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Abstract

We study several lognormal approximations for LIBOR market models, where

special attention is paid to their simulation by direct methods and lognormal ran-

dom �elds. In contrast to conventional numerical solution of SDE's this approach

simulates the solution directly at a desired point in time and therefore may be

more e�cient. As such the proposed approximations provide valuable alternatives

to the Euler method, in particular for long dated instruments. We carry out a

path-wise comparison of the di�erent lognormal approximations with the 'exact'

SDE solution obtained by the Euler scheme using su�ciently small time steps. Also

we test approximations obtained via numerical solution of the SDE by the Euler

method, using larger time steps. It turns out that for typical volatilities observed

in practice, improved versions of the lognormal approximation proposed by Brace,

Gatarek and Musiela, [2], appear to have excellent path-wise accuracy. We found

out that this accuracy can also be achieved by Euler stepping the SDE using larger

time steps, however, from a comparative cost analysis it follows that, particularly for

long maturity options, the latter method is more time consuming than the lognormal

approximation. We conclude with applications to some example LIBOR derivatives.

1 Introduction

By far the most important class of traded interest rate derivatives is constituted by derivatives

which are speci�ed in terms of forward LIBOR rates. The forward LIBOR1 rate L is de�ned as

the annualized e�ective interest rate over a forward period [T1; T2] and can be expressed in terms

of two zero-coupon bonds B1 and B2 with face value $1; maturing at T1 and T2; respectively,

L(t;T1; T2) :=

B1(t)

B2(t)
� 1

T2 � T1
; (1)

where as usual T2 is the settlement date for the accrual LIBOR period. In several papers such as

Brace, Gatarek and Musiela [2], Jamshidian [4], Musiela and Rutkowski, [7] arbitrage free models

for the LIBOR rate process are constructed in order to price LIBOR derivatives such as caps,

swaptions and more complicated types, so called exotics, in a direct way. For instance, in [2] the

dynamics of the continuous family of processes fL(t; T; T + Æ) j T � 0; 0 � t � Tg is studied for

a �xed Æ > 0; whereas Jamshidian [4] considered the processes fLi(t) := L(t; Ti; Ti+1) j t � Ti;

i = 1; : : : ; n � 1g for a discrete set of tenors fT1; : : : ; Tng: In both approaches special attention

is paid to so called LIBOR market models which are models where for every settlement date the

LIBOR process has deterministic volatility. Also in Schoenmakers and Co�ey, [10], Sidenius, [12],

applications of LIBOR market models are studied extensively. In a market model, each LIBOR

is a log-normal martingale under the numeraire measure given by the bond which terminates at

the LIBOR's settlement date.

In this paper we concentrate on a LIBOR market model for a discrete set of tenors given by a

stochastic di�erential equation (SDE) in the terminal bond measure as developed in Jamshidian

[4], equipped with a special correlation structure (2) presented below. For this model we have

constructed lognormal approximations, e�cient simulation methods for these approximations

and outlined the application of the di�erent simulation methods in various valuation problems in

practice. The lognormal approximations, derived in section (2), are subjected in section (2.2) to

mutual path-wise comparison and path-wise comparison with approximations obtained by Euler

stepping the SDE. A ranking between the di�erent approximations is thus obtained.

1LIBOR stands for London Inter Bank O�er Rate.
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The main advantage of log-normal approximations is that their distributions can be simu-

lated very fast, and, since the valuation of a LIBOR derivative generally comes down to the

computation of the expected value of a function of LIBORs, an important family of LIBOR

instruments, consisting of long dated products and in particular European style exotics, can

be valuated faster by using lognormal approximations. As an example, the lognormal approxi-

mation of Brace, Gatarek and Musiela, [2], can be simulated e�ectively by a Gaussian random

�eld of log-LIBORs. The e�ciency of the proposed lognormal approximations with respect to

Euler stepping SDE is analysed in section (4) and the results have led to an �optimal� simula-

tion program presented in section (4.1). In section (5) we consider the valuation of swaptions

and trigger swaps and compare the results for di�erent approximations. Also we discuss brie�y

the callable reverse �oater, an exotic instrument for which the proposed simulation method is

extremely e�cient.

For the simulation analysis in section (2) and the valuation examples in (5) we used a LIBOR

market model with a full rank instantaneous correlation structure of the form

�ij =
min(bi; bj)

max(bi; bj)
: (2)

In (2) the sequence (bi) is required to be positive, strictly increasing, and such that the sequence

(bi=bi+1) is strictly increasing also. Further, it is clear that we may take b1 = 1 without restriction.
As such, the correlation structure (2) constitutes a full rank positive de�nite matrix, see Curnow,

Dunnett, [3] and is proposed for the LIBOR model earlier by Schoenmakers and Co�ey [10,

11]. The advantage of the structure (2) is, on one hand, that the number of parameters to be

determined in the market model is, in a sense, the same as in the case of a two factor model and,

on the other hand, as turned out in practice, that calibration of a market model based on (2) to

the cap/swaption market is very stable and implies a system of LIBOR correlations which is well

in accordance with the behaviour of statistically estimated correlations from historical data. In

particular, the increasingness of bi=bi+1 implies that instantaneous correlations �(dLi; dLi+p) are
increasing in i for �xed p; which is very natural indeed. See, e.g. the historical correlation table

0 in [2] and Schoenmakers and Co�ey [10, 11], for further discussion of this issue. Moreover, it

appeared in many cases that, for a sequence (bi) calibrated to the cap/swap market, by linear

regression on the pairs (ln ln bi; ln(i� 1)); i > 1; the structure (2) is very well �tted by a simple

two parametric function, for instance

bi = exp[�(i� 1)�]; � > 0; 0 < � < 1: (3)

In fact, there are many more suitable parsimonious parametrizations possible for a correlation

structure of the form (2) and in [11] such parametrizations are derived in a systematic way.

Another appealing feature of a simple multi-factor correlation structure such as (2) combined

with (3) is that, once (2) is calibrated, one can choose a speci�c low number of factors, e.g. two,

three or four and then consider only the �rst two, three or four principal components of (2),

respectively. One thus yields a low factor model that is calibrated in a stable way. If necessary,

one can �ne tune this low factor model again by, for instance, re-calibration via a deterministic

volatility norm function which is speci�ed by a properly chosen functional speci�cation. See

[11] and the references therein for more details. In this paper we implemented (3) as example

correlation structure.
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2 Di�erent log-normal approximations

For a given tenor structure 0 < T1 < T2 < : : : < Tn we consider a Jamshidian LIBOR market

model [4] for the forward LIBOR processes Li in the terminal bond numeraire IPn;

dLi = �
n�1X
j=i+1

ÆjLiLj i � j
1 + ÆjLj

dt+ Li i � dW (n); (4)

where, for i = 1; : : : ; n � 1; the Li are de�ned in the intervals [t0; Ti]; Æi = Ti+1 � Ti and

i = (i;1; : : : ; i;d) are given deterministic functions, called factor loadings, de�ned in [t0; Ti];
respectively. In (4), (W (n)(t) j t0 � t � Tn�1) is a standard d-dimensional Wiener process under

IPn, where d � n� 1: In case of a full rank correlation structure such as (2), however, we need

d = n� 1 Wiener processes. It is convenient to deal with the following integral form of (4):

ln
Li(t)

Li(t0)
= �

tZ
t0

n�1X
j=i+1

ÆjLj jijjj j�ij
1 + ÆjLj

ds�
1

2

tZ
t0

jij2ds+

tZ
t0

i � dW (n); (5)

where �ij = i � j =jijjj j. In practice, we may de�ne the vectors i=jij through the matrix

(�ij) by applying a Cholesky decomposition.

Note that only the �rst term in the right hand side of (5) is generally non-Gaussian. Let

us consider the contribution of the non-Gaussian term where we assume for simplicity that the

functions i are constants. We introduce the notations: �i =
n�1P
j=i+1

j�ijj, � = max
i

�i; Æ = max
i

Æi,

and  = max
i
jij. Let us denote by ~L the maximum value of the Li, i.e., ~L = max

i
sup

t0�t�Ti

Li(t).

