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Abstract

In a rather general setting of Itô-Lévy processes we study a class of transforms

(Fourier for example) of the state variable of a process which are holomorphic in

some disc around time zero in the complex plane. We show that such transforms

are related to a system of analytic vectors for the generator of the process, and

we state conditions which allow for holomorphic extension of these transforms

into a strip which contains the positive real axis. Based on these extensions

we develop a functional series expansion of these transforms in terms of the

constituents of the generator. As application, we show that for multidimensional

affine Itô-Lévy processes with state dependent jump part the Fourier transform

is holomorphic in a time strip under some stationarity conditions, and give

log-affine series representations for the transform.
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1. Introduction

Transforms are an important tool in the theory of (ordinary and partial) dif-

ferential equations and in stochastic analysis. In probability theory the Fourier
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transform of a random variable, which represents the characteristic function of

the corresponding distribution, is widely used. Fourier (and Laplace) transforms

have become increasingly popular in mathematical finance as well. On the one

hand, for example, via a complex Laplace transform and the convolution the-

orem one may derive pricing formulas for European options (e.g., see [9],[10]).

On the other hand, Laplace and Fourier transforms are known in closed form for

many classes of processes. A famous example is the so-called Lévy-Khintchine

formula which provides an explicit expression for the characteristic function of a

Lévy process. More recent financial literature goes well beyond Lévy processes

and attempts to establish explicit or semi-explicit formulas for derivatives where

underlyings are modelled, for instance, by affine processes (see among others

[6],[8] and [7]) or more general Itô-Lévy processes (e.g. see [14]). Theoretical

analysis of affine processes is done in the seminal paper by Duffie, Filipović and

Schachermayer [7] and has led to a unique characterization of affine processes.

In particular, it is shown that the problem of determining the (conditional)

Fourier transform of an affine process Xs corresponds to the problem of solving

a system of generalized Riccati differential equations in the time variable s (see

[7]). Although closed form solutions of this system can be found in important

cases, there is no generic approach to solve such a system in the general multi-

dimensional case. In this article we establish some kind of functional series

representation for the Fourier transform, hence the characteristic function of

the process under consideration and, in principle, for more general transforms.

The most natural one is a Taylor expansion in time s around s0 = 0. Unfortu-

nately, it turns out that in many cases the resulting power series converges only

in s = s0 = 0. This problem corresponds to a difficulty which is well known in

semi-group theory and in the theory of parabolic differential equations: small

time expansions for the solutions of parabolic equations are usually possible in

a neighborhood of some s0 > 0, while an expansion around s0 = 0 may have

zero convergence radius. In this paper we prove that for a generator with affine

coefficients the Fourier transform extends holomorphically into a disc around

s0 = 0 and a strip containing the positive real axes, under some mild regularity
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conditions. Then, for multi-dimensional affine processes we obtain convergent

expansions for the Fourier transform and its logarithm on the whole time line.

Hence, we have (affine) series representations for the exponent of the charac-

teristic function of a general multi-dimensional affine process. More generally,

we develop a framework based on a concept of analytic vectors which allows for

functional series expansions for a class of holomorphic transforms which covers

the standard Fourier transform.

The outline of the paper is as follows. The basic setup is described in Sec-

tion 2. In Section 3 we introduce the notion of analytic vectors associated with

a given generator and study functional series expansions for the corresponding

transform. Section 4 is devoted to the Cauchy problem for affine generators. In

Section 5 we derive series representations for the logarithm of the Fourier trans-

form corresponding to a generator with affine coefficients. Section 6 gives an

explicit representation for these expansions in a one-dimensional case. Finally,

Section 7 contains results for affine Itô-Lévy processes which mainly follow from

previous sections. More technical proofs are given in the Appendix.

2. Basic setup

Let (Ω,F , (Ft)t≥0, P ) be a standard filtered probability space where the

filtration (Ft) satisfies ‘the usual conditions’. On this space we consider

for each x ∈ Rn a compensated Poisson random measure Ñ(x, dt, dz, ω) =

N(x, dt, dz, ω)− v(x, dz)dt on R+ × Rn, where N is a Poisson random measure

with (deterministic) intensity kernel of the form v(x, dz)dt = E N(x, dt, dz) sat-

isfying v(x, B) < ∞ for any B ∈ B(Rn) such that 0 /∈ B (closure of B). Hence

N is determined by

P [N(x, (0, t], B) = k] = exp(−tv(x, B))
tkvk(x, B)

k!
, k = 0, 1, 2, ...

In particular, for any B ∈ B(R) with 0 /∈ B and x ∈ R
n, the process MB,x

t :=

Ñ(x, (0, t], B) is a (true) martingale. Further, we assume that the kernel v

satisfies,

v(x, {0}) = 0,

∫

Rn

(|z|2 ∧ |z|)v(x, dz) < ∞, x ∈ R
n.
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Let us assume W (t) to be a standard Brownian motion in Rm living on our

basic probability space, and consider the Itô-Lévy SDE:

dXt = b(Xt)dt + σ(Xt)dW (t) +

∫

Rn

zÑ(Xt−, dt, dz), X0 = x, (2.1)

for deterministic functions b : Rn → Rn, σ : Rn → Rn × Rm, which satisfy

sufficient regularity and/or mutual consistency conditions such that (2.1) has a

unique strong solution X, called an Itô-Lévy process, which can be regarded as

a strong Markov process (e.g., see [17], [14]).

As a well-known fact, the above process X can be connected to some kind

of evolution equation in a natural way. In this context we consider a ’pseudo

generator’

A♯ : D(A♯) ⊂ C(2) ⊂ C −→ C, (2.2)

where C := C(Rn) is the space of continuous functions f : Rn → C, equipped

with the topology of uniform convergence on compacta, and C(2) is the space

of functions f ∈ C which are two times continuously differentiable. Further,

f ∈ D(A♯) iff f ∈ C(2), and

A♯f(x) :=
1

2

n∑

i,j=1

aij(x)
∂2f

∂xi∂xj
+

n∑

i=1

bi(x)
∂f

∂xi
(2.3)

+

∫

Rn

[
f(x + z) − f(x) −

∂f

∂x
· z

]
v(x, dz), with a := σσ⊤,

exists and is such that A♯f ∈ C. In this respect we assume that the building

blocks of the operator (2.3), a(x), b(x), and v(x, B) for any B with 0 /∈ B, have

bounded derivatives of any order.

Clearly, D(A♯) is dense in C and we henceforth require that the operator A♯

thus defined is closable. In general, closability of an integro-differential operator

of type (2.3) will in particular depend on the characteristics of the measure v

and the chosen topology. In this respect, the following proposition provides

sufficient conditions on the measure v for the above specified topology.

Proposition 2.1. Let the measure v be of the form v(x, dz) = γ(x, z)ν(dz),

where the function γ has bounded partial derivatives of any order, and ν is
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a Borel measure with bounded support satisfying
∫
|z|2ν(dz) < ∞. Then the

operator A♯ in (2.3) is closable.

The proof is given in the Appendix.

