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1. Introduction

Our goal in this paper is the construction of a probabilistic method for the valuation and

the replication (hedge) of a European claim maturing at some future time T; contingent
on the values X i(T ); of a basket of m stocks (risky assets) with price processes X i(t); i =
1; :::; m. We assume that in the market also a cash bond (riskless asset) B is available

and that the system (B;X) satis�es the stochastic di�erential equations

(1.1) dB = r(t)Bdt; B(t0) = 1;

dX i = X i(�i(t; X)dt+

mX
j=1

�ij(t; X)dW j(t)); t � t0; i = 1; :::; m;

where, for the time being, r(t) is a deterministic interest rate, X = (X1; :::; Xm)>; W =

(W 1; :::;Wm)> is anm-dimensional standardWiener process on a probability space (
;F ; P ):
As usual the P -augmentation of the �ltration generated by W is denoted by fFtg: Fur-
ther it is assumed that r(t); the vector (�1(t; x); :::; �m(t; x))>, and the matrix �(t; x) =

f�ij(t; x)g; t 2 [t0; T ]; x 2 Rm
+ := fx : x1 > 0; :::; xm > 0g; are su�ciently smooth

and such that there exists a unique process X(t) 2 Rm
+ ; t 2 [t0; T ]; with X(t0) 2 Rm

+

satisfying (1.1) (for example, all the �i; �ij are smooth and bounded). Moreover, we
assume that the volatility matrix �(t; x) = f�ij(t; x)g = fxi�ij(t; x)g has full rank for
every (t; x); t 2 [t0; T ]; x 2 Rm

+ : Under these assumptions the model (B;X) constitutes
a complete market and is, in fact, a special version of the system described in Karatzas

and Shreve [7]. Henceforth, we will assume that the originating functions are always
su�ciently good in analytical sense without stating their analytical properties explicitly.

The central problem now is to determine the price and hedge of a European claim
f(X(T )) at maturity time T speci�ed by a payo� function f which depends on X; by
constructing a self-�nancing portfolio or trading strategy. In the construction of this port-

folio it is assumed that the stocks pay dividends to the share holders at a rate ri(t; X(t))
for the i-th stock and further a consumption process C is assumed which is de�ned by a
consumption rate c(t; X(t)); t0 � t � T;

(1.2) dC = c(t; X(t))dt; C(t0) = 0:

>From a mathematical point of view the incorporation of both continuous dividends and

consumption goes without any di�culties, however, the reader should feel free to take
them zero if he prefers.
The portfolio value V (t) of a trading strategy ('t;  t) = ('t;  

1
t ; :::;  

m
t ); i.e. the posi-

tions in bond B(t) and stocks Xj(t) respectively, is given by

(1.3) V (t) = 'tB(t) +

mX
i=1

 i
tX

i(t)

and the trading strategy is said to be (generalized) self-�nancing if

(1.4) dV = 'tdB +

mX
i=1

 i
tdX

i +

mX
i=1

ri(t; X(t)) i
tX

i(t)dt� c(t; X(t))dt:

It is known (see, e.g., [14], [7]) that in our framework the European claim may be
hedged with a uniquely determined self-�nancing portfolio or trading strategy, which
value at time t < T is given by

V (t) = v(t; X(t)):
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Here, v is a function of the variables t; x1; :::; xm and satis�es the following Cauchy problem

for the parabolic partial di�erential equation:

(1.5) Lv(t; x) + c(t; x) :=
@v

@t
+

1

2

mX
i;j=1

aij(t; x)
@2v

@xi@xj

+

mX
i=1

bi(t; x)
@v

@xi
� r(t)v + c(t; x) = 0;

(1.6) v(T; x) = f(x);

where aij =
Pm

k=1 �ik�jk = xixj
Pm

k=1 �ik�jk; b
i = (r � ri)xi; i = 1; :::; m:

If v(t; x) is the solution of the problem (1.5)-(1.6), the required hedging strategy
('t;  

1
t ; :::;  

m
t ) as a function of (t; X(t)) is then given by

(1.7) 't =
1

B(t)
(v(t; X(t))�

mX
i=1

@v

@xi
(t; X(t))X i(t));  i

t =
@v

@xi
(t; X(t)); i = 1; :::; m:

Frequently, works in numerics for �nance (see, e.g., [18] and references therein) are de-
voted to the evaluation of a portfolio value v(t; x). However, for constructing the hedging

strategy we also need the derivatives of v; called deltas. Of course, in the case where
v(t; x) is known, it is possible to �nd @v(t; x)=@xi approximately, for example, as

@v(t; x)

@xi
' v(t; x1; :::; xi +�xi; :::; xm)� v(t; x1; :::; xi ��xi; :::; xm)

2�xi
; i = 1; :::; m;

but such an approach requires very accurate calculations for v and cannot be realized

in practice especially in many-dimensional cases. Moreover, in many-dimensional cases
(in reality for m � 3) it is usually impossible to �nd v(t; x) for all (t; x) because of the
complexity of problem (1.5)-(1.6). Therefore, in this sequel we give special attention to
the evaluation of the deltas

ui(t; x) :=
@v

@xi
(t; x); i = 1; :::; m;

by probabilistic methods. Indeed, as for the construction of a hedging strategy one only
needs at any instant t the individual values v(t; X(t)) and @v(t; X(t))=@xi; i = 1; :::; m,
where X(t) is the (known) state of the market, the Monte Carlo method is most relevant
for such a problem.
The probabilistic approach for the evaluation of a particular value v(t; x) of Cauchy

problem (1.5)-(1.6) is well known and comes down to Monte Carlo simulation of proba-
bilistic representations for v(t; x) by stochastic di�erential equations naturally connected
to (1.5)-(1.6).
It is not di�cult to obtain probabilistic representations for the derivatives @v(t; x)=@xi

also (see Section 2) and so it is possible to �nd the values v(t; x) and @v(t; x)=@xi; i =
1; :::; m; for speci�c (t; x) by Monte Carlo simulation of suitable representations. The
present paper is particularly devoted to these Monte Carlo techniques and the outline of
the paper is as follows.

Section 2 contains rather known material and is included for the convenience of the
reader. First we give a brief derivation of (1.5)-(1.6). Then we present various probabilistic
representations for the solution v of Cauchy problem (1.5)-(1.6) from which we derive
straightforwardly probabilistic representations for the partial derivatives @v=@xi in terms
of a variational system of stochastic di�erential equations. The representation for v is

standard (see, e.g., [3], [4]) and, probably, the representations for @v=@xi are also known
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to specialists in stochastic analysis. However, we could not �nd them in the literature

and for this reason the formulas for @v=@xi are given without any references. Section 2 is
concluded by a brief discussion of weak methods for numerical integration of SDEs (see
[8], [10]) which are needed for Monte Carlo simulation of stochastic di�erential equations.
Our main results are contained in Sections 3 and 4. As well known fact, variance

reduction is of crucial importance for the implementation of Monte Carlo procedures.
Therefore, all the various probabilistic representations given in this paper are endowed
with a (vector) function to control the variance. For the moment, let us denote this
function by h. The function h is such that the mathematical expectations for v and

for @v=@xi due to the chosen representations do not depend on the choice of h. In the
meantime, the corresponding variance does depend on h. Therefore it is natural to regard
h as a control function which may be chosen such that the variance is minimal. We use
this approach for two known methods for variance reduction: In Section 3 for the method
of important sampling and in Section 4 for the method of control variates. Moreover, in

Section 4 we introduce a combined method which contains both the method of importance
sampling and the method of control variates as particular cases. It turns out that with
one and the same control function a variance reduction can be achieved simultaneously
for the claim value v as well as for the deltas ui = @v=@xi; i = 1; :::; m. These results are

extended for gammas, vegas, and thetas in Section 5 and for barrier options in Section 6.
In Section 7, we show the application of the presented methods to LIBOR derivatives in
a LIBOR (market) model [6], [1]. Finally, in Section 8 we give some concluding remarks.

