For any β > 0 and L > 0, introduce the class of functions

C(β, L) :=

{
f :

∫ ∞
−∞
|M[f ](1 + iv)| eβ|v| dv ≤ L

}
.

Assume that pT ∈ C(β, L) for some β > 0 and L > 0, and that (3) holds. Then for some constant CL
depending on L only, it holds

(7) sup
x≥0

E
[{
x|pT (x)− pn,1(x)|

}2] ≤ CL [e−2β/hn +
1

n
eπ/hn

]
.

By next choosing

(8) hn = (π + 2β)/ log n

we arrive at the rate

(9) sup
x≥0

√
E
[{
x |pT (x)− pn,1(x)|

}2]
. n−

β
π+2β

as n→∞.
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C(β, L) D(β, L)

n−
β

π+2β log−β(n)

Table 1: Minimax rates of convergence for the classes C(β, L) and D(β, L).

Let us turn now to some examples.

Example 3.2. Consider the class of Gamma densities

pT (x;α) =
xα−1 · e−x

Γ(α)
, x ≥ 0

for α > 0. Since

M[pT ](z) =
Γ(z + α− 1)

Γ(α)
, Re(z) > 0,

we derive that pT ∈ C(β, L) for all 0 < β < π/2 and some L = L(β) due to the asymptotic properties of
the Gamma function (see Lemma 6.5 in Appendix). As a result, Theorem 3.1 implies

sup
x≥0

√
E
[{
x|pT (x)− pn,1(x)|

}2]
. n−ρ, n→∞

for any ρ < 1/4.

If M[pT ] decays polynomially fast, we get the following result.

Theorem 3.3. Consider the class of functions

D(β, L) =

{
f :

∫ ∞
−∞
|M[f ](1 + iv)| (1 + |v|β) dv ≤ L

}
,

and assume that pT ∈ D(β, L) for some β > 0 and L > 0. If (3) holds for some δ > 0, then for some
constant DL,

(10) sup
x≥0

E
[{
x |pT (x)− pn,1(x)|

}2] ≤ DL

[
h2βn +

1

n
eπ/hn

]
.

By choosing

(11) hn =
π

log n− 2β log log n
,

we arrive at

(12) sup
x≥0

√
E
[{
x |pT (x)− pn,1(x)|

}2]
. log−β(n), n→∞.

The rates of Theorem 3.1 and Theorem 3.3 summarized in Table 1 are in fact optimal (up to a
logarithmic factor) in minimax sense for the classes C(β, L) and D(β, L), respectively.
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Theorem 3.4. Fix some β > 1. There are ε > 0 and x > 0 such that

lim inf
n→∞

inf
pn

sup
pT∈C(β,L)

P⊗npT

(
|pT (x)− pn(x)| ≥ ε n−

β
π+2β log−ρ(n)

)
> 0,

lim inf
n→∞

inf
pn

sup
pT∈D(β,L)

P⊗npT

(
|pT (x)− pn(x)| ≥ ε log−β(n)

)
> 0,

for some ρ > 0, where the infimum is taken over all estimators (i.e. all measurable functions of
X1, . . . , Xn) of pT and P⊗npT is the distribution of the i.i.d. sample X1, . . . , Xn with X1 ∼ WT and
T ∼ pT .

4 Asymptotic normality

In the case of K(v) = 1[−1,1](v), the estimate pn,γ(x) can be written as

pn,γ(x) :=
1√
π

∫ 1/hn

−1/hn

[
1

n

n∑
k=1

|Xk|2(γ+iv−1)

]
x−γ−iv

2γ+ivΓ(γ − 1/2 + iv)
dv

=
1

n

n∑
k=1

Zn,k,

where

Zn,k :=

∫ 1/hn

−1/hn
|Xk|2(γ+iv−1) x−γ−iv

2γ+ivΓ(γ − 1/2 + iv)
dv dv.

The following theorem holds

Theorem 4.1. Suppose that for some γ > 0,

d

du
(Γ(2γ − 3/2 + iu)M[pT ](2γ − 1 + iu))

∣∣∣∣
u=0

6= 0,

and ∫ ∞
−∞
|M[pT ](2γ − 1 + iu)| du <∞,

then

ρ−1n
(
pn,γ(x)− E[pn,γ(x)]

) D−→ N (0, σ2)

for some σ2 > 0, where ρn = n−1/2h
2(γ−1)
n log−2 (1/hn) exp [π/hn] and hn � c log−1(n) for some c > 0.

