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Abstract

Given a Lévy process (Lt)t≥0 and an independent nondecreasing process (time change)
(T (t))t≥0, we consider the problem of statistical inference on T based on low-frequency
observations of the time-changed Lévy process LT (t). Our approach is based on the genuine
use of Mellin and Laplace transforms. We propose a consistent estimator for the density
of the increments of T in a stationary regime, derive its convergence rates and prove the
optimality of the rates. It turns out that the convergence rates heavily depend on the decay
of the Mellin transform of T . Finally, the performance of the estimator is analysed via a
Monte Carlo simulation study.

Keywords: time-changed Lévy processes, low-frequency observations, Mellin transform, Laplace
transform.

1 Introduction

Let L = (Lt)t≥0 be a one-dimensional Lévy process with a Lévy triplet (µ, σ2, ν) and let T =
(T (s))s≥0 be a non-negative, non-decreasing stochastic process independent of L with T (0) = 0.
A time-changed Lévy process Y = (Ys)s≥0 is then defined via Ys = LT (s). The process T is
usually referred to as time change. Here we consider the problem of statistical inference on
the distribution of the time change T based on low-frequency observations of the time-changed
Lévy process (Yt). Suppose that n observations of the time-changed Lévy process (Yt) at times
tj = j∆, j = 0, . . . , n, are available. If the sequence T (tj) − T (tj−1), j = 1, . . . , n, is ergodic,
strictly stationary with invariant stationary distribution p∆, then for any bounded“test function”
f,

1

n

n∑
j=1

f
(
LT (tj) − LT (tj−1)

)
a.s.−−→ Ep∆ [f(LT (∆))], n→∞.(1)

The limiting expectation in (1) is then given by

Ep∆ [f(LT (∆))] =

ˆ ∞
0
E[f(Ls)] p∆(ds).
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Taking f(z) = fu(z) = exp(iuz), u ∈ R, and using the well-known Lévy–Khintchine formula:

φ(u) := E
[
eiuLt

]
= e−tψ(u), u ∈ R, t ≥ 0

with

ψ(u) :=
1

2
σ2u2 − iµu−

ˆ
R

(
eixu − 1− ixu1{|x|≤1}(x)

)
ν(dx),

we arrive at the following representation for the characteristic function of Y∆:

E [exp (iuY∆)] =

ˆ ∞
0

exp(−tψ(u)) p∆(dt) = L[p∆](ψ(u)),(2)

where L[p∆] stands for the Laplace transform of p∆. Hence the problem of statistical inference
on p∆ is related to the problem of Laplace transform inversion based on noisy and indirect (due
to the presence of ψ) observations. The resulting statistical inverse problem is known to be
highly nonlinear and ill-posed, see [11]. Here we propose a novel and general approach for the
estimation of p∆, which is based on the genuine use of Laplace and Mellin transforms.

The problem of estimating the parameters of a discretely observed Lévy process has recently
got much attention in the literature (see, e.g., a recent monograph [4]). Time-changed Lévy
processes have been recently studied in Belomestny [3], where it is shown how to estimate the
Lévy triplet of the underlying Lévy process L from low-frequency observations of the process
(Yt) without knowledge of the time change T . The results in [3] rely on the fact that the process
L is essentially multidimensional. To the best of our knowledge, the problem of estimating the
time change T has not yet been studied in the literature except in some special cases. For
example, the case of stopped Poisson process was considered in a recent paper of Comte and
Genon-Catalot [9]. The case of the time changed Brownian motion (the so-called statistical
Skorohod embedding problem) has recently been studied in Belomestny and Schoenmakers [5].
Note that the latter problem can be transformed to a kind of deconvolution problem using
time scalability of Brownian motion. Unfortunately, such a transformation is not possible in
the case of general Lévy processes. Statistical inference for time-changed Lévy processes based
on high-frequency observations of (Yt) was the subject of many studies, see, e.g. Bull, [8] and
Todorov and Tauchen, [17] and the references therein. Although the problem of estimating the
density of T from discrete (low-frequency) observations of the corresponding time-changed Lévy
process Y is related to the problem of non-parametric mixture estimation (see, e.g. Zhang [19]
for continuous case or Roueff and Rydén [16] for discrete mixtures), it does not, in general, fit
into the existing literature on this topic for several reasons. First, the mixtures encountered here
are not, in general, of mean-variance type and therefore can not be handled by an application
of one single transform (Fourier or Mellin). Next we have to consider complex-valued functions
of complex arguments. Last but not least, the observations are not i.i.d. and so the standard
techniques of non-parametric statistics based on the independence assumption would fail here.

The paper is organised as follows. In Section 2 we recall the definition and the basic prop-
erties of Mellin transforms. Section 3 describes the construction of our estimator for p∆. The
convergence of the estimator is studied in Section 4. In particular, we prove upper and lower
bounds on the expected pointwise risk. Numerical examples are presented in Section 5.1, which
also contains some discussion on adaptive choice of tuning parameters.
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2 Mellin transform

Our approach towards estimating the density of the stationary distribution p∆ makes use of the
Mellin transform technique. In this section we introduce the Mellin transform and discuss its
main properties.

Definition 2.1. Let ξ be a non-negative random variable with a probability density pξ, then
the Mellin transform of pξ is defined via

(3) M[pξ](z) := E[ξz−1] =

ˆ ∞
0

pξ(x)xz−1 dx

for all z ∈ Sξ with Sξ :=
{
z ∈ C : E[ξRez−1] <∞

}
.

Discussion Since pξ is a density, it is integrable and so at least {z ∈ C : Re(z) = 1} ⊂ Sξ.
Under mild assumptions on the growth of pξ near the origin, one obtains

{z ∈ C : 0 ≤ aξ < Re(z) < bξ} ⊂ Sξ
for some 0 ≤ aξ < 1 ≤ bξ. Then the Mellin transform (3) exists and is analytic in the strip
aξ < Re z < bξ. For example, if pξ is essentially bounded in a right-hand neighborhood of zero,
we may take aξ = 0. More generally, if pξ satisfies

pξ(x) =

{
O(x−aξ), x→ +0,

O(x−bξ), x→ +∞,
(4)

for some aξ < bξ, then the Mellin transformM[pξ](z) is a holomorphic function of z in the strip
aξ < Re(z) < bξ. The role of Mellin transform in probability theory is mainly related to the
product of independent random variables: for any two independent r. v. ξ1 and ξ2, we have

E[(ξ1ξ2)z−1] = E[ξz−1
1 ] · E[ξz−1

2 ], z ∈ Sξ1 ∩ Sξ2 .

The inversion formula for (3) follows directly from the corresponding formula for the bilateral
Laplace transform and is of the form:

pξ(x) =
1

2πi

ˆ γ+i∞

γ−i∞
M[pξ](s)x

−s ds, aξ < γ < bξ(5)

at all points x ≥ 0 where pξ(x) is continuous. Note that although the r.h.s. of (5) formally
doesn’t depend on γ, the choice of γ may be important for numerical evaluation of the integral.
A fundamental result in Mellin transform theory is the so-called Parseval formula. Suppose the
functions f(x) and g(x) are such that the integralˆ ∞

0
f(x)g(x) dx

exists. Assume that the Mellin transformsM[f ] andM[g] are both analytical in a strip S, then
ˆ ∞

0
f(x)g(x) dx =

1

2πi

ˆ c+i∞

c−i∞
M[f ](1− s)M[g](s) ds,(6)

provided that there exists c such that {Re(z) = c} ∈ S,M[f ](1− c− i·) ∈ L1(R) and xc−1g(x) ∈
L1(R+). Let us now discuss some results on the asymptotic behaviour ofM[pξ](z). The behaviour
of M[pξ](z) in the strip of analyticity is given by the following lemma.
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Lemma 2.2. For aξ < Re(z) < bξ, we have

M[pξ](z)→ 0, Im(z)→ ±∞.

This result is readily established by application of the Riemann-Lebesgue lemma. More
precise statements about the rate of decay ofM[pξ](z) in the strip aξ < Re(z) < bξ can be made
with additional information on the behaviour of the density pξ, see, e.g., [6].

3 Construction of estimator

Define a curve in C

(7) ` :=
{
Re(ψ(u)) + i Im(ψ(u)), u ∈ R+

}
,

where ψ(u) = − log(E(exp(iuL1))) and log function is the continuous principal branch of the
complex logarithm. Our approach to reconstruct the density p∆ from discrete time observations
of the process Y is based on the following simple identity (cf. (2))

F [pY∆
](λ) = E[exp(iλLT (∆))] = L[p∆](ψ(λ))(8)

where F [pY∆
] stands for the Fourier transform of pY∆

and

L[p∆](u) :=

ˆ ∞
0

e−usp∆(s) ds.