Remark 2.2. Without going into further detail we note that the above closabil-

ity restrictions on the measure v(x, dz) may be relaxed, to unbounded support for

example, when the domain of A♯ is restricted to functions with certain growth

constrains. However, the restrictions of Proposition 2.1 do not exclude (pure)

jump-processes with infinite activity. Also, in practice, heavy tailed jump mea-

sures restricted to a large enough bounded domain may be considered.

The closure of A♯ is denoted by

A : D(A) ⊂ C −→ C. (2.4)

As such A can be seen as a relaxation of the notion of a generator of a strongly

continuous Feller-Dynkin semigroup associated with the process X, for which the

Hille-Yosida theorem applies. This semigroup is usually defined on the Banach

space C0(R
n), i.e. the set of continuous functions on Rn which vanish at infinity,

equipped with the supremum norm, and its generator coincides literally with

A♯ on a dense subdomain of C0(R
n). By slight abuse of terminology however,

we will also refer to A as ’generator’ when A is considered in connection with

the process X given via (2.1). Let now F := {fu, u ∈ I} ⊂ C be a dense subset

of bounded continuous functions fu : Rn → C which have bounded derivatives

of any order. With respect to the (closed) generator (2.4) we consider for each

fu ∈ F the (generalized) Cauchy problem

∂p̂

∂s
(s, x, u) = Ap̂ (s, x, u), (2.5)

p̂(0, x, u) = fu(x), s ≥ 0, x ∈ X ⊂ R
n,

where X is some open (maximal) domain, and assume that problem (2.5) has a

unique solution for 0 ≤ s < ∞. In this context existence and uniqueness results

can be found in [11], (see also [2] for generalizations and results for unbounded
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initial data). Another proof can be obtained via purely stochastic methods us-

ing Malliavin calculus, see [3]. In particular, if some global ellipticity condition

is satisfied we may have X = Rn. For mixed type operators, i.e. for operators

where the type of the second order differential part may vary in space (which

may happen for differential operators with affine coefficients for example), ex-

istence, uniqueness, and the maximal domain X has to be considered case by

case. We underline, however, that in this article the main focus is on functional

series representations for the solution of (2.5), and we therefore merely assume

that sufficient regularity conditions for the coefficients in (2.3) (hence (2.1)) are

fulfilled.

Remark 2.3. In our analysis we often consider the pseudo generator (2.3) and

its closure (2.4) on C := C(X), for an open domain X ⊂ Rn, rather than C(Rn).

For notational convenience (while slightly abusing notation) we will denote these

respective operators with A♯ and A also.

If A is the generator of the process (2.1), the solution p̂(s, x, u) has the

probabilistic representation

p̂(s, x, u) = E
[
fu(X0,x

s )
]
,

where X0,x is the unique strong solution of (2.1) with X0,x
0 = x a.s. We refer

to p̂(s, x, u) as generalized transform of the process X0,x
s associated with F. As

a canonical example we may consider

fu(x) := eiu⊤x, u ∈ R
n, (2.6)

in which case (2.5) yields the characteristic function p̂(s, x, u) = E[eiu⊤X0,x
s ].

By using multi-index notation, the integral term in (2.3) may be formally

expanded as

∫

Rn

[
f(x + z) − f(x) −

∂f

∂x
· z

]
v(x, dz) =

∑

|α|≥2

1

α!
∂xαf(x)

∫
zαv(x, dz) =:

∑

|α|≥2

1

α!
mα(x)∂xαf(x).
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Hence, we may write formally the generator as an infinite order differential

operator

A =
∑

|α|>0

aα(x)∂xα (2.7)

with obvious definitions of the coefficients aα(x) for |α| > 0.

3. Analytic vectors and transforms

First we introduce the notion of a set of analytic vectors associated with an

operator A.

Definition 3.1. F = {fu, u ∈ I} is a set of analytic vectors for an operator A

in an open region X, if

(i) Akfu exists for any u ∈ I and k ∈ N,

(ii) for every u ∈ I there exists Ru > 0 such that for all x ∈ X,

lim
k→∞

sup
r≥k

r

√
|Arfu(x)|

r!
≤ R−1

u

where the limit is uniform over any compact subset of X (hence a locally

uniform Cauchy-Hadamard criterion).

Example 3.2. For unbounded self-adjoint operators on a Hilbert space, analytic

vectors can be constructed via their spectral resolution [15]. In [16] unbounded

operators on sequence spaces are studied which are represented by exponentiable

infinite matrices. For such operators the standard basis composes a system of

analytic vectors in fact.

If F is a set of analytic vectors in the sense of Definition 3.1 then for all

x ∈ X the map

s → Psfu(x) :=

∞∑

k=0

sk

k!
Akfu(x), |s| < Ru (3.1)

is holomorphic in the complex disc D0 := {s ∈ C : |s| < Ru} and the series

converges uniformly in x over any compact subset of X. In fact, Psfu(x) coincides

with p̂(s, x, u) for 0 ≤ s < Ru.

7



Proposition 3.3. If F is a set of analytic vectors, the map (s, x) → Psfu(x)

defined in (3.1) satisfies (2.5) for all s, |s| < Ru and x ∈ X. In particular we

have Psfu(x) = p̂(s, x, u), 0 ≤ s < Ru.

Proof. Obviously, P0fu(x) = fu(x) for x ∈ X. Set (see Remark 2.3)

P (N)
s fu(x) :=

N∑

k=0

sk

k!
Akfu(x),

then both P
(N)
s fu(x) and

AP (N)
s fu(x) :=

N∑

k=0

sk

k!
Ak+1fu(x)

converge uniformly for any x in a compact subset of X and for any s satisfying

|s| < Ru − ε with arbitrary small ε. Hence, since A is closed,

APsfu(x) =

∞∑

k=0

sk

k!
Ak+1fu(x) =

∂

∂s

∞∑

k=0

sk

k!
Akfu(x) =

∂

∂s
Psfu(x),

and we are done. �

In order to study generalized transforms associated with a set of analytical

vectors F in domains containing the non-negative real axis we introduce for

η > 0 the sequence

q
(η)
k (x, u) :=

1

k!

k−1∏

r=0

(η−1A + rI)fu(x) (3.2)

=:
1

k!

k∑

r=0

ck,rη
−rArfu(x), x ∈ X, u ∈ I, k = 0, 1, 2, ... (3.3)

In (3.3) the coefficients ck,r, 0 ≤ r ≤ k, are determined by the identity

k−1∏

r=0

(z + r) = z(z + 1) · . . . · (z + k − 1) ≡

k∑

r=0

ck,rz
r,

and are usually called unsigned Stirling numbers of the first kind. These num-

bers satisfy c0,0 = 1 and

ck,0 ≡ 0, ck,k ≡ 1,
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ck+1,j = kck,j + ck,j−1, 1 ≤ j ≤ k, (3.4)

if k ≥ 1. Obviously, the following recursion is equivalent to (3.2),

(k + 1)q
(η)
k+1(x, u) = η−1Aq

(η)
k (x, u) + kq

(η)
k (x, u), k ≥ 0, x ∈ X. (3.5)

The next theorem provides a functional series representation for the solution of

(2.5) for all s ≥ 0, under certain conditions.