2. Monte Carlo evaluation of a hedging strategy

We give a brief derivation of the problem (1.5)-(1.6) and formulas (1.7). Since the
portfolio ('t;  t) is (generalized) self-�nancing and thus satis�es (1.4), it follows that

dV = 'tr(t)Bdt+

mX
i=1

 i
tX

i(�i(t; X)dt+

mX
j=1

�ij(t; X)dW j(t)) +

+

mX
i=1

ri(t; X(t)) i
tX

i(t)dt� c(t; X(t))dt;(2.1)

which is equivalent with

(2.2) Bd't +

mX
i=1

X id i
t +

mX
i=1

d i
tdX

i =

mX
i=1

ri(t; X(t)) i
tX

i(t)dt� c(t; X(t))dt:

Let us now consider a European claim f(XT ) at maturity time T; speci�ed by a payo�

function f which depends on X(T ): Since the market is complete the claim may be repli-
cated (hedged) by a self-�nancing portfolio with value process V (t); say. As, moreover,
the model (B;X) is Markovian we have

(2.3) V (t) = 'tB(t) +

mX
i=1

 i
tX

i(t) = v(t; X(t)); V (T ) = v(T;X(T )) = f(X(T ));

where v is a function of the variables t; x1; :::; xm:
Just as for the standard Black-Scholes model (one risky asset and one riskless bond)

we may derive a parabolic di�erential equation for the function v(t; x) (see, e.g., [7], [14]).
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Due to Itô's formula we have

(2.4) dv(t; X(t)) =
@v

@t
dt+

mX
i=1

@v

@xi
dX i +

1

2

mX
i;j=1

@2v

@xi@xj
dX idXj

=
@v

@t
dt+

mX
i=1

@v

@xi
X i�idt+

mX
i=1

@v

@xi

mX
j=1

�ijdw
j(t) +

1

2

mX
i;j=1

aij
@2v

@xi@xj
dt:

>From 2.3 and comparing (2.1) with (2.4), we obtain

(2.5)  i
t =  i(t; X(t)) =

@v

@xi
(t; X(t));  i(t; x) =

@v

@xi
(t; x);

and

@v

@t
(t; X(t)) +

1

2

mX
i;j=1

aij(t; X(t))
@2v

@xi@xj
(t; X(t))

= 'tr(t)B(t) +

mX
i=1

ri(t; X(t)) i
tX

i(t)� c(t; X(t)):(2.6)

Then, substituting (see (2.3) and (2.5))

'tB(t) = v(t; X(t))�
mX
i=1

 i
tX

i(t) = v(t; X(t))�
mX
i=1

@v

@xi
(t; X(t))X i(t);

in (2.6) and taking into account (2.5), we get the Cauchy problem (1.5)-(1.6) for a para-
bolic partial di�erential equation. If v(t; x) is the solution to this problem, the required

hedging strategy is given by formulas (1.7). The equality (2.2) for this strategy can be
checked directly.

Remark 2.1. Consider the model (1.1) with now r depending on t and X; i.e., (1.1)
with as �rst equation

dB = r(t; X)Bdt; B(t0) = 1:

Then, in general, V (t) depends on t; X(t); B(t); i.e., V (t) = v(t; X(t); B(t)). Arguing
as above, we now obtain that v satis�es the following equation

@v

@t
+

1

2

mX
i;j=1

aij(t; x)
@2v

@xi@xj
+

mX
i=1

bi(t; x)
@v

@xi
+ r(t; x)B

@v

@B
� r(t; x)v + c(t; x) = 0:

But, since the claim at maturity T depends on X(T ) only, the solution of the above
equation satisfying condition (1.6) is independent of B. So @v=@B = 0 and we obtain
Cauchy problem (1.5)-(1.6) where r = r(t; x): The formulas for the required hedging
strategy, (1.7), remain the same.

Remark 2.2. We note that a Cauchy problem is considered in spite of the fact that
the variable x belongs to Rm

+ = fx : x1 > 0; :::; xm > 0g: This is possible because every
solution X(t); X(t0) 2 Rm

+ ; of system (1.1) evolves in Rm
+ during the whole time interval

[t0,T ]: If we consider, for example, a stock model,

(2.7) X i = (X i � �i1)(�
i
2 �X i)(�i(t; X)dt+

mX
j=1

�ij(t; X)dW j(t)); t � t0; i = 1; :::; m;

for suitable coe�cients �i and �ij; with stock prices evolving in an open parallelepiped

� = fx : 0 � �11 < x1 < �12; :::; 0 � �m1 < xm < �m2 g, where �k1 ; �k2 ; k = 1; :::; m;

are constants (it is possible to consider cases when some of �2 are equal to 1), then the
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construction of a hedging strategy leads to a corresponding Cauchy problem again (i.e.

not to a boundary value problem).

We now recall the probabilistic representation for the solution v of the Cauchy problem
(1.5)-(1.6). For generality we take r(t; x) in (1.5) instead of r(t). In fact, the solution to
problem (1.5)-(1.6) has various probabilistic representations:

(2.8) v(t; x) = E[f(Xt;x(T ))Yt;x;1(T ) + Zt;x;1;0(T )]; t � T; x 2 Rm
+ ;

where Xt;x(s); Yt;x;y(s); Zt;x;y;z(s); s � t; is the solution of the following system of
stochastic di�erential equations:

(2.9) dX = (b(s;X)� �(s;X)h(s;X))ds+ �(s;X)dW (s); X(t) = x;

(2.10) dY = �r(s;X)Y ds+ h>(s;X)YdW (s); Y (t) = y;

(2.11) dZ = c(s;X)Y ds; Z(t) = z;

with Y and Z being scalar processes and h(t; x) = (h1(t; x); :::; hm(t; x))>; where hi are
rather arbitrary functions, however, with good analytical properties. The usual probabilis-
tic representation (see, e.g., [3], [4]) follows from (2.8)-(2.11) for h = 0. The representation
for h 6= 0 is, in fact, a consequence of Girsanov's theorem. Other representations are given

in Section 4.

Let us now proceed to derive probabilistic representations for @v=@xi. In what follows
we assume that all the coe�cients in (1.5)-(1.6) and in (2.9)-(2.11) and the solution of
(1.5)-(1.6) are su�ciently smooth and satisfy necessary growth conditions for large jxj, so
that, in particular, we may apply the theory of weak methods for numerical integration
of SDEs.

We introduce the notation

(2.12) uk(t; x) =
@v

@xk
(t; x); k = 1; :::; m:

By di�erentiating (1.5)-(1.6) with respect to xk; it follows that the functions v and uk; k =

1; :::; m; satisfy the Cauchy problem for the following system of m + 1 linear parabolic

equations consisting of (1.5)-(1.6) and

(2.13)
@uk

@t
+

1

2

mX
i;j=1

aij(t; x)
@2uk

@xi@xj
+

mX
i=1

bi(t; x)
@uk

@xi
� r(t; x)uk

+
1

2

mX
i;j=1

@aij

@xk
(t; x)

@uj

@xi
+

mX
i=1

@bi

@xk
(t; x)

@v

@xi
� @r

@xk
(t; x)v +

@c

@xk
(t; x) = 0;

(2.14) uk(T; x) =
@f

@xk
(x); k = 1; :::; m:

The Cauchy problem (1.5)-(1.6), (2.13)-(2.14) belongs to a class of problems, which
solutions have probabilistic representations given in [11] . However, we obtain a repre-

sentation from (2.8)-(2.11) directly by di�erentiating (2.8) with respect to xk: We thus
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get

uk(t; x) =
@v

@xk
(t; x)

