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1 IntroductionThe Black and Scholes model for the price S of a stock, given by the stochasticdi�erential equation dSt = �St dt+ �St dWt; (1)where � is the return rate, � the volatility andW a Wiener process, is widely acceptedas a tool for the valuation of contingent claims (options) on the underlying stock [1].The presence of long range dependence in the structure of data of stock prices from�nancial markets suggests, however, that the Black and Scholes model is not entirelyrealistic [6] and has led to proposals some years ago that the Wiener process in (1)should be replaced by a fractional Brownian motion [4, 8]. Fractional Brownianmotion (fBm) Bh with Hurst index 12 < h < 1, introduced by Mandelbrot and VanNess [9] to model long range dependence, is a zero mean Gaussian process withcovariance function �h(t; s) := 12 �t2h + s2h � jt� sj2h� : (2)The fBm version of the Black and Scholes model is thendSt = �St dt+ �BSt dBht : (3)However, as we will see later on, fractional Brownian motion is not a semi{martingaleand there is no equivalent martingale measure, so by general results this impliesalmost that there must be arbitrage. In fact, Rogers [10] has shown that the model(3) admits arbitrage opportunities by constructing an arbitrage explicitly using thespeci�c nature of the fBm. Unfortunately the arbitrage strategy in [10] is quitetechnical and not easy to carry out in practice. In the present paper we will arguealong other lines that the model (3) cannot stand and that both a Wiener processand an additional process Z to model long range dependence behaviour are requiredfor an appropriate stock price model. In particular, we propose the modeldSt = �Stdt+ �St dWt + St dZt; (4)where W is a standard Wiener process and Z is a continuous process of square vari-ation zero, which are not necessarily independent. For technical reasons1, however,we assume that Z can be split up by two continuous, square zero variation processesZ(1) and Z(2) as Z = Z(1) + Z(2);1These reasons became clear after helpful comments from Prof. M. Zaehle2



such that Z(1) is adapted toW and Z(2) is independent ofW: As such Z is a smootherprocess than the Wiener process, but the distribution of Z is considered to be com-pletely unknown. From the additional assumptions it follows that W is a martingalewith respect to the �ltration generated by fW;Z(2)g and that Z is adapted to this�ltration.In Section (3) we discuss the question of arbitrage, but we will set aside this problemfor a moment and consider as an example for Z the process Z = Z(2) = �BBh where�B is an additional parameter depending on the intensity of the long range e�ects andBh is fBm with Hurst index h 2 ]12 ; 1[. It is known that Bh for h 2 ]12 ; 1[ is a processof unbounded variation and square variation zero. See [8, 10]. From this it followsthat Bh is not a semi{martingale and the use of fractional Brownian motion Bh ora more general process Z with zero quadratic variation in a stochastic di�erentialequation requires a di�erent concept of stochastic integral since stochastic calculusbased on semi{martingale integrators is not applicable. In this respect we could usenon{probabilistic path{wise integration methods of F�ollmer [5] and Bick,Willinger[3]. Also S.J. Lin [8] de�ned a stochastic integral with respect to a continuous pro-cess Z with zero quadratic variation for integrands of the form �(Yt; Zt), where � : IR2! IR is a smooth enough function, Y is an arbitrary continuous semi{martingale ona �ltered probability space and Z is adapted to this �ltration. We will reformulateLin's de�nition in Section (2) and give some extensions of his ideas on stochasticdi�erential equations, including an Itô{like formula for solutions of these equations.In Section (4) we will construct a self �nancing replicating portfolio for a Europeanoption claim and will show that the initial value of this portfolio can be valuated in away similar to the Black and Scholes theory and depends only on