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The CreditRisk*™ model launched by Credit Suisse First Boston in 1997 is widely
used by practitioners in the banking sector as a simple means for the quantifica-
tion of credit risk, primarily of the loan book. We present an alternative numerical
recursion scheme for CreditRisk™, equivalent to an algorithm recently proposed
by Giese, that is based on well-known expansions of the logarithm and the expo-
nential of a power series. We show that it is advantageous for the Panjer recursion
advocated in the original CreditRisk* document, in that it is numerically stable.
The crucial stability arguments are explained in detail. We explain how to apply
the suggested recursion scheme to incorporate stochastic exposures into the
CreditRisk* model as introduced by Tasche (2004). Finally, the computational
complexity of the resulting algorithm is stated and compared with other methods
for computing the CreditRisk* loss distribution.

1 Introduction

A widely used model to describe the credit loss distribution of a loan portfolio
is the CreditRisk* model presented by Credit Suisse First Boston in 1997.
CreditRisk™ is a default-mode model which distinguishes between two states,
default or survival of an obligor within a one-year period. The popularity of
CreditRisk™ is due to the following features: the input data and parameters are
readily available. For instance, default probabilities and recovery rates are required
in the context of the internal ratings-based approach of the Basel II framework on
the regulatory treatment of credit risk. Affiliation to economic sectors and sector
variabilities can be obtained from the information provided by rating agencies
and economic research institutes. Furthermore, CreditRisk* is very efficient from
a computational point of view due to its analytical tractability. In particular, the
probability-generating function of the loss distribution is explicitly known, and as
a result the distribution can be computed by fast methods.

This paper was developed in cooperation with the project “Effiziente Methoden zur Bestim-
mung von RisikomafBlen”, which was supported by bmbf and Bankgesellschaft Berlin AG.
O.R. was also supported by the DFG research center “Mathematics for key technologies”
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There are also some limitations to CreditRisk™. On a finer scale than default or
survival, a change in the credit quality of an obligor that is captured as a transi-
tion of its internal or external rating is not reflected. Further, we mention the
deterministic description of recoveries and the fact that large loss probabilities
may lead to a distortion of the loss distribution due to multiple defaults arising
from the Poisson approximation. On the other hand, however, more sophisticated
models typically require more statistical input information, which in practice is
often hard to identify.

In the CreditRisk* documentation (Credit Suisse First Boston, 1997), an algo-
rithm for computing the CreditRisk™ distribution is proposed which relies on a
general recursion method for compound distributions given by Panjer (1981).
However, it is well known that this algorithm suffers from problems of numerical
stability. In this paper we present an alternative stable numerical recursion scheme
for computation of the CreditRisk* loss distribution, which is based on series
expansions of the respective probability-generating function.

The paper is organized as follows. In Section 2 we give a resume of the Credit-
Risk™ model. The Panjer algorithm is considered in Section 3, along with our notion
of the numerical stability that is introduced. The main result — the CreditRisk™
recursion scheme with the proof of its numerical stability — is presented in Section 4.
In Section 5 we extend the algorithm described in Section 4 to a CreditRisk™ model
with stochastic exposures as proposed by Tasche (2004). Moreover, we show
along the lines of Section 4 that the extended algorithm is numerically stable as
well. In Section 6 we conclude with a brief comparison of the computational
effort required by the algorithm presented in this paper and the fast Fourier
transform inversion method (Merino and Nyfeler, 2002; Reif3, 2003, 2004).

2 The elements of CreditRisk™

We assume some familiarity with the basic principles of CreditRisk* and there-
fore restrict ourselves to a concise description. For a more detailed presentation
readers are referred to one of the following articles: the original CreditRisk*
document (Credit Suisse First Boston, 1997), Lehrbass, Boland and Thierbach
(2002) or Bluhm, Overbeck and Wagner (2003).

In CreditRisk* the exposure of each obligor is represented as an integer
multiple of a basic loss unit L, and so the aggregate portfolio loss X (in terms of
the loss unit L) can be represented as

N
X:=Y VY, (1)
i=1

with v; denoting the multiplicity of L, corresponding to the ith obligor and Y;
being Poisson-distributed random variables with stochastic intensities

K
’Ri=p{wo’i+2vvk’i5k], k=1,..,K; i=1,...,N 2)
k=1
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conditional on independent Gamma-distributed random variables
S$=(,,....50

with parameters E[S,] = 1 and sz i=var(Sy), k=1,...,K).In(2)p;,i=1,...,N,
are the one-year default probabilities of the obligors and the weights w; ; can
be considered as affiliations to the sectors Sk, where So :=1 is regarded as an
idiosyncratic component. The sector variables S, model the default behavior with
respect to a number of meaningfully chosen sectors corresponding to industry
branches. Note that