Then, we may write (5) as

ln
Li(t)

Li(t0)
= "i �

1

2
jij2(t� t0) + jij

p
t� t0 Zi(t);

where Zi(t) is a standard normally distributed random variable and "i can be estimated by j"ij
� (t � t0)Æ ~L

2�i: So, by neglecting "i we cause in Li only a small relative error of order of "i
when

j"ij � (t� t0)Æ ~L
2�i � (t� t0)Æ ~L

2� << 1: (6)

Note that for typical values, e.g., Æ = 0:25,  = 0:15; ~L = 0:07, t � t0 = 10; this relative error
is about 0:4�%: However, dependent on � and the length of the tenor structure this error can

become rather large in practice.

The approximation by neglecting the non-Gaussian terms "i in (5) will be called (0)�approximation

to (4). With this approximation, forward LIBOR rates satisfy

dL
(0)
i = L

(0)
i i � dW (n) ; (7)

and are given by the explicit solution

L
(0)
i (t) = Li(t0) exp

8<
:�1

2

tZ
t0

2i (s)ds+

tZ
t0

i(s) � dW (n)(s)

9=
; : (8)

Below we show for illustration (see Figs. 1,2) some typical samples of Li(t) and L
(0)
i (t);

where we chose n = 31 and relatively high volatility norms, j1j = : : : = jn�1j = 0:4; in order

to amplify e�ects. Further we take a correlation matrix �ij given by (2), where

bi = exp[�(i� 1)�]: (9)
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So the correlations are de�ned via two parameters, � and �; see also [10] and for our simulations,

presented in the �gures below, we took � = 0:8; � = 0:1 and � = 0:8; � = 0:3; respectively.
Further we chose t0 = 0 and a uniform tenor structure Ti = iÆ with Æ = 0:25, i = 1; : : : ; 31. The
initial L values were taken to be Li(0) = 0:061. The 'true' process Li(t) is simulated by an Euler

scheme with time discretization step Æ=10:
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Fig.1 A sample of L10(t) and L
(0)
10 (t), for � = 0:8 and � = 0:1:
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Fig.2 A sample of L10(t) and L
(0)
10 (t), for � = 0:8 and � = 0:3:

From the trajectories presented in Figs.1-2 it is seen that on the initial time interval, the

function L
(0)
10 approximates the function L10 very well. For increasing time, however, the dis-

crepancy increases. Also for increasing � in (6), respectively decreasing � in (9), it is clear from

(6) that the discrepancy increases. Both e�ects are illustrated by Figs.1-2 and their comparison.

So, from the pictures in Figs.1-2 we see that the (0)�approximation performs well for small

times, whereas from (6) we see that for large i the (0)-approximation produces good results
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also because �i decreases with i (e.g., �n�1 vanishes). More details about the (0) and other

approximations are presented in Tables 1-5.

In Fig.3 we show a sample for the bond price B31(Ti) and its (0)-approximation B
(0)
31 (Ti);

i = 0; : : : ; 31 for the same model parameters as used for Fig.1. The bond prices are computed

from the LIBOR process, via the relationship

B31(Ti) =

30Y
j=i

(1 + ÆLj(Ti))
�1 (10)

and a similar one for the (0)�approximations, where for the 'true' bond prices we have used

'true' LIBORs, simulated by an Euler scheme with time discretization step Æ=10:
In contrast to the results presented in Figs.1-2, the maximum discrepancy happens around

the middle of the time interval (0; T31). The reason is clear from (10). Indeed, either when i is

close to zero or when i is close to 30 where the drift terms become small, the approximations

L
(0)
j (Ti), j = i; : : : ; 30 are close to Lj(Ti) and so B

(0)
31 (Ti) is close to B31(Ti): Note that, exactly,

B
(0)
31 (30 � 0:25) = B31(30 � 0:25) because L30 and L

(0)
30 coincide in the terminal measure given

by n = 31:

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 2.5 5 7.5

B31

B
(0)
31

�! t (years)

Fig.3 A sample of Bond prices B31(t) and its (0)-approximation, for � = 0:8, � = 0:1, n = 31.

2.1 More lognormal approximations

It is of interest to consider more re�ned approximations to L and in particular to look for

lognormal approximations improving L(0): So, in fact, we need to �nd a deterministic or normal

approximation to the sum term in the integral representation (5). Therefore, for each j we

approximate the process

Zj(t) :=
ÆjLj

1 + ÆjLj

(11)
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in the following way. Let the function f be de�ned as f(x) := x=(1 + x) and Zj = f(ÆjLj):
Hence the process Z := [Z1; : : : ; Zn�1] satis�es the SDE system

dZj = f 0(ÆjLj)ÆjLjj � dW (n) +
1

2
f 00(ÆjLj)[ÆjLj jjj]2dt

�
n�1X

k=j+1

ÆjÆkLjLk j � k
1 + ÆkLk

f 0(ÆjLj)dt (12)

= : aj(Z; t)dt + bj(Z; t) � dW (n);

with initial conditions Zj(t0) = f(ÆjLj(t0)): Note that by solving (11) for the L
0

js and substituting

the result in (12) it is immediately clear how the coe�cients aj and bj should be de�ned explicitly.

The Picard-Lindelof�0 and Picard-Lindelof�1 iteration for the solution of this SDE are

Z
(0)
j (t) :� Zj(t0) =

ÆjLj(t0)

1 + ÆjLj(t0)
and

Z
(1)
j (t) := Zj(t0) +

Z t

t0

[aj(Z
(0)(t0); s)ds+ bj(Z

(0)(t0); s) � dW (n)(s)]

= f(ÆjLj(t0)) +
1

2
f 00(ÆjLj(t0))Æ

2
jL

2
j(t0)

Z t

t0

jj j2ds

�
n�1X

k=j+1

ÆjÆkLj(t0)Lk(t0)

1 + ÆkLk(t0)
f 0(ÆjLj(t0))

Z t

t0

j � kds

+f 0(ÆjLj(t0))ÆjLj(t0)

Z t

t0

j � dW (n)(s); (13)

so deterministic and Gaussian, respectively. The next Picard-Lindelof iteration, however, will be

non-Gaussian in general.

By using the approximations Z
(0)
j for the expression (11) in (5), we �nd a lognormal approx-

imation which we call the (g)� approximation,

ln
L
(g)
i (t)

Li(t0)
= �

Z t

t0

ji(s)j2

2
ds+

Z t

t0

i(s) � dW n(s)�
n�1X
j=i+1

Z t

t0

ÆjLj(t0)i � j (s)
1 + ÆjLj(t0)

ds (14)

which turns out to be a considerable path-wise improvement of the (0)�approximation and is

suggested in [2]. See, e.g., also [10] for several applications. By expanding f; f 0 and f 00 as

f(x) = x+O(x2); f 0(x) = 1 +O(x) and f 00(x) = �2 +O(x), respectively and denoting identity

modulo terms of order O(Æ2jL
2
j(t0)) by

�=; we have

Z
(1)
j (t) �= ÆjLj(t0)(1 +

Z t

t0

j � dW (n)(s))�
n�1X

k=j+1

ÆjÆkLk(t0)Lj(t0)

1 + ÆkLk(t0)

Z t

t0

j � k(s)ds (15)

=: ~Zj(t):

We note that, while in (15) the terms in the sum are of order O(Æ2jL
2
j(t0)); their sum is possibly

of order O(ÆjLj(t0)) and therefore not neglected. Now, by substituting ~Z for (11) in (5) we get

another lognormal approximation, the (g1)�approximation,

ln
L
(g1)
i (t)

Li(t0)
= �

n�1X
j=i+1

tZ
t0

~Zj(s)i � j (s)ds�
1

2

tZ
t0

ji(s)j2ds+

tZ
t0

i(s) � dW (n)(s);
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The (g1)�approximation in its turn improves the (g)�approximation signi�cantly as will appear

from a comparative analysis in (2.2). We will also test a simpli�cation of the (g1)�approximation:

the (g10)�approximation, which is obtained by neglecting the sum-term in (15).

Finally, by substituting Z(1) for (11) in (5), so without linearization of the function f and

its �rst and second derivative, we get a next re�nement, the (g2)�approximation, given by

ln
L
(g2)
i (t)

Li(t0)
= �

n�1X
j=i+1

tZ
t0

Z
(1)
j (s)i � j (s)ds�

1

2

tZ
t0

2i (s)ds+

tZ
t0

i(s) � dW (n)(s);

where Z(1) is given by (13).