Theorem 3.4. Let F be a set of analytic vectors in the sense of Definition 3.1,

u ∈ I be fixed, and the sequence (q
(η)
k ) be defined as in (3.3). Let p̂ be the solution

of the Cauchy problem (2.5). Then the following statements are equivalent:

(i) There exists a constant Ru > 0 such that for each x ∈ X, the map

s → p̂(s, x, u) has a holomorphic extension to the domain

GRu
:= {z : |z| < Ru} ∪ {z : Re z > 0 ∧ | Im z| < Ru} ,

see Figure 1.

x

y

Ru

−Ru

z = x + iy

Figure 1: Domain GRu on the complex plane

(ii) There exists an ηu > 0 such that for each x ∈ X the following series

representation holds:

p̂(s, x, u) =

∞∑

k=0

q
(ηu)
k (x, u)

(
1 − e−ηus

)k
, 0 ≤ s < ∞.
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Moreover, the series converges uniformly for (x, s) running through any compact

subset of X × {s ∈ R : 0 ≤ s < Ru} .

(iii) The solution p̂ of the Cauchy problem (2.5) is holomorphically extend-

able to [0,∞), there exists ηu > 0 such that

limk→∞
k

√∣∣∣q(ηu)
k (x, u)

∣∣∣ ≤ 1, x ∈ X, (3.6)

and, there exists εu, 0 < εu < 1, such that the series

∞∑

k=0

q
(ηu)
k (x, u)wk (3.7)

converges uniformly for (x, w) running through any compact subset of X ×

{w ∈ C : |w| < 1 − εu} .

Proof. See Appendix.

Remark 3.5. From the proof of Theorem 3.4 it is clear that the implication

(iii)′ ⇒ (i), where statement (iii)′ consists of (3.6), and (3.7) with εu = 0 holds

as well. That is, loosely speaking, if in (iii) series (3.7) converges uniformly on

all compact subsets of X × {w ∈ C : |w| < 1} , the holomorphy assumption on p̂

can be dropped.

Remark 3.6. In order to use the representation in (ii) one has to choose ηu. In

fact, ηu can be related to Ru via ηu = π/Ru and hence increases with decreasing

Ru.

It is important to note Theorem 3.4 concerns the solution of the Cauchy problem

(2.5) connected with a general operator A. In particular, all criteria in this

theorem are of pure analytic nature and via (3.2), respectively (3.3), exclusively

formulated in terms of the Akfu(x), i.e. coefficients in Definition 3.1. In the

case where A is the generator of a Feller Dynkin process one can formulate a

sufficient probabilistic criterion for Theorem 3.4-(i):

Proposition 3.7. Let F be a set of analytic vectors in the sense of Defini-

tion 3.1 and let the Markov process {Xt} be associated with the generator A. If
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in addition, for every u ∈ I there exists a radius Ru such that for any t ≥ 0

∞∑

k=0

sk

k!

∣∣∣Ak
E[fu(X0,x

t )]
∣∣∣ < ∞, 0 ≤ s < Ru, (3.8)

uniformly in x over any compact subset of X, then Theorem 3.4-(i) holds.

The statement is a direct consequence of the following “quasi” semi-group prop-

erty of the transition operator Pt.

Proposition 3.8. Let F be a set of analytic vectors satisfying (3.8). Then, for

all x ∈ X and all t ≥ 0, the generalized transform p̂(t + s, x, u) can be represented

as

p̂(t + s, x, u) =
∞∑

k=0

sk

k!
Ak

E[fu(X0,x
t )], 0 ≤ s < Ru, (3.9)

where the series converges uniformly in x over any compact subset of X.

Proof. Denote the right-hand-side of (3.9) by p̃(t, s, x, u). Obviously,

p̃(t, 0, x, u) = E[fu(X0,x
t )]. Set

p̃(N)(t, s, x, u) :=

N∑

k=0

sk

k!
Ak

E[fu(X0,x
t )],

then both p̃(N)(t, s, x, u) and

Ap̃(N)(t, s, x, u) =

N∑

k=0

sk

k!
Ak+1

E[fu(X0,x
t )]

converge for N → ∞ uniformly over any compact subset of X, and s with |s|

< Ru − ε, for an arbitrary small ε > 0. Hence, for |s| < Ru − ε, we have

∂

∂s
p̃(N)(t, s, x, u) =

N−1∑

k=0

sk

k!
Ak+1

E[fu(X0,x
t )] = Ap̃(N−1)(t, s, x, u),

p̃(t, 0, x, u) = p̂(t, x, u)

and thus, by closeness of the operator A and uniqueness of the Cauchy problem

(2.5)-(2.7), we have p̃(t, s, x, u) = p̂(t + s, x, u).
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The following proposition provides a situation in a semigroup context where

a much stronger version of the condition (i) in Theorem 3.4 applies. It also sheds

light on the connection between semi-group theory and holomorphic properties

of generalized transforms.

Proposition 3.9. Let C0(R
n) be the Banach space of continuous functions f :

Rn → C which vanish at infinity, equipped with supremum norm: ||f || :=

supx∈Rn |f(x)|. Let A : D(A) ⊂ C0(R
n) → C0(R

n) be the generator of the

Feller-Dynkin semi-group (Ps)s≥0 associated with the process X, i.e. Psf(x) =

E [f(X0,x
s )], f ∈ C0(R

n). Suppose that the family F is such that fu ∈ D(Ak) for

each u ∈ I and all integer k ≥ 0, and that for each u ∈ I,

∞∑

k=0

sk

k!

∥∥Akfu

∥∥ < ∞, 0 ≤ s < Ru.

Then for each u ∈ I,

Psfu =

∞∑

k=0

sk

k!
Akfu, 0 ≤ s < Ru, (3.10)

with convergence in C0(R
n). Thus, the map s → Psfu for 0 ≤ s < Ru extends

via (3.10) to the complex disc D0 := {s ∈ C : |s| < Ru} . In particular, for each

x ∈ Rn the map s → Psfu(x) is holomorphic in D0. Moreover, for each t ≥ 0,

we may extend the map s → Pt+sfu, 0 ≤ s < Ru to the disc D0 via,

Ps+tfu = PtPsfu =

∞∑

k=0

sk

k!
PtA

kfu =

∞∑

k=0

sk

k!
AkPtfu, s ∈ D0. (3.11)

Proof. See Appendix.

Under the conditions of Proposition 3.9, F = {fu, u ∈ I} is a set of analytic

vectors for the generator A in the sense of Definition 3.1 with X = Rn. Moreover,

due to Proposition 3.9 the map

s → Ps+tfu(x) =

∞∑

k=0

sk

k!
PtA

kfu(x) =

∞∑

k=0

sk

k!
AkE[fu(X0,x

t )],

is holomorphic in D0 for each x ∈ Rn and hence Theorem 3.4-(i) is fulfilled.
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In this paper we do not stick to the semigroup framework because we want to

avoid the narrow corset conditions of Proposition 3.9. We also want to consider

operators A with unbounded (for instance, affine) coefficients and sets F of

functions that do not vanish at infinity (for example, (2.6)). Such situations

may lead to the violation of condition fu ∈ D(Ak), k ∈ N in the sense of

Proposition 3.9. In particular, in the next Sections 4-5 we will focus on general

operators A with affine coefficients and in Section 7 on affine processes related

to affine generators satisfying a kind of admissibility conditions.