5 Numerical examples

Barndorff-Nielsen et al. [1] consider a class of variance-mean mixtures of normal distributions which they
call generalized hyperbolic distributions. The univariate and symmetric members of this family appear
as normal scale mixtures whose mixing distribution is the generalized inverse Gaussian distribution with
density

pT (v) =
(κ/δ)λ

2Kλ(δκ)
vλ−1 exp

(
−1

2

(
κ2v +

δ2

v

))
, v > 0,(13)
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Figure 1: Left: the Gamma density (red) and its 50 estimates (grey) for the sample size n = 1000. Right:
the box plots of the loss supx∈[0,10]

{
|pn,γ(x)− pT (x)|

}
for different sample sizes.

for some κ, δ ≥ 0 and λ > 0, where K is a modified Bessel function. The resulting normal scale mixture
has probability density function

pX(x) =
κ1/2

(2π)1/2δλ
Kλ(δκ)(δ2 + x2)

1
2 (λ− 1

2 )Kλ− 1
2

(
κ(δ2 + x2)1/2

)
.

Let us start with a simple example, Gamma density pT (x) = x exp(−x), x ≥ 0, which is a special case
of (13) for δ = 0, λ = 2 and κ =

√
2. We simulate a sample of size n from the distribution of X, and

construct the estimate (6) with the bandwidth hn given (up to a constant not depending on n) by (8)
and γ = 0.9. In Figure 1 (left), one can see 50 estimated densities based on 50 independent samples
from WT of size n = 1000, together with pT in red. Next we estimate the distribution of the loss
supx∈[0,10]

{
|pn,γ(x) − pT (x)|

}
based on 100 independent repetitions of the estimation procedure. The

corresponding box plots for different n are shown in Figure 1 (right).

6 Proofs

6.1 Proof of Theorem 3.1

First let us estimate the bias of pn,γ . We have

E[pn,1(x)] =
1√
π

∫ ∞
−∞

x−1−ivK(vhn)
M[p|X|](2(1 + iv)− 1)

21+ivΓ(1/2 + iv)
dv

=
1

2π

∫ 1/hn

−1/hn
x−1−ivM[pT ](1 + iv) dv.

Hence

pT (x)− E[pn,1(x)] =
1

2π

∫
{|v|≥1/hn}

M[pT ](1 + iv)x−1−ivdv
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and we then have the estimate,

sup
x≥0

{
x |E[pn,1(x)]− pT (x)|

}
≤ 1

2π

∫
{|v|≥1/hn}

|M[pT ](1 + iv)| dv

≤ e−β/hn

2π

∫
{|v|≥1/hn}

e−β|v| |M[pT ](1 + iv)| eβ|v|dv

≤ L e
−β/hn

2π
.(14)

As to the variance, by the simple inequality Var
(∫
ftdt

)
≤
(∫ √

Var[ft]dt
)2
, which holds for any random

function ft with
∫
E[f2t ]dt <∞, we get

Var[x pn,1(x)] = Var

[
1√
π

∫ ∞
−∞

x−ivK(vhn)
Mn[p|X|](2(1 + iv)− 1)

21+ivΓ(1/2 + iv)
dv

]

≤ 1

π22

∫ 1/hn

−1/hn

√
Var

(
Mn[p|X|](2(1 + iv)− 1)

)
|Γ(1/2 + iv)|

dv

2

≤ 1

2nπ

∫ 1/hn

−1/hn

√
Var
(
|X|2iv

)
|Γ(1/2 + iv)|

dv

2

≤ 1

2nπ

[∫ 1/hn

−1/hn

1

|Γ(1/2 + iv)|
dv

]2
.(15)

We obtain from (15) due to Corollary 6.6 (see Appendix),

Var[x pn,γ(x)] ≤ CL
n
eπ/hn

and so (7) follows. Finally, by plugging (8) into (7) we get (9) and the proof is finished.

6.2 Proof of Theorem 3.3

The proof is analog to the one of Theorem 3.1 , the only difference is the bias estimate (14) that now
becomes

sup
x≥0

{
x |E[pn,1(x)]− pT (x)|

}
≤ L

2π
hβn.