Since the Laplace transform L[p∆](u) is analytic in the domain
{
Re(u) > 0

}
, the function

M[L[p∆]](z) =

ˆ ∞
0

uz−1L[p∆](u) du

is well defined for z ∈ C with 0 < Re(z) < 1. The reason to consider the quantity M[L[p∆]](z)
lies in the following relation

M[L[p∆]](z) =

ˆ ∞
0
M[e−· s](z) p∆(s) ds

= Γ(z)

ˆ ∞
0

s−zp∆(s) ds

=M[p∆](1− z)Γ(z), 0 < Re(z) < 1,(9)

which relates the Mellin transform of p∆ to the quantity M[L[p∆]](z). On the other hand,
the identity (8) implies that M[L[p∆]](z) can be connected to the Fourier transform of pY∆

, if
the contour integral

´
`w

z−1L[p∆](w)dw with ` defined in (7), can be connected to the integral´∞
0 uz−1L[p∆](u)du. The latter connection can be readily established via the well known integral

Cauchy theorem. Indeed, under some rather weak assumptions, the difference of the above two
contour integrals will be zero by the Cauchy theorem (see Figure 1). The next proposition makes
this heuristic explanation more precise.
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Re(ψ(u)) + iIm(ψ(u))

Figure 1: The contour ` in the case of a Lévy process L with parameters µ = 0, σ2 = 1 and
ν(dx) = 10√

2π
e−x

2/2.

Proposition 3.1. Let us assume that
´
|x|>1 |x|ν(dx) <∞, Re(ψ(u)) > 0 for u > 0, Re(ψ(u))→

∞ as u→∞, and

(10)
|Im(ψ(u))|
Re(ψ(u))

< A <∞

for all u > 1 and some A > 0. Moreover, let p∆ be (essentially) bounded. Then, for 0 < Re z < 1
it holds that

M[L[p∆]](z) =

ˆ ∞
0

uz−1L[p∆](u)du

= lim
δ↘0

ˆ ∞
δ

[ψ(u)]z−1 L[p∆](ψ(u))ψ′(u) du(11)

= lim
δ↘0

ˆ ∞
δ

[
ψ(u)

]z−1
L[p∆](ψ(u))ψ′(u) du,(12)

where wz−1 := w−1 exp [z logw] with logw denoting the principal branch of the logarithm defined
on Rew > 0.

Remark 3.2. Note that if σ2 > 0, then the condition Re(ψ(u)) → ∞, |u| → ∞ holds true.
If σ = 0 and ν(]x,+∞[) = C/xγ + o(x−γ), x → +0 for some C > 0 and γ ∈ (0, 2), then
Re(ψ(u))→∞, |u| → ∞, too. Due to the identity

|Im(ψ(u))|
Re(ψ(u))

=

∣∣µu+
´
R(sin(xu)− xu1{|x|≤1}(x)) ν(dx)

∣∣
σ2u2/2−

´
R
(

cos(xu)− 1
)
ν(dx)

,
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the condition (10) is fulfilled if, for example, the diffusion part of L is nonzero (σ > 0) or if ψ is
real. The latter property of ψ always holds in the case of µ = 0 and symmetric Lévy measures
ν.

Under the assumptions of Proposition 3.1, we may write

M[L[p∆]](z) =

ˆ ∞
0

[ψ(λ)]z−1 L[p∆](ψ(λ))ψ′(λ)dλ,

where L[p∆](ψ(λ)) = F [pY∆
](λ) due to (8). Hence we deduce from (9)

(13) M[p∆](z) =
M[L[p∆]](1− z)

Γ(1− z)
=

´∞
0 [ψ(λ)]−z F [pY∆

](λ)ψ′(λ)dλ

Γ(1− z)
, 0 < Re(z) < 1.

In principle, one can now replace the Fourier transform of pY∆
in (13) by its empirical counterpart

based on low-frequency observations of Y . However, in this case we need to regularize the
resulting estimate of M[p∆](z) to perform the inverse Mellin transform. Suppose that

(14) Im(ψ(λ)) ≥ 0 or Im(ψ(λ)) ≤ 0 for all λ > 0.

Consider the following regularised approximation for M[L[p∆]] :

(15) Mn[L[p∆]](z) :=
1

n

n∑
k=1

Φn(1− z, Ytk − Ytk−1
),

where

(16) Φn(z, y) :=


´ An

0 [ψ(λ)]z−1 eiλy ψ′(λ) dλ, Im(z)Im(ψ(λ)) > 0,´ An
0

[
ψ(λ)

]z−1
e−iλy ψ′(λ) dλ, otherwise

andAn →∞, n→∞. Such a definition ensures thatMn[L[p∆]](z) has the propertyMn[L[p∆]](z) =
Mn[L[p∆]](z̄), which holds for the original Mellin transform. More importantly, the function

f(z) =

[ψ(λ)]z−1 , Im(z)Im(ψ(λ)) > 0,[
ψ(λ)

]z−1
, Im(z)Im(ψ(λ)) ≤ 0,

is bounded by |ψ (λ)|Re z−1 for all z ∈ C leading to a covariance structure of the estimate
Mn[L[p∆]](z) which is bounded on any line Re(z) = const. Moreover, due to Proposition 3.1,
the estimate Mn[L[p∆]](z) is asymptotically unbiased for An → ∞. In view of the remark
below, the condition (14) is not an essential restriction.

Remark 3.3. The condition (14) can be relaxed in the following way. By continuity of Im(ψ), its
graph can be decomposed in terms of excursions from zero (cf. excursion theory for Brownian
motion). That is, there exist countable, open and disjoint intervals I+

k , 0 ≤ k ≤ k+
∞ ≤ ∞,

and I−k , 0 ≤ k ≤ k−∞ ≤ ∞, such that the positive excursions of Im(ψ(u)) are supported on I+
k ,

(i.e., Im(ψ(u)) > 0 on each I+
k ) the negative excursions of Im(ψ(u)) are supported by I−k (i.e.,

Im(ψ(u)) < 0 on each I−k ) and Im(ψ(u)) = 0 on

(17) R≥0�
k+
∞⋃

k=1

I+
k ∪

k−∞⋃
k=1

I−k .
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Then by Proposition 3.1, the Cauchy theorem and smoothness of ψ (ψ is smooth due to´
|x|>1 |x|ν(dx) <∞), we get

M[L[p∆]](z) =

ˆ
R+�∪

k−∞
k=1I

−
k

[ψ(u)]z−1 L[p∆](ψ(u))ψ′(u) du

+

k−∞∑
k=1

ˆ
I−k

[
ψ(u)

]z−1
L[p∆](ψ(u))ψ′(u) du

=

ˆ
R+�∪

k+
∞
k=1I

+
k

[ψ(u)]z−1 L[p∆](ψ(u))ψ′(u) du

+

k+
∞∑

k=1

ˆ
I+
k

[
ψ(u)

]z−1
L[p∆](ψ(u))ψ′(u) du.

Therefore, instead of (16), we can take

Φn(z, y) :=

ˆ
R+∩[0,An]�∪k

−
∞
k=1I

−
k

[ψ(u)]z−1 eiuyψ′(u) du

+

k−∞∑
k=1

ˆ
I−k ∩[0,An]

[
ψ(u)

]z−1
e−iuyψ′(u) du, if Im z ≥ 0,

and

Φn(z, y) :=

k+
∞∑

k=1

ˆ
I+
k ∩[0,An]

[
ψ(u)

]z−1
e−iuyψ′(u) du

+

ˆ
R+∩[0,An]�∪k

+
∞
k=1I

+
k

[ψ(u)]z−1 eiuyψ′(u) du, if Im z < 0,

in the estimator (15).

By using a regularised version of the inversion formula (5), we define in view of (13),

pn,γ(x) :=
1

2π

ˆ Un

−Un

Mn[L[p∆]](1− γ − iv)

Γ(1− γ − iv)
x−γ−iv dv(18)

=
1

2π n

n∑
k=1

ˆ Un

−Un

Φn(1− γ − iv, Ytk − Ytk−1
)

Γ(1− γ − iv)
x−γ−iv dv for 0 < γ < 1,

where Un, An → ∞ in a suitable way as n → ∞. Note that in many cases the function Φn can
be found in closed form. For example, consider the case of a subordinated stable Lévy process
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with ψ(λ) = |λ|α and 1 < α < 2. It then holds for Re(z) > 0,

Φn(z, x) =

ˆ An

0
[ψ(λ)]z−1 eixλψ′(λ)dλ

= α

ˆ An

0
λα(z−1)eixλλα−1 dλ

= α

ˆ An

0
λαz−1eixλdλ

=
Aαzn
z
F1(αz; 1 + αz; iAnx),

where F1 is Kummer’s function. In the next section we shall prove that the estimate pn,γ(x)
converges to p∆(x) and derive the corresponding convergence rates.

4 Convergence

In this section we analyse the convergence properties of the density estimator pn,γ(x). Through-
out the section we make the following assumption.

(ATS) The sequence Tk := T (k∆)− T ((k− 1) ∆), k ∈ N, is strictly stationary, α-mixing with
mixing coefficients (αT (j))j∈N satisfying

(19)

∞∑
j=0

αT (j) <∞.

(ATM) The stationary distribution of the sequence Tk := T (k∆) − T ((k − 1) ∆), k ∈ N,
possesses a density p∆, which is essentially bounded and fulfils

ˆ ∞
0

u p∆(u) du <∞.

Now we are prepared to derive the minimax upper bounds for the expected pointwise risk of
the estimate pn,γ(x).