4. Affine generators

Let us now consider generators of the form (2.3) with affine coefficients. In

this section A may or may not be a generator of some Feller-Dynkin process. The

next theorem and its corollaries say that the extended Fourier basis {f̃u(x) :=

eiu⊤x, u ∈ Cn} is a set of analytical vectors for an operator A of the form

(2.7), where the coefficients aα(x) are affine functions of x and satisfy certain

growth conditions for |α| → ∞. Moreover, an explicit estimate for the radius of

convergence is given.

Theorem 4.1. Let A be a generator of the form (2.7) with affine coefficients

aα(x), i.e. for all multi-indexes α,

aα(x) =: cα + x⊤dα, x ∈ X, (4.1)

where X ⊂ Rn is an open region, cα is a scalar constant, and dα ∈ Rn is a

constant vector. Assume that the series

∑

|α|>0

aα(x)uα (4.2)

converges absolutely for all u ∈ Cn. This is in particular fulfilled under the

conditions of Proposition 2.1. Then, for every u ∈ C
n and x ∈ X it holds

∣∣∣∣∣
Ar f̃u(x)

f̃u(x)

∣∣∣∣∣ ≤ (r + 1)! 2nr(1 + ‖x‖)rθr(‖u‖) (4.3)
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with ‖x‖ = max
i=1,...,n

|xi|,

θ(v) :=
∑

k≥1

2k(1 + v)kDa

k, v ∈ R+ (4.4)

and

Da

k := sup
x∈X

max
|α|=k, |β|≤1

|∂xβaα(x)|

1 + ‖x‖
.

The proof of Theorem 4.1 is given in the Appendix.

Corollary 4.2. If in Theorem 4.1 the region X is bounded, the generalized

Fourier basis constitutes a set of analytic vectors for the affine operator A in X.

Corollary 4.3. If in Theorem 4.1 there exists for any ς > 0 a constant M

(which may depend on ς > 0) such that

Da

k ≤ Mςk/k! k ≥ 1,

then

θ(v) ≤ M exp (2ς(1 + v)) .

Corollary 4.4. If in Theorem 4.1 it holds that aα(x) ≡ 0 for |α| > 2 (generator

of diffusion type) then

θ(v) ≤ C(1 + v)2, C > 0.

For an affine operator A the sequence (3.2) can be explicitly constructed via the

next proposition, which is proved in the Appendix.

Proposition 4.5. Let A be an affine generator as in Theorem 4.1 and define

bβ(x, u) := ∂uβ

Afu(x)

fu(x)
=

∑

α≥0

aα+β(x)
(α + β)!

α!
(iu)α

=: b0
β(u) +

∑

κ, |κ|=1

b1
β,κ(u)xκ,

with a0 := 0. We set Arfu(x) =: gr(x, u)fu(x) and, for fixed η > 0, q
(η)
r (x, u) =:

hr(x, u)fu(x) (the dependence on η is suppressed in h for notational conve-

nience), where both gr and hr are polynomials in x of degree r. It holds

gr(x, u) =:
∑

|γ|≤r

gr,γ(u)xγ , hr(x, u) =:
∑

|γ|≤r

hr,γ(u)xγ , (4.5)
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where gr and hr satisfy g0 ≡ g0,0 ≡ h0 ≡ h0,0 ≡ 1, and for r ≥ 0, respectively,

gr+1,γ =
∑

|β|≤r−|γ|

(
γ + β

β

)
gr,γ+βb0

β (4.6)

+
∑

|κ|=1, κ≤γ

∑

|β|≤r+1−|γ|

(
γ − κ + β

β

)
gr,γ−κ+βb1

β,κ, and,

(r + 1)hr+1,γ =
∑

|β|≤r−|γ|

η−1

(
γ + β

β

)
hr,γ+βb0

β

+
∑

|κ|=1, κ≤γ

∑

|β|≤r+1−|γ|

η−1

(
γ − κ + β

β

)
hr,γ−κ+βb1

β,κ + rhr,γ(u),

where |γ| ≤ r + 1, and empty sums are defined to be zero.

Remark 4.6. Depending on the open set X we may consider instead of (4.5)

for an x0 ∈ X expansions in x−x0 rather than in x. For simplicity we henceforth

assume {0} ∈ X which, if necessary, may be realized by a translation of the state

space.

A natural question is whether affine generators are the only ones for which the

Fourier basis constitutes a set of analytic vectors. For this paper we leave this

issue as an open problem but the following proposition shows that at any case

the set of such generators is rather “thin”.

Let us put X = [−π, π] and

A =
1

2
a(x)

∂2

∂x2
+ b(x)

∂

∂x
.

Proposition 4.7. The set of coefficients (a(x), b(x)) such that for an arbitrary

M > 0

‖ANfu‖L2(X) & MNN ! , N → ∞,

is dense in L2(X) × L2(X).

Proof. Without loss of generality let us assume that b(x) ≡ 0 and u > 0. The

general case can be considered along the same ideas and is only formally more

complicated. Any a ∈ L2(X) may be approximated (in L2-sense) by a finite

Fourier series

a(x) ≈

n∑

l=1

ale
ilx.
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Thus, for given ε > 0 we can find natural n and amplitudes al (an 6= 0) such

that ∥∥∥∥∥a(x) −

n∑

l=1

ale
ilx

∥∥∥∥∥
L2(X)

≤ ε.

The corresponding approximative operator is given by

Ã :=

n∑

l=1

Ãl =

n∑

l=1

ale
ilx ∂2

∂x2
.

Using the fact that for any s1, . . . , sk ∈ N,

Ãs1
· · · Ãsk

eiux = (−1)kas1
· · · ask

k−1∏

l=0


u +

l∑

j=0

sj




2

ei(u+ k
j=1

sj)x,

and setting

Fk :=
1

2π

∫ π

−π

e−ikxf−1
u (x)ÃNfu(x)dx, k ∈ N,

we have Fk = 0 for k > nN, and for N → ∞

FnN = (−1)NaN
n

N−1∏

l=0

(u + nl)2 ∼ (−1)NaN
n n2N ((N − 1)!)2(N − 1)2u/n.

Further, by Parseval’s identity it holds

‖ÃNfu‖L2(X) =

[
2π

nN∑

k=0

|Fk|
2

]1/2

,

and then we are done.

Obviously, Proposition 4.7 may be formulated with respect to any bounded

interval.