With the choice (11) we obtain the logarithmic rate (12).

6.3 Proof of Theorem 3.4

Our construction relies on the following basic result (see [4] for the proof).

Theorem 6.1. Suppose that for some ε > 0 and all n ∈ N there are two densities p0,n, p1,n ∈ G for some
class G such that

d(p0,n, p1,n) > 2εvn,

where d is some metric on G. If the observations in model n follow the product law Pp,n = P⊗np under the
density p ∈ G and

χ2(p1,n | p0,n) :=

∫
(p1,n(x)− p0,n(x))2

p0,n(x)
dx ≤ n−1 log(1 + (2− 4δ)2)

7



holds for some δ ∈ (0, 1/2), then the following lower bound holds for all density estimators p̂n based on
observations from model n:

inf
p̂n

sup
p∈G

P⊗np
(
d(p̂n, p) ≥ εvn

)
≥ δ.

If the above holds for fixed ε, δ > 0 and all n ∈ N, then the optimal rate of convergence in a minimax
sense over G is not faster than vn.

We only present the proof of a lower bound for the class C(β, L). The proof for the class C(β, L) is
similar. Let us start with the construction of the densities p0,n and p1,n. Define for any ν > 1 and M > 0
two auxiliary functions

q(x) =
ν sin(π/ν)

π

1

1 + xν
, x ≥ 0

and

ρM (x) =
1√
2π
e−

log2(x)
2

sin(M log(x))

x
, x ≥ 0.

The properties of the functions q and ρM are collected in the following lemma.

Lemma 6.2. The function q is a probability density on R+ with the Mellin transform

M[q](z) =
sin(π/ν)

sin(πz/ν)
, Re[z] > 0.

The Mellin transform of the function ρM is given by

M[ρM ](u+ iv) =
1

2

[
e(u−1+i(v+M))2/2 − e(u−1+i(v−M))2/2

]
.(16)

Hence ∫ ∞
0

ρM (x)dx =M[ρM ](1) = 0.

Set now for any M > 0

q0,M (x) := q(x), q1,M (x) := q(x) + (q ∨ ρM )(x),

where f ∨ g stands for the multiplicative convolution of two functions f and g on R+ defined as

(f ∨ g)(x) :=

∫ ∞
0

f(t)g(x/t)

t
dt, x ≥ 0.

The following lemma describes some properties of q0,M and q1,M .

Lemma 6.3. For any M > 0 the function q1,M is a probability density satisfying

‖q0,M − q1,M‖∞ = sup
x∈R+

|q0,M (x)− q1,M (x)| & exp(−Mπ/ν), M →∞.

Moreover, q0,M and q1,M are in C(β, L) for all 0 < β < π/ν and L depending on γ.

Proof. First note that∫ ∞
0

q1,M (x)dx = 1 +

∫ ∞
0

(q ∨ ρM )(x) = 1 +M[q](1)M[ρM ](1) = 1.
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Furthermore, due to the Parseval identity

(q ∨ ρM )(y) =

∫ ∞
0

1√
2π
e−

log2(x)
2

sin(M log(x))

x2
1

1 + (y/x)ν
dx

=

∫ ∞
−∞

1√
2π
e−

v2

2 sin(Mv)
e−v

1 + e−ν(v−yl)
dv

= e− log(y)

∫ ∞
−∞

1√
2π
e−

v2

2 sin(Mv)
e(yl−v)

1 + eν(log(y)−v)
dv

=
e− log(y)

2π

∫ ∞
−∞

1√
2π
e−

v2

2 sin(Mv)
e(log(y)−v)

1 + eν(log(y)−v)
dv

=
e− log(y)

2π

∫ ∞
−∞

e−iu log(y)

[
H(u+M)−H(u−M)

2

]
F [R](u)du,

where R(x) = ex

1+eνx and H(x) = e−x
2/2. Note that

F [R](u) =

∫ ∞
−∞

ex+iux

1 + eνx
dx =

1

ν

∫ ∞
−∞

ev/ν+iuv/ν

1 + ev
dx =

1

ν
Γ

(
1 + iu

ν

)
Γ

(
1− 1 + iu

ν

)
.

Hence due to (19)

sup
y∈R+

|q0,M (y)− q1,M (y)| = sup
y∈R+

|(q ∨ ρM )(y)| & exp(−Mπ/ν), M →∞.