2.2 Numerical simulation analysis

It is now interesting to carry out a comparative numerical analysis of the di�erent lognormal

approximations: For typical market volatilities we will compare the lognormal approximations

path-wise with the 'true' solution, obtained by solving the stochastic di�erential equation (4)

by the Euler method using small time steps. Besides, we will carry out a comparison of (non-

lognormal) approximations obtained by the Euler scheme using larger time steps. For a uniform

tenor structure we will experiment with Euler steps equal Æ; 2Æ or 3Æ; etc.
For a correct path-wise comparison, we construct all the lognormal approximations in one

common probability space by solving their accompanying stochastic di�erential equations by the

Euler scheme with small time steps, namely, the time steps used for the 'true' solution. In the

numerical schemes, this is easily achieved by using one and the same Wiener increments for all

approximations. In fact, we will solve the SDE's for the log�LIBORs and their approximations

rather than the LIBORs as we attain in this way a path-wise accuracy of order one with the Euler

scheme, due to the deterministic di�usion coe�cients in the several log�LIBOR SDE's. The

di�erent SDE's for the log�LIBORs are straightforwardly obtained by taking the di�erential

form of (14), (16) and (17), respectively.

In our next experiments we take n = 61 and Æi = 0:25; i.e. a rather large tenor structure of

�fteen years, further the same initial conditions as used for the generation of Figs 1,2: Li(0) =
0:061: We take for European markets relatively high but still realistic volatility norms, jij = 0:15
and for the correlation structure (3) we take � = 0:9 and � = 0:04; yielding a more or less realistic

correlation table 0. For comparison see, e.g., table 4.2. in [2]. Note that the o�-diagonals in

table 0 are slightly increasing. The �true� solution is simulated by the Euler method using �t =
Æ=5:2 In tables 1,2,3,4 it is shown how often the relative error (in percents) of the corresponding

approximation to L12; L24; L36 and L48 lies in the relevant percentage intervals (of course there

is no table for L60 because L60 is exactly lognormal in the terminal measure). The relative

error between L̂i, the numerical solution to the original equation (4) and, for instance L̂
(g)
i , the

numerical solution to the SDE belonging to (g)�approximation is de�ned as

�
(g)
i = max

1�j�i

jL̂i(Tj)� L̂
(g)
i (Tj)j

L̂i(Tj)
: (18)

The relative errors to other approximations are de�ned analogously.

The numbers in the columns 2 - 8 of table 1 show the number of samples out of 100 for

which the event shown in the �rst column happens. Firstly, we conclude that the path-wise

errors produced by the (0)�approximation are generally not tolerable, as almost every path

2For this choice of �t it appeared by comparison with much smaller �t that the discretization
bias of the �true� solution is negligible w.r.t. the bias of the di�erent approximations.
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has an error in the sense of (18) of at least 2-3%. The (g)�approximation proposed by Brace

et al. in [2] and used for their swaption approximation formula there, gives a considerable

improvement but is clearly outperformed by the lognormal approximations (g10) (g1) and (g2).
For smaller to moderate �0s; (g2) appears to perform slightly better than (g1) and in its turn

(g1) somewhat better than (g10) as expected, however, for high � (close to 100%) the reverse

conclusion can be made which indicates that (g2) produces higher outliers than (g1) and so

on. Obviously, the (non-lognormal) Æ�stepping Euler approximation appears to be the most

accurate one, but, as we will see in section (3), is in many applications more expensive than

the proposed lognormal approximations since the distributions of the latter may be simulated

directly at the desired points in time by methods described in section (3). In addition, for

the typical model parameters chosen in these experiments, we may conclude that the re�ned

lognormal approximations are roughly comparable with 2Æ� or 3Æ�stepping Euler while the

implementation of the latter is in many situations less e�cient, see for details section (3).

Remark 2.2.1 As the bias of di�erent LIBOR approximations with respect to the terminal

measure is caused by the approximation of the sum term in (5) we may expect that the larger

this term is, the larger the bias will be. Particularly, this sum term tends to zero when t #t0 and
when i " n� 1. For instance, in order to estimate roughly which Li(Ti) has the largest bias in a

speci�c lognormal approximation, we may approximate the sum term in (5) by replacing the Lj

by their initial values (like in the (g)� approximation) and then obtain for the experiments in

(2.2),

ln
Li(Ti)

Li(0)
= ln

Li(iÆ)

Li(0)
= �(i) �

1

2
jj2iÆ +

iÆZ
0

i � dW (n); where

�(i) � �jj2
Æ2L(0)

1 + ÆL(0)

n�1X
j=i+1

i
e�(i�1)

�

e�(j�1)
� (19)

and in the experiments, L(0) = 0:061, � = 0:9 � = 0:04; jj = 0:15; Æ = 0:25; n = 61: Since in
practice � is very close to 1; we now take � = 1 in (19) for analytical tractability and then get

j�(i)j � jj2
Æ2L(0)

1 + ÆL(0)

1

e� � 1
i(1 � e�(n�1�i)�):

Hence, for � = 0 (so, in fact, for a one-factor model), we have j�(i�0)j � jj2 Æ2L(0)

1+ÆL(0)
i(n � i � 1);

which has a maximum j�(i�0)j � jj2 Æ2L(0)

1+ÆL(0)

(n�1)2

4
for i = i�0 �

n�1
2
; whereas for � " 1 (full de-

correlation) it follows by elementary analysis that the j�j� maximum, say j�(i�
�
)j; goes to zero

while i�� ! n�2; non-decreasingly. In a particular situation, however, we can search numerically

for i�� and for the experiments in (2.2) we thus �nd i�0:04 � 37; which is more or less consistent

with the results listed in tables 1-4.
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i; j 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

4 1 0.88 0.79 0.7 0.63 0.57 0.51 0.46 0.42 0.38 0.34 0.31 0.28 0.26 0.23

8 0.88 1 0.89 0.8 0.71 0.64 0.58 0.52 0.47 0.43 0.39 0.35 0.32 0.29 0.26

12 0.79 0.89 1 0.89 0.8 0.72 0.65 0.59 0.53 0.48 0.43 0.39 0.36 0.32 0.29

16 0.7 0.8 0.89 1 0.9 0.81 0.73 0.66 0.59 0.54 0.49 0.44 0.4 0.36 0.33

20 0.63 0.71 0.8 0.9 1 0.9 0.81 0.73 0.66 0.6 0.54 0.49 0.44 0.4 0.37

24 0.57 0.64 0.72 0.81 0.9 1 0.9 0.81 0.73 0.66 0.6 0.55 0.49 0.45 0.41

28 0.51 0.58 0.65 0.73 0.81 0.9 1 0.9 0.82 0.74 0.67 0.61 0.55 0.5 0.45

32 0.46 0.52 0.59 0.66 0.73 0.81 0.9 1 0.9 0.82 0.74 0.67 0.61 0.55 0.5

36 0.42 0.47 0.53 0.59 0.66 0.73 0.82 0.9 1 0.9 0.82 0.74 0.67 0.61 0.56

40 0.38 0.43 0.48 0.54 0.6 0.66 0.74 0.82 0.9 1 0.91 0.82 0.74 0.68 0.61

44 0.34 0.39 0.43 0.49 0.54 0.6 0.67 0.74 0.82 0.91 1 0.91 0.82 0.75 0.68

48 0.31 0.35 0.39 0.44 0.49 0.55 0.61 0.67 0.74 0.82 0.91 1 0.91 0.82 0.75

52 0.28 0.32 0.36 0.4 0.44 0.49 0.55 0.61 0.67 0.74 0.82 0.91 1 0.91 0.82

56 0.26 0.29 0.32 0.36 0.4 0.45 0.5 0.55 0.61 0.68 0.75 0.82 0.91 1 0.91

60 0.23 0.26 0.29 0.33 0.37 0.41 0.45 0.5 0.56 0.61 0.68 0.75 0.82 0.91 1

Table 0. Instantaneous correlations �(�Li;�Lj) between di�erent LIBORS for � = 0:9; � = 0:04.

100 � �12 (0) (g) (g1') (g1) (g2) Æ st. E. 2� Æ st. E.