4.1 Upper bounds

For any β > 0, ρ > 0, 0 < γ◦ < γ◦ and L > 0 introduce two classes of probability densities

C(β, γ◦, γ◦, L) :=

{
f : f ∈ P, sup

γ◦≤c≤γ◦

ˆ ∞
−∞
|M[f ](c+ iv)| eβ|v| dv ≤ L

}
and

D(ρ, γ◦, γ
◦, L) :=

{
f : f ∈ P, sup

γ◦≤c≤γ◦

ˆ ∞
−∞
|M[f ](c+ iv)| (1 + |v|ρ) dv ≤ L

}
,

where P stands for the class of all probability densities. While the class C(β, γ◦, γ◦, L) contains
densities with exponentially decaying Mellin transforms, the Mellin transform of densities from
D(ρ, γ◦, γ

◦, L) decays only polynomially fast. Let us turn to some examples.
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Example 4.1. Consider a class of Gamma densities

p∆(x;α) =
xα∆−1 · e−x

Γ(α∆)
, x ≥ 0, α > 0,(20)

corresponding to Gamma subordinators T (t), t ≥ 0. Since

M[p∆](z) =
Γ(z + α∆− 1)

Γ(α∆)
, Re(z) > 0,

we derive that p∆ ∈ C(β, γ◦, γ◦, L) for all 0 < β < π/2, 0 < γ◦ < γ◦ < ∞ and some
L = L(β, γ◦, γ

◦) due to the asymptotic properties of the Gamma function (see Lemma 7.3
in Appendix).

Example 4.2. Let us look at the family of densities

p∆(x; q) =
q sin(π/q)

π

1

1 + xq
, q ≥ 2, x ≥ 0.

We have

M[p∆](z) =
sin(π/q)

sin(πz/q)
, 0 < Re(z) < q.

Therefore
p∆ ∈ C(β, γ◦, γ◦, L)

for all 0 < β < π/q, 0 < γ◦ < γ◦ <∞ and some L = L(β, γ◦, γ
◦).

Theorem 4.3. Suppose that σ2 > 0,
´
{|x|>1} |x|ν(dx) < ∞ and (19) holds. Furthermore,

suppose that there are two numbers γ◦, γ
◦ with 0 < γ◦ < γ◦ ≤ 1 such that p∆ ∈ C(β, γ◦, γ◦, L)

for some β > 0. Then under the choice

(21) An = n1/4, Un =
γ◦

2β + π
log n− 2γ◦ − 1

2β + π
log logn,

we get for the estimator pn,γ in (18) with γ = γ◦

(22) sup
x≥0

√
E
[
w(x) |pn,γ(x)− p∆(x)|2

]
. n

− βγ◦
2β+π log

β 2γ◦−1
2β+π n, n→∞,

where w(x) := min{1, x2} and the notation . means that the above inequality is valid up to a
multiplicative constant that does not depend on the unknown density.

Corollary 4.4. Under conditions of Theorem 4.3,

(23) sup
p∆∈C(β,γ◦,γ◦,L)

sup
x≥0

√
E
[
w(x) |pn,γ(x)− p∆(x)|2

]
. n

− βγ◦
2β+π log

β 2γ◦−1
2β+π n, n→∞.

In the case p∆ ∈ D(ρ, γ◦, γ
◦, L), we get logarithmic rates.
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Theorem 4.5. Suppose that σ2 > 0,
´
{|x|>1} |x|ν(dx) < ∞ and (19) holds. Suppose that

p∆ ∈ D(ρ, γ◦, γ
◦, L) for some ρ > 0 and 0 < γ◦ < γ◦ ≤ 1. Then under the choice

(24) An = n1/4, Un =
γ

π
log n− 2

π
(ρ+ γ◦ − 1/2) log log n,

we get for the estimator pn,γ in (18) with γ = γ◦,

sup
x≥0

√
E
[
w(x) |pn,γ(x)− p∆(x)|2

]
. log−ρ(n), n→∞,

where w(x) := min{1, x2} and the notation . means that the above inequality is valid up to a
multiplicative constant that does not depend on the unknown density.

Corollary 4.6. Under conditions of Theorem 4.5,

(25) sup
p∆∈D(ρ,γ◦,γ◦,L)

sup
x≥0

√
E
[
w(x) |pn,γ(x)− p∆(x)|2

]
. log−ρ(n), n→∞.

Discussion

• Due to the relation

M[p∆](γ + iv) = F [eγ·p∆(e·)](v), a∆ < γ < b∆,

the conditions p∆ ∈ C(β, γ◦, γ◦, L) and p∆ ∈ D(ρ, γ◦, γ
◦, L) are closely related to the

smoothness properties of the function eγ
◦xp∆(ex). For example, if p∆ ∈ C(β, γ◦, γ◦, L),

then ˆ ∞
−∞

∣∣∣F [eγ
◦·p∆(e·)](v)

∣∣∣ eβ|v| dv ≤ L
and the function eγ

◦xp∆(ex) is called supersmooth in this case, see Meister [14] for a
discussion on different smoothness classes in the context of the additive deconvolution
problems.

4.2 Lower bounds

Now let us turn to the question of optimality of the rates in Theorem 4.3 and Theorem 4.5. It
turns out that the above rates are already optimal (up to a logarithmic factor and for γ◦ = 1 in
Theorem 4.3) in minimax sense for the case of time-changed Brownian motions and i.i.d obser-
vations (see Belomestny and Schoenmakers [5], where the lower bounds were already announced
without proof). This entails the optimality for a larger class of time-changed Lévy processes
and dependent observations.

Theorem 4.7. Fix some β > 1. There are ε > 0 and x > 0 such that

lim inf
n→∞

inf
pn

sup
p∆∈C(β,γ◦,1,L)

P⊗np∆

(
|p∆(x)− pn(x)| ≥ ε n−

β
π+2β log−κ(n)

)
> 0,

lim inf
n→∞

inf
pn

sup
p∆∈D(ρ,γ◦,γ◦,L)

P⊗np∆

(
|p∆(x)− pn(x)| ≥ ε log−ρ(n)

)
> 0,
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for some κ > 0, 0 < γ◦ < γ◦ ≤ 1, where the infimum is taken over all estimators (i.e. all
measurable functions of X1, . . . , Xn) of p∆ and P⊗np∆

is the distribution of the i.i.d. sample
X1, . . . , Xn with X1 ∼ WT , where W is a Brownian motion and T is a independent random
variable with distribution p∆.

5 Numerical example

5.1 Gamma subordinator

We focus our numerical analysis on time-changed Brownian motion with drift, i.e., we consider
the process Y of the form Yt = Tt +WTt , t ≥ 0, where (Tt) is chosen to follow a Gamma process
with marginal densities

p∆(x) =
x2 t−1 · e−x

Γ(2 t)
, x ≥ 0, t ≥ 0.(26)

We fix ∆ = 1 and generate a time series Y0, Y∆, . . . , Yn∆ from Y of the length n. The estimate
(18) is constructed as follows. First note that ψ(λ) = −iλ + λ2/2. In order to numerically
compute the function Φn(1− z,Xk) for z = γ + iv with γ < 1, we use the decomposition

1

n

n∑
k=1

Φn(1− z, Y∆k − Y∆(k−1)) =

ˆ An

0
[ψ(λ)]−z [φn(λ)− e−mnψ(λ)]ψ′(λ) dλ(27)

+mz−1
n Γ(1− z) +O

(
m−(1−γ)
n exp(−mnA

2
n/2)

)
,

where φn(λ) = 1
n

∑n
k=1 e

iλ(Y∆k−Y∆(k−1)) is the empirical characteristic function and

mn =
1

n

n∑
k=1

(Y∆k − Y∆(k−1))→ 2.

This decomposition follows from a Cauchy argument similar to one used in the proof of Propo-
sition 3.1 and is quite useful to reduce the cost of computing the integral in (27), since the
integral on the r.h.s. of (27) is much easier to compute numerically due to the asymptotic re-
lation φn(λ) − e−mnψ(λ) = O(λ2), λ → 0. Next we take γ = 0.7 and compute the estimate pn,γ
for n = 10000 and different values of the cut-off parameter Un ( An is fixed by the asymptotic
formula (21)). On the left-hand side of Figure 3, the loss supx∈[0,10]

{
|pn,γ(x)− p∆(x)|

}
is shown

as function of Un with the minimum attained for Un ≈ 2.2.
As can be seen from Figure 3, the choice of the cut-off parameter Un is crucial for a good

performance of the estimate pn,γ and a data-driven choice of Un would be desirable. To this
end, we adopt the so called “quasi-optimality” approach proposed in [2]. This approach is
aimed to perform a model selection in inverse problems without taking into account the noise
level. Although one can prove the optimality of this criterion on average only, it leads in many
situations to quite reasonable results. In order to implement the “quasi-optimality” algorithm
in our situation, we first fix a sequence of bandwidths U1, . . . , UL and construct the estimates

p
(1)
n , . . . , p

(L)
n using the formula (18) with cut-off parameters U1, . . . , UL, respectively. Then one

finds l? = argminl f(l) with

f(l) := ‖p(l+1)
n − p(l)

n ‖L1([0,10]), l = 1, . . . , L.