= E

"
mX
i=1

@f

@xi
(Xt;x(T )) ÆkX

i(T )Yt;x;1(T ) + f(Xt;x(T )) ÆkY (T ) + ÆkZ(T )

#
;(2.15)

where

(2.16) ÆkX
i(s) := ÆkX

i
t;x(s) :=

@X i
t;x(s)

@xk
; ÆkY (s) := ÆkYt;x;1(s) :=

@Yt;x;1(s)

@xk
;

ÆkZ(s) := ÆkZt;x;1;0(s) :=
@Zt;x;1;0(s)

@xk
; t � s � T:

Let ÆkX = (ÆkX
1; :::; ÆkX

m)>; for �xed k: Then, the vector functions ÆkX(s) and the
scalars ÆkY (s) and ÆkZ(s) satisfy the following system of �rst order variation associated
with (2.9)-(2.11),

(2.17) dÆkX =

mX
l=1

@(b(s;X)� �(s;X)h(s;X))

@xl
ÆkX

lds

+

mX
l=1

@�(s;X)

@xl
� ÆkX ldW (s); ÆkX

l(t) = 0; if l 6= k; and ÆkX
k(t) = 1;

(2.18) dÆkY = �
mX
l=1

@r(s;X)

@xl
ÆkX

l Y ds� r(s;X) ÆkY ds

+

mX
l=1

@h>(s;X)

@xl
� ÆkX lY dW (s) + h>(s;X) � ÆkY dW (s); ÆkY (t) = 0;

(2.19) dÆkZ =

mX
l=1

@c(s;X)

@xl
ÆkX

lY ds+ c(s;X) ÆkY ds; ÆkZ(t) = 0:

We underline here that there is an opportunity for parallelizing: One can consider m
problems (2.15), (2.9)-(2.11), (2.17)-(2.19) for every �xed k = 1; :::; m separately.

Thus, to �nd v(t; x) and @v=@xk(t; x) we need to evaluate the expectations (2.8) and
(2.15). For instance, let us consider (2.8). Usually it is impossible to simulate the ran-

dom variables Xt;x(T ); Yt;x;1(T ); Zt;x;1;0(T ) directly and we are forced to simulate some

approximate random variables X t;x(T ); Y t;x;1(T ); Zt;x;1;0(T ); which may be obtained by
using weak methods for numerical integration of SDEs (see [8], [10]). The error of such
weak approximation is of order O(hp); where p is the order of weak convergence, depending

on the speci�c method, and h is a time discretization step.
For simplicity we here consider equidistant partitions of the time interval [t; T ] : t =

t0 < t1 < ::: < tL = T with step size h = (T � t)=L. Then, for example, the Euler method
with simpli�ed simulation of Wiener processes applied to system (2.9)-(2.11) gives

(2.20) X(t) = x; X(tl+1) = X(tl) + (bl � �lhl)h + �l � �l
p
h;

Y (t) = 1; Y (tl+1) = Y (tl) � rlY (tl)h + h>l � �l Y (tl)
p
h;

Z(t) = 0; Z(tl+1) = Z(tl) + clY (tl)h; l = 0; :::; L� 1;
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where bl; �l; hl; rl; and cl are values of the corresponding functions (scalar, vector or

matrix) at (tl; X(tl)) and �l = (�1l ; :::; �
m
l )> is a vector of two-point random variables �

j
l ;

distributed by the law P (�
j
l = �1) = 1=2 and independent in j = 1; :::; m; l = 0; :::; L�1:

We obtain the usual Euler method if �
j
l are simulated as N(0; 1)-distributed random

variables. In either case the order of weak convergence is equal to 1, i.e., the following

relation

(2.21) jv(t; x)� E[f(X(T ))Y (T ) + Z(T )]j = O(h)

is ful�lled for a su�ciently large class of functions f: Then, using the Monte Carlo ap-
proach, we get

(2.22) E� ' 1

N

NX
n=1

[f(X
(n)

(T ))Y
(n)

(T ) + Z
(n)

(T )] =: bv(t; x);
where � := f(X(T ))Y (T ) + Z(T ) and X

(n)
(tl); Y

(n)
(tl); Z

(n)
(tl); n = 1; :::; N; are

independent weak approximate trajectories of the solution of system (2.9)-(2.11).

The statistical error in (2.22) is often de�ned as 3(D�(T )=N)1=2, where D� is the vari-

ance of �; which is close to D�; � := f(X(T ))Y (T ) + Z(T ): So the approximation bv(t; x)
of v(t; x) involves two errors: one error due to the method of numerical integration and a
statistical error due to the Monte-Carlo method.
Among the methods with higher order weak convergence let us consider the weak second

order Talay-Tubaro extrapolation method [21]. According to the Talay-Tubaro method we

have

jv(t; x)� 2E[f(Xh=2(T ))Y h=2(T ) + Zh=2(T )] + E[f(Xh(T ))Y h(T ) + Zh(T )]j = O(h2);

where an approximation (2.20) with step size h is denoted by Xh; Y h; Zh. An approxi-
mation bv(t; x) for v(t; x) is thus obtained by

(2.23)

bv(t; x) := 2

N

NX
n=1

[f(X
(n)

h=2(T ))Y
(n)

h=2(T ) + Z
(n)

h=2(T )]�
1

N

NX
n=1

[f(X
(n)

h (T ))Y
(n)

h (T ) + Z
(n)

h (T )];

where for n = 1; :::; N; X
(n)

h=2(tl); Y
(n)

h=2(tl); Z
(n)

h=2(tl) and X
(n)

h (tl); Y
(n)

h (tl); Z
(n)

h (tl) are

independent weak approximate trajectories of the solution of system (2.9)-(2.11), with
discretization step h=2 and h; respectively.

Now, approximation of v(t; x) with bv(t; x) from (2.23) involves an error O(h2) +

3(3D�(T )=N)1=2 and so, for reaching the same accuracy, it is possible to take the time
step h of numerical integration considerably larger in comparison with the Euler method.
Of course, the same consideration holds with respect to the evaluation of @v=@xk(t; x)

also.
Concluding, we may say that the error of numerical integration can be reduced by a

proper choice of numerical integration scheme and step size h; whereas the statistical error
can be reduced (only) by a suitable choice of probabilistic representation for �:

We �nally remark that if X(tl) in (2.20) is too close to the boundary of Rm
+ ; it may

happen that some of the components �X i(tl+1); i = 1; :::; m; becomes negative. This

means that, in fact, one should choose h not independently of X in this case and, in
particular, h should be taken smaller according X is closer to the boundary of Rm

+ : Such
di�culties do not arise if the process evolves in the whole space Rm and we recall that

the general theory of numerical integration of SDEs is developed in Rm (for simulation
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of di�usion processes in bounded domains see [12], [13] and references therein). In our

setting, however, we may avoid these di�culties also by using a suitable transformation
of Rm

+ into Rm, for instance, by taking ~xi = lnxi; i = 1; :::; m:

3. Variance reduction by importance sampling

In this paper we consider variance reduction for the Monte Carlo evaluation of a hedging
portfolio as well as for the evaluation of the deltas. In this respect we deal with two

methods of variance reduction in connection with the Monte Carlo approach for the
linear parabolic Cauchy problem (1.5)-(1.6): the method of importance sampling [5], [10],
[15], [16], [22], and the method of control variates [15], [16] (for the initial-boundary value
problem see [10], [17]). In this section we explain the method of importance sampling

and we show that by this method it is possible to reduce the variance of the estimators
corresponding to the probabilistic representations (2.8) and (2.15), simultaneously .
We introduce the variables

(3.1) �(s) := v(s;Xt;x(s))Yt;x;1(s) + Zt;x;1;0(s);