�0.01% 0 0 0 0 19 4 0

�0.02% 0 0 3 10 47 34 5

�0.03% 0 1 10 19 77 73 21

�0.04% 0 3 15 34 89 88 41

�0.05% 0 8 24 45 91 99 57

�0.06% 0 9 32 62 93 100 71

�0.07% 0 12 46 79 93 100 75

�0.08% 0 13 56 99 96 100 82

�0.09% 0 14 71 100 98 100 88

�0.1% 0 17 93 100 100 100 93

�0.2% 0 41 100 100 100 100 100

�0.3% 0 62 100 100 100 100 100

�0.4% 0 77 100 100 100 100 100

�0.5% 0 89 100 100 100 100 100

�0.6% 0 95 100 100 100 100 100

�0.7% 0 97 100 100 100 100 100

�0.8% 0 97 100 100 100 100 100

�0.9% 0 100 100 100 100 100 100

�1% 0 100 100 100 100 100 100

�2% 0 100 100 100 100 100 100

�3% 79 100 100 100 100 100 100

�4% 100 100 100 100 100 100 100

Table 1. The cumulative distribution of the relative error �12,

for 100 paths under di�erent approximations.
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100 � �24 (0) (g) (g1') (g1) (g2) Æ st. E. 3� Æ st. E.

�0.01% 0 0 0 0 3 0 0

�0.02% 0 0 0 0 4 17 0

�0.03% 0 0 2 0 14 50 0

�0.04% 0 0 2 4 20 71 6

�0.05% 0 0 4 9 30 91 10

�0.06% 0 0 10 11 37 96 15

�0.07% 0 2 16 16 47 99 23

�0.08% 0 2 17 22 51 99 32

�0.09% 0 2 19 24 57 99 48

�0.1% 0 3 22 29 66 100 53

�0.2% 0 16 59 93 92 100 92

�0.3% 0 22 100 98 96 100 99

�0.4% 0 34 100 100 99 100 100

�0.5% 0 43 100 100 100 100 100

�0.6% 0 47 100 100 100 100 100

�0.7% 0 60 100 100 100 100 100

�0.8% 0 69 100 100 100 100 100

�0.9% 0 73 100 100 100 100 100

�1% 0 75 100 100 100 100 100

�2% 0 98 100 100 100 100 100

�3% 0 100 100 100 100 100 100

�4% 21 100 100 100 100 100 100

�5% 65 100 100 100 100 100 100

�6% 91 100 100 100 100 100 100

�7% 98 100 100 100 100 100 100

�8% 100 100 100 100 100 100 100

Table 2. The cumulative distribution of the relative error �24,

for 100 paths under di�erent approximations.

100 � �36 (0) (g) (g1') (g1) (g2) Æ st. E. 4� Æ st. E.

�0.01% 0 0 0 0 0 0 0

�0.02% 0 0 0 0 1 17 0

�0.03% 0 0 0 0 3 49 1

�0.04% 0 0 1 4 4 77 2

�0.05% 0 0 1 6 8 89 4

�0.06% 0 1 4 9 10 91 6

�0.07% 0 1 5 11 13 94 11

�0.08% 0 1 7 13 18 98 14

�0.09% 0 3 10 16 24 99 24

�0.1% 0 3 12 17 30 99 33

�0.2% 0 10 33 45 75 100 84

�0.3% 0 21 54 87 89 100 94

�0.4% 0 25 94 95 92 100 98

�0.5% 0 34 96 95 93 100 100

�0.6% 0 36 96 96 96 100 100

�0.7% 0 40 97 96 96 100 100

�0.8% 0 49 98 97 96 100 100

�0.9% 0 52 98 98 96 100 100

�1% 0 56 99 98 97 100 100

�2% 0 89 100 100 100 100 100

�3% 1 97 100 100 100 100 100

�4% 12 99 100 100 100 100 100

�5% 42 100 100 100 100 100 100

�6% 75 100 100 100 100 100 100

�7% 89 100 100 100 100 100 100

�8% 93 100 100 100 100 100 100

�9% 97 100 100 100 100 100 100

�10% 99 100 100 100 100 100 100

Table 3. The cumulative distribution of the relative error �36,

for 100 paths under di�erent approximations.
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100 � �48 (0) (g) (g1') (g1) (g2) Æ st. E. 4� Æ st. E.

�0.01% 0 0 0 0 0 6 0

�0.02% 0 0 0 0 0 55 0

�0.03% 0 0 1 0 0 82 0

�0.04% 0 0 2 1 6 90 4

�0.05% 0 0 2 4 9 95 12

�0.06% 0 0 3 4 13 97 21

�0.07% 0 0 7 8 14 97 31

�0.08% 0 0 10 12 20 98 41

�0.09% 0 0 15 19 21 98 52

�0.1% 0 0 16 22 26 99 67

�0.2% 0 8 40 46 71 100 89

�0.3% 0 17 74 85 83 100 97

�0.4% 0 22 93 93 91 100 99

�0.5% 0 30 95 94 92 100 100

�0.6% 0 35 95 95 95 100 100

�0.7% 0 40 96 95 95 100 100

�0.8% 0 41 96 96 95 100 100

�0.9% 0 45 96 96 96 100 100

�1% 0 54 96 96 96 100 100

�2% 2 90 100 100 100 100 100

�3% 19 97 100 100 100 100 100

�4% 55 98 100 100 100 100 100

�5% 79 100 100 100 100 100 100

�6% 88 100 100 100 100 100 100

�7% 95 100 100 100 100 100 100

�8% 97 100 100 100 100 100 100

�9% 99 100 100 100 100 100 100

�10% 100 100 100 100 100 100 100

Table 4. The cumulative distribution of the relative error �48,

for 100 paths under di�erent approximations.

3 Direct simulation of log-normal approximations

The results of section (2.2) listed in tables 1-4 clearly show that the lognormal models (0)
and (g) are reasonable approximations and the models (g10); (g1) and (g2) are pretty good

approximations to the solution of SDE (4). We now present direct techniques for log-normal

approximations, in particular we illustrate an e�ective simulation of the (g)�approximation by

a lognormal random �eld in (3.1).

The motivation for direct simulation methods is clear: In contrast to standard numerical

solution of stochastic di�erential equations there is no need for taking small time steps. Indeed,

it is possible to construct the solution directly at the desired points in time, e.g., at the points

of the given tenor structure 0 < T1 < T2 < : : : < Tn.
3 It will be shown in section (4) that in

many typical applications direct simulation methods take much less computing time.

3.1 Random �eld simulation of the (g)�approximation (RFS)

Due to the simple correlation structure of the (g)�approximation it is possible to set up a

lognormal random �eld model by a simulation technique as studied in [8] in a more general

setting; we construct a lognormal random �eld whose �rst two statistical moments are consistent

with those of the (g)�approximation.

We thus introduce the lognormal random model

L(g)(i; t) = exp[�(g)(i; t)] (20)

3From now on, (Ti) is an arbitrary sequence of future time points, so not necessarily Ti = iÆ as in

section (2.2).
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with Gaussian �(g)(i; t), i = 1; : : : ; n � 1, t0 � t � Ti, whose mean and covariation structure

coincide with that of ln(L
(g)
i (t)=Li(t0)), t0 � t � Ti, i = 1; : : : n� 1; in the IPn� measure:

h�(g)(i; t)i = hln
�L(g)

i (t)

Li(t0)

�
i; (21)

h�(g)(i1; t1); �(g)(i2; t2)i = hln
�L(g)

i1
(t1)

Li1(t0)

�
; ln
�L(g)

i2
(t2)

Li2(t0)

�
i; (22)

where the bracket notations hUi and hU; V i denote IEn(U) and IEn(UV ) in the IPn� measure,

respectively. From (14) we see that

h�(g)(i; t)i � �(g)(i; t0; t) = �
n�1X
j=i+1

ÆjLj(t0)

1 + ÆjLj(t0)

tZ
t0

i � j(s)ds�
1

2

tZ
t0

jij2(s)ds; (23)

h�(g)(i1; t1); �(g)(i2; t2)i � cov(g)(i1; i2; t0; t1 ^ t2) + �(g)(i1; t0; t1)�
(g)(i2; t0; t2); (24)

where

cov(g)(i1; i2; t0; t) =

tZ
t0

i1 � i2(s)ds:

We now construct numerically the desired random �eld L(g)(i; Tj); i = 1; : : : ; n� 1; j = 1; : : : i.
To do this, we could simulate the Gaussian vector with the given covariance structure by a

conventional simulation technique, see e.g. [8]. However, the speci�c time correlation (24)

resulting from the fact that �(g) has independent increments, suggests a di�erent simulation

algorithm.