E[Y]=E[R,]=p; fori=1,...,N

1

The probability-generating function (PGF) of the CreditRisk™ model Gy(2) =
E[zX] can thus be expressed in closed analytical form:

K

N 1 N
G(z) = exp Zwo’ipi(zvi—l)—zgln 1—cgzwkipi(zvt'—1)D 3)

i=1 k=1 Yk i=1

with G := Gf( and z a formal variable. On the other hand, by the definition of the
PGF of a discrete integer-valued random variable, G may also be represented as

G(z) = ) Plx=n]z" (4)

n=0

The efficient and numerically stable computation of the probabilities P[X = n] in
(4) from (3) is the central problem in this paper.

3 Panjer recursion and issues of numerical stability

The Panjer recursion algorithm advocated in the original CreditRisk™ document
for the purpose of obtaining the probabilities p, := P[X = n] in (4) is derived by
using the fact that the log-derivative of G can be written as a rational function of
the form A(z)/B(z), with polynomials A and B. However, it is known that this
algorithm is numerically unstable (see, for example, Gordy (2002) for a theoret-
ical analysis and Giese (2003) for an illustration revealing the problems involved
in the computation of the loss distribution by the Panjer method for a real-life
loan portfolio). In fact, the numerical instability of the Panjer algorithm arises
from an accumulation of roundoff errors, which is nicely explained in Gordy
(2002) and has to do with the summation of numbers of similar magnitude but
opposite sign, as both the polynomials A and B contain coefficients of both signs.
Let us explain this issue in some more detail.

Recall that the relative error, €, ., of the addition operation is given by

X
8x+y = g+
xX+y xX+y

e, if x+y#0 (5)
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in terms of the relative errors € and g, of their arguments x and y, respectively. If
the summands x and y are of the same sign, we have that |e , | <max{|e,|,[e,|}.
If the arguments of the addition are of opposite sign, at least one of the terms
|x/(x+y)|, |y/(x+y)| is greater than 1, and hence at least one of the relative
errors €, or & gets amplified. This amplification becomes particularly big if x = y
and, hence, a cancellation in the denominator term x + y occurs, leading to an
explosion of the relative error €, y Therefore we conclude that the error propa-
gation of the addition of two numbers of equal sign can be considered as harm-
less even under repeated application, leading to no amplification of the original
error terms. On the other hand, if under repeated summation (eg, in a recursive
algorithm) there happens to be a constellation where the summands are of similar
magnitude but opposite sign, cancellation effects may occur leading at least to
spurious results, if not to a complete termination of the algorithm. For a multi-
plication x -y, the relative error is approximately given by

€y T E HE (6)
ie, the relative errors of the arguments simply add up.

We conclude that a recursive algorithm, which relies exclusively on summa-
tion and multiplication of numbers of the same sign, can be considered numeri-
cally stable. We refer to standard text books on numerical analysis, eg, Stoer and
Bulirsch (2002) for more details on the subject.

As alternatives to the Panjer recursion several methods have been proposed
in the CreditRisk* literature. Among others we mention Fourier methods (eg,
Merino and Nyfeler, 2002; Reif3, 2003, 2004) and saddlepoint methods for the
loss distribution with respect to a particular quantile (Gordy, 2002; Martin,
Thompson, Browne, 2001).

4 Numerically stable expansion of the PGF
We introduce the portfolio polynomial of the kth sector to be
N
Puz) = Y w,p2"s  ke{0,...K}) )
i=1

For the analysis that follows, it is important to note that the coefficients of ’Pk are
all non-negative. In terms of 2, G can be re-expressed as

K
G(z) = exp[-By(1) + Py(2)] [[[1- 02(Pu2) - P (1))] /"
k=1
5o
=exp| ~B+ B - X — (14} B -} B@) |  ®
k=1 Yk

Observe that (4) can be interpreted as the power series representation of the
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analytical representation of G around z = 0, having a radius of convergence,! R,
strictly greater than 1. Therefore, it is natural to calculate the coefficients, ie, the
probabilities p,, directly, by applying standard algorithms for the logarithm and
exponential of power series, which can be found in the analysis and mathemati-
cal physics literature (see, for example, Brent and Kung (1978) and the refer-
ences therein). We systematically derive a method for calculating the coefficients
of the power series expansion of (8) and present a two-step recursive scheme,
where the sign structures of the coefficients involved are such that numerical
stability of the two steps is ensured by two lemmas. For the convenience of the
reader we provide detailed proofs of both lemmas. In fact, a basically equivalent
recursion algorithm in this spirit was previously suggested by Giese (2003).
However, in Giese (2003) the numerical stability is not analyzed.