(3.2) �k(s) :=

mX
i=1

@v

@xi
(s;Xt;x(s)) ÆkX

i(s)Yt;x;1(s) + v(s;Xt;x(s)) ÆkY (s) + ÆkZ(s):

Clearly

(3.3) � := �(T ) = f(Xt;x(T ))Yt;x;1(T ) + Zt;x;1;0(T );

(3.4) �k := �k(T ) =

mX
i=1

@f

@xi
(Xt;x(T )) ÆkX

i(T )Yt;x;1(T ) + f(Xt;x(T )) ÆkY (T ) + ÆkZ(T ):

Because D� (D�k) is close to D� (D�k), the error of a Monte Carlo evaluation of v(t; x)
depends on the variance of the random variable �; see (2.8), whereas the Monte Carlo
error of an evaluation of uk(t; x) = @v(t; x)=@xk depends on the variance of �k, see (2.15).
The method of evaluating v(t; x) by importance sampling corresponds to the method

described in [10]: it is clear that E� does not depend on the choice of h: In the meantime,
the variance D� = E�2 � (E�)2 does depend on h. Therefore it is natural to regard
h1; :::; hm as controls and to choose them such that the variance D� is minimal. This
problem is solved in [10] and it turns out that, in principle, the variance can be reduced
to zero.

Theorem 3.1. Let the solution v(t; x) of the problem (1.5)-(1.6) be positive. Let

(3.5) hj = �1

v

mX
i=1

�ij
@v

@xi
:

Suppose that for any (t; x); t0 � t � T; x 2 Rm
+ ; there is a solution of the system

(2.9)-(2.11), with hj as in (3.5), for t � s � T: Then, � in (3.3), computed according to

(2.9)-(2.11) with h as in (3.5), is deterministic, i.e., D� = 0:
Proof. By using Itô's formula and taking into account Lv + c = 0; we derive

d[v(s;Xt;x(s))Yt;x;1(s) + Zt;x;1;0(s)] = (Lv + c)Y ds�
mX
i=1

@v

@xi
(�h)i Y ds

+

mX
i=1

@v

@xi
Y (�dW (s))i + vY h>dW (s) +

mX
i=1

@v

@xi
(�dW (s))i Y h>dW (s)
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= Y (

mX
i=1

@v

@xi
(�dW (s))i + vh>dW (s)) = Y

mX
j=1

(

mX
i=1

�ij
@v

@xi
+ vhj)dW j(s);

whence

(3.6) v(s;Xt;x(s))Yt;x;1(s) + Zt;x;1;0(s) = v(t; x) +

Z s

t

Y

mX
j=1

(

mX
i=1

�ij
@v

@xi
+ vhj)dW j:

Now, with h as in (3.5), equation (3.6) yields the following identity in s; x with probabil-

ity1:

(3.7) �(s) := v(s;Xt;x(s))Yt;x;1(s) + Zt;x;1;0(s) � v(t; x);

i.e., �(s) is deterministic. Moreover, �(s) is independent of t � s � T . In particular, by
(1.6), we get for s = T;

(3.8) �(T ) = � = f(Xt;x(T ))Yt;x;1(T ) + Zt;x;1;0(T ) = v(t; x);

hence the theorem is proved.

>From the proof of the theorem above we obtain the following corollary.

Corollary 3.1. For an arbitrary h (of course, the usual conditions of smoothness and
boundedness are supposed) the variance D�(T ) is equal to

D�(T ) = E

Z T

t

Y 2
t;x;1(s) �

mX
j=1

(

mX
i=1

�ij
@v

@xi
+ vhj)2ds;

where the functions �ij; @v=@x
i; v; hj have s;Xt;x(s) as their arguments.

Remark 3.1. Of course, the hj; j = 1; :::; m; cannot be constructed without knowing
the function v. Nevertheless, the obtained result establishes that, in principle, it is possible
to reduce the variance D� arbitrarily by properly choosing the functions hj. The results
can be used, e.g., in the following situation. Let all the parameters of the considered

problem be close to those one for which the solution is known and equal to v0: By taking
hj as in (3.5) equal to

(3.9) hj = � 1

v0

mX
i=1

�ij
@v0

@xi
;

the varianceD�; although not zero, will be small. As another possibility, it is shown in [20]

that under certain circumstances it is optimal to pre-compute a rough approximation for
the solution of the Cauchy problem by some �nite di�erence method and then to proceed
with variance reduced Monte Carlo simulation, where the controls hj are computed from
the rough approximation.

Remark 3.2. If the condition v > 0 in Theorem 3.1 is not satis�ed, but e.g., if
v > �K; K > 0; then we consider ev = v +K as a solution of the problem

Lev +Kr + c = 0; ev(T; x) = f(x) +K

and consider instead of (2.11),

d eZ = (Kr(s;X) + c(s;X))Y ds; eZ(t) = z:

Next, taking ehj = � 1

v +K

mX
i=1

�ij
@v

@xi
= �1ev

mX
i=1

�ij
@ev
@xi
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in (2.9)-(2.10) leads to e� = (f(Xt;x(T ))+K)Yt;x;1(T )+ eZt;x;1;0(T ); as being a deterministic
variable.

A remarkable fact now is that the variables �k; k = 1; :::; m; for hj as in (3.5) are
deterministic as well.

Theorem 3.2. Under the assumptions of Proposition 3.1 the variables �k = �k(T ); k =

1; :::; m; in (3.4), computed according to (2.9)-(2.11) and (2.17)-(2.19) with h as in (3.5)
are deterministic.

Proof. By di�erentiating (3.7) with respect to xk we get

@v

@xk
(t; x) =

mX
i=1

@v

@xi
(s;Xt;x(s)) ÆkX

i
t;x(s)Yt;x;1(s) + v(s;Xt;x(s)) ÆkYt;x;1(s) + ÆkZt;x;1;0(s):

Thus, we have proved that the variables �k(s) (see (3.2)) are deterministic (moreover
they do not depend on s; t � s � T ). Therefore all �k(T ) are deterministic. Theorem 3.2
is proved.

4. Variance reduction by control variates

We now proceed to the method of control variates. In (2.9)-(2.11), we consider h to be
�xed and introduce the new random variable

(4.1) �F (T ) = �(T ) +

Z T

t

Yt;x;1(s)

mX
j=1

Fj(s;Xt;x(s))dW
j(s);

where Fj(s; x) are functions depending on (s; x) with good analytical properties but fur-

ther arbitrary:
Clearly, the expectation E�F (T ) is equal to E�(T ) and does not depend on the choice

of F . In the meantime, the variance D�F (T ) does depend on F . Also in this situation it
turns out that the variance can be reduced to zero.

Theorem 4.1. Let h in (2.9)-(2.11) be a �xed function. Then for

(4.2) Fj(s; x) = �(
mX
i=1

�ij(s; x)
@v

@xi
(s; x) + v(s; x)hj(s; x)); j = 1; :::; m;

the variable �F (T ) is deterministic, i.e., D�F (T ) = 0:

Proof. The theorem is a consequence of the following equality (see (3.6)),

�F (T ) = f(Xt;x(T ))Yt;x;1(T ) + Zt;x;1;0(T ) +

Z T

t

Yt;x;1(s)

mX
j=1

Fj(s;Xt;x(s))dW
j(s)

= v(t; x) +

Z T

t

Yt;x;1(s)

mX
j=1

(

mX
i=1

�ij
@v

@xi
+ vhj)dW j(s) +

Z T

t

Yt;x;1(s)

mX
j=1

FjdW
j(s);

where the functions �ij; @v=@x
i; v; hj; F j have s;Xt;x(s) as their arguments.

Clearly,

(4.3) D�F (T ) = E

Z T

t

Y 2
t;x;1(s)

mX
j=1

(

mX
i=1

�ij
@v

@xi
+ vhj + Fj)

2ds

which is equal to zero for Fj according to (4.2). Theorem 4.1 is proved.