5. Log-affine representations for the affine Cauchy problem

In [7] a Markov process X is called regular affine if for every s, s ≥ 0, the

characteristic function p̂ of X0,x
s has the form

p̂(s, x, u) = E[fu(X0,x
t )] = exp

(
C(s, u) + x⊤D(s, u)

)
, (5.1)
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with fu(x) = exp(iu⊤x). As a main result, it is shown in [7] that (under certain

conditions) the vector valued function D satisfies for all s > 0 a generalized

system of Riccati equations,

∂sD(s, u) = R(D(s, u)), (5.2)

and the function C is then obtained by

C(s, u) =

∫ s

0

Q (D(τ, u)dτ) . (5.3)

The vector valued function R and real valued function Q in (5.2) and (5.3)

respectively, are determined by the relation

(
Q(iu) + x⊤R(iu)

)
fu(x) = Afu(x). (5.4)

In general the equation for D in (5.2) is impossible to solve analytically. In

this section we will derive (under certain conditions) general functional series

expansions for (5.1), hence in particular for C and D, for which all ingredients

can be obtained from the generator A in a direct algebraic way.

Consider the Cauchy problem (2.5) for affine generators A of the form (2.7),

under the assumption (4.2). As in (4.1) we set a(x) = cα + x⊤dα. The ansatz

p̂(s, x, u) = exp
(
C(s, u) + x⊤D(s, u)

)
, (5.5)

for scalar C(s, u) and vector valued D(s, u), where C(0, u) = 0 and D(0, u) = iu,

for the Cauchy problem (2.5) yields,

∂sC + x⊤∂sD =
∑

|α|>0

aα(x)Dα =
∑

|α|>0

cαDα +
∑

|α|>0

x⊤dαDα,

and so

∂sC =
∑

|α|>0

cαDα, ∂sD =
∑

|α|>0

dαDα,

C(0, u) = 0, D(0, u) = iu.

We thus have a system of ordinary differential equations (ODEs), which reads

component-wise

∂sC =
∑

|α|>0

cαDα, ∂sDj =
∑

|α|>0

d(j)
α Dα, j = 1, ..., n,
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C(0, u) = 0, Dj(0, u) = iuj. (5.6)

By assumption (4.2), the series

∑

|α|>0

cαyα,
∑

|α|>0

d(j)
α yα, j = 1, ..., n, (5.7)

are absolutely convergent for all y ∈ Rn, and thus define terms-wise differen-

tiable C(∞)(Rn) functions. In particular, they are locally Lipschitz and so ac-

cording to standard ODE theory the system (5.6) has for fixed u ∈ R
n a unique

solution (C(s, u), D(s, u)) for 0 ≤ s < s∞u ≤ ∞, where (s, C(s, u), D(s, u)) leaves

any compact subset of R × R × Rn, when s ↑ s∞u .

Remark 5.1. By a general theorem from analysis (e.g., see [4]), it follows that

the solution of (5.6) extends component-wise holomorphically in s into a disc

around s = 0, due to the analyticity of (5.7). This implies that (5.5) is holomor-

phic in s. So, besides Theorem 4.1, also along this line one may show that (5.5)

can be represented as a power series of the form (3.1). I.e., in particular, the

Fourier basis (2.6) constitutes a set of analytic vectors for the affine operator A.

However, the direct approach in the proof of Theorem 4.1 (see Appendix) leads

to an explicit estimate (4.3) and allows for investigating possible extensions of

p̂(s, x, u) into a strip containing the real axis in the complex plane (see Theo-

rem 5.4). Moreover, it also suggests the line to follow in cases where A is not

affine and/or the function base is not of the form (2.6).

Let us suppose that for fixed u ∈ Rn the statements of Theorem 3.4 hold.

Then we obtain for 0 ≤ s < s∞u ≤ ∞, x ∈ X,

p̂(s, x, u) = exp
(
C(s, u) + x⊤D(s, u)

)
(5.8)

=
∞∑

k=0

q
(ηu)
k (x, u)(1 − e−ηus)k.

Since q
(ηu)
0 (x, u) = fu(x) = exp

(
iu⊤x

)
6= 0 we have, taking into account the

boundary conditions for C and D, at least for small enough ε > 0,

C(s, u) + x⊤D(s, u) =

∞∑

k=0

ρ
(ηu)
k (x, u)(1 − e−ηus)k, 0 ≤ s < ε, (5.9)
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where by a standard lemma on the power series expansion of the logarithm of
a power series,

ρ
(ηu)
0 (x, u) = ln q

(ηu)
0 (x, u) = iu⊤x, (5.10)

ρ
(ηu)
k (x, u) =

1

fu(x)



q
(ηu)
k (x, u) −

1

k

k−1∑

j=1

jρ
(ηu)
j (x, u)q

(ηu)
k−j (x, u)



 , k ≥ 1.

Thus by (5.9), the ρ
(ηu)
k are necessarily affine in x!

Remark 5.2. It is possible to prove directly that the functions ρ
(ηu)
k defined

above are affine in x using Proposition 4.5 via a (rather laborious) induction

procedure, so without using a local solution of (5.6).

Theorem 5.3. Suppose that for fixed u ∈ I the statement of Theorem 3.4-(i)

holds for an open region X and, in addition, for s ∈ GRu
and x ∈ X it holds

p̂(s, x, u) 6= 0. Then, with ρ
(ηu)
k (x, u) =: ρ

(ηu,0)
k (u) + x⊤ρ

(ηu,1)
k (u) determined by

(5.10), we have

p̂(s, x, u) = exp

[
∞∑

k=0

(
ρ
(ηu,0)
k + x⊤ρ

(ηu,1)
k (u)

)
(1 − e−ηus)k

]
, 0 ≤ s < ∞.

Proof. Let u ∈ I and x ∈ X be fixed. Since GRu
is simply connected and s →

p̂(s, x, u) is holomorphic and non-zero in GRu
, there exists a single-valued branch

s → L(s, x, u) of the multi-valued complex logarithm such that p̂(s, x, u) =

exp(L(s, x, u)) for all s ∈ GRu
. Along the same line as in Theorem 3.4 we then

argue that there exists an ηu > 0 such that w → L(Φηu
(w), x, u) (see the proof

of Theorem 3.4) is holomorphic in the unit disc {w : |w| < 1}, hence, there

exists ρ̃k(x, u) such that

L(Φηu
(w), x, u) =

∑

k≥0

ρ̃k(x, u)wk, 0 ≤ |w| < 1, and so

L(s, x, u) =
∑

k≥0

ρ̃k(x, u)(1 − e−ηus)k, 0 ≤ s < ∞.

Since the later expansion must coincide with (5.9) for small s, it follows that

necessarily ρ̃k(x, u) = ρ
(ηu)
k (x, u) and the theorem is proved.
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Let us now pass to another interesting log-affine representation for the char-

acteristic function. From (4.5) and (4.6) we derive formally

∑

r≥0

q(η)
r (x, u)(1 − e−ηs)r = eiu⊤x

∑

r≥0

∑

γ≥0

hr,γ(u)xγ(1 − e−ηs)r1|γ|≤r

= eiu⊤x
∑

γ≥0

xγ
∑

r≥0

h|γ|+r,γ(u)(1 − e−ηs)|γ|+r.

Suppose that the requirements of Theorem 5.3 hold for fixed u and η = ηu.