The second statement of the lemma follows from Lemma 6.2 and the fact thatM[q∨ρM ] =M[q]M[ρM ].

Let T0,M and T1,M be two random variables with densities q0,M and q1,M , respectively. Then the
density of the r.v. |WTi,M |, i = 0, 1, is given by

pi,M (x) :=
2√
2π

∫ ∞
0

λ−1/2e−
x2

2λ qi,M (λ) dλ i = 0, 1.

For the Mellin transform of pi,M we get

M[pi,M ](z) = E
[
|W1|z−1

]
E
[
T

(z−1)/2
i,M

]
= E

[
|W1|z−1

]
M[qi,M ]((z + 1)/2)

=
2z/2√

2π
Γ(z/2)M[qi,M ]((z + 1)/2), i = 0, 1.(17)

Lemma 6.4. The χ2-distance between the densities p0,M and p1,M fulfills

χ2(p1,M |p0,M ) =

∫
(p1,M (x)− p0,M (x))2

p0,M (x)
dx . e−Mπ(1+2/ν), M →∞.

Fix some κ ∈ (0, 1/2). Due to Lemma 6.4, the inequality

nχ2(p1,M |p0,M ) ≤ κ

holds for M large enough, provided

M =
1 + ε

π(1 + 2/ν)
(log(n) + (ν − 1) log log(n))

for arbitrary small ε > 0. Hence Lemma 6.3 and Theorem 6.1 imply

inf
p̂n

sup
p∈C(β,L)

Pp,n
(
‖p̂n − p‖∞ ≥ cvn

)
≥ δ.

for any β < π/ν < π, some constants c > 0, δ > 0 and vn = n−β/(π+2β) log−
π−β
π+2β (n).
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6.4 Proof of Proposition 4.1

Thus in order to prove asymptotic normality of
√
n(pn,γ(x)−E[pn,γ(x)]), we need to check the Lyapounov

condition, i.e. for some δ > 0
E|Zn,1 − EZn,1|2+δ

nδ/2[Var(Zn,1)]1+δ/2
→ 0, n→∞.

For this we need a lower bound for Var(Zn,1). Since EZn,1 → (2x
√
π) · pT (x), it suffices to show that

Var(Zn,1) & han exp(2bh−1n ) and E|Zn,1|2+δ . h−cn exp((2 + δ)bh−1n ) for some positive constants a, b and c.
Then Lyapounov’s condition holds for any δ > 0 by choosing hn ∼ c(log−1(n)). We have

Var(Zn,1) =
1

π

∫ 1/hn

−1/hn

∫ 1/hn

−1/hn

x−2γ−i(v−u)

22γ+i(v−u)
Cov

(
|X1|2(γ+iv−1), |X1|2(γ+iu−1))

22γ+i(v−u)Γ(γ − 1/2 + iv)Γ(γ − 1/2− iu)
du dv

=
1

π

∫ 1/hn

−1/hn

∫ 1/hn

−1/hn

1

(2x)
2(γ−1)+i(v−u)

M[p|X|](4γ − 3 + 2i(v − u))

Γ(γ − 1/2 + iv)Γ(γ − 1/2− iu)
dv du

− 1

π

∣∣∣∣∣
∫ 1/hn

−1/hn

1

(2x)
(γ+iv−1)

M[p|X|](2γ − 1 + 2iv)

Γ(γ − 1/2 + iv)
dv

∣∣∣∣∣
2

= R1 −R2.

Note that

R2 ≤
1

(2x)2(γ−1)

(∫ 1/hn

−1/hn

∣∣∣∣M[p|X|](2γ − 1 + 2iv)

Γ(γ − 1/2 + iv)

∣∣∣∣ dv
)2

=
1

(2x)2(γ−1)

∣∣∣∣∣
∫ 1/hn

−1/hn

∣∣M[pT ](γ + iv)
∣∣ dv∣∣∣∣∣

2

< C <∞

and furthermore

R1 =
1

x2(γ−1)π

∫ 1/hn

−1/hn

∫ 1/hn

−1/hn

1

xi(v−u)
Γ(2γ − 3/2 + i(v − u))M[pT ](2γ − 1 + i(v − u))

Γ(γ − 1/2 + iv)Γ(γ − 1/2− iu)
dv du

=
1

x2(γ−1)π
× In.