Indeed, in the �rst step, we simulate a n � 1-dimensional Gaussian vector (�(g)(1; T1); : : : ;
�(g)(n� 1; T1)) as

�(g)(i; T1) = �(g)(i; t0; T1) +

K1X
k=1

h
(1)

ik �
(1)

k ; i = 1; : : : ; n� 1 (25)

where the (n� 1)�K1 matrix [h
(1)

ik
] satis�es a Cholesky decomposition

K1X
k=1

h
(1)

ik
h
(1)

jk
= cov(g)(i; j; t0; T1); i; j = 1; : : : ; n� 1; (26)

h
(1)

ik = 0 for i > n � 1 �K1 + k; f�(1)k gK1

k=1 is a set of independent standard Gaussian random

numbers and K1 is the rank of the covariance matrix (26). Note that, in general, K1 � n�1 and
K1 = d; the number of independent Brownian motions in the LIBOR model, in the case where

the i are time independent.

In the l-th step (2 � l � n� 1) we have:

�(g)(i; Tl) = �(g)(i; Tl�1) + �(g)(i; t0; Tl)� �(g)(i; t0; Tl�1) +

KlX
k=1

h
(l)

ik �
(l)

k ; i = l; : : : ; n� 1; (27)

where the (n� l)�Kl matrix [h
(l)

ik ]i;k=l;:::;n�1 satis�es a decomposition

KlX
k=1

h
(l)

ik h
(l)

jk = cov(g)(i; j;Tl�1; Tl); i; j = l; : : : ; n� 1; (28)
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h
(l)

ik = 0 for i > n � 1 � Kl + k; f�(l)k gKl

k=1 is a set of independent standard Gaussian random

numbers and Kl is the rank of the covariance matrix (28). So, in general, Kl � n � l and

Kl � min(d; n� l) in the case where the i are time independent.

After n� 1 steps we thus �nd

L
(g)
i (Tj) = Li(t0)L(g)(i; Tj) = Li(t0) expf�(g)(i; Tj)g; i = 1; : : : ; n� 1; j = 1; : : : ; i: (29)

Analogously, the same procedure could be easily carried out for the lognormal approximations

(0). Indeed, the simulation formulae (25)- (29) remain the same, but the functions �(g) and cov(g)

should be replaced with

�(0)(i; t0; t1) = 0; and cov(0)(i1; i2; t0; t) = cov(g)(i1; i2; t0; t);

for the (0)�approximation.

Remark 3.1.1 Of course, in a random �eld Monte Carlo simulation all the Cholesky decom-

positions above can be computed outside of the simulation loop. In general, the cost of the

Cholesky decomposition in the l0�th step of the random �eld construction is O((n� l)3); so the

total cost of the di�erent Cholesky decomposition is O(n4): Moreover, in the case where the i
are time independent it is easily seen that, in fact, only one Cholesky decomposition has to be

computed at a cost of O(n3): However, for a detailed cost comparison of random �eld simulation

to other direct simulation methods and Euler stepping SDE simulation, see section (4).

3.2 Simulation of the (g10); (g1) and (g2) approximation

We consider the g10-approximation by example as the (g1) and (g2) can be treated analogously.

We de�ne,

�(g1
0)(i; t0; t) = �

n�1X
j=i+1

ÆjLj(t0)

tZ
t0

i � j(s)ds�
1

2

tZ
t0

jij2(s)ds

and from (16) we derive

ln
L
(g10)
i (t)

Li(t0)
= �(g1

0)(i; t0; t) +

Z t

t0

2
41� n�1X

j=i+1

ÆjLj(t0)

Z t

s

j � i(u)du

3
5 i(s) � dWs:

We thus have

Cov[�(g1
0)(i1; t1); �

(g10)(i2; t2)] =
R t1^t2
t0

i1 � i2(s)
h
1�

Pn�1
j=i1+1

ÆjLj(t0)
R t1
s
j � i1(u)du

i
�h

1�
Pn�1

k=i2+1
ÆkLk(t0)

R t2
s
k � i2(u)du

i
ds: (30)

For the (g1) and (g2)-approximation one can derive similar approximations straightforwardly

from (16), (17), respectively.

Unfortunately, the covariance functions of (g1), (g10) and g(2) do not have the special struc-
ture that the (0) and (g)� approximation do, so a random �eld construction like in (3.1) does

not work. For instance, the increment lnLi(Tl) � lnLi(Tl�1) is now in general correlated with

lnLi(Tl�1) for i � l � 1: However, it is possible to simulate the desired log-LIBORS simulta-

neously as one q�dimensional random vector �: Let the index set I be the collection of pairs

(i; j) for which Li(Tj); 1 � j � i � n � 1 is to be simulated. So, q is equal to the number of
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elements of I and, for instance, q = n(n� 1)=2 in case LIBORs over the whole tenor structure

are required. Let further � : I �! f1; : : : ; qg be an arbitrary bijection, then

��(i;j) := ln
L
(�)
i (Tj)

Li(t0)
= �(�)(i; t0; Tj) + h�(i;j);1�1 + � � �+ h�(i;j);K�K ; (i; j) 2 I; (31)

where (�) stands for (g10); (g1); (g2); respectively, the q � K matrix h satis�es a Cholesky

decomposition
KX
k=1

hpkhlk = cov(�)(�p; �l) p; l = 1; : : : ; q; (32)

hpk = 0 for p > q �K + k; f�kgKk=1 is a set of independent standard Gaussian random numbers

and K is the rank of the covariance matrix (32) which, for a speci�c lognormal approximation,

is determined by its covariance structure, for instance, (30).

For a full tenor structure, hence for O(n2) log LIBORS, the Cholesky decomposition will

now require a computational cost of O(n6) and compared to this the cost of the drift terms can

be neglected. However, all these computations can be done outside of the simulation loop.

3.3 Cost analysis of Euler SDE simulation and direct simulation

methods

Here we give formulae for the cost of Euler SDE simulation, random �eld simulation of the

(g)�approximation and the direct simulation method for the other lognormal approximations.

We disregard all computations which can be done outside of the Monte Carlo simulation loop

such as the computation of various Cholesky decompositions etc.

Let us suppose that we are faced with the simulation of

Li(Tj); 1 � j �m; j � i � n� 1; (33)

for �xed m in the IPn�measure.

3.3.1 Euler scheme for solving the log�LIBOR SDE system,

dYi = �
n�1X
j=i+1

Æje
Yj

1 + Æje
Yj
i � j dt�

1

2
jij2dt+ i � dW (n); i = 1; : : : ; n� 1; (34)

where Yi := lnLi(t): For the volatilities i = (i;1; : : : ; i;d); 1 � i � n� 1; we may assume that

i;k = 0 for i > n�1�d+k and then it is not di�cult to verify that the computation of a single

Euler step from t to t+�t; t < T1; requires a cost of

CostEulerstep(n; d; 1) =

computation drift termz }| {
(n� 2)(c� + c �

�

+ c+ + cexp) +
(n� 2)(n� 1)

2
(c� + c+)+

computation noise termz }| {
+d(crand + c�) + [(n� 1� d)d+

d2 + d

2
](c� + c+)

=: (n� 2)~cexp + [
(n� 2)(n� 1)

2
+ nd�

d2 + d

2
]~c� + d~crand; (35)

where the cost of one addition, multiplication, division, exponentiation and the generation of

a standard Gaussian random number is denoted by c+; c�; c �

�

; cexp and crand; respectively. In
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practice ~c� � c�; ~cexp � cexp; ~crand � crand:

From (35) it is obvious that we have in general for Ti�1 < t < Ti; i � 1, (where T0 := t0)

CostEulerstep(n; d; i) = (n� i� 1)~cexp + [
(n� i� 1)(n� i)

2
+ max(n� i� d; 0)d +

+
min2(d; n� i) + min(d; n� i)

2
]~c� +min(d; n� i)~crand

=: C(d; n� i): (36)

Remark 3.3.1 In our applications n is typically large, e.g. n � 40; 60 and therefore we could

try to deal with asymptotic expression for the behaviour of C(d; k) for large k and certain d:

However, we have to be careful; the cost of the exponential function and the Gaussian random

number generator is considerably higher than the cost of a multiplication. For the compiler we

used we found by experiment cexp=c� � 25 and with this compiler we found for the random

number generator we used, crand=c� � 10: So in a typical situation, for instance k � 40; 60; the
term involving cexp in (36) can not be neglected at all and the same is true for the term involving

crand when d = n� 1 (a full factor model). Therefore, it is important to consider (36) for all k;

rather than for k !1 only.