the coe�cient � ofthe Wiener process in (4) and, surprisingly, not on the speci�c nature of the processZ. However, in Section (5) we will see that the volatility � can now no longer beregarded as the deviation of the stock return log St+1St , but rather that �2 is merelythe rate of the second variation of the process logSt.2 Stochastic integrals for integrands with zeroquadratic variationWe start by recapitulating Lin's de�nition of a stochastic integral with respect toa continuous process with zero quadratic variation, such as a fractional Brownianmotion. After adding some measurability requirements and changing the notation in[8] slightly, we have 3



De�nition 1 Let Y be a continuous semi{martingale on a �ltered probability spaceand let Z be a continuous process with zero quadratic variation adapted to this �ltra-tion. Given � : IR2 ! IR, if there exists a � 2 C2(IR2 ! IR) such that�z(y; z) = �(y; z) we de�neZ T0 �(Yt; Zt) dZt := �(YT ; ZT )��(Y0; Z0)�Z T0 �y(Yt; Zt) dYt�12 Z T0 �yy(Yt; Zt) d[Y; Y ]t;where [Y; Y ] is the quadratic variation process of Y .Lin showed that the stochastic integral de�ned in this way can be regarded as a limitin probability of Riemann sums,Z T0 �(Yt; Zt) dZt = lim�!0 NXi=1 �(Yti�1 ; Zti�1) �Zti � Zti�1� ;where 0 = t0 < t1 < � � � < tN = T and � := maxfti � ti�t : i = 0; : : : ; Ng.Following [8], we will see that under suitable conditions the stochastic di�erentialequation (SDE)dXt = a(Xt)dt+ b(Xt) dWt + c(Xt) dZt with X0 = x0; (5)where W is a Wiener process and Z is a square zero variation process which satis�esthe same conditions as in (4), has a solution X of the form Xt =  (Ut; Zt) for acertain semi{martingale U which is to be determined and a function  such that thecomposite function c �  is like the function � in De�nition (1).Proposition 1 Suppose that c 2 C1(IR! IR) is strictly positive or strictly negativeand that the functions a and b are locally Lipschitz continuous on IR. Further, supposethat the function g satis�es Z g(�)0 dsc(s) = �and for some p0 2 IR de�ne the functions  , �, � by (y; z) := g (y + z + p0) ;�(y; z) :=  ac� 12b2c0c ! � g (y + z + p0) ;�(y; z) :=  bc! � g (y + z + p0) :Then the Itô SDE with random coe�cientsdUt = �(Ut; Zt) dt+ �((Ut; Zt) dWt; U0 = 0;4



has a unique strong solution U and the solution X of the SDE (5) is given byXt =  (Ut; Zt) = g (Ut + Zt + p0) (6)where g(p0) = x0.Proof The conditions are such that the di�erentials in (5) are properly de�ned, soall we have to do is to replace � by  in De�nition (1) and everything works outstraightforwardly.Corollary 1 If a(x) = �x, b(x) = �x and c(x) = x, then the SDE (5) has the explicitsolution Xt = x0 exp���� 12�2� t + �Wt + Zt� : (7)Now that we have de�ned a stochastic di�erential equation driven by a Wienerprocess and a continuous zero quadratic variation process, we can derive a transfor-mation formula similar to the Itô formula for Itô di�usions.Proposition 2 If X is a solution of the SDE (5) as in Proposition (1) and f 2C1;2(IR� IR ! IR), thendf(t; Xt) = �ft(t; Xt) + fx(t; Xt)a(Xt) + 12fxx(t; Xt)b2(Xt)� dt+fx(t; Xt)b(Xt) dWt + fx(t; Xt)c(Xt) dZt;or in condensed form df = ft dt+ fx dXt + 12fxx d[X;X]t: (8)Proof It is obvious how to generalize De�nition (1) to integrands of the form�(t; Yt; Zt). We then use the representation for X in Proposition (1) and insertf(t;  (Ut; Zt)) for �(t; Ut; Zt) into this generalization of De�nition (1).3 Arbitrage free models, mathematical arbitrageversus practical "bubble" arbitrageWhen dealing with a stock price model such as (4) a delicate problem which has tobe considered is the possibility of arbitrage opportunities. As a general result it isknown that that an arbitrage free stock price model admits an equivalent martingalemeasure and thus needs to be a semi{martingale at least. For instance, if � = 0 and5



