
Addendum to

An Iterative Method for Multiple Stopping:
Convergence and Stability

by C. Bender and J. Schoenmakers

Some general remarks

In this paper we suggest a numerical implementation based on plain Monte
Carlo simulation of the conditional expectations in the following Marko-
vian setting: Suppose (X(i),Fi), 0 ≤ i ≤ k, is a possibly high-dimensional
Markov process and the cashflow is of the form Z(i) = f(i,X(i)). Assume
a consistent stopping family τ(i) depends on ω only through the path of X
and that for each i the event {τ(i) > i} is X(i) measurable. Precisely, we
suppose τ may be represented by

τ(i) = T (i;X(i), . . . , X(k))

for explicitly known functions T (i; ·). A typical example of such stopping
families is

τg(i) = inf{j ≥ i; f(i,X(i)) ≥ g(i, X(i))}
for a given function g(i, x).

Then all conditional expectations to be evaluated throughout the theo-
retical iteration of (6)–(9) are of the form (j ≥ i)

EFiZ(τ(j)) = EFi

k∑

p=j

1τ(j)=pf(p, X(p))

= EXi

k∑

p=j

1τ(j)=pf(p, X(p)) = EXif(τ(j), X(τ(j))) = (∗)

To obtain a sample of (∗) simulate a trajectory Xsample of X up to time i.
From time i to time k simulate under the conditional measure, say PXsample

i ,
N trajectories (X1(p), . . . , XN (p); p = i, . . . , k), i.e. such that Xn(i) =
Xsample(i) for all n = 1, . . . , N. Along each trajectory n = 1, . . . , N we
determine τn(i) = T (i;Xn(i), . . . , Xn(k)). Then a sample estimate of (∗) is
defined as

ÊFi,sampleZ(τ(j)) :=
1
N

N∑

n=1

f(τn(j), Xn(τn(j))) (1)

Obviously, this plain Monte Carlo estimator doesn’t require any approx-
imation of the state space and thus, in particular, does not invoke curse of

1

dimensionality in dependence of the dimension of the underlying Markov
process. Since the Monte Carlo estimator (1) requires N samples of the
Markov process to obtain one sample of the conditional expectation, it be-
comes costly to approximate high order nestings of conditional expectations
this way. (A nesting of order m requires about Nm+1 samples of X to get
N samples of the mth nested conditional expectation. Of course this is only
feasible for small m, say 1 or 2.) This is why we recommend to perform only
one or two improvement steps.

Algorithm for two exercise rights

We now provide a pseudo-code for the implementation in the case of two
exercise rights. It is clear how to extend this code to any number of exercise
rights.

Suppose we are given an input stopping family (σ1(i), σ2(i)) which gives
a lower approximation (δ = 1),

Y (i, σ1, σ2) = EFi [Z (σ2(i)) + Z (σ1(σ2(i) + 1))] .

The new family

σ̃1(i) = inf
{

j ≥ i : Z(j) ≥ max
j+1≤p≤k

EFjZ(σ1(p))
}

σ̃2(i) = inf
{
j ≥ i : Z(j) + EFjZ(σ1(j + 1))

≥ max
j+1≤p≤k

EFj [Z (σ2(p)) + Z (σ1(σ2(p) + 1))]
}

gives improved approximation

Y (i, σ̃1, σ̃2) = EFi [Z (σ̃2(i)) + Z (σ̃1(σ̃2(i) + 1))] ≥ max
i≤p≤k

Y (p, σ1, σ2).

The following algorithm supposes the Markovian setting described in the
previous section.

2

Algorithm for computing σ̃1(i) on a trajectory (X(j), j = i, . . . , k).