Thus, we first look at the power series expansion of the logarithm of a power
series. Second, having gained information on the sign structure of the coefficients
of the resulting series, we investigate in a further step the power series expansion
of its exponential.

We will show that, using this method, the coefficients of the power series of
G(z) can be computed in a numerically stable way. In particular, by Lemma 1 and
Lemma 2 it will be shown that the stability follows from the particular sign
structure of the polynomials under consideration. In fact, in the crucial operations
of the recursion scheme only non-negative terms are added up. The numerical
stability of such summations is explained in the previous section.

LEMMA 1 EXPANSION OF THE LOGARITHM Consider a sequence (a;), > with ay > 0,
a, 20 for all k 2 1 and the function g(z) :=—1n(a, - f(2)), where f(z) := X, a, z~.
Let us assume that f has a positive convergence radius, so that g is analytic in a
disc {z:|z| < R} for some R >0 and thus can be expanded as g(z) =: Yo bkzk
on this disc. Then, for the coefficients of g¢ we have b, 20 for k21 and their

computation by means of the following recursively defined sequence?
by = —In(a,)
1 =
bk=—|:ak+—2qbqakq:| for k>1 9)
a, k5

is numerically stable.

PrOOF Note that g’(z) = f'(z)/(ay — f(2)); hence

[aO—Zaksz D (k+ Dbz =Y (k+Day,2*
k=0

k=1 k=0

1'See Haaf and Tasche (2002) for a more precise bound.
2 As usual, an empty sum, if k = 1, is defined to be zero.
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Performing the Cauchy product of the power series on the left-hand side of the
preceding equation and comparing coefficients, it follows that (b;), 5 is given by
(9) for k = 1. Substituting z = 0 gives g(0) = —In(a).

From the assumptions on the sequence (q,) it follows by (9) that b, >0 for
k=1. So the recursive computation of (b,), >, by (9) is numerically stable, as
only sums of non-negative terms are involved. []

LEMMA 2 THE EXPONENTIAL OF A POWER SERIES Let f(z) = Zz;oakzk and g(z) :=
exp(f(2)) = X, _ob,2" in a disc {z:|z| <R} for some R > 0. Then

b, = exp(a,)
iy

b=, =b,,a  for n>1 (10)
k=1

Moreover, the recursion (10) is numerically stable if the coefficients of f satisfy
a,20fork=1.

PrROOF The relation b, = exp (a,) follows by substituting z = 0. For the jth deriv-
ative we have

fP0) =jta; and  gV(0) =j!b; (11)

On the other hand, for n > 1 one obtains

n

§"(2) =

n

d n—1 ,
exp(f(2)) = (d—zj [6(5)-£D)]

Hence, by Leibniz’s rule for the higher derivative of a product,

n—1
n—1
gz = ( ) jf”‘“)(z)g("‘“‘“”(z) (12)

holds. Then (10) follows straightforwardly by substituting z = 0 in (12) and using
(11). Finally, the stability assertion is clear, since from a; = 0 for k > 1 and b, > 0
it follows that b, = 0, and so in (10) only positive terms are involved. OJ

REMARK In fact, the results in Lemma 1 and Lemma 2 may be derived from one
another. However, in order to clearly reveal the sign structures of the power series
involved and their impact on numerical stability, we have chosen to treat them
separately.
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4.1 Algorithm 1

Setting
al) 1= 1+0}P(1)
a}k):zc,EZWk’ipil{vi:” j=L..M
for k=1,..., K, we compute with the procedure defined in Lemma 1 up to a pre-

specified order? M, the Mth order expansion of
~In(1+62P(1) - 62 P(2))

to obtain

M
InG(z) = z B,z/+O(zM*")

j=0

Note, that Lemma 1 guarantees that B >0forj=>1.
In the next step we recursively compute the coefficients y,, n =0,..., M, in the
expansion

M
G(z) = 2 Y,2"+ O(zM*)

n=0

from Bj,j =0,...,M, by applying Lemma 2.

The numerical stability of Algorithm 1 follows from Lemma 1 and Lemma 2
due to the sign structure of the coefficients aj(k) and B respectively. Note that
the coefficients vy, correspond exactly to the loss probablhtles P[X=n], of the
CreditRisk* model for 0 < n < M.