11



Denote by p̃n = p
(l?)
n a new adaptive estimate for p∆. In our implementation of the “quasi-

optimality” approach we take Ul = 0.1× l, l = 1, . . . , 40. On the right-hand side of Figure 3 one
can see the objective function f(l) and the location of its minimum (Ul ≈ 1.8).
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Figure 2: Left: the loss supx∈[0,10]

{
|pn,γ(x)− p∆(x)|

}
as a function of the cut-off parameter Un.

Right: the objective function f used in the adaptive “quasi-optimality” algorithm.

In order to assess the finite sample performance of the “quasi-optimality” algorithm, we
conduct 100 runs of the estimation algorithm for different sample sizes with the optimal (ora-
cle) choice of Un, which minimises the loss supx∈[0,10]

{
|pn,γ(x) − p∆(x)|

}
. The results in form

of box plots of the loss are shown on the l.h.s. of Figure 3. Then we repeat 100 runs
and use the data-driven procedure described above to choose the cut-off parameter Un, n ∈
{1000, 5000, 10000, 50000}. The corresponding box-plots of the loss are shown on the r.h.s. of
Figure 3. By comparing these two graphs, we conclude that the performance of the “quasi-
optimality” algorithm is quite reasonable in our situation.

5.2 Integrated CIR process

Another candidate for the time change process is given by the integrated Cox-Ingersoll-Ross
(CIR) process. The CIR process is defined as a solution of the following SDE:

dZt = (a− bZt)dt+ ζ
√
Zt dWt,(28)

where a, b and ζ are positive numbers, and Wt is a Wiener process. If Z0 is sampled from the
stationary invariant distribution π and 2a ≥ ζ2, then Zt is strictly stationary and ergodic. The
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Figure 3: Left: box plots of the loss supx∈[0,10]

{
|pn,γ(x)−p∆(x)|

}
for different sample sizes under

the oracle choice of the cut-off parameter Un. Right: box plots of the loss supx∈[0,10]

{
|pn,γ(x)−

p∆(x)|
}

for different sample sizes under adaptive choice of the cut-off parameter Un.

time change process T (s) is then defined as

T (s) =

ˆ s

0
Zt dt.

The Laplace transform of T (∆) under π is given by

LICIR∆ (u) = Eπ
[
E
[
e−uT (∆)|Z0

]]
=

exp
{
ab∆/ζ2

}(
cosh(Λ∆/2) + b

Λ sinh(Λ∆/2)
)2a/ζ2 Eπ

[
exp

{
−2Z0u

b+ Λ coth(Λ∆/2)

}]
,(29)

where Λ(u) =
√
b2 + 2ζ2u, see Chapter 15.1.2 from Cont and Tankov, [10]. Since the stationary

distribution of the CIR process is the Gamma distribution with parameters 2a/ζ2 and 2b/ζ2,
the Laplace transform of Z0 under π has a form

Eπ
[
e−hZ0

]
=

(
1 + h

ζ2

2b

)−2a/ζ2

,

and therefore

Eπ
[
exp

{
−2Z0u

b+ Λ coth(Λ∆/2)

}]
=

(
1 +B1(Λ)

ζ2

b

u

Λ

)−2a/ζ2

,(30)

where B1(Λ) =
(
b/Λ + coth(Λ∆/2)

)−1
→ 1 as Λ→∞. Using an inverse Fourier transform, we

obtain the corresponding probability density function of the integrated CIR process as

p∆(x) =
1

π

ˆ ∞
0

Re[e−iuxLICIR∆ (−iu)] du.(31)
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We apply the adaptive Gauss-Lobatto quadrature to compute p∆(x) numerically via (31). The
following set of parameters was used

ζ2 = 0.5, a = 0.5, b = 0.25.

We fix ∆ = 1 and generate a time series Y0, Y∆, . . . , Yn∆ from the process Yt = Tt +WTt , t ≥ 0
of the length n, where for simulation of the time change (Tt) on the time grid ∆, 2∆, . . . , n∆ via
the (28) the Milstein scheme with time step 0.001 is used. Next we take γ = 0.5 and compute
the estimate pn,γ as described in the previous section. In the Figure 4 the box plots of the error
supx∈[0,10]

{
|pn,γ(x)− p∆(x)|

}
based on 100 runs are shown for different values of n.
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Figure 4: Left: box plots of the loss supx∈[0,10]

{
|pn,γ(x)−p∆(x)|

}
for different sample sizes under

the oracle choice of the cut-off parameter Un.
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6 Proofs

6.1 Proof of Proposition 3.1

First note that the condition
´
|x|>1 |x|ν(dx) < ∞ ensures that ψ(u) is smooth. It is enough

to prove (11), (12) goes analogously. Let θmax be such that A = tan θmax. Take an arbitrary
U > 1 and let ψ(U) = RU e

iθU . Assume w.l.o.g. that θU > 0, hence by assumption (10), 0 <
θU ≤ θmax < π/2. For fixed 0 < Re z < 1 the map

w → wz−1L[p∆](w)

is holomorphic in the region Rew > 0. Note that for Rew > 0 it holds that

(32)
∣∣wz−1

∣∣ = |w|−1 |w|Re z e− Im z argw ≤ |w|Re z−1 eπ|Im z|/2 =: Cz |w|Re z−1 .

At the arc KU : w = RU e
iθ, 0 ≤ θ ≤ θU , it then holds that

|IU | :=
∣∣∣∣ˆ
KU

wz−1L[p∆](w)dw

∣∣∣∣ ≤ CzRUθmax ·RRe z−1
U

ˆ
e−xRU cos θmaxp∆(x)dx

≤ CzBθmaxR
Re z
U

ˆ
e−xRU cos θmaxdx

= CzBθmax
RRe z−1
U

cos θmax
,

with supx>0 p∆(x) := B. So when U →∞, we have RU ≥ Re (ψ(U))→∞, and then by Re z < 1,
IU → 0. Now let Kδ denote the arc between |ψ(δ)| and ψ(δ) parametrized by w = |ψ(δ)| eit .
For Rew ≥ 0, we have that

|L[p∆](w)| ≤
ˆ ∞

0
e−xRewp∆(x)dx ≤ 1.

Therefore we have for δ ↓ 0 by (32),

|Iδ| :=
∣∣∣∣ˆ
Kδ

wz−1L[p∆](w)dw

∣∣∣∣ ≤ Cz |ψ(δ)|Re z−1 |ψ(δ)|π/2 = Cz |ψ(δ)|Re z π/2.

Since ψ(δ) → 0 for δ ↓ 0 it thus holds by Re z > 0 that Iδ → 0 for δ ↓ 0. Now by Cauchy’s
theorem we so have for any δ > 0, U > 1,

ˆ U

δ
(ψ(u))z−1 L[p∆](ψ(u))ψ′(u)du− IU −

ˆ RU

|ψ(δ)|
uz−1L[p∆](u)du+ Iδ = 0

and the theorem is proved by sending U →∞ and δ ↓ 0, respectively.

6.2 Proof of Theorem 4.7

Our construction relies on the following basic result (see [18] for the proof).
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Theorem 6.1. Suppose that for some ε > 0 and n ∈ N there are two densities p0,n, p1,n ∈ G
such that

d(p0,n, p1,n) > 2εvn.

If the observations in model n follow the product law Pp,n = P⊗np under the density p ∈ G and

χ2(p1,n | p0,n) ≤ n−1 log(1 + (2− 4δ)2)

holds for some δ ∈ (0, 1/2), then the following lower bound holds for all density estimators p̂n
based on observations from model n:

inf
p̂n

sup
p∈G

P⊗np
(
d(p̂n, p) ≥ εvn

)
≥ δ.

If the above holds for fixed ε, δ > 0 and all n ∈ N, then the optimal rate of convergence in a
minimax sense over G is not faster than vn.

6.2.1 Proof of a lower bound for the class C(β, γ◦, γ◦, L)

Let us start with the construction of the densities p0,n and p1,n. Define for any ν > 1 and M > 0
two auxiliary functions

q(x) =
ν sin(π/ν)

π

1

1 + xν
, x ≥ 0

and

ρM (x) =
1√
2π
e−

log2(x)
2

sin(M log(x))

x
, x ≥ 0.

The properties of the functions q and ρM are collected in the following lemma.

Lemma 6.2. The function q is a probability density on R+ with the Mellin transform

M[q](z) =
sin(π/ν)

sin(πz/ν)
, 0 < Re[z] < ν.

The Mellin transform of the function ρM is given by

M[ρM ](u+ iv) =
1

2i

[
e(u+i(v+M))2/2 − e(u+i(v−M))2/2

]
,(33)

hence ˆ ∞
0

ρM (x)dx =M[ρM ](1) = 0.