Obviously, (36) yields,

C(d; k) = (k � 1)~cexp + k2~c� + k~crand; k < d;

C(d; k) = (k � 1)~cexp + [
(k � 1)k

2
+ (k � d)d+

d2 + d

2
]~c� + d~crand; k � d (37)

The numerical experiments in (2.2) have shown that, in practice, for a uniform tenor structure

it is accurate enough to take time steps of order �t = Æ; 2Æ for time t up to T1 and between

two tenors Ti; Ti+1 we take Æi for the Euler step size. So, it is clear that the total cost of a thus

organized SDE simulation of one sample of the values (33) will be equal to

CostSDE(n; d;m) =
T1

�t
CostEuler step(n; d; 1) +

mX
i=2

CostEuler step(n; d; i) + Cost
(m)

Exp: calls; (38)

where Cost
(m)

Exp: calls
takes into account the cost of the exponential calls at Tm to get LIBORs

rather than log�LIBORs. For i < m these exponential calls are already included in the �rst

and second term of (38) as LIBORs at Ti are needed in the drift terms. Hence,

CostSDE(n; d;m) =
T1

�t
C(d; n� 1) +

n�2X
k=n�m

C(d; k) + (n�m)~cexp (39)

with empty sums de�ned as zero. We derive from (37) and (39) by elementary algebra4 explicit

expressions for the cost of the Euler method for m > n� d and m � n� d; respectively:

CostSDE(n; d;m) =
T1

�t
f(n� 2)~cexp + [

(n� 2)(n� 1)

2
+ nd�

d2 + d

2
]~c� + d~crandg+

+f(n� 1)m�
m2 + 3m� 4

2
g~cexp + f�

n3

6
+

2m+ d� 1

2
n2 + (40)

�
6m2 + 6m+ 3d2 + 6d� 10

6
n+

2m3 + 3m2 +m+ d3 + 3d2 + 2d� 6

6
g~c� +

f�
n2

2
+

2m+ 2d+ 1

2
n�

m2 +m+ d2 + 3d

2
g~crand; m > n� d and

4The expressions (40) and (41) can be checked easily with Mathematica or Maple, for instance.
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CostSDE(n; d;m) =
T1

�t
f(n� 2)~cexp + [

(n� 2)(n� 1)

2
+ nd�

d2 + d

2
]~c� + d~crandg+ (41)

+f(n� 1)m�
m2 + 3m� 4

2
g~cexp + f

m� 1

2
n2 �

m2 + 2m� 2md+ 2d� 3

2
n+

+
m3 + 3m2 + 2m� 6� 3d2m� 3dm2 + 3d2 + 3d

6
g~c� + (m� 1)d~crand; m � n� d:

The expressions (40) and (41) will be used later for a cost comparison of random �eld simulation

and direct simulation of di�erent lognormal approximations with Euler SDE simulation in various

situations.

3.3.2 Random �eld simulation technique.

Here we consider the general case where  is time dependent and we thus have to take in (27),

Kl = n� l for 1 � l � n; even if d is small. We choose the (n� l) � (n� l)-matrix h(l) in (27)

as an upper-triangular matrix. Disregarding again pre-computation costs outside of the Monte

Carlo loop it follows from (27) that the cost of calculating one sample of the LIBORs (33) is

given by

CostRFS(n;m) =

mX
l=1

f
1

2
(n� l)(n� l + 1)~c� + (n� l)~crandg+ Cost

(m;n)

Exp: calls

=
1

6
(3mn2 � 3m2n+m3 �m)~c� +

1

2
m(2n�m� 1)(~crand + ~cexp); (42)

where the term Cost
(m;n)

Exp: calls
= 1

2
m(2n � m � 1)~cexp is taken into account because we need

LIBORs rather than log�LIBORs.

Remark 3.3.2 It turns out in practice that it is very reasonable to take i piece-wise constant

between the tenors: i(s) = 
(p)
i for Tp � s < Tp+1; 1 � p � n � 1: In this situation the �rst

Cholesky decomposition in the random �eld construction, (26), might have rank n � 1; but for
the Cholesky decompositions in step 2 � l � n � 1 we may take Kl = min(d; n � l): In this

important practical situation the random �eld simulation will be much faster in case d is small.

Indeed, it is easily veri�ed that for the computation cost we now have

Cost
 p:c:[T1;Tn]
RFS (n; d;m) �

1

2
n(n� 1)~c� + (n� 1)~crand +

mX
l=2

[(n� l)d~c� + d~crand] + Cost
(m;n)

Exp: calls

=
1

2
n(n� 1)~c� + (n(m� 1)�

m2 +m� 2

2
)d~c�

+(n+md� d� 1)~crand +
1

2
m(2n�m� 1)~cexp (43)

Even for a full tenor structure m = n� 1; we have

Cost
 p:c:[T1;Tn]
RFS (n; d;m = n� 1) � (

n2 � n

2
+

n2 � 3n+ 2

2
d)~c� +

+(n(d+ 1)� 2d� 1)~crand +
1

2
n(n� 1)~cexp; (44)

and so the coe�cients of ~c�; ~crand and ~cexp in (43) and (44) are for small d quadratic and linear

in n; respectively, whereas the corresponding coe�cients in the cost of the SDE simulation tend

to be larger: For example, when m = n� 1 in (40) the coe�cient of ~c� still contains n3=6 and
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T1
�t

n2

2
for small d:

If, moreover, i is constant on [t0; T1[; i.e. i(s) = 
(0)
i for t0 � t < T1; a rank-d Cholesky

decomposition applies to the �(g)(T1) construction also and then we have

Cost
 p:c:[t0;Tn]
RFS (n; d;m) �

mX
l=1

[(n� l)d~c� + d~crand] + Cost
(m;n)

Exp: calls

= (nm�
m2 +m

2
)d~c� +md~crand +

1

2
m(2n�m� 1)~cexp; (45)

which means a next speed up with respect to Euler SDE simulation in the case where d << n;
e.g. compare (45) with (41) for d = 1:

3.3.3 Direct simulation of the (g10), (g1); and (g2)�approximation.

By taking q =
Pm

j=1(n� j) = 1
2
m(2n�m� 1) in (31) we see that with an upper-triangular h;

for the full rank case K = q; the simulation of one sample of (33) will cost inside of the loop:

CostDS(n;m) =
1

2
q(q + 1)~c� + q~crand +Cost

(m;n)

Exp: calls

= f
m2

2
n2 �

m3 +m2 �m

2
n+

m(m+ 1)(m2 +m� 2)

8
g~c� +

+
1

2
m(2n�m� 1)(~crand + ~cexp): (46)

It is clear that form = n�1 the �rst term will be of order O(n4c�) and so, direct simulation of the
(g10), (g1); or (g2)�approximation for a full tenor structure (m = n�1) can only be recommended

when n is not too large, whereas for larger n this simulation method is recommended for relatively

small values of m: For example, m = 1 in (46) yields

CostDS(n;m = 1) =
n2 � n

2
~c� + (n� 1)(~crand + ~cexp): (47)

4 E�ciency gain with respect to SDE simulation; an

optimal simulation program

Let us suppose that we are faced with a Monte Carlo evaluation of a LIBOR derivative involving

LIBORs speci�ed in (33). Rather than full Euler stepping from the starting date t0; it may

be pro�table to simulate L(T1) by one of the lognormal approximation and then, for instance,

proceed with Euler stepping through the remaining tenors, of course, provided that L(T1) is well
approximated. Alternatively, provided the (g)-approximation is tolerable, one may apply the

random �eld simulation technique. It is to expect that for longer dated products (i.e. larger

T1) and in particular when additionally m is small, e.g. m = 1 in the case of a European style

derivative, both alternatives may yield a substantial e�ciency gain. We will compute the order

of this gain for a �full� tenor structure, i.e. m = n� 1 and the European case m = 1; where we
distinguish between the multi-factor case d = n� 1 and the one factor case d = 1:

1: Lognormal approximation of L(T1) followed by Euler stepping

As a �rst alternative to full Euler stepping we thus consider a simulation algorithm which sim-

ulates with a proper lognormal approximation the LIBORs L(T1) �rst and then proceeds with
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Euler Æ-stepping. By the results of section (3.3) we may compute for this method straightfor-

wardly the e�ciency ratio

R
(1)