A(1)(i) :

• Set l := i;

(A) To decide whether l ≈ σ̃1(i) or not we do the following:

∗ Simulate M trajectories (X(p)(q), q = l, . . . , k), p =
1, . . . , M , with start value X(l);

∗ Along each trajectory (p) determine the family (σ(p)
1 (q), q ≥

l) (recall the stopping family is a function of the path);
∗ Then, for q = l + 1, . . . , k compute

Dummy[q] := 1
M

∑M
p=1 Z(σ(p)

1 (q)) ≈ EFlZ(σ1(q));
Next determine
Max Dummy := maxl+1≤q≤k Dummy[q] ≈
maxl+1≤q≤k EFlZ(σ1(q));

∗ Check whether Z(l) ≥ Max Dummy:
· If yes, σ̃1(i) :≈ l;
· If no, do l := l + 1; if l < k go to (A) and repeat; if l = k

set σ̃1(i) = k;

– We so end with up an estimation of σ̃1(i).

Algorithm for computing σ̃2(i) on a trajectory (X(j), j = i, . . . , k).

A(2)(i) :

• Set l := i;

(A) To decide whether l ≈ σ̃2(i) or not we do the following:

∗ Simulate M trajectories (X(p)(q), q = l, . . . , k), p =
1, . . . , M , with start value X(l);

∗ Along each trajectory (p) search σ1(l + 1).
∗ Then, compute

Dummy := 1
M

∑M
p=1 Z(σ(p)

1 (l + 1)) ≈ EFlZ(σ1(l + 1));
Next compute for q = l + 1, ..., k, Dummy[q] via the routine
A(1,2)(l, q) (with the same paths as used to compute Dummy
as input). Determine
Max Dummy := maxl+1≤q≤k Dummy[q]
≈ maxl+1≤q≤k EFl [Z (σ2(q)) + Z (σ1(σ2(q) + 1))];

∗ Check whether Z(l) + Dummy ≥ Max Dummy:

3

· If yes, σ̃2(i) :≈ l;
· If no, do l := l + 1; if l < k go to (A) and repeat; if l = k

set σ̃2(i) = k;

– We so end with up an estimation of σ̃2(i).

Algorithm for EFi [Z (σ2(q)) + Z (σ1(σ2(q) + 1))] , i ≤ q ≤ k.

A(1,2)(i, q) :

• Input: M trajectories (X(p)(q), q = i, . . . , k), p = 1, . . . , M , with start
value X(i);

• Along each trajectory (p) search σ
(p)
2 (q) and σ

(p)
1 (σ(p)

2 (q) + 1)

• return 1
M

∑M
p=1

[
Z

(
σ

(p)
2 (q)

)
+ Z

(
σ

(p)
1 (σ(p)

2 (q) + 1)
)]

Now, having a procedure for constructing σ̃1 and σ̃2, we obtain an algo-
rithm for

Y (0, σ̃1, σ̃2):

• Simulate M trajectories (X(p)(q), q = 0, . . . , k), p = 1, . . . , M , with
start value X(0);

• Along each trajectory (p) construct σ̃
(p)
2 (0) and σ̃

(p)
1 (σ̃(p)

2 (0) + 1)

• return 1
M

∑M
p=1

[
Z

(
σ̃

(p)
2 (0)

)
+ Z

(
σ̃

(p)
1 (σ̃(p)

2 (0) + 1)
)]

Example: the (Libor) chooser cap

Consider a set of tenor dates T1, . . . , Tn with periods δj := Tj+1 − Tj

(nearly) equi-distant, for example 6 months. Let Lj be the EurIBOR (or
LIBOR) over the period [Tj , Tj+1], fixed at Tj and settled at Tj+1, and B∗
be the spot Libor rolling over account. I.e. the numeraire which starts with
B∗(0) = 1 Euro (or $1), and during the period Tj < t < Tj+1 is invested in
the zero bond Bj+1 which ends up with face value 1 at Tj+1. For proper
modelling of the Libor process L we refer to the literature.

A chooser cap over a period [Tp, Tq] with strike κ and pre-specified
exercise number m, m ≤ q − p, can be regarded as a standard cap with

4

strike κ over this period, except that only m caplets, to be chosen by the
option holder, are payed off. The chooser cap price at t = 0 can then be
represented by the solution of a multiple stopping problem, i.e.

ChooserCap(0) := sup
p≤τ1<τ2<···<τm<q

E∗
m∑

j=1

(Lτj (Tτj)− κ)+δτj

B∗(Tτj+1)
.

5