if Z is known to be equal to �BBh it follows that there is arbitrage and by Rogers[10] an arbitrage strategy is constructed. However, as shown by Rogers [10] and inde-pendently Anh et al. [2], it is possible to modify the fBm slightly while keeping longrange dependence behaviour of fractional Brownian motion, such that the nodi�edprocess is a semi{martingale and arbitrage is avoided. For instance, Rogers suggestedreplacing the fBm in this case by a semi{martingale process of the formW+A; whereA is a process of �nite variation (even di�erentiable) and adapted to W . It is clearthat this situation can be considered as a special case of the model (4), where Z isproportional to A. At this point it is an interesting question whether the arbitrageconstruction in [10], or maybe a slight modi�cation of it, can serve as an arbitragefor the model (4), for instance, in in the case � 6= 0 and Z = �BBh; independent ofW: However, in the next section we will show thatit is always possible to replicate, or hedge, a European option by a self �nancingportfolio without having any further knowledge of the process Z!We consider this as an important fact for the following reasons.i) If Z is such that the model (4) is mathematically arbitrage free, then the val-ue of this portfolio at any time point before maturity is equal to the value of theEuropean option at that time point in the usual \no arbitrage theory".ii) There is lot of practical evidence that markets are not always in equilibriumand alow for arbitrage opportunities for a very short time due to the fact that theseopportunities can not be seen immediately. See [11]. In this situation the stock pricemodel (4) may not be arbitrage free in the strict mathematical sense, but still willbe in practice because market participants need time to discover an arbitrage oppor-tunity due to the unknown distribution of Z, at least at the beginning. Once dealersget hold of the distribution of Z and an arbitrage strategy is seen, they will try tocarry it out, but, then this will inuence the stock price evolution in such a way thatthe possibility of arbitrage disappears again. In the model (4) this change will bereected by a change in the distribution of Z after the discovery of the arbitrage.As time goes on there may arise a new arbitrage opportunity which will, however,disappear again after its discovery, and so on.In this more general situation which allows for "bubble arbitrage opportunities" wewill see that the European option can still be replicated almost surely by the sameself �nancing strategy which thus can be regarded as a robuust strategy with respect6



to unknown smoother perturbations of the standard Black and Scholes model.4 Replicating a European optionHere we will show how the pay-o� of a European contingent claim (option) can bereplicated by a self �nancing portfolio when a stock price follows an SDE (4) andwhere the process Z may reect long range dependence. It is somewhat suprisingthat we do not need to know anything more about the speci�c nature of Z.Proposition 3 Suppose a stock price St follows the SDE (4) and let g(ST ) be a con-tingent claim with exercise date T .(i) If � > 0, then there exists a function Cg(�; �) and a self �nancing portfolio withvalue Cg(t; St) at a time instant t < T prior to T and terminal value Cg(T; ST ) =g(ST ) at maturity time T such that the function Cg is completely determined by therisk free interest rate r, the volatility coe�cient � of the Wiener process and the ma-turity time T . In particular, Cr;�;Tg (t; St) is given by the standard Black and Scholesformula Cr;�;Tg (t; St) = e�r(T�t) IE g �Ŝt;StT � ; (9)where the process Ŝt;s is the solution of the SDEdŜ� = rŜ� d� + �Ŝ� dW� ; Ŝt = s:(ii) If � = 0, then the formula (9) in (i) collapses toCr;0;Tg (t; St) = e�r(T�t) g �Ster(T�t)� : (10)Remarks1) It is not true in general, here that there exists an equivalent measure IP� suchthat the process e�rtSt is a martingale with respect to IP� andCr;�;Tg (t; St) = e�r(T�t)IE� g �St;StT � ;as in the standard theory for option pricing. This is due to the fact that it is notpossible to change a process which is not a semi{martingale into a semi{martingaleby an equivalent measure transformation.