E�
(n; d;m) :=

CostSDE[t0;Tm]

CostDS[t0;T1]&SDE[T2;Tm]

and yield the following results:

full structure, multi-factor

R
(1)

E�
(n; n� 1; n� 1) �

(n T1
�t

+ n2

2
)~cexp + (n T1

�t
+ n2

2
)~crand + (n2 T1

�t
+ n3

3
)~c�

n2

2
~cexp +

n2

2
~crand +

n3

3
~c�

full structure, one factor

R
(1)

E�
(n; 1; n� 1) �

(n T1
�t

+ n2

2
)~cexp + ( T1

�t
+ n)~crand + (n

2

2
T1
�t

+ n3

6
)~c�

n2

2
~cexp + 2n~crand +

n3

6
~c�+

European, multi-factor

R
(1)

E�
(n; n� 1; 1) �

(n T1
�t

+ n)~cexp + n T1
�t

~crand + n2 T1
�t

~c�

n~cexp + n~crand +
n2

2
~c�

European, one factor

R
(1)

E�
(n; 1; 1) �

(n T1
�t

+ n)~cexp +
T1
�t

~crand +
n2

2
T1
�t

~c�

n~cexp + n~crand +
n2

2
~c�

Hence, when T1
�t

>
�

n it is clear that this alternative will be substantially faster than full Euler

stepping.

2: Random �eld simulation

When volatilities are not too high or Tm is not too large the (g)�approximation might be

acceptable and then, particularly for a full tenor structure (m = n� 1), it might be pro�table

to use the random �eld simulation technique. The e�ciency ratio

R
(2)

E�
(n; d;m) :=

CostSDE[t0;Tm]

CostRFS[T1;Tm]

may be computed by section (3.3) again and for m = n� 1 we have

full structure, multi-factor

R
(2)

E�
(n; n� 1; n� 1) �

(n T1
�t

+ n2

2
)~cexp + (n T1

�t
+ n2

2
)~crand + (n2 T1

�t
+ n3

3
)~c�

n2

2
~cexp +

n2

2
~crand +

n3

6
~c�

full structure, one factor

R
(2)

E�
(n; 1; n� 1) �

(n T1
�t

+ n2

2
)~cexp + ( T1

�t
+ n)~crand + (n

2

2
T1
�t

+ n3

6
)~c�

n2

2
~cexp +

n2

2
~crand +

n3

6
~c�

;

from which we conclude that, in general, the e�ciency gain with respect to simulation alternative

(1) is limited: If in the full rank case n3~c� is much larger than n2~cexp; random �eld simulation

is about two times faster than simulation alternative (1). However, for a low factor model with

(s) piece wise constant between T1 and Tn it follows from remark (3.3.2) that random �eld

simulation is really faster than alternative (1). In the one factor case we then have

full structure, one factor

R
(2);  p:c:

E�
(n; 1; n� 1) �

(n T1
�t

+ n2

2
)~cexp + ( T1

�t
+ n)~crand + (n

2

2
T1
�t

+ n3

6
)~c�

n2

2
~cexp + 2n~crand + n2~c�

:
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For any problem in practice for which alternatives (1) or (2) applies it will be easy to compute

or estimate from the expressions in section (3.3) the e�ciency gain with respect to Euler step-

ping SDE simulation. However, instead of listing many possibilities we rather present typical

situations in which the proposed simulation alternatives improve upon standard Euler stepping.

Example 4.0.3 Suppose we have to price a relatively long term LIBOR option with T1 = 12
years, Tn = 22 years, 3 month periods and where LIBORs over the full tenor structure are

required for the valuation of the contract (m = n�1). A product of this type is, for instance, the

trigger swap, see section (5). So, Æ = 0:25; n = 41; m = 40: For our C++ compiler the relative

cost of a standard Gaussian random number and the exponential function is approximately

~crand=~c�; � 10 and ~cexp=~c� � 25; respectively.
The relative cost of full Euler Æ�stepping from t0 to Tn with respect to simulation method

(1): (g2)�approximation of L(T1) and Euler Æ�stepping from T2 to Tn;

R
(1)

E�
:=

CostSDE[t0;Tn]

CostDS[t0;T1]&SDE[T2;Tn]

;

is computed from expressions in section (3.3) and listed in table 5 for a one and two factor

model, a multi factor model and di�erent Euler step sizes, �t = Æ; 2Æ; 3Æ on [t0; T1]: The absolute
computation costs of the SDE method in terms of 104 multiplications is given in brackets 5.

R
(1)

E�
(CostSDE � 104~c�)

�t d = 1 d = 2 d = 40

Æ 3.66 (11.6 ) 3.64 (12.0) 3.83 (19.0)

2Æ 2.30 (7.0) 2.29 (7.5) 2.39 (11.8)

3Æ 1.84 (5.8) 1.84 (6.0) 1.90 (9.4)

Table 5

Example 4.0.4 We consider the same problem as in example (4.0.3) except that now only

Li(T1); i = 1; : : : ; n � 1 are required for pricing the product, so now m = 1: For instance,

the swaption and the callable reverse �oater are products of this type, see for details section

(5). The computed cost ratios of direct simulation of the (g1); (g10) or (g2)�approximation with

respect to Euler stepping SDE simulation are listed in table 7 for di�erent step sizes �t and

di�erent d: It is clear that the e�ciency gain is tremendous in this case. Note that in general

when m = 1; the simulation costs inside the loop of the (g)� approximation and the (g1); (g10)
or (g2)�approximation coincide and so a re�ned lognormal approximation as a (g10); (g1) or

(g2)�approximation should be prefered in any case.

RCost (CostSDE � 104~c�)

�t d = 1 d = 2 d = 40

Æ 39.5 (8.7) 40.6 (8.9) 64.8 (14.3)

2Æ 19.9 (4.3) 20.6 (4.5) 32.6 (7.1)

3Æ 13.4 (2.9) 13.8 (3.0) 21.9 (4.8)

Table 6

4.1 An optimal simulation program

Based on the experimental results with respect to the accuracy of di�erent LIBOR approxima-

tions in section (2.2) and the cost comparison between standard Euler Æ-stepping and di�erent

alternative simulation methods in section (4), we now propose the following procedure for the

price simulation of a derivative structure involving a system (33) of LIBORs, in a given calibrated

LIBOR model.

5The approximate expressions in section (4) give nearly the same results.
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Step (I): Compare the accuracy of di�erent lognormal approximation for the calibrated

LIBOR model by using a path simulation program as designed in section (2.2).

Step (II): Decide which approximations are acceptable in view of the accuracy required for

the derivative structure and then follow one of the following alternatives:

Case (1): If the (g1); (g10) or (g2)�approximation is tolerable up to L(T1) while the (g)�
approximation is not, generate L(T1) by a direct simulation method of (3.2) and proceed to

Tm with Euler Æ�stepping.

Case (2): If the (g)� approximation is tolerable over all tenors, the number of factors (d)

is small, and (s) is piece-wise constant between T1 and Tm; then apply the random �eld

simulation technique (3.1).

Case (3): If (1) and (2) don't apply, SDE simulation by Æ�stepping Euler turns out to be

acceptable in almost all practical situations.

5 Examples of LIBOR derivatives

We now present some test results on the valuation of the swaption and the trigger swap and

discuss the pricing of a callable reverse �oater.