Proof. The formula for M[q](z) can be found in [15]. We have

M[ρM ](z) =
1√
2π

ˆ ∞
0

e−
log2(x)

2 sin(M log(x))xzd log(x)

=
1√
2π

ˆ ∞
−∞

e−
y2

2 sin(My)eyzdy

=
1√
2π

ˆ ∞
−∞

e−
y2

2

[
ey(z+iM) − ey(z−iM)

2i

]
dy

=
e(z+iM)2/2 − e(z−iM)2/2

2i
.
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Set now for any M > 0 and some δ > 0,

q0,M (x) := q(x), q1,M (x) := q(x) + δ(q ∨ ρM )(x),

where f ∨ g stands for the multiplicative convolution of two functions f and g on R+ defined as

(f ∨ g)(x) :=

ˆ ∞
0

f(t)g(x/t)

t
dt, x ≥ 0.(34)

The following lemma describes some properties of q0,M and q1,M .

Lemma 6.3. For any M > 0 and some δ > 0 not depending on M, the function q1,M is a
probability density satisfying

‖q0,M − q1,M‖∞ = sup
x∈R+

|q0,M (x)− q1,M (x)| & exp(−Mπ/ν), M →∞.

Moreover, q0,M and q1,M are in C(β, γ◦, γ◦, L) for all 0 < β < π/ν and γ◦ > γ◦ > 0 with L
depending on γ◦ and γ◦.

Proof. It holds with cν := ν sin(π/ν)
π ,

|(q ∨ ρM )(y)| ≤ cν

ˆ ∞
0

1√
2π
e−

log2(x)
2

1

x2

1

1 + (y/x)ν
dx

= cν

ˆ 1

0

1√
2π
e−

log2(x)
2

1

x2

1

1 + (y/x)ν
dx

+cν

ˆ ∞
1

1√
2π
e−

log2(x)
2

1

x2

1

1 + (y/x)ν
dx

=: cνI1 + cνI2,

where

I1 ≤
1√
2π

1

1 + yν

ˆ ∞
0

e−
(y−1)2

2
+ 1

2dy ≤ e1/2

1 + yν

and

I2 ≤
1√
2πy

ˆ 1

0
e−

log2(y/z)
2

1

1 + zν
dz ≤ 1√

2πy
e−

log2(y)
2 .

Note that for any ν > 1, there is a constant c1 = c1(ν) such that

1√
2πy

e−
log2(y)

2 ≤ c1

1 + yν
, y ≥ 0.

Hence we have with δ = 1/(
√
e+ c1),

δ |(q ∨ ρM )(y)| ≤ q(y), y ≥ 0.

Moreover
ˆ ∞

0
q1,M (x)dx = 1 +

ˆ ∞
0

(q ∨ ρM )(x) = 1 +M[q](1)M[ρM ](1) = 1.
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Furthermore, due to the Parseval identity

(q ∨ ρM )(y) =
cν√
2π

ˆ ∞
0

e−
log2(x)

2
sin(M log(x))

x2

1

1 + (y/x)ν
dx

=
cν√
2π

ˆ ∞
−∞

e−
v2

2 sin(Mv)
e−v

1 + e−ν(v−log(y))
dv

=
cνe
− log(y)

√
2π

ˆ ∞
−∞

e−
v2

2 sin(Mv)
e(log(y)−v)

1 + eν(log(y)−v)
dv

=
cνe
− log(y)

2π

ˆ ∞
−∞

e−iu log(y)

[
H(u+M)−H(u−M)

2i

]
F [R](u)du,

R(x) = ex

1+eνx and H(x) = 1√
2π
e−x

2/2. Note that

F [R](u) =

ˆ ∞
−∞

ex+iux

1 + eνx
dx =

1

ν

ˆ ∞
−∞

ev/ν+iuv/ν

1 + ev
dv =

1

ν
Γ

(
1 + iu

ν

)
Γ

(
1− 1 + iu

ν

)
,

since ˆ ∞
−∞

evz

1 + ev
dv = /y = (1 + ev)−1/ =

ˆ 1

0
(1− y)z−1y1−z−1 dy = Γ(z)Γ(1− z)

for any z with 0 < Re(z) < 1. Hence due to (57)

sup
y∈R+

|q0,M (y)− q1,M (y)| = sup
y∈R+

|(q ∨ ρM )(y)| & exp(−Mπ/ν), M →∞.

The second statement of the lemma follows from Lemma 6.2 and the fact that M[q ∨ ρM ] =
M[q]M[ρM ]. Indeed, the Mellin transformM[ρM ](u+ iv) is of order O(e−v

2/2) for |v| → ∞ and
so M[q ∨ ρM ](u+ iv) has the same order.

Let T0,M and T1,M be two random variables with densities q0,M and q1,M , respectively. Then
the density of the r.v. |WTi,M |, i = 0, 1, is given by

pi,M (x) :=
2√
2π

ˆ ∞
0

λ−1/2e−
x2

2λ qi,M (λ) dλ, i = 0, 1.

For the Mellin transform of pi,M we get

M[pi,M ](z) = E
[
|W1|z−1

]
E
[
T

(z−1)/2
i,M

]
= E

[
|W1|z−1

]
M[qi,M ]((z + 1)/2)

=
2z/2√

2π
Γ(z/2)M[qi,M ]((z + 1)/2), i = 0, 1.(35)

Lemma 6.4. The χ2-distance between the densities p0,M and p1,M fulfills

χ2(p1,M |p0,M ) =

ˆ
(p1,M (x)− p0,M (x))2

p0,M (x)
dx .Mν−1e−Mπ(1+2/ν), M →∞.
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Proof. First note that p0,M (x) > 0 on [0,∞). Since

p0,M (x) =
2√
2π

ν sin(π/ν)

π

ˆ ∞
0

λ−1/2e−
x2

2λ
1

1 + λν
dλ

/y = 1/λ/ =
2√
2π

ν sin(π/ν)

π

ˆ ∞
0

y1/2e−y
x2

2
1

y2(1 + y−ν)
dy

=
2√
2π

ν sin(π/ν)

π

ˆ ∞
0

e−y
x2

2
yν+1/2−2

(1 + yν)
dy

=
2√
2π

ν sin(π/ν)

π
Γ(ν − 1/2)x−2ν+1 +O(x−2ν), x→∞,

we have p0,M (x) & x−2ν+1, x→∞. Furthermore, due to (35), the Parseval identity (6) and the
identity M[(·)a p(·)](z) =M[p(·)](z + a), we get

(36)

ˆ ∞
0

x2ν−1 |p0,M (x)− p1,M (x)|2 dx =

2−4+2ν

π

ˆ γ+i∞

γ−i∞
M[q ∨ ρM ]

(
z + 1

2

)
Γ
(z

2

)
M[q ∨ ρM ]

(
2ν − z + 1

2

)
Γ

(
2ν − z

2

)
dz,

where M[q ∨ ρM ](z) =M[q](z)M[ρM ](z). Due to (33)

|M[ρM ](u+ iv)| ≤ e
(u−1)2

2
φ(v +M) + φ(v −M)

2
(37)

with φ(v) = e−
v2

2 . Combining (57) (see Appendix), (36) and (37), we derive

χ2(p1,M |p0,M ) =

ˆ
(p1,M (x)− p0,M (x))2

p0,M (x)
dx

.
ˆ ∞

0
(p1,M (x)− p0,M (x))2dx+

ˆ ∞
0

x2ν−1(p1,M (x)− p0,M (x))2dx

.
ˆ ∞
−∞
|v|ν−1e−|v|π/2−|v|π/ν (φ(v/2 +M) + φ(v/2−M))2 dv

. Mν−1e−Mπ(1+2/ν), M →∞.

Fix some κ ∈ (0, 1/2). Due to Lemma 6.4, the inequality

nχ2(p1,M |p0,M ) ≤ κ

holds for M large enough, provided

M =
1 + ε1

π(1 + 2/ν)
(log(n) + (ν − 1) log log(n))

for arbitrary small ε1 > 0. Hence Lemma 6.3 and Theorem 6.1 imply

inf
p̂n

sup
p∈C(β,γ◦,1,L)

Pp,n
(
‖p̂n − p‖∞ ≥ cvn

)
≥ δ(38)
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with some constants c > 0 and δ > 0, β = (1− ε2)π/ν for arbitrary small ε2 ∈ (0, 1) and

vn = exp(−Mπ/ν) = n
− π/ν

(π+2π/ν)
(1+ε1)

log
−π(ν−1)/ν
π(1+2/ν)

(1+ε1)
(n).

Hence
vn = n−(1+ε̆)β/(π+2β) log−(1+ε̆)β(ν−1)/(π+2β)(n),

where ε̆ = ε̆(ε1, ε2)→ 0 as max{ε1, ε2} → 0.

6.2.2 Proof of a lower bound for the class D(ρ, γ◦, γ
◦, L)

Define for any ν > 1 and M > 0,

q(x) = [2Γ(ν)]−1 ×

{
logν−1(1/x), 0 ≤ x ≤ 1,

x−2 logν−1(x), x > 1

and

ρM (x) =
1

2π
e−

log2(x)
2

sin(M log(x))

x log(x)
, x ≥ 0.

The properties of the functions q and ρM can be found in the next lemma.

Lemma 6.5. The function q is a probability density on R+ with Mellin transform

M[q](z) =
1

2

[
z−ν + (2− z)−ν

]
, 0 < Re[z] < 2.