Then, using Theorem 4.1, it is easy to show that for small enough ε > 0,

∑

γ≥0

‖x‖|γ|∞

∑

r≥0

|h|γ|+r,γ(u)||w||γ|+r < ∞, if |w| < ε, ‖x‖∞ < ε

(see Remark 4.6). Thus, for |s| and ‖x‖∞ small enough we obtain

ln p̂(s, x, u) = iu⊤x + ln




∑

γ≥0

xγ
∑

r≥0

h|γ|+r,γ(u)(1 − e−ηus)|γ|+r




= C(s, u) + x⊤D(s, u),

with (in multi-index notation)

C(s, u) = ln




∑

r≥0

hr,0(u)(1 − e−ηus)r



 , (5.11)

Dκ(s, u) = iuκ +

∑
r≥1 hr,κ(u)(1 − e−ηus)r

∑
r≥0 hr,0(u)(1 − e−ηus)r

, |κ| = 1.

However, the left- and right-hand-sides of (5.11) are holomorphic for all s ∈ GRu

and we so arrive at the representation

p̂(s, x, u) = exp


ln




∑

r≥0

hr,0(u)(1 − e−ηus)r


 + iu⊤x (5.12)

+ x⊤

∑
r≥1 hr(u) (1 − e−ηus)r

∑
r≥0 hr,0(u)(1 − e−ηus)r

]
, s ∈ GRu, x ∈ X,

with

hr(u) := [hr,i(u)]i=1,...,n ,

where for 1 ≤ i ≤ n, the multi-index (δij)j=1,...,n is identified with i.
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Particularly due to the explicit estimate (4.3) for affine generators in The-

orem 4.1, we may proof the next theorem (which is a non-probabilistic version

of Proposition 3.7 in the situation where A is affine).

Theorem 5.4. Let X be a bounded domain. Assume that the system (5.6) is

non-exploding, i.e. s∞u = ∞, and that for any fixed u ∈ Rn the solution D(s, u)

remains bounded as s → ∞. Then, there exists a radius Ru > 0 such that for

any t ≥ 0 the map s → p̂(t + s, x, u), 0 ≤ s < Ru has a holomorphic extension

to the disc {s ∈ C : |s| < Ru}. Moreover, it holds

p̂(t + s, x, u) =

∞∑

k=0

sk

k!
Akp̂(t, ·, u) (x), |s| < Ru, x ∈ X. (5.13)

Remark 5.5. The maximal extension radius Ru satisfies

Ru ≥
1

2n θ(‖D∗(u)‖)
inf
x∈X

1

1 + ‖x‖
, (5.14)

where function θ is defined in (4.4) and ‖D∗(u)‖ = sups>0 ‖D(s, u)‖.

Proof. Denote the right-hand-side of (5.13) by p̃(t, s, x, u). Obviously,

p̃(t, 0, x, u) = p̂(t, 0, x, u). Let us define

p̃(N)(t, s, x, u) :=

N∑

k=0

sk

k!
Ak p̂(t, ·, u) (x).

Since p̂(t, x, u) = exp(C(t, u) + x⊤D(t, u)), Theorem 4.1 implies that the series

∞∑

k=0

sk

k!
Akp̂(t, ·, u) (x) (5.15)

is absolutely and uniformly convergent on any compact subset of X × {s ∈ C :

|s| < Ru} if Ru satisfies (5.14). So, both p̃(N)(t, s, x, u) and

Ap̃(N)(t, s, x, u) =

N∑

k=0

sk

k!
Ak+1p̂(t, ·, u) (x)

converge for N → ∞ uniformly over any compact subset of X and s with

|s| < Ru − ε for any ε > 0. Hence, for |s| < Ru − ε

∂

∂s
p̃(N)(t, s, x, u) =

N−1∑

k=0

sk

k!
Ak+1p̂(t, ·, u) = Ap̃(N−1)(t, s, x, u),
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p̃(t, 0, x, u) = p̂(t, x, u),

and thus, by closeness of the operator A and uniqueness of the Cauchy problem

(2.5)-(2.7), we have p̃(t, s, x, u) = p̂(t + s, x, u).

6. Full expansion of a specially structured one dimensional affine sys-

tem

Let us consider Cauchy problem (2.5) for n = 1 with fu(x) = exp(iux), where

the jump-kernel in the generator A (see (2.3)) has a special affine structure of

the form

v(x, dz) =: (λ0 + λ1x)ν(dz),

and where the diffusion coefficients have a similar structure,

b(x) = (λ0 + λ1x)θ, a(x) = (λ0 + λ1x)ϑ,

for some constants λ0, λ1, θ, ϑ ∈ R, and measure ν. So, in Proposition 4.5 the

aα have the form al =: (λ0 + λ1x)ηl where

µ0 := 0, µ1 = θ, µ2 :=
1

2

(
ϑ +

∫
z2ν(dz)

)
, µl :=

1

l!

∫
zlν(dz), l > 2.

Hence, in Proposition 4.5, the bβ in (4.6) have the form

br(x, u) = b0
r(u) + xb1

r(u)

=: (λ0 + λ1x)
∑

l≥0

µl+r
(l + r)!

l!
(iu)l =: (λ0 + λ1x)

dr

dur
h(u) r ≥ 0,

where h(u) :=
∑

l≥0 µl(iu)l. It is now possible to show via (4.6) that for r ≥ 1,

gr(x, u) =
∑

p>0, q≥0
0<n1<...<nq, m1,...,mq≥0,

r=p+n1m1+···+nqmq

1

r!
π

(p)
(n1,m1),···,(nq,mq)λ

r−p
1 (λ0 + λ1x)p

× hp(u)

q∏

j=1

(
hnj−1(u)

dnj

dunj
h(u)

)mj

, (6.1)

with the following integer recursion procedure:
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Initialization: π(p) ≡ 1, π
(0)
(n1,m1),···,(nq,mq) ≡ 0, p, q ≥ 1.

For all ni > 0, mi ≥ 0, with 1 ≤ i ≤ q, p, q ≥ 1:

Reduction rule I: If mj = 0, for some j, 1 ≤ j ≤ q, then

π
(p)
(n1,m1),···,(nq,mq) = π

(p)
(n1,m1),···,(nj−1,mj−1),(nj+1,mj+1),···,(nq,mq).

Reduction rule II:

π
(p)
(n1,m1),···,(nq−1,mq−1),(nq,mq) =

q∑

j=1

(
p + nj − 1

nj

)
π

(p+nj−1)

(n1,m1),···,(nj,mj−1),···,(nq,mq) + π
(p−1)
(n1,m1),···,(nq,mq).

In fact, the above recursion procedure follows automatically after substituting

(6.1) as ansatz into (4.6). Finally, we obtain the q
(η)
k for the series expansion in

Theorem 3.4 by (3.3), i.e.

q
(η)
k (x, u) =:

1

k!

k∑

r=0

ck,rη
−rgr(x, u) fu(x).

Remark 6.1. If the measure ν is finite,

h(u) = iuθ −
1

2
ϑu2 +

∑

l≥2

(iu)l

l!