Without loss of generality we may take x = 1 (for x 6= 1 the proof is similar). Observe that

|Γ(γ − 1/2 + iv)| ≥ C11|v|≤2 + C21|v|>2 |v|
γ−1

e−π|v|/2,

|Γ(γ − 1/2− iu)| ≥ C11|u|≤2 + C21|u|>2 |u|
γ−1

e−π|u|/2

for some constants C1 > 0, C2 > 0, and that

|Γ(2γ − 3/2 + i(v − u))| ≤ D11|u−v|≤2 + 1|u−v|>2D2 |u− v|2(γ−1) e−π|u−v|/2

for some D1 > 0, D2 > 0. Using these estimate, one can easily derive that the integral

I1,n,ρ :=

∫ 1/hn

−1/hn

∫ 1/hn

−1/hn
1|v−u|≥ρ

Γ(2γ − 3/2 + i(v − u))M[pT ](2γ − 1 + i(v − u))

Γ(γ − 1/2 + iv)Γ(γ − 1/2− iu)
dv du

can be bounded from above as

|I1,n,ρ| . h−3|1−γ|n eπ( 1
2hn
−(ρ/2)∨1) + h−2|1−γ|−1n eπ( 1

hn
−ρ/2) + h−4|1−γ|−1n eπ( 1

hn
−ρ∨2)

10



for n→∞. Similarly

∫ 1/hn

−1/hn

∫ 1/hn

−1/hn
1|u|≤ 1

hn
−ρ1|v−u|≤ρ

Γ(2γ − 3/2 + i(v − u))M[pT ](2γ − 1 + i(v − u))

Γ(γ − 1/2 + iv)Γ(γ − 1/2− iu)
dv du

= O
(
h−ln e

π( 1
hn
−ρ)
)

and∫ 1/hn

−1/hn

∫ 1/hn

−1/hn
1|v|≤ 1

hn
−ρ1|v−u|≤ρ

Γ(2γ − 3/2 + i(v − u))M[pT ](2γ − 1 + i(v − u))

Γ(γ − 1/2 + iv)Γ(γ − 1/2− iu)
dv du

= O
(
h−ln e

π( 1
hn
−ρ)
)

for some l > 0. Hence

I2,n,ρ :=

∫ 1/hn

−1/hn

∫ 1/hn

−1/hn
1|v−u|≤ρ

Γ(2γ − 3/2 + i(v − u))M[pT ](2γ − 1 + i(v − u))

Γ(γ − 1/2 + iv)Γ(γ − 1/2− iu)
dv du

=

∫ 1/hn

−1/hn

∫ 1/hn

−1/hn
1|u|≥ 1

hn
−ρ1|v|≥ 1

hn
−ρ1|v−u|≤ρ

×Γ(2γ − 3/2 + i(v − u))M[pT ](2γ − 1 + i(v − u))

Γ(γ − 1/2 + iv)Γ(γ − 1/2− iu)
dv du+O

(
h−ln e

π( 1
hn
−ρ)
)

= I3,n,ρ +O
(
h−ln e

π( 1
hn
−ρ)
)
.

Now let us study the asymptotic behaviour of the integral I3,n,ρ. To this end, we will use the Stirling
formulas

Γ(γ − 1/2 + iv) = (γ − 1/2 + iv)
γ−1+iv

e−γ+1/2−iv√2π(1 +O(|v|−1)),

Γ(γ − 1/2− iu) = (γ − 1/2− iu)
γ−1−iu

e−γ+1/2+iu
√

2π(1 +O(|u|−1)).

First consider the case u, v → +∞, where

Γ(γ − 1/2 + iv)Γ(γ − 1/2− iu) = 2π exp [iv log v − iu log u− i (v − u)]

× exp
[
−π

2
(u+ v) + (γ − 1) (log v + log u)

]
(1 +O(1/u) +O(1/v)).

Let ρn = h−αn for 0 < α < 1/2. Then on the set{
|u| ≥ 1

hn
− ρn

}
∩
{
|v| ≥ 1

hn
− ρn

}
∩ {|v − u| ≤ ρn} ∩ {v ≥ 0, u ≥ 0}

we define u = 1/hn − r, v = 1/hn − s with 0 < r, s < ρn, |r − s| < ρn to get

Γ(γ − 1/2 + iv)Γ(γ − 1/2− iu) = 2ei(1/hn−s) log(1/hn−s)−i(1/hn−r) log(1/hn−r)−i(r−s)

× h−2(γ−1)n exp [−π/hn] exp [(r + s)π]

× (1 +O(hn))(1 +O(ρnhn)).