5 Incorporation of stochastic exposures

We consider stochastic exposures in the CreditRisk* model introduced by Tasche
(2004). We will show that for Tasche’s extension the recursion algorithm pre-
sented here works as well. In this model the loss variable X as a multiple of the
basic loss unit L is represented as

N
X=YYe,, (13)

3 A conservative upper bound for M, in the absence of multiple defaults, would be le-v:lvi,
corresponding to the case that each loan in the entire portfolio defaults. For practical purposes
M = O(N) is a more meaningful choice.
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where the non-negative, integer-valued random variables g, ; are independent
copies of €, which are also independent of Y; and of the sector variables S,.

Conditioned on S=(5,,...,S), Y),..., Y, are mutually independent and the
conditional distribution given S is Poisson w1th intensity R; as defined in (2).
The PGF H;(z) := E[z&] can be written in the form

) =Y, (14)

where 1;, := P[€; = /], hence wr;, 2 0. Note that for constant exposures €, = v; we
obtain the classical CreditRisk* model again, with the PGF (14) being trivially
given by the monomials H,(z) =z"ifori=1,...,N.

Following Tasche (2004), the portfolio polynomials 7, (z) naturally generalize
to

N w
Pi(2) = zwk,ipi zniﬂzﬁ (15)
i=1 =0

and due to the special structure of Xin (13) whose terms correspond to (condi-
tional) compound Poisson sums, the PGF G(z) of X is given by (8), with B (z)
replaced by Tk(z)

For a meaningful choice of € we refer to Tasche (2004), where it is suggested
that one write € :=1 + E, with E negatively binomially distributed and € over-
dispersed.*

The power series expansion of G(z) can be computed by an algorithm similar
to Algorithm 1. Moreover, by writing (8) as

G(2) = exp {—Zf’o(l) +B(0)+ (By(2) ~ By 0))

K

1 - - - -
I ln(l +0 () + B(0) - oF (Buc2) - 2{(0)))} (16)
k=1 Ok
and observing that for k=0, ..., K, ’j’k(l) - ’j’k(O) >0 and ’j)k(z) - ’j’k(O) are poly-
nomials of O(z) with non-negative coefficients, it is immediately clear that this
computation is numerically stable because of Lemma 1 and Lemma 2.

6 Conclusion

Finally, we conclude that the calculation of the coefficients of the power series
representation of G in (8) (and also G in (16)) gives rise to a numerically stable
algorithm. For the standard CreditRisk* model the computational complexity is

4ie, var[E€] > E[E].
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obtained straightforwardly by counting the number of elementary operations to be
1
(K+1)M?op, + 5 (K +1)M?op, + O(KN + KM) max(op,,op,)

where op, denotes the cost of an addition and op,, the cost of a multiplication.?
It is known that the Panjer recursion scheme has a computational burden of the
order O(K>M?), and thus the suggested algorithm is K times faster. As a conse-
quence, the loss distribution of CreditRisk™ in the standard setting can be deter-
mined fast and reliably. Therefore, the method we have presented is very suitable
for practical purposes to determine the exact CreditRisk™ loss distribution even
for huge loan portfolios.

The recursion algorithm can be applied in an obvious way to determine the risk
contributions according to the standard risk measures — namely, quantile and
expected shortfall contributions of the CreditRisk™ loss distribution as presented in
Haaf and Tasche (2002) for constant exposures and in Tasche (2004) for stochastic
ones. This task essentially boils down to the computation of the original portfolio
loss distribution and K further distributions, being slightly shifted in terms of the
parameters specifying the sector variables.

For generalizations of CreditRisk™-type models we refer to the works of Reil3
(2003, 2004), in which Fourier inversion techniques are systematically applied,
allowing more freedom in the modeling. In addition, there is no longer a need to
introduce a basic loss unit L, any more. In fact, for practical purposes using fast
Fourier transformation (FFT) techniques, we essentially obtain the loss distribu-
tion on a continuous scale.

Of course, the Fourier inversion algorithm can also be applied to the standard
CreditRisk™ model. The computational effort of the Fourier inversion algorithm
with given, preassigned numerical accuracy (ie, in terms of the fineness of the
discretization) and a fixed number of sectors, is of order O(N). On the other
hand, the computational effort of the algorithm presented here is of order O(N?),
since M ought to be chosen of order O(N). Hence the Fourier method is faster
for very large portfolios. Nevertheless, due to the fixed base expense of the
FFT, our series expansion of the PGF is computationally more advantageous for
smaller portfolios.
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