∫
zlν(dz)

= φ(u) − 1 + (iθ − φ′(0))u −
1

2
ϑu2,

where φ is the characteristic function of ν. Hence, in this case h and all its

derivatives may be computed from φ.

7. Application to affine processes

Affine processes have become very popular in recent years due to their analyt-

ical tractability in the context of option pricing, and their rather rich dynamics.

Many well-known models such as Heston and Bates models fall into the class

of affine jump diffusions. Option pricing in these models is usually done via

the Fourier method which requires knowledge of the Fourier transform of the
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process in closed form (see e.g. [6]). The functional series representations for

affine generators developed in this paper, in particular (5.12), can be directly

applied to affine processes. Let us recall the characterization of a regular affine

process as given in [7].

Definition 7.1. We call a strong Markov process {Xt} with generator A a reg-

ular affine process if A is of the form (2.3) and all functions

aij(x), bi(x), v(x, dz) i, j = 1, . . . , m

are affine in x (see (4.1)), and satisfy the set of admissability conditions spelled

out in [7, Definition 2.6]. These conditions guarantee that A is the generator of

a Feller-Dynkin (strong) Markov process X in a subspace of the form Rl×R
n−l
+ ⊂

Rn for some 0 ≤ l ≤ n.

The next theorem provides a sufficient condition for convergence of the series

representation in Theorem 3.4-(ii), hence representation (5.12), for regular affine

processes.

Theorem 7.2. Let {Xs} be a regular affine process which has a non-

degenerated limiting distribution for s → ∞, and has a generator A which satis-

fies the moment condition (4.2). Then the (conditional) characteristic function

p̂(s, x, u) = E[fu(X0,x
s )], with fu(x) = eiu⊤x, has a representation according to

Theorem 3.4-(ii):

p̂(s, x, u) =

∞∑

k=0

q
(ηu)
k (x, u)

(
1 − e−ηus

)k
, 0 ≤ s < ∞.

Moreover, the scaling factor ηu may be chosen according to the inequality:

ηu ≥ C θ(L(1 + ‖u‖2
2)),

where the (monotonic) function θ is defined in (4.4), L > 0 is a constant inde-

pendent of x, and C is a constant generally depending on x.

Proof. Following [7], p̂(s, x, u) has representation of the form (5.5) for 0 ≤ s <

∞. The existence of a limiting distribution implies in particular that D(s, u) in
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(5.5) is bounded for all s ≥ 0. Moreover, as shown in [7, Section 7], p̂(s, x, u) is

the characteristic function of some infinitely divisible distribution for all s > 0

(hence also in the limit s → ∞). As a consequence (see [19]), there exists an

M > 0 independent of s such that

lim
‖u‖2→∞

‖u‖−2
2 |log p̂(s, x, u)| < M.

This implies that ‖D(s, u)‖ ≤ L(1+‖u‖2
2) for some constant L > 0 not depend-

ing on x and s ≥ 0. Now we apply Theorem 5.4 and Remark 5.5.

Remark 7.3. The existence of a limiting stationary distribution is a sufficient

condition for the boundedness of D(s, u). In fact, there are affine processes

which have no limit distribution but bounded D(s, u) (a trivial example is stan-

dard Brownian motion). The study of existence of limiting (and stationary)

distributions for affine processes is currently under active research, e.g. see [13]

or [12].

8. Appendix

Proof of Proposition 2.1

Let us split the operator A♯ in a diffusion and an integral component,

A♯
Df(x) :=

1

2

n∑

i,j=1

aij(x)
∂2f

∂xi∂xj
+

n∑

i=1

bi(x)
∂f

∂xi
,

A♯
If(x) := A♯f(x) − A♯

Df(x)

Suppose that in the given topology,

fn → 0 and A♯fn → g. (8.1)

Let ϕ ∈ C∞
κ (Rn) be an arbitrary test function with compact support. Then

∫
ϕ(x)A♯

Dfn(x)dx =

∫
fn(x)

(
A♯

D

)′

ϕ(x)dx

where

(
A♯

D

)′

ϕ(x) =
1

2

n∑

i,j=1

∂2

∂xi∂xj
(aij(x)ϕ(x)) −

n∑

i=1

∂

∂xi
(bi(x)ϕ(x)).
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Since fn is uniformly bounded on the compact support of ϕ we have by domi-

nated convergence ∫
fn(x)

(
A♯

D

)′

ϕ(x)dx → 0,

hence ∫
ϕ(x)A♯

Dfn(x)dx → 0. (8.2)

For the integral part we have by Fubini,

∫
ϕ(x)A♯

Ifn(x)dx =

∫
ν(dz)

∫ (
fn(x + z) − fn(x) − z ·

∂fn

∂x

)
ϕ(x)γ(x, z)dx

=

∫
ν(dz)

∫
fn(x)

(
ϕ(x − z)γ(x − z, z)− ϕ(x)γ(x, z) − z ·

∂

∂x
(ϕ(x)γ(x, z))

)
dx.

Since by assumption both the measure ν and the function ϕ have compact

support, the latter integral can be restricted to (z, x) ∈ K1 × K2 for compact

subsets K1,2 ⊂ Rn. Thus, since by assumption the derivatives of x → γ(x, z)

are continuous in (x, z), we have

ϕ(x−z)γ(x−z, z)−ϕ(x)γ(x, z)−z·
∂

∂x
(ϕ(x)γ(x, z)) = O(|z|

2
), (z, x) ∈ K1×K2.

Thus, since
∫
|z|2ν(dz)< ∞, it follows by (8.1) and dominated convergence that

∫
ϕ(x)A♯

Ifn(x)dx → 0, and then by (8.2),

∫
ϕ(x)A♯fn(x)dx → 0.

On the other hand also A♯fn is uniformly bounded on the compact support of

ϕ, so again by dominated convergence and (8.1),

∫
ϕ(x)A♯fn(x)dx →

∫
ϕ(x)g(x)dx = 0.

The function ϕ is arbitrary, hence g = 0.

Proof of Theorem 3.4

(i) =⇒ (ii) : Let U := {z ∈ C : |z| < 1} be the unit disc in the complex

plane. Consider for η > 0 the map

Φη : z −→ −
1

η
Ln(1 − z).
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Obviously, there exists an ηu > 0,

(0−,∞) ⊂ Φηu
(U) ⊂ GRu

(i.e., for ǫ0 > 0 small enough (−ǫ0,∞) ⊂ Φηu
(U)). Moreover, the map Φηu

is

injective on U . Thus, (denoting the extension in (i) with p̂ as well) for each x ∈ X,

the function p̂(Φηu
(w), x, u) is holomorphic in U and has a series expansion

w −→ p̂(Φηu
(w), x, u) =:

∞∑

k=0

q̃k(x, u)wk, |w| < 1,

and as a consequence,

p̂(z, x, u) =

∞∑

k=0

q̃k(x, u)(1 − e−ηuz)k, z ∈ Φηu
(U), x ∈ X. (8.3)

Since (8.3) holds in particular for z ∈ (0−,∞), we have in a (possibly small)

ε-disk around z = 0,

p̂(z, x, u) =

∞∑

k=0

q̃k(x, u)(1 − e−ηuz)k =

∞∑

k=0

zk

k!
Akfu(x), 0 ≤ |z| < ε, (8.4)

due to Proposition 3.3. By taking z = 0 we have

p̂(0, x, u) = q̃0(x, u) = fu(x).