Using the asymptotic decomposition

(1/hn − s) log (1/hn − s)− (1/hn − r) log (1/hn − r)− (r − s) = (r − s) log (1/hn) +O(ρ2nhn),
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we derive

Γ(γ − 1/2 + iv)Γ(γ − 1/2− iu) = 2πh−2(γ−1)n exp [−π/hn] exp [(r + s)π]

× exp [i (r − s) log (1/hn)] (1 +O(ρ2nhn)).

Analogously, on the set{
|u| ≥ 1

hn
− ρn

}
∩
{
|v| ≥ 1

hn
− ρn

}
∩ {|v − u| ≤ ρn} ∩ {v ≤ 0, u ≤ 0}

we define u = −1/hn + r, v = −1/hn + s, with 0 < r, s < ρn, |r − s| < ρn, to get

Γ(γ − 1/2 + iv)Γ(γ − 1/2− iu) = 2πh−2(γ−1)n exp [−π/hn] exp [(r + s)π]

× exp [−i (r − s) log (1/hn)] (1 +O(ρ2nhn)).

Hence the integral I3,n,ρn can decomposed as follows

I3,n,ρn =:
h
2(γ−1)
n

2π
exp [π/hn]

{
Re[I4,n,ρn ] +O(ρ2nhn)

}
,

where

I4,n,ρn =

∫ ∫
10≤r≤ρn10≤s≤ρn1|r−s|≤ρn exp [−(r + s)π] Γ(2γ − 3/2 + i(r − s))

×M[pT ](2γ − 1 + i(r − s)) exp [i (s− r) log (1/hn)] drds

=

∫ ρn

0

e−2vπRn(v)dv

with

Rn(v) =

∫
10≤u≤ρn−ve

−uπΓ(2γ − 3/2 + iu)M[pT ](2γ − 1 + iu)eiu log(1/hn)du.

Using the well known results on the asymptotic of Fourier transform, it is easy to show that

Rn(v) = eiπ/2Γ(2γ − 3/2)M[pT ](2γ − 1) log−1 (1/hn)

+eiπ
[
d

du
(Γ(2γ − 3/2 + iu)M[pT ](2γ − 1 + iu))

∣∣∣∣
u=0

]
log−2 (1/hn) +O(log−3 (1/hn))

uniformly in v. As a result

Re[I4,n,ρn ] =

[
d

du
(Γ(2γ − 3/2 + iu)M[pT ](2γ − 1 + iu))

∣∣∣∣
u=0

]
log−2 (1/hn) +O(log−3 (1/hn)).

Combining all above estimates, we finally get

Var(Zn,1) =
h
2(γ−1)
n

π2
log−2 (1/hn) exp [π/hn](18)

×
{[

d

du
(Γ(2γ − 3/2 + iu)M[pT ](2γ − 1 + iu))

∣∣∣∣
u=0

]
+O(log−1 (1/hn)) +O(ρ2nhn log2 (1/hn)) +O

(
e−πρn/2 log2 (1/hn)

)}
.

Using the decomposition (18), the Lyapounov condition for some δ > 0

E|Zn,1 − EZn,1|2+δ

nδ/2[Var(Zn,1)]1+δ/2
→ 0, n→∞

is easy to verify, since EZn,1 → pT (x).
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Lemma 6.5. For any α ≥ −2, there exist positive constants C1 and C2(α) such that uniformly for
|β| ≥ 2,

C|β|α−1/2e−|β|π/2 ≤ |Γ(α+ iβ)| ≤ Cα|β|α−1/2e−|β|π/2.(19)

Corollary 6.6. For all 0 < α < 1/2 and all U > 2, it holds

(20)

∫ U

−U

dβ

|Γ(α+ iβ)|
≤ CU1/2−αeUπ/2

for a constant C > 0. For α > 1/2, we have

(21)

∫ U

−U

dβ

|Γ(α+ iβ)|
≤ C1(α) + C2e

Uπ/2

where C2 does not depend on α.
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