5.0.1 European swaption

The value of a payer swaption with maturity T1; strike � and principal $1 gives the right to

contract at T1 to pay a �xed coupon � and receive the T1�swap rate at the settlement dates

T2; ::; Tn: As, equivalently, one can contract for receiving spot LIBOR instead of the T1�swap
rate, the price of the swaption at t < T1 can be given by

Swpn(t) = B1(t)IE1

2
4
0
@n�1X

j=1

Bj+1(T1)IEj+1[(Lj(Tj)� �)Æj j FT1 ]

1
A

+

jFt

3
5 ;

where (�)+ := max(�; 0); see [2, 10]. By a martingale property and measure transformation the

swaption can be represented in the IPn measure by

Swpn(t) =
n�1X
j=1

Bn(t)IEn

�
Bj+1(T1)

Bn(T1)
1A(Lj(T1)� �)Æj jFt

�
: (48)

In (48), A denotes the FT1 measurable event fS(T1) > �g; where the swap rate S(T1) is given
by

S(T1) :=
1�Bn(T1)Pn�1
k=1 ÆkBk+1(T1)

=
�1 +

Qn�1
k=1(1 + ÆkLk(T1))Pn�1

k=1 Æk
Qn�1

i=k+1(1 + ÆiLi(T1))

and Bj+1(T1)=Bn(T1) can be expressed in the LIBORs by

Bj+1(T1)

Bn(T1)
=

n�1Y
i=j+1

(1 + ÆiLi(T1)):

The value of an at the money swaption based on the tenor structure given in example (4.0.4)

is simulated for the various LIBOR approximations and the results are listed in table 8. In

order to estimate the systematic error in the swaption value due to a particular approximation,

the swaption value is simulated by the log�SDE of the approximation, where the same Wiener

processes are used for all approximations.
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�true value� Æ�step E. 3Æ�step E. (g2) (g1) (g10) (g) (0)

0.037907 0.037954 0.038071 0.038169 0.037933 0.037728 0.040818 0.05164

syst. err. 0.12% 0.43% 0.69% 0.07% -0.47% 7.7% 36.2%

Table 8: Swaption values for di�erent LIBOR approximations simulated under the same Wiener

processes; T1 = 12; n = 41; Æi � 0:25; Li(0) � 0:06045; jij � 0:15; � = 0:9; � = 0:04;
� = 0:06045: Number of trajectories: 50000; Monte Carlo error (1 standard deviation) � 0.0005

� 1.3%; SDEs simulated with �t = 0:05:
We note that while the (g2)�approximation according to tables 1-4 looks to be the best

path-wise lognormal approximation overall, it produces larger outliers than (g1) and (g10): For
this reason, apparently, the (g2)�approximation does not give an essentially better swaption

approximation than the (g1) gives. Further we note that by using a much faster direct simulation

method the �real time� Monte Carlo error can be reduced considerably by increasing the number

of simulations. For instance, a run of 500000 direct simulations of the (g1)�approximation takes,

for this example, about 10 seconds on a 500Mhz Unix-workstation and gives a Monte Carlo error

of about 0.4%, whereas from table 7 (full rank column) we see that even a 3Æ�stepping Euler

method, which is comparable to (g10) in accuracy, would have taken about 40 times longer.

5.0.2 Trigger swap

Next we consider an up and out trigger swap contract with discretely monitored trigger variable

Li(Ti) and trigger levels K1; : : : ;Kn : As soon as Li(Ti) > Ki one has to swap LIBOR against a

�xed coupon � for the remaining period [Ti; Tn] with settlement dates Ti+1; : : : ; Tn:

The value of the trigger swap in the IPn measure can be expressed by

Trswp(t) =

n�1X
p=1

Bn(t)IEn

2
41[�=p] 1

Bn(Tp)

0
@1�Bn(Tp)� �

n�1X
j=p

Bj+1(Tp)Æj

1
A j Ft

3
5 ; (49)

where �; the trigger index, is given by � := min1�p<nfp jLp(Tp) > Kpg; see [10]. In (49) the

expression inside the expectation can be expressed in LIBORs only and we thus have

Trswp(t) =
n�1X
p=1

Bn(t)IEn

2
41[�=p]

0
@�1 + n�1Y

i=p

(1 + ÆiLi(Tp))� �

n�1X
j=p

Æj

n�1Y
i=j+1

(1 + ÆiLi(Tp))

1
A j Ft

3
5 :

(50)

As an application of example (4.0.3) we simulate the value of a trigger swap under di�erent

LIBOR approximations, just as in the swaption example. The trigger levels are taken to be

equal; ; Ki � 0.08, see table 9.

�true value� Æ�step E. (g2) (g1) (g10) (g) (0)

0.042851 0.042909 0.043184 0.042946 0.042758 0.046142 0.056714

syst. err. 0.13% 0.77% 0.22% -0.22% 7.6% 32.3%

Table 9: Values of a trigger swap for di�erent LIBOR approximations simulated under the same

Wiener processes; T1 = 12; n = 41; Æi � 0:25; Li(0) � 0:06045; jij � 0:15; � = 0:9; � = 0:04;
� = 0:06045; Ki � 0:8. Number of trajectories: 25000; Monte Carlo error (1 standard deviation)

� 0.0007 � 1.6%; SDEs simulated with �t = 0:05:
Again we see that the (g2)�approximation does not give an essentially better result than

the (g1)� or (g10)�approximation for the same reason as in the swaption example. Regarding

the rather large systematic error of the (g)�approximation over a ten year time period, for
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the example trigger swap above we propose a direct simulation method (4.1)-(i) by using the

(g1)�approximation. On our 500 Mhz workstation a run of 100000 simulations by method (4.1)-

(i) of the (full factor) LIBOR model takes about 4 minutes and yields a tolerable Monte Carlo

error of about 0.8%, whereas a Æ�step Euler method takes about 4 times longer according to

table 5. Moreover, although the systematic error of the Æ�step Euler method is smaller than

the error of the (g1)�approximation, the later error is still much smaller than the Monte Carlo

error in this case and so the Æ�step Euler method will not give an essentially better result.

5.0.3 Callable reverse �oater

Note that particularly for products where example (4.0.4) applies the e�ciency gain of the

proposed simulation method compared with Euler stepping is quite big. A realistic example of

such a product is a T1�callable reverse �oater, which is a European call option on a reverse

�oater at T1: Generally, reverse �oaters occur in di�erent variations. As a typical example, [4],

the cash �ows may be speci�ed by CTi+1
:= ÆiLi(Ti)� Æimax(K � Li(Ti); 0); 1 � i � n� 1: By

standard �nancial pricing techniques, [2, 4, 7], it follows that the value of this product at time

t � T1 is given by

RF (t) = Bn(t)IEn

 
n�1X
i=1

CTi+1

Bn(Ti+1)
jFt

!

= B1(t)�Bn(t)�
n�1X
i=1

Bi+1(t)IEi+1[Æimax(K � Li(Ti); 0)jFt] (51)

and can be evaluated analytically in a LIBOR market model, in which Li(Ti) is log-normally

distributed under IPi+1. Hence RF (T1) may be expressed explicitly as a function of L(T1) and
it is possible to compute the price of the callable reverse �oater,

CRF (t) := Bn(t)IEn

h
RF (T1)

+

Bn(T1)
jFt

i
; (52)

by Monte Carlo simulation of L(T1) in the terminal measure. Hence (4.0.4) applies. Moreover,

for moderate maturities T1 the e�ciency gain for this product will still be large. From (51) it

is clear that this product exhibits both cap and swaption characteristics and thus can not be

priced analytically in a LIBOR market model, nor in a swap market model. More technical

details around the callable reverse �oater can be found in [10].

6 Conclusions

From tables 1-4 in section (2.2) and the examples (5.0.1) and (5.0.2) we conclude that ap-

plication of the lognormal (g)�approximation as proposed by Brace et al., [2], in the valu-

ation of long maturity derivative structures may lead to intolerable errors in the option val-

ues. In section (2) di�erent lognormal approximation are constructed, in particular, besides the

(0) and (g)�approximation we considered the (g10) (g1) and (g2)�approximation. While the

(g)�approximation is not reliable for longer maturity structures, the re�ned lognormal approx-

imations (g10) (g1) and (g2) are in most cases still acceptable in the sense that the systematic

errors in the option values caused by these approximations are well within an in practice for

over the counter options thoroughly tolerable Monte Carlo error of about 1%. In view of the

larger outliers produced by the (g2)�approximation, however, the (g1)�approximations seems

to be the best candidate in practice and its implementation according to one of the simulation

strategies outlined in section (4.1) turns out to be very e�cient compared to standard simulation
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of the log�LIBOR SDEs with time steps Æ; 2Æ or 3Æ: Moreover, the e�ciency gain becomes really

tremendous when the proposed simulation method is applied to products which �t into (4.0.4),

for instance, the callable reverse �oater. Then, for practical purposes we suggest the implementa-

tion of a path comparison method as described in section (2.2) as a measuring instrument which

helps to decide in a particular situation whether a certain lognormal approximation is acceptable

or not. Finally, it should be noted that smile e�ects are not taken into account in this paper

and the extension of the methods presented in this paper to extended LIBOR market models as

studied by Andersen, Andreasen, [1], in order to incorporate volatility skews, would be a next

interesting research issue.
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