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2) If the process Z has �nite variation and if there exists an equivalent measureIP� such that the IP� distribution ofWt + �� r� t + 1�Ztis equal to the distribution of the Wiener process W; then it is easy to see that e�rtStis a martingale with respect to IP� and that the present result also follows from thestandard theory for option pricing. From Girsanov's theorem it can be seen that,if Z is a to W adapted process with almost sure continuous di�erentiable samplepaths, such a IP� exists. Moreover, the semi{martingale with long range dependenceproposed in Rogers [10] is covered by this situation.Proof Suppose that C(t; x) satis�es the Black and Scholes parabolic partial di�er-ential equation Ct + 12�2x2Cxx + rxCx � rC = 0with �nal value C(T; x) = g(x) and t0 � t � T . Consider at time t a portfolioconsisting of Cx(t; St) shares of stock and an amount of money equal to C(t; St) �Cx(t; St)St invested against the risk free interest r. If V is the total value of theportfolio, we have V (t; St) = C(t; St) for t0 � t � T with V (T; ST ) = g(ST ). We willshow that this portfolio is self �nancing. From Proposition (2) we observe thatdV (t; St) = Ct(t; St) dt+ Cx(t; St) dSt + 12Cxx(t; St) d[S; S]t:Since Z is a zero quadratic variation process we have d[S; S]t = �2S2t dt, just as in theordinary Black and Scholes model. Using this and the partial di�erential equationfor C it follows thatdV (t; St) = Cx(t; St) dSt + r (C(t; St)� StCx(t; St)) dt:The �rst term here is just the in�nitesimal return of the stock, while the secondterm is the in�nitesimal return of the risk free investment. From these considerationswe see that the portfolio V is self �nancing and replicates the pay{o� value of thecontingent claim with probability 1.5 Conclusions, a di�erent interpretation of volatil-ityIt is remarkable that the price of any contingent claim depends only on �, the coe�-cient of the Wiener term in the stock price model (4), and not on the speci�c nature8



of the process Z. Consequently, a Wiener component in the model (4) is of crucialimportance, because, if we could take � equal to zero, then according to Proposition(3) the option prices on the market would only depend on the present stock price,the risk free interest rate and the time to maturity of the option, regardless of thenature of the underlying stock. This is not consistent with what actual happens in�nancial markets.We note that the Wiener volatility � is characterised by[logS; logS]t = [�W; �W ]t = �2t: (11)Assuming a frictionless market, we may regard the market prices of options as beingcorrect within small margins and from these prices we can derive the so-called impliedvolatilities by inverting the Black and Scholes formula. From our new stock pricemodel (4) it follows that the squared implied volatility of a stock, which must be inaccordance with (11), is substantially di�erent from the variance of log St+1St , which inturn can be estimated from a sample of the stationary, in general dependent, sequencelog Stn+1Stn , n = 0, 1, 2, : : :, of identical distributed Gaussian random variables, wherethe time points tn are supposed to be equally spaced. Indeed, this discrepancy isobserved from actual data of stock prices, see for example [7]. Our generalized Black-Scholes model (4) provides an explanation, at least partially. In order to detectabnormalities in the stock market we need to compare the squared implied volatilityof a particular stock with the rate of the second variation of the process logSt of thestock. Thus we have to observe a particular stock during a not necessarily very longtime interval [t; t + T ] on a very detailed time scale t = t0 < � � � < tN = t + T andcompare the squared implied volatility with the estimator for the second variation�̂2 := 1T NXn=1 �logStn � logStn�1�2 ; (12)which is asymptotically consistent with �2 as the mesh size � of the partition ft0, � � �,tNg tends to zero.Finally, we note that there are several extensions of the Black and Scholes modelstudied in the literature, for instance models where the risk free interest rate is timedependent or where the volatility depends on St and t explicitly [7]. It is not di�cultto show that one can also extend several of these models by including a smootherprocess Z to account for long range dependence behaviour and that similar conclu-sions can be made concerning the pricing of European options and the concept ofvolatility. 9
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