The Mellin transform of the function ρM is given by

M[ρM ](u+ iv) = e
(u−1)2

2
G(u, v +M)−G(u, v −M)

2
,(39)

where G(u, v) = 1√
2π

´ v
−∞ e

−x
2

2
+ix(u−1)dx, hence

ζM :=

ˆ ∞
0

ρM (x)dx =M[ρM ](1) =
1√
2π

ˆ M

−M
e−

x2

2 dx.

Proof. We have

M[q](z) = [2Γ(ν)]−1

[ˆ 1

0
xz−1 logν−1(1/x) dx+

ˆ ∞
1

xz−1x−2 logν−1(x) dx

]
= [2Γ(ν)]−1

[ˆ ∞
0

e−yzyν−1 dy +

ˆ ∞
0

ey(z−2)yν−1 dy

]
=

z−ν + (2− z)−ν

2
.

Furthermore

M[ρM ](u+ iv) =
1

2π

ˆ ∞
0

e−
log2(x)

2
sin(M log(x))

log(x)
xu+iv−1d log(x)

=
1

2π

ˆ ∞
−∞

e−
y2

2
sin(My)

y
ey(u+iv−1) dy

=
1

2π

ˆ ∞
−∞

e−
y2

2
+y(u−1)

[
eiy(v+M) − eiy(v−M)

2iy

]
dy
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and hence

∂

∂v
M[ρM ](u+ iv) =

1√
2π

ˆ ∞
−∞

e−
y2

2
+y(u−1)

[
eiy(v+M) − eiy(v−M)

2

]
dy

=
1

2π

ˆ ∞
−∞

e−(y−u+1)2/2+(u−1)2/2

[
eiy(v+M) − eiy(v−M)

2

]
dy

=
e(u−1)2/2

√
2π

ei(u−1)(v+M)−(v+M)2/2 + ei(u−1)(v−M)−(v−M)2/2

2
.

Set now for any M > 0 and some δ > 0,

q0,M (x) := q(x), q1,M (x) := (1− δζM )q(x) + δ(q ∨ ρM )(x),

where f ∨ g is defined in (34).

Lemma 6.6. For any M > 0 and some δ > 0 not depending on M, the function q1,M is a
probability density satisfying

sup
x∈(1−%,1+%)

|q0,M (x)− q1,M (x)| = | cos(πν/2)|M−ν+1+O(M−ν), M →∞,

where % > 0 is a fixed number. Moreover, q0,M and q1,M are in D(ρ, γ◦, γ
◦, L) for all ρ < ν − 1

and γ◦, γ
◦ ∈ (0, 2).

Proof. The nonnegativity of q1,M for some δ > 0 can be proved along the same lines as in the
proof of Lemma 6.3. Next

ˆ ∞
0

q1,M (x)dx = 1 + δ

ˆ ∞
0

(q ∨ ρM )(x)− δζM = 1 + δM[ρM ](1)×M[q](1)− δζM = 1.

So q1,M is indeed a probability density. Furthermore, (q ∨ ρM )(y) = 1
2π [2Γ(ν)]−1 [I1(y) + I2(y)]

with

I1(y) =

ˆ ∞
y

e−
log2(x)

2 x−2 sin(M log(x))

log(x)
logν−1(x/y)dx

=

ˆ ∞
log(y)

e−
z2

2
−z sin(Mz)

z
(z − log(y))ν−1dz

and

I2(y) =

ˆ y

0
e−

log2(x)
2 y−2 sin(M log(x))

log(x)
logν−1(y/x)dx

=

ˆ log(y)

−∞
e−

z2

2
+zy−2 sin(Mz)

z
(log(y)− z)ν−1dz.
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By taking y = exp(A), we get for I1(y)

I1(y) =

ˆ ∞
0

e−
(z+A)2

2
−(z+A) sin(M(z +A))

z +A
zν−1dz

= cos(AM)

ˆ ∞
0

e−
(z+A)2

2
−(z+A)

z +A
sin(Mz)zν−1dz

+ sin(AM)

ˆ ∞
0

e−
(z+A)2

2
−(z+A)

z +A
cos(Mz)zν−1dz.

The well known Erdélyi lemma (see Appendix) implies

ˆ ∞
0

e−
(z+A)2

2
−(z+A)

z +A
sin(Mz)zν−1dz =

e−
A2

2
−A

A
Γ(ν) sin(πν/2)M−ν +O(M−1−ν), M →∞

and

ˆ ∞
0

e−
(z+A)2

2
−(z+A)

z +A
cos(Mz)zν−1dz =

e−
A2

2
−A

A
Γ(ν) cos(πν/2)M−ν +O(M−1−ν), M →∞,

since the function z 7→ e−
(z+A)2

2α −(z+A)

z+A is infinitely smooth with all derivatives vanishing at
infinity. Hence

I1(eA) =
e−

A2

2
−A

A
Γ(ν) sin(AM + πν/2)M−ν +O(M−1−ν), M →∞.(40)

Analogously

I2(eA) = e−2A

ˆ A

−∞
e−

z2

2
+z sin(Mz)

z
(A− z)ν−1dz

= e−2A

ˆ ∞
0

e−
(A−z)2

2
+A−z sin(M(A− z))

A− z
zν−1dz

= e−2A sin(AM)

ˆ ∞
0

e−
(A−z)2

2
+A−z cos(Mz)

A− z
zν−1dz

−e−2A cos(AM)

ˆ ∞
0

e−
(A−z)2

2
+A−z sin(Mz)

A− z
zν−1dz

=
e−

A2

2
−A

A
Γ(ν) sin(AM − πν/2)M−ν +O(M−1−ν).

Combining the previous estimates, we arrive at

I2(eA) + I1(eA) = 2
e−

A2

2
−A

A
Γ(ν) sin(AM) cos(πν/2)M−ν +O(M−1−ν).

It remains to note that the maximum of the main term in (40) is attained forA ∈ {π/2M, 3π/2M}
and

sup
A∈{π/2M,3π/2M}

[I2(eA) + I1(eA)] = Γ(ν)| cos(πν/2)|M−ν+1 +O(M−ν).
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The property q1,M ∈ D(ρ, γ◦, γ
◦, L) for all ρ < ν − 1 and γ◦, γ

◦ ∈ (0, 2) with L depending on
γ◦ and γ◦ follows from the identity M[q1,M ](z) =M[q](z)(1 − δζM ) + δM[ρM ](z)M[q](z) and
(39).

Let T0,M and T1,M be two random variables with densities q0,M and q1,M respectively. The
density of the r.v. |WTi,M |, i = 0, 1, is given by

pi,M (x) :=
2√
2π

ˆ ∞
0

λ−1/2e−
x2

2λ qi,M (λ)dλ, i = 0, 1.

For the Mellin transform of pi,M , we have

M[pi,M ](z) = E
[
|W1|z−1

]
E
[
T

(z−1)/2
i,M

]
= E

[
|W1|z−1

]
M[qi,M ]((z + 1)/2)

=
2z/2√

2π
Γ(z/2)M[qi,M ]((z + 1)/2).(41)

Lemma 6.7. The χ2-distance between the densities p0,M and p1,M satisfies

χ2(p1,M |p0,M ) :=

ˆ
(p1,M (x)− p0,M (x))2

p0,M (x)
dx . e−Mπ/2, M →∞.

Proof. First note that p0,M (x) > 0 on [0,∞). Since

ˆ 1

0
λ−1/2e−

x2

2λ logν−1(1/λ)dλ =

ˆ 1

0
λ−1/2e−

x2

2λ logν−1(1/λ)dλ

/y = 1/λ, λ = 1/y/ =

ˆ ∞
1

y−3/2e−x
2y/2 logν−1(y)dy

=

ˆ ∞
x2

x−2(y/x2)−3/2e−y/2 logν−1(y/x2)dy

= x

ˆ ∞
x2

y−3/2e−y/2 logν−1(y/x2)dy . e−x
2/2

and

ˆ ∞
1

λ−3/2e−
x2

2λ logν−1(λ)dλ =

ˆ 1

0
y−1/2e−

x2

2
y logν−1(1/y)dy

=
Γ(1/2)√

2
x−1 logν−1(x2) +O(1/x),

we have p0,M (x) & x−1, x→∞. Furthermore, due to (41) and the Parseval identity (6),

(42)

ˆ ∞
0

xa−1 |p0,M (x)− p1,M (x)|2 dx =

2−4+a

π

ˆ γ+i∞

γ−i∞
M[q ∨ ρM ]

(
z + 1

2

)
Γ
(z

2

)
M[q ∨ ρM ]

(
a− z + 1

2

)
Γ

(
a− z

2

)
dz,
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where M[q ∨ ρM ](z) =M[q](z)M[ρM ](z). Due to (39),

|M[ρM ](u+ iv)| ≤ e
(u−1)2

2
Φ(v +M) + Φ(v −M)

2
(43)

with Φ(v) =
´ v
−∞ e

−x
2

2 dx. Combining (42) with properly chosen γ > 0, (43) and Lemma 7.3
(see Appendix), we derive

χ2(p1|p0) =

ˆ
(p1(x)− p0(x))2

p0(x)
dx .