Of course, a remark similar to Remark 3.1 applies here as well.
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The method of control variates in the case h = 0 was �rst considered by N.J. Newton

[15]. Following [15], let us look for F = (F1; :::; Fm) of the form

(4.4) Fj(s; x) =

mX
i=1

�ij(s; x)

lX
r=1

cr
i
r(s; x);

where r = (1r ; :::; 
m
r ); r = 1; :::; l; are known row vectors and cr are constants. According

to (4.3) we then have

(4.5) D�F (T ) = E

Z T

t

Y 2
t;x;1(s)

mX
j=1

(

mX
i=1

�ij[
@v

@xi
+

lX
r=1

cr
i
r] + vhj)2ds:

However, determination of cr directly by minimization of the right-hand-side of (4.5) is
impossible because the functions v and @v=@xi are unknown. But, since we have

v(s;Xt;x(s)) = E(�(T ; s;Xt;x(s)) j Fs);

@v

@xi
(s;Xt;x(s)) = E(�i(T ; s;Xt;x(s)) j Fs);(4.6)

where

�(T ; s;Xt;x(s)) = f(Xs;Xt;x(s)(T ))Ys;Xt;x(s);1(T ) + Zs;Xt;x(s);1;0(T );

�i(T ; s;Xt;x(s)) =

mX
k=1

@f

@xk
(Xs;Xt;x(s)(T )) ÆiX

k
s;Xt;x(s)

(T )Ys;Xt;x(s);1(T )

+f(Xs;Xt;x(s)(T )) ÆiYs;Xt;x(s);1(T ) + ÆiZs;Xt;x(s);1;0(T );

it is not di�cult to see that the mentioned minimization problem is equivalent to the
following one

(4.7) E

Z T

t

Y 2
t;x;1(s)

mX
j=1

(

mX
i=1

�ij[�i(T ; �) +
lX

r=1

cr
i
r] + �(T ; �)hj)2ds! min

c1;:::;cl
;

where the functions �ij; 
i
r; �(T ; �); �i(T ; �) have s;Xt;x(s) as their arguments. Indeed,

let us �rst take the mathematical expectation inside the integral in (4.7). Next, by setting
the derivatives of (4.7) with respect to cr; r = 1; : : : ; l; equal to zero we get a system of
linear equations in cr; where the coe�cients are expressed as integrals of mathematical
expectations. By pre-conditioning these expectations on Fs and using (4.6), it then follows

that this system of linear equations coincides with the system yielded by (formally) solving
the minimization problem (4.5) directly.
It should be noted further that for simulating �(T ; �) and �i(T ; �) in (4.7) the following

relationships are useful:

Ys;Xt;x(s);1(T ) =
Yt;x;1(T )

Yt;x;1(s)
; Zs;Xt;x(s);1;0(T ) =

1

Yt;x;1(s)
(Zt;x;1;0(T )� Zt;x;1;0(s));

and similar ones for ÆiYs;Xt;x(s);1(T ) and ÆiZs;Xt;x(s);1;0(T ):
The solution of the problem (4.7) thus provides optimal values for c and leads to reduced

variance.

To conclude we connect the method of importance sampling and the method of control
variates by introduction of the system

(4.8) dX = (b(s;X)� �(s;X)h(s;X))ds+ �(s;X)dW (s); X(t) = x;

(4.9) dY = �r(s;X)Y ds+ h>(s;X)Y dW (s); Y (t) = 1;
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(4.10) dZ = c(s;X)Y ds+ F>(s;X)Y dW (s); Z(t) = 0;

and the random variables �(s); �k(s) de�ned according to (3.1), (3.2). Of course, instead
of (2.19) the equation for ÆkZ is now given by

(4.11) dÆkZ =

mX
l=1

@c(s;X)

@xl
ÆkX

l Y ds+ c(s;X) ÆkY ds

+

mX
l=1

@F>(s;X)

@xl
ÆkX

l Y dW (s) + F>(s;X) ÆkY dW (s); ÆkZ(t) = 0:

Note that the variables �(s) and �k(s) depend on h and F and therefore a more correct
notation would be, for example, �h;F (s) instead of �(s): However, our notation does not

lead to any confusion.
The following theorem can be proved analogously to the previous ones.

Theorem 4.2. Let h and F be such that

(4.12)

mX
i=1

�ij
@v

@xi
+ vhj + Fj = 0; j = 1; :::; m:

Then �(T ) from (3.3) computed according to (4.8)-(4.10) and �k(T ) in (3.4) computed

according to (2.17)-(2.18), (4.11) are deterministic.

Example 4.1. Let all the parameters r; �i; �ij; c; r
i be independent of x, i.e., they

are given by deterministic functions of t and let the payo� function f be of the form,

f(X(T )) = f1(X
1(T )) + :::+ fm(X

m(T )):

Then, for h = 0 the system (2.9)-(2.11) becomes,

dX i = X i (r(s)� ri(s))ds+X i

mX
j=1

�ij(s)dW
j(s); X i(t) = xi; i = 1; :::; m;

dY = �r(s)Y ds; Y (t) = 1;

dZ = c(s)Y ds; Z(t) = 0; t � s � T;

and may be solved explicitly:

X i
t;x(T ) = xi ki(t) exp(

Z T

t

mX
j=1

�ij(s)dW
j(s)) = xi ki(t) exp(�i�i(t));

where

ki(t) = exp(

Z T

t

(r(s)� ri(s))ds� 1

2

Z T

t

mX
j=1

�2ij(s)ds);

�i(t) = (

Z T

t

mX
j=1

�2ij(s)ds)
1=2;

and �i is a normal random variable with zero mean and variance 1.

>From (2.8) we obtain

v0(t; x1; :::; xm) =

mX
i=1

E
�
fi(X

i
t;x(T ))Yt;x;1(T ) + Zt;x;1;0(T )

�
=

1p
2�

mX
i=1

Z 1

�1

fi(x
iki(t) exp(��i(t))) exp(��2=2)d� exp(�

Z T

t

r(s)ds)



13

+

Z T

t

c(s) exp(�
Z T

s

r(s0)ds0)ds;

whence the derivatives @v0=@xi; i = 1; :::; m; can be found explicitly as well.
So, in the case where the parameters of a certain problem do not di�er too much from the

ones considered above, we can use the recommendation of Remark 3.1 and, for example,
take hj according to (3.9) with Fj = 0 or hj = 0 with Fj = �Pm

i=1 �ij(s; x)@v
0(s; x)=@xi.

5. Gamma, vega, theta

Clearly, di�erentiation with respect to xj in (2.15) gives the probabilistic representation
for the gammas @2v(t; x)=@xk@xj ; i; k = 1; :::; m: This representation involves, along with
the �rst variations ÆkX

i; ÆkY; ÆkZ; the second variations

ÆkjX
i(s) :=

@2X i
t;x(s)

@xk@xj
; ÆkjY (s) :=

@2Yt;x;1(s)

@xk@xj
; ÆkjZ(s) :=

@2Zt;x;1;0(s)

@xk@xj
; t � s � T:

Let us write down the system for these variables where, for notational simplicity, we

restrict ourselves to the case m = 1: In this case X; b; h; � and W in (2.8)-(2.11) are
scalars. For the delta we have

(5.1) u(t; x) =
@v

@x
(t; x)

= E

�
df

dx
(Xt;x(T )) ÆX(T )Yt;x;1(T ) + f(Xt;x(T )) ÆY (T ) + ÆZ(T )

�
;

where (together with (2.9)-(2.11))

(5.2) dÆX =
@(b(s;X)� �(s;X)h(s;X))

@x
ÆXds+

@�(s;X)

@x
ÆXdW (s); ÆX(t) = 1;

(5.3) dÆY = �@r(s;X)