We know from the exponential generating function of Stirling numbers of the

second kind Sn,k that

(exp(z) − 1)
k

k!
=

∞∑

n=0

Sn,k
zn

n!
(8.5)

(cf. for example [5], Vol.II, Sec. 21.9, (9.1), p.1041). 1 Hence,

(−1)kη−k
u Akfu(x) =

(−1)kη−k
u

∂k

∂zk

∞∑

l=0

q̃l(x, u)(1 − exp(−ηuz))l

∣∣∣∣∣
z=0

=

k∑

l=0

Sk,l(−1)ll!q̃l(x, u).

1We thank an anonymous referee for his remarks and references concerning the theory of
Stirling numbers, which have led to a substantial shortage of our original proof.
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Using Stirling inversion, (see [1] for example), we have

uk =

k∑

l=0

Sk,lvl ⇔ vl =

l∑

k=0

(−1)l−kcl,kuk,

with cl,k defined in (3.4). Hence,

q̃l(x, u) =
1

l!

l∑

k=0

cl,kη−k
u Akfu(x).

Next we prove the uniform convergence as stated in (ii). Let us take an

arbitrarily fixed compact subset K ⊂ X, and an arbitrarily fixed κ with 0 < κ <

Ru. Let now ǫ > 0. Take a fixed δ with 0 < δ < 1 such that κ/(δRu) < 1. Due

to Definition 3.1 there exists a number Nδ such that

|Arfu(x)| ≤
r!

(δR)
r

for all n > Nδ and x ∈ K. With w := 1 − e−ηus, we then have, using a well

known property of Stirling numbers, for all 0 ≤ s ≤ κ < Ru, x ∈ K, and all

N > Nδ,

∣∣∣∣∣

∞∑

k=N

q
(ηu)
k (x, u)wk

∣∣∣∣∣ =

∣∣∣∣∣

∞∑

k=N

wk

k!

k∑

r=0

ck,rη
−r
u Arfu(x)

∣∣∣∣∣

=

∣∣∣∣∣

∞∑

k=0

wk

k!

∞∑

r=0

ck,rη
−r
u Arfu(x)1r≤k1N≤k

∣∣∣∣∣

≤

∞∑

r=0

η−r
u |Arfu(x)|

∞∑

k=max(N,r)

|w|
k

k!
ck,r

≤

N∑

r=0

η−r
u |Arfu(x)|

∞∑

k=N

|w|
k

k!
ck,r+

+

∞∑

r=N+1

η−r
u |Arfu(x)|

∞∑

k=r

|w|
k

k!
ck,r =: (I) + (II).

For N > Nδ, we have for the second term

(II) ≤
∞∑

r=N+1

r!

(ηuδRu)
r

∞∑

k=r

|w|
k

k!
ck,r =

∞∑

r=N+1

1

(δRu)
r

∣∣∣∣
ln(1 − |w|)

ηu

∣∣∣∣
r
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≤

∞∑

r=N+1

(
κ

δRu

)r

.

Thus, since κ/(δRu) < 1, (II) < ǫ/2 for N > N1 > Nδ. For the first term we

may write

(I) =
N∑

r=0

η−r
u |Arfu(x)|

∞∑

k=N

|w|k

k!
ck,r =

N∑

r=0

|Arfu(x)|

r!
r!η−r

u

∞∑

k=N

|w|k

k!
ck,r

=

N∑

r=0

|Arfu(x)|

r!

∣∣∣∣
ln(1 − |w|)

ηu

∣∣∣∣
r

ζr,N

with

ζr,N = 1 −
r!

∑N−1
k=r

|w|k

k! ck,r

|ln(1 − |w|)|r
.

Note that 0 ≤ ζr,N ≤ 1, and that limN→∞ ζr,N = 0 for all r ≥ 0. Due to our

assumptions we then have

(I) ≤ C

Nδ∑

r=0

ζr,N1r≤N +
∞∑

r=0

(
κ

δRu

)r

ζr,N1r≤N (8.6)

for all 0 ≤ s ≤ κ < Ru, x ∈ K. Due to dominated convergence, the right-hand-

side of (8.6) converges to zero as N → ∞.

(ii) =⇒ (iii) : Is obvious, take εu := 1 − e−ηuRu .

(iii) =⇒ (i) Let ηu and εu be such that (iii) holds. We may then de-

fine (see the proof of (ii))

p̃(z, x, u) =

∞∑

k=0

q
(ηu)
k (x, u)(1 − e−ηuz)k, x ∈ X, (8.7)

which is holomorphic in z ∈ Φηu
(U). We first note that p̃(0, x, u) = fu(x). Next

we consider for 0 ≤ s < −η−1
u ln εu,

p̃(N)(s, x, u) =

N∑

k=0

q
(ηu)
k (x, u)(1 − e−ηus)k,
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which satisfies

∂

∂s
p̃(N)(s, x, u) =

N∑

k=1

kq
(ηu)
k (x, u)(1 − e−ηus)k−1ηue−ηus

= −ηu

N∑

k=1

kq
(ηu)
k (x, u)(1 − e−ηus)k

+ ηu

N−1∑

k=0

(k + 1)q
(ηu)
k+1 (x, u)(1 − e−ηus)k (8.8)

= −ηuNq
(ηu)
N (x, u)(1 − e−ηus)N

+

N−1∑

k=0

Aq
(ηu)
k (x, u)(1 − e−ηus)k (8.9)

by some rearranging and using (3.5). Since due to (iii) the first term in (8.9)

vanishes for N → ∞, we obtain

∂

∂s
p̃(s, x, u) = lim

N→∞

∂

∂s
p̃(N)(s, x, u) = lim

N→∞
Ap̃(N−1)(s, x, u),

together with

lim
N→∞

p̃(N)(s, x, u) = p̃(s, x, u).

From the uniform convergence as stated in (iii) it follows easily that the two

series in (8.8), the first term in (8.9), and so also the second term in (8.9)

converge uniformly in the same sense. Thus, the above limits are uniform on

compacta accordingly. Since the operator A is closed, we so obtain

∂

∂s
p̃(s, x, u) = Ap̃(s, x, u), 0 ≤ s < −η−1

u ln εu,

and by uniqueness of the Cauchy problem associated with the operator A we

thus have

p̂(s, x, u) = p̃(s, x, u) =
N∑

k=0

q
(ηu)
k (x, u)(1 − e−ηus)k, 0 ≤ s < −η−1

u ln εu.

Because of the assumption that p̂(s, x, u) is holomorphically extendable in each

s, 0 ≤ s < ∞, we then must have p̂(s, x, u) = p̃(s, x, u) for 0 ≤ s < ∞. Finally