ˆ ∞
0

(p1(x)− p0(x))2dx+

ˆ ∞
0

x(p1(x)− p0(x))2dx

.
ˆ ∞
−∞

e−|v|π/2 (Φ(v/2 +M) + Φ(v/2−M))2 dv . e−Mπ/2, M →∞.

Fix some κ ∈ (0, 1/2). Due to Lemma 6.7, the inequality

nχ2(p1,M |p0,M ) ≤ κ

holds for M large enough, provided

M =
2(1 + ε1)

π
log(n)

for an arbitrary small ε1 > 0. Fix ρ = (1− ε2)(ν − 1) for some ε2 ∈ (0, 1). Then Lemma 6.6 and
Theorem 6.1 imply

inf
p̂n

sup
p∈D(ρ,γ◦,γ◦,L)

Pp,n
(
‖p̂n − p‖∞ ≥ cvn

)
≥ δ

for any γ◦, γ
◦ ∈ (0, 2), some constants c > 0, δ > 0 and vn = log−(ν−1)(n) = log−ρ/(1−ε2)(n).

Since ε2 can be taken to be arbitrary close to 0, we get the desired statement.

6.3 Proof of Theorem 4.3

For simplicity we assume that Im(ψ(λ)) ≥ 0 for all λ ≥ 0 (cf. (14)). The proof in the more
general case of Remark 3.3 can be done in a similar way. Denote Xk := Ytk−Ytk−1

, k = 1, . . . , n,
and fix some γ ∈ [γ◦, γ

◦]. By (13), we derive for the bias of pn,γ(x), x > 0,

|E[pn,γ(x)]− p∆(x)| =

∣∣∣∣ 1

2π

ˆ Un

−Un

E [Φn(1− γ − iv,X1)]

Γ(1− γ − iv)
x−γ−ivdv −

ˆ ∞
−∞
M[p∆](γ + iv)x−γ−ivdv

∣∣∣∣
≤

∣∣∣∣∣∣∣
1

2π

ˆ Un

0

´∞
An

[
ψ(λ)

]−γ−iv
F [pX ](−λ)ψ′(λ)dλ

Γ(1− γ − iv)
x−γ−ivdv

∣∣∣∣∣∣∣
+

∣∣∣∣∣ 1

2π

ˆ 0

−Un

´∞
An

[ψ(λ)]−γ−iv F [pX ](λ)ψ′(λ)dλ

Γ(1− γ − iv)
x−γ−ivdv

∣∣∣∣∣
+
|x|−γ

2π

ˆ
{|v|>Un}

|M[p∆](γ + iv)| dv

=: (∗)1a + (∗)1b + (∗)2.
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Since p∆ ∈ C(β, γ◦, γ◦, L), we have for the third term

(∗)2 ≤
|x|−γ

2π
e−βUn

ˆ
{|v|>Un}

|M[p∆](γ + iv)| eβ|v|dv ≤ e−βUn |x|
−γ L

2π
.

Furthermore, by Lemma 7.2

|F [pX ](λ)| = |L[p∆](ψ(λ))| . 1

Re(ψ(λ))
.

1

λ2

and by Lemma 7.3

(∗)1a .
|x|−γ

2π

∣∣∣∣∣∣∣
ˆ Un

0

´∞
An

[
ψ(λ)

]−γ−iv
F [pX ](−λ)ψ′(λ)dλ

Γ(1− γ − iv)
dv

∣∣∣∣∣∣∣
. |x|−γ

ˆ Un

0

´∞
An
λ−2γ−1dλ

|Γ(1− γ − iv)|
dv .

|x|−γ

2γ
Uγ−1/2
n eUnπ/2A−2γ

n .

Similarly we get the same estimate for (∗)1b. For the variance we have

Var(pn,γ(x)) =
1

(2π)2n
Var

[ˆ Un

−Un

Φn(1− γ − iv,X1)

Γ(1− γ − iv)
x−γ−ivdv

]
+Rn(x)

≤ 1

(2π)2n
|x|−2γ

[ˆ Un

−Un

√
Var[Φn(1− γ − iv,X1)]

|Γ(1− γ − iv)|
dv

]2

+Rn(x),(44)

where

Rn(x) =
1

n2(2π)2

∑
1≤|j−k|≤n−1

ˆ Un

−Un

ˆ Un

−Un

Cov [Φn(1− γ − iv,Xk),Φn(1− γ − iu,Xj)]

Γ(1− γ − iv)Γ(1− γ − iu)
x−2γ+i(u−v) du dv.

For example let us take u ≥ 0 and v ≥ 0, then

Cov [Φn(1− γ − iv,Xk),Φn(1− γ − iu,Xj)] =

ˆ An

0

ˆ An

0

[
ψ(λ1)

]−γ−iv
[ψ(λ2)]−γ+iu

ψ′(λ1)ψ′(λ2) Cov
[
e−iλ1Xk , e−iλ2Xj

]
dλ1dλ2.

Due to Lemma 7.1, the sequence X1, . . . , Xn is α-mixing with mixing coefficients satisfying (19).
The Billingsley’s inequality (see, e.g., [7]) implies

∣∣Cov
[
e−iλ1Xk , e−iλ2Xj

]∣∣ ≤ 4α(|j − k|) and
consequently

(45)
∣∣Cov [Φn(1− γ − iv,Xk),Φn(1− γ − iu,Xj)]

∣∣ ≤ 4α(|j − k|)
[ˆ An

0
|ψ(λ)|−γ

∣∣ψ′(λ)
∣∣ dλ]2

.

By respecting definition (16) for different signs of u and v, we obtain the estimate (45) for all u
and v. Hence

∣∣Rn(x)
∣∣ ≤ 4|x|−2γ

(2π)2n2

∑
1≤|j−k|≤n−1

α(|j − k|)
[ˆ An

0
|ψ(λ)|−γ

∣∣ψ′(λ)
∣∣ dλ]2 [ˆ Un

−Un

1

|Γ(1− γ − iv)|
dv

]2

(46)

≤ 2|x|−2γ

π2n

[ˆ An

0
|ψ(λ)|−γ

∣∣ψ′(λ)
∣∣ dλ]2 [ˆ Un

−Un

1

|Γ(1− γ − iv)|
dv

]2 ∞∑
k=0

α(k),
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where
∑∞

k=0 α(k) <∞ due to (19). On the other hand, e.g. for v ≥ 0 we have

√
Var[Φn(1− γ − iv,X1)] ≤

ˆ An

0

√
Var[[ψ(λ)]−γ−ive−iX1λψ′(λ)] dλ(47)

≤
ˆ An

0
|ψ(λ)|−γ

√(
1− |F [pX1 ](λ)|2

) ∣∣ψ′(λ)
∣∣ dλ

and the same estimate applies for v ≤ 0. Hence combining (44), (46), and (47), we get

(48) Var(pn,γ(x)) .
|x|−2γ

n

[ˆ An

0
|ψ(λ)|−γ

∣∣ψ′(λ)
∣∣ dλ]2 [ˆ Un

−Un

1

|Γ(1− γ − iv)|
dv

]2

.

Due to Lemma 7.2, we have

ˆ An

1
|ψ(λ)|−γ

∣∣ψ′(λ)
∣∣ dλ .

ˆ An

1
λ(1−2γ)dλ ≤ C0

A
2(1−γ)
n

1− γ

for γ < 1 and ˆ An

1
|ψ(λ)|−γ

∣∣ψ′(λ)
∣∣ dλ .

ˆ An

1
λ(1−2γ)dλ ≤ C0 log(An)

for γ = 1. Furthermore, it holds due to |F [pX1 ](λ)| ≥ 1−Var(X1)λ2/2,

ˆ 1

0
|ψ(λ)|−γ

√(
1− |F [pX1 ](λ)|2

) ∣∣ψ′(λ)
∣∣ dλ ≤ ˆ 1

0
|ψ(λ)|−γ+1

∣∣ψ′(λ)
∣∣ dλ ≤ C1

2− γ

for some constants C0, C1 > 0. Hence from (48) we get by (57),

|x|2γVar(pn,γ(x)) .
1

n

(
Uγ−1/2
n eUnπ/2A2(1−γ)

n

)2
=: (∗)3,

and by gathering (∗)1a, (∗)1b, (∗)2, and (∗)3,√
E
[
x2γ |pn,γ(x)− p∆(x)|2

]
.

1√
n
Uγ−1/2
n eUnπ/2A2(1−γ)

n + Uγ−1/2
n eUnπ/2A−2γ

n + e−βUn .

Next, the choice (21) leads to the desired result.

6.4 Proof of Theorem 4.5

This proof is similar to the above one. Only (∗)2 in the bias term is different and now becomes

(∗)2 ≤ (1 + |Un|ρ)−1 |x|
−γ

2π

ˆ
{|v|>Un}

|M[p∆](γ + ıv)| (1 + |v|ρ)dv ≤ (1 + |Un|ρ)−1 |x|
−γ L

2π
,

whence√
E
[
x2γ |pn,γ(x)− p∆(x)|2

]
.