@x
ÆX Y ds� r(s;X) ÆY ds

+
@h(s;X)

@x
ÆX Y dW (s) + h(s;X) ÆY dW (s); ÆY (t) = 0;

(5.4) dÆZ =
@c(s;X)

@x
ÆX Y ds+ c(s;X) ÆY ds; ÆZ(t) = 0:

With the notation,

X(s) :=
@2Xt;x(s)

@x2
; Y (s) :=

@2Yt;x;1(s)

@x2
; Z(s) :=

@2Zt;x;1;0(s)

@x2
;

we thus obtain for the gamma

(5.5) u(t; x) :=
@2v

@x2
(t; x) = E

�
d2f

dx2
(Xt;x(T )) [ÆX(T )]2 Yt;x;1(T )

�
+E

�
df

dx
(Xt;x(T )) [X(T )Yt;x;1(T ) + 2ÆX(T ) ÆY (T )] + f(Xt;x(T )) Y (T ) + Z(T )

�
;

where

(5.6) dX =
@(b(s;X)� �(s;X)h(s;X))

@x
Xds+

@�(s;X)

@x
XdW (s)

+
@2(b(s;X)� �(s;X)h(s;X))

@x2
[ÆX]2ds+

@2�(s;X)

@x2
[ÆX]2dW (s); X(t) = 0;
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(5.7) dY = �@r(s;X)

@x
X Y ds� r(s;X) Y ds+

@h(s;X)

@x
X Y dW (s)

+h(s;X) Y dW (s)� @2r(s;X)

@x2
[ÆX]2 Y ds� 2

@r(s;X)

@x
ÆX ÆY ds

+
@2h(s;X)

@x2
[ÆX]2 Y dW (s) + 2

@h(s;X)

@x
ÆX ÆY dW (s); Y (t) = 0;

(5.8) dZ =
@c(s;X)

@x
X Y ds+ c(s;X) Y ds

+
@2c(s;X)

@x2
[ÆX]2 Y ds+ 2

@c(s;X)

@x
ÆX ÆY ds; ÆZ(t) = 0:

Thus, to calculate the gamma one needs to evaluate the expectation (5.5) by virtue of
the system consisting of equations (2.9)-(2.11), (5.2)-(5.4)) and (5.6)-(5.8).
Also, one can prove that for hj as in (3.5) the corresponding gamma estimators are

deterministic again.

If the problem under consideration depends on some parameter �, hence v = v(t; x;�);
it is possible to �nd @v(t; x;�)=@�; called vega, in the same way. Let us �nd, for example,

vega in the case of one-dimensional model, i.e. (1.1) with m = 1; where instead of
�(t; x) = x�(t; x) we now have �(t; x;�) = �x�(t; x): We then have

(5.9) v(t; x;�) = E[f(Xt;x(T ;�))Yt;x;1(T ;�) + Zt;x;1;0(T ;�)];

where

(5.10) dX = (b(s;X)� �(s;X;�)h(s;X;�))ds+ �(s;X;�)dW (s); X(t) = x;

(5.11) dY = �r(s;X)Y ds+ h(s;X;�)Y dW (s); Y (t) = y;

(5.12) dZ = c(s;X)Y ds; Z(t) = z:

Therefore,

(5.13)
@v

@�
(t; x;�) = E

�
df

dx
(Xt;x(T ;�)) Æ�X(T ;�)Yt;x;1(T ;�)

�
+E[f(Xt;x(T ;�)) Æ�Y (T ;�) + Æ�Z(T ;�)];

where

Æ�X(s;�) =
@Xt;x(s;�)

@�
; Æ�Y (s;�) =

@Yt;x;1(s;�)

@�
; Æ�Z(s;�) =

@Zt;x;1;0(s;�)

@�

satisfy the following system

(5.14) dÆ�X =
@(b � �h)

@x
Æ�Xds+

@�

@x
Æ�XdW (s)� @(�h)

@�
ds+

@�

@�
dW (s); Æ�X(t) = 0;

(5.15) dÆ�Y = �@r
@x

Æ�X Y ds� r Æ�Y ds

+
@h

@x
Æ�X Y dW (s) + hÆ�Y dW (s) +

@h

@�
Y dW (s); Æ�Y (t) = 0;

(5.16) dÆ�Z =
@c

@x
Æ�X Y ds+ cÆ�Y ds; Æ�Z(t) = 0:

Let us now point out how to �nd theta: um+1(t; x) := @v(t; x)=@t. The above way of dif-

ferentiation under the expectation sign is now impossible because of the non-di�erentiability
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of Xt;x(s) with respect to t (e.g., the problem dX = dW (s); X(t) = x; s � t; has the

solution Xt;x(s) = x +W (s)�W (t) which is evidently nondi�erentiable with respect to
t). Of course, one can �nd theta by the initial equation (1.5) after evaluating the deltas
and the gammas. However, if we do not need the gammas actually, this way is rather
irrational. It is better to consider the system of m + 2 parabolic equations consisting of

(1.5)-(1.6), (2.13)-(2.14) and

(5.17)
@um+1

@t
+

1

2

mX
i;j=1

aij(t; x)
@2um+1

@xi@xj
+

mX
i=1

bi(t; x)
@um+1

@xi
� r(t; x) um+1

+
1

2

mX
i;j=1

@aij

@t
(t; x)

@uj

@xi
+

mX
i=1

@bi

@t
(t; x)

@v

@xi
� @r

@t
(t; x) v +

@c

@t
(t; x) = 0;

(5.18) um+1(T; x) = �1

2

mX
i;j=1

aij(T; x)
@2f

@xi@xj
(x)�

mX
i=1

bi(T; x)
@f

@xi
(x)

+r(T; x) f(x)� c(T; x) := g(x);

and to use then consequently the probabilistic representations given in [11].
Let us now consider a model in which the coe�cients �ij (and so aij) do not depend

on t. In such case the parabolic system consists of two equations for v and um+1 only.
Namely, (1.5)-(1.6) and the following equation

(5.19)
@um+1

@t
+

1

2

mX
i;j=1

aij(t; x)
@2um+1

@xi@xj
+

mX
i=1

bi(t; x)
@um+1

@xi
� r(t; x) um+1

+

mX
i=1

@bi

@t
(t; x)

@v

@xi
� @r

@t
(t; x) v +

@c

@t
(t; x) = 0;

(5.20) um+1(T; x) = g(x);

with g(x) as in (5.18) and aij(T; x) = aij(x):

The probabilistic representation for the solution of Cauchy problem (1.5)-(1.6), (5.19)-
(5.20) has the following simple form (see [11]). Introduce the system of stochastic di�er-
ential equations

(5.21) dX = (b(s;X)� �(s;X)h(s;X))ds+ �(s;X)dW (s); X(t) = x;

(5.22) dY 1 = �r(s;X)Y 1ds� @r(s;X)

@s
Y 2ds+ h>(s;X)Y 1dW (s); Y 1(t) = y1;

(5.23) dY 2 = �r(s;X)Y 2ds+ h>(s;X)Y 2dW (s)

+(��1(s;X)
@b(s;X)

@s
)>Y 2dW (s); Y 2(t) = y2;

(5.24) dZ = c(s;X)Y 1ds+
@c(s;X)

@s
Y 2ds; Z(t) = 0;

and the random variable

(5.25) �t;x;y1;y2 = f(Xt;x(T ))Y
1
t;x;y1;y2(T ) + g(Xt;x(T ))Y

2
t;x;y1;y2(T ) + Zt;x;y1;y2;0(T );

where Y 1 and Y 2 are scalars. Then, the required solution v(t; x); um+1(t; x) can be found
from the relations

(5.26) v(t; x) = E�t;x;1;0 ; um+1(t; x) = E�t;x;0;1 :
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This fact can be veri�ed in the following way. By Itô's formula we derive

(5.27) v(s;Xt;x(s))Y
1
t;x;y1;y2(s) + um+1(s;Xt;x(s))Y

2
t;x;y1;y2(s) + Zt;x;y1;y2;0(s)

�v(t; x) y1 � um+1(t; x) y
2

=

Z s

t

�
F>
1 (#;Xt;x(#) � Y 1

t;x;y1;y2(#) + F>
2 (#;Xt;x(#) � Y 2

t;x;y1;y2(#)
�
dW (#);

where F1 and F2 are some known vector-functions and then relations (5.26) follow imme-
diately.

6. Barrier options

Let us consider a model consisting of a cash bond B(s) and a stock X(s) (we take only

one stock for notational simplicity), where the price of the stock satis�es the equation

(6.1) dX = �(s;X)ds+ �(s;X)dW (s):

Let 0 � �1 < �2; �1 < x < �2; � = �t;x = T ^ inffs : Xt;x(s) =2 [�1; �2]; t � s � Tg
(we put inf to be equal 1 for an empty set). We now look at an example of a barrier

option. The option is speci�ed by a payo� equal to zero if � < T and equal to f(Xt;x(T ))
if � = T , where f(x) is a function de�ned on [�1; �2]. We should note here that a more
rigorous notation for (6.1) would be

dX = 1f�>sg�(s;X)ds+ 1f�>sg�(s;X)dW (s);

where X describes the value of the stock up to time �; but we use (6.1) as long as it doesn't
lead to confusion. In addition, we assume that f(x) is equal to zero in some neighborhood
of �1 and �2 respectively. Then, it is not di�cult to show that the portfolio value V (t) of
the hedging strategy is equal to v(t; X(t)) where v(t; x) satis�es the following boundary

value problem

(6.2)
@v

@t
+

1

2
�2(t; x)

@2v

@x2
+ r(t)x

@v

@x
� r(t)v = 0; t0 � t < T; �1 < x < �2;

(6.3) v(T; x) = f(x); v(t; �1) = v(t; �2) = 0;

and as before we have

V (t) = v(t; X(t)) = 'tB(t) +  tX(t);

with

't =
1

B(t)
(v(t; X(t))� @v

@x
(t; X(t))X(t));  t =

@v

@x
(t; X(t)):

Note that in contrast to (1.1), in this model we do not use the multiplierX in the stock

equation . This can be explained in the following way. The multipliers X i in (1.1) ensure
the positivity property of prices X i during in�nite time. Analogously, the multipliers
(X i��i1)(�i2�X i) in (2.7) ensure evolving the prices in the open parallelepiped �. In the
here considered problem the stock price process is only relevant in the interval [�1; �2],

due to the de�nition of the barrier option and so we don't need any special multipliers.
The solution of the boundary value problem (6.2)-(6.3) for the barrier option has the

following probabilistic representation,

(6.4) v(t; x) = E1f�t;x=Tg[f(Xt;x(T ))Yt;x;1(T )];

where

(6.5) dX = (r(t)X � �(s;X)h(s;X))ds+ �(s;X)dW (s); X(t) = x;

dY = �r(t)Y ds+ h(s;X)Y dW (s); Y (t) = 1;
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and

(6.6)
@v

@x
(t; x) = E1f�t;x=Tg

�
@f

@x
(Xt;x(T )) � ÆX(T ) � Yt;x;1(T ) + f(Xt;x(T )) � ÆY (T )

�
;

where the equations for ÆX(T ) and ÆY (T ) are analogous to (2.17), (2.18).

The method of importance sampling can be developed for this model without any
serious di�culties (see [10] in connection with variance reduction of v(t; x) due to (6.4)).
After introducing a system similar to (4.8)-(4.10) a more general representations for v and
@v=@x can be given and also the results of Section 4 (in particular the method of control

variates) can be carried over to the barrier option considered above.

Remark 6.1. The option under consideration is known as nulli�ed barrier option [9].
For more general barrier options the boundary value conditions are nonzero and instead
of (6.3) we have

(6.7) v(T; x) = f(x); v(t; �1) = v1(t); v(t; �2) = v2(t):

Let � denote the set where the condition (6.7) is speci�ed. Then (6.7) can be written

as

(6.8) v j�= g;

where g(T; x) = f(x); g(t; �1) = v1(t); g(t; �2) = v2(t):
Instead of (6.4) we may now write

(6.9) v(t; x) = E[g(�t;x; Xt;x(�t;x)) � Yt;x;1(�t;x)]:
It should be noted that in this case there is no expression for @v(t; x)=@x such as (6.6)

because the dependence on x is now more complicated due to the presence of �t;x and
the problem of e�ective numerical construction of a hedging strategy requires special
examination.

7. Hedging of European LIBOR derivative claims

In this section we show the application of the presented probabilistic methods to the
LIBOR1 interest rate model in connection with some speci�c European LIBOR derivative
claims. The LIBOR (market) model by Brace, Gatarek, Musiela [1] and Jamshidian

[6] is based on an arbitrage free system of zero coupon bonds and in the frame work of
Jamshidian it may be represented as below (we now use the notation from [6] which di�ers
a little from the one used in the previous sections).
For a given tenor structure 0 < T1 < T2 < : : : < Tm we consider the forward LIBOR

process Li(t); 0 � t � Ti; 1 � i � m � 1; as the e�ective forward rate over the period
[Ti; Ti+1]; which is de�ned in terms of zero coupon bonds Bi; Bi+1; maturing at Ti; Ti+1
respectively, by

Li(t) := Æ�1i (
Bi(t)

Bi+1(t)
� 1);

with Æi := Ti+1�Ti: Then, in the so called terminal bond measure Pm; which is a measure
such that Bi=Bm are Pm (local) martingales, the dynamics of the LIBOR process is given
by

(7.1) dLi = �
m�1X
j=i+1

ÆjLiLj 
>
i j

(1 + ÆjLj)
dt+ Li 

>
i (t; L)dW

(m);

1LIBOR stands for London Inter Bank O�er Rate
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where W (m) is a d-dimensional Pm-Brownian motion, d � m� 1; and for our purposes we

assume that the Rd-valued functions i; de�ned in [t0; Ti]� Rm�1
+ ; are smooth, bounded,

and such that the matrix � := (>i j) has constant rank d:

We now illustrate how to price and hedge a European LIBOR derivative claim at

maturity time T1 with a typical degree 1 homogeneous payo� structure of the form
V (T1; B) := Bm(T1)f(L(T1)) for some f(�) : Rm�1 ! R: By application of Theorems
4.7 and 5.2 in [6] in this setting it follows that the claim value at time t � T1 has the form

V (t; B(t)) = Bm(t)v(t; L(t));

where v(�; �) : R�Rm�1 ! R satis�es the Cauchy problem

(7.2)
@v

@t
�

m�1X
k=1

m�1X
p=k+1

@v

@yk

Æpypyk

1 + Æpyp
>k p +

1

2

m�1X
k;l=1

@2v

@yk@yl
ykyl 

>
k l = 0;

with boundary condition

v(T1; y) = f(y):

For convenience we introduce,

�k(t; y) = �
m�1X
p=k+1

Æpypyk

1 + Æpyp
>k p;

�kl(t; y) = ykyl 
>
k l:

and then the Cauchy problem for v reads;

(7.3)
@v

@t
+

m�1X
k=1

�k(t; y)
@v

@yk
+

1

2

m�1X
k;l=1

�kl(t; y)
@2v

@yk@yl
= 0; v(T; y) = f(y):

Following Jamshidian, [6], Th. 4.7, the European claim may be hedged by a self-�nancing

portfolio in zero coupon bonds ( ;B);

(7.4) V (t; B(t)) :=

mX
k=1

 k(t; B(t))Bk(t) = V (0; B(0)) +

mX
k=1

Z t

0

 k(s; B(s))dBk(s);

where

 k(t; x) :=
@V

@xk
:

Since we may write

V (t; x) = V (t; x1; :::; xm) = xmv(t; Æ
�1
1 (

x1

x2
� 1); :::; Æ�1m�1(

xm�1

xm
� 1))

= xmv(t; y1; ::; ym�1) = xmv(t; y);

where (yk corresponds to Lk)

yk := Æ�1k (
xk

xk+1
� 1); k = 1; :::; m� 1;

V is homogeneous of degree 1 in x and so the hedge quantities  k are homogeneous of
degree 0 and may be seen as functions of t and y:We will thus derive a representation for
the hedge quantities  i in terms of t and y: For i < m we have

(7.5)  k(t; x) =
@V

@xi
= xm

m�1X
k=1

@v

@yk

@yk

@xi
= �xm

@v

@yi�1
Æ�1i�1

xi�1

x2i
+ xm

@v

@yi
Æ�1i

1

xi+1
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= � @v

@yi�1
Æ�1i�1 � (1 + Æi�1yi�1)

m�1Y
k=i

1

1 + Ækyk
+
@v

@yi
Æ�1i �

m�1Y
k=i+1

1

1 + Ækyk
=: 'i(t; y)

and

(7.6)

 m(t; x) =
@V

@xm
= v(t; y)� 1

xm

m�1X
i=1

xi
@V

@xi
= v(t; y)�

m�1X
i=1

m�1Y
k=i

(1+ Ækyk)'i(t; y) =: 'm(t; y):

Therefore the hedging strategy is constructed by

(7.7) V (t) :=

mX
i=1

'i(t; L(t))Bi(t):

According to (7.5) and (7.6), for calculating 'i(t; L(t)); i = 1; :::; m; we have to �nd v

and @v=@yi; i = 1; :::; m�1: Clearly, in the manner which was outlined in the previous sec-
tions, v can be found by Monte Carlo simulation of a suitable probabilistic representation
for Cauchy problem (7.3). For its derivatives we set

ui :=
@v

@yi
;

and di�erentiate (7.3) with respect to yi to yield,

(7.8)
@ui

@t
+

m�1X
k=1

@�k

@yi
uk +

m�1X
k=1

�k(t; y)
@ui

@yk
+

1

2

m�1X
k;l=1

@�kl

@yi

@uk

@yl
+

1

2

m�1X
k;l=1

�kl(t; y)
@2ui

@ykyl
= 0:

So, along with Cauchy problem (7.3) for v; we have the Cauchy problem for ui : (7.8)
with boundary condition

(7.9) ui(T; y) =
@f

@yi
;

which can be solved also by the previously presented probabilistic methods.
Remark 7.1. It should be noted that in the case of a low factor LIBOR model

(d << m) the di�usion matrices in the Cauchy problems (7.3) and (7.8)-(7.9) are highly

degenerate, however, the di�erent probabilistic representations in Sections 2-4 still go
through. In fact, in Section 2 nondegeneracy was merely assumed to guarantee that the
multi-asset system (1.1) is arbitrage free.
The developed general probabilistic method for the price and hedge of a European

claim can be applied to various �Over The Counter� European LIBOR derivatives. As
an illustration we consider two so-called ��xed income� instruments: the �swaption� and
the �callable� reverse �oater. Although especially the swaption is a very liquidly traded
instrument and therefore will be hedged hardly ever in practice, these examples serve

nevertheless as a clear illustration of the methods presented. Besides, in a LIBOR market
model, for a fairly large family of LIBOR derivatives one can derive analytical approxi-
mation formulas, see e.g. [19], which, in principle, can be used for variance reduction.
Example 7.1. European swaption. A swap contract with maturity T1 and strike � on a

loan of $1 over the period [T1; Tm] obliges to pay a �xed coupon � and receive spot LIBOR

at the settlement dates T2; :::; Tm. From a standard portfolio argument it is obvious that
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the present value of this contract is equal to

Swap(t) = B1(t)� Bm(t)� �

m�1X
j=1

ÆjBj+1(t); t0 � t � T1:

The swap rate S(t) is now de�ned as that �xed coupon which sets this contract value
to zero:

S(t) :=
B1(t)� Bm(t)Pm�1
j=1 ÆjBj+1(t)

:

A swaption contract with maturity T1, strike � and principal $1 gives the right to
contract at T1 to pay a �xed coupon � and receive spot LIBOR at the settlement dates
T2; :::; Tm. Equivalently, one can contract for receiving the T1-swaprate and one can show
that the payo� of the swaption is equivalent to a T1-cash�ow of

(7.10) Swpn(T1) =

m�1X
j=1

1ABj+1(T1)(Lj(T1)� �)Æj;

where A denotes the FT1-measurable event fS(T1) > �g and the swaprate S(T1) is given

by (see [19])

S(T1) :=
B1(T1)�Bm(T1)Pm�1

j=1 ÆjBj+1(T1)
=

�1 +Qm�1
i=1 (1 + ÆiLi(T1))Pm�1

j=1 Æj
Qm�1

i=j+1(1 + ÆiLi(T1))
:

>From (7.10) we see that the swaption cash�ow is homogeneous of degree one. There-
fore we may compute the swaption price and the corresponding hedge by Monte Carlo
simulation of the probabilistic representations for (7.3), (7.8)-(7.9), with f given by

(7.11) f(y) :=

m�1X
j=1

1A(y)(yj � �)Æj

m�1Y
k=j+1

(1 + Ækyk);

where

A =

(
y :

�1 +Qm�1
k=1 (1 + Ækyk)Pm�1

k=1 Æk
Qm�1

i=k+1(1 + Æiyi)
> �

)
;

and obtain variance reduction, for instance, by the �industrial standard� Black market

formula for swaptions [6, 19].
Example 7.2. The callable reverse �oater. Let K > 0: A reverse �oater (RF) contracts

for receiving Li(Ti) while paying max(K�Li(Ti); 0) at time Ti+1 for i = 1; : : : ; m�1 with
respect to a unit principal. A callable reverse �oater (CRF) is an option to enter into a

reverse �oater at T1: In [19] it is shown that in a LIBOR market model the reverse �oater
can be evaluated analytically and that the contract is equivalent with a T1-cash�ow of

(7.12) RF (T1) = B1(T1)� Bm(T1)�
m�1X
i=1

Bi+1(T1)Fi(T1; K);

where Fi(T1; K) is known explicitly as a Black-type formula, only involving T1; K; and
the deterministic i; i = 1; :::; m� 1; [19]. So the payo� of the CRF, being

CRF (T1) = max(RF (T1); 0);

is clearly homogeneous of degree one and the reverse �oater price and hedge may be
computed by Monte Carlo simulation of the probabilistic representations for the system
(7.3), (7.8)-(7.9) and f given by an expression derived from (7.12). Moreover, in [19] a

one factor approximation formula is derived which could be used for variance reduction.
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Remark 7.2. It should be noted that in practice LIBOR derivatives may not be

hedged by zero coupon bonds directly as they are usually not always available in the
market. Instead, zero coupon bonds may be constructed, for instance, by simple linear
combinations of swap contracts and certain particular Government bonds and so the
hedge positions in the �virtual� zero bonds need to be translated to these assembling

instruments.

8. Concluding remarks

Although the parabolic Cauchy and boundary value problems associated with pricing

and hedging of European multi-asset claims are practically impossible to solve when the
number of assets exceeds three, the probabilistic methods presented in this article are still
feasible and straightforward to implement even when the asset dimension is relatively
high. The generalization of these methods to high dimensional American options, for
instance, in the spirit of the work of Broadie and Glasserman [2] is to our opinion an

interesting and challenging problem for the future.
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