1√
n
Uγ−1/2
n eUnπ/2A2(1−γ)

n + Uγ−1/2
n eUnπ/2A−2γ

n + (1 + |Un|ρ)−1,

and the choice (24) leads to the desired result.
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7 Appendix

7.1 Some results on time-changed Lévy processes

Lemma 7.1. Let Lt be a Lévy process with the Lévy measure ν and let T (t) be a time change
independent of Lt. Fix some ∆ > 0 and consider two sequences Tk = T (∆k) − T (∆(k − 1))
and Xk = Y∆k − Y∆(k−1), k = 1, 2, . . . where Yt = LT (t). If the sequence (Tk)k∈N is strictly
stationary and α-mixing with mixing coefficients (αT (j))j∈N, then the sequence (Xk)k∈N is also
strictly stationary and α-mixing with mixing coefficients (αX(j))j∈N, satisfying

(49) αX(j) ≤ αT (j), j ∈ N.

Proof. Fix two functions φ and ψ mapping R to R such that E[φ(Xk)]
2 <∞ and E[ψ(Xk)]

2 <∞.
Using the independence of increments of the Lévy process Lt and the fact that T is a non-
decreasing process, we get

E[φ(Xk)] = E[φ̃(Tk)], E[φ(Xk)ψ(Xk+l)] = E[φ̃(Tk)ψ̃(Tk+l)], k, l ∈ N,

where φ̃(t) = E[φ(Lt)] and ψ̃(t) = E[ψ(Lt)]. Since Tk is strictly stationary, E[φ̃(Tk)] is indepen-
dent of k and E[φ̃(Tk)ψ̃(Tk+l)] depends on l only. Furthermore, for any i, j ∈ N and any two
functions φ : Ri → [0, 1] and ψ : Rj → [0, 1], we have

E[φ(X1, . . . , Xi)ψ(Xi+k+1, . . . , Xi+k+j)] = E[φ̃(T1, . . . , Ti)ψ̃(Ti+k+1, . . . , Ti+k+j)],

where φ̃(t1, . . . , ti) = E[φ(Lt1 , . . . , Lti)] and ψ̃(t1, . . . , tj) = E[ψ(Lt1 , . . . , Ltj )]. By noting that

αX(k) = sup
{∣∣Cov

(
φ(X1, . . . , Xi), ψ(Xi+k+1, . . . , Xi+k+j)

)∣∣; φ : Ri → [0, 1], ψ : Rj → [0, 1]
}

and that φ̃, ψ̃ ∈ [0, 1], we get (49).

Lemma 7.2. Let (Lt, t ≥ 0) be a Lévy process with the triplet (µ, σ2, ν). Suppose that
´
{|x|>1} |x|ν(dx) <

∞, and that σ and ν are not both zero. It then holds for ψ(u) = − log(E(exp(iuLt)))

(50) (i) : |ψ(u)| . u2 and (ii) :
∣∣ψ′(u)

∣∣ . u, u→∞.

Further, if

(51) d = µ+

ˆ
{|x|>1}

xν(dx) 6= 0

we have

(52) (i) : |ψ(u)| & u and (ii) :
∣∣ψ′(u)

∣∣ . 1, u ↓ 0.
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If d = 0 we have in the case ν({|x| > 1} ∩ dx) ≡ 0,

(53) (i) : |ψ(u)| & u2, and (ii) :
∣∣ψ′(u)

∣∣ . u, u ↓ 0,

and in the case ν({|x| > 1} ∩ dx) 6= 0,

(54) (i) : |ψ(u)| & u, and (ii) :
∣∣ψ′(u)

∣∣ = o(1), u ↓ 0.

Proof. In general we have

(55) ψ(u) = −iuµ+
u2σ2

2
+

ˆ
R

(1− eiux + iux1|x|≤1)ν(dx),

where ˆ
R

(1− eiux + iux1|x|≤1)ν(dx) = u2

ˆ
{|x|≤1}

1− eiux + iux

(ux)2 x2ν(dx)(56)

+

ˆ
{|x|>1}

(
1− eiux

)
ν(dx).

Note that

0 <

∣∣1− eiy + iy
∣∣

y2
< c for y ∈ R,

with c > 0, and that
ˆ
{|x|>1}

(
1− eiux

)
xν(dx) −→

ˆ
{|x|>1}

xν(dx) for u→∞

by Riemann-Lebesgue. This yields (50)-(i). It is not difficult to show by standard arguments
that due to the integrability condition we have

ψ′(u) = −iµ+ uσ2 − i

ˆ
R

(eiux − 1|x|≤1)xν(dx).

Next, (50)-(ii) follows by observing that

ˆ
{|x|≤1}

(eiux − 1)xν(dx) = u

ˆ
{|x|≤1}

eiux − 1

ux
x2ν(dx),

where
(
eiy − 1

)
/y is bounded for y ∈ R. Suppose d 6= 0. By (51), ψ′(0) = −id 6= 0, and since

ψ(0) = 0 we have (52)-(i), and (52)-(ii) is obvious. Next suppose d = 0, i.e. ψ′(0) = 0. We then
have,

ψ(u) = ψ(u)− uψ′(0) = ψ(u) + iud

=
u2σ2

2
+

ˆ
R

(1− eiux + iux1|x|≤1)ν(dx) + iu

ˆ
{|x|>1}

xν(dx)

=
u2σ2

2
+

ˆ
{|x|≤1}

(1− eiux + iux)ν(dx)

+

ˆ
{|x|>1}

(1− eiux)ν(dx) + iu

ˆ
{|x|>1}

xν(dx)
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and

ψ′(u) = ψ′(u)− ψ′(0)

= uσ2 − i

ˆ
R

(eiux − 1|x|≤1)xν(dx) + i

ˆ
{|x|>1}

xν(dx).

If ν({|x| > 1} ∩ dx) ≡ 0 we thus have

ψ(u) =
u2σ2

2
+

ˆ
{|x|≤1}

(1− eiux + iux)ν(dx)

=
u2σ2

2
+ u2

ˆ
{|x|≤1}

1− eiux + iux

(ux)2 x2ν(dx)

and we observe that
Re
(
1− eiux + iux

)
= 1− cos(ux) ≥ 0.

So in particular Reψ(u) & u2 while |ψ(u)| . u2. Hence (53)-(i) is shown. Then, since

ψ′(u) = uσ2 − i

ˆ
{|x|≤1}

(eiux − 1)xν(dx)

= uσ2 − iu

ˆ
{|x|≤1}

eiux − 1

ux
x2ν(dx)

and again
(
eiy − 1

)
/y is bounded, we have (53)-(ii). Finally, if d = 0 and ν({|x| > 1}∩dx) 6= 0,

let us write

ψ(u) =
u2σ2

2
+ u2

ˆ
{|x|≤1}

1− eiux + iux

(ux)2 x2ν(dx)

+

ˆ
{|x|>1}

(1− cos(ux))ν(dx) + i

ˆ
{|x|>1}

(ux− sin(ux)) ν(dx),

where

0 ≤
ˆ
{|x|>1}

(ux− sin(ux)) ν(dx) ≤ u
ˆ
{|x|>1}

xν(dx) . u,

but due to dominated convergence alsoˆ
{|x|>1}

(ux− sin(ux)) ν(dx) = u

ˆ
{|x|>1}

xν(dx) + o(1).

Hence, ˆ
{|x|>1}

(ux− sin(ux)) ν(dx) = u+ o(u), u ↓ 0,

and from this (54)-(i). For the derivative we have,

ψ′(u) = uσ2 − i

ˆ
R

(eiux − 1|x|≤1)xν(dx) + i

ˆ
{|x|>1}

xν(dx)

= uσ2 − iu

ˆ
{|x|≤1}

eiux − 1

ux
x2ν(dx)− i

ˆ
{|x|>1}

(
eiux − 1

)
xν(dx)

= o(1), u ↓ 0,

by similar arguments, i.e. (54)-(ii).
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Lemma 7.3. For any α ≥ −2, there exist positive constants C1 and C2(α) such that uniformly
for |β| ≥ 2,

C|β|α−1/2e−|β|π/2 ≤ |Γ(α+ iβ)| ≤ Cα|β|α−1/2e−|β|π/2.(57)

Proof. See, for example, Theorem 1.4.2 in [1].

Corollary 7.4. For all 0 < α < 1/2 and all U > 2, it holds

(58)

ˆ U

−U

dβ

|Γ(α+ iβ)|
≤ CU1/2−αeUπ/2

for a constant C > 0. For α > 1/2, we have

(59)

ˆ U

−U

dβ

|Γ(α+ iβ)|
≤ C1(α) + C2e

Uπ/2,

where C2 does not depend on α.

7.2 Lemma of Erdélyi

Lemma 7.5 ([12],[13]). Let α ≥ 1, ν > 0, function f ∈ C∞([0,∞)) be such that f and all its
derivatives vanish at infinity, then

ˆ ∞
0

xν−1f(x)eiλxα dx =
∞∑
k=0

akλ
− k+ν

α , λ→∞,

where ak = f (k)(0)
αk! Γ

(
k+ν
α

)
exp

[
iπ(k+ν)

2α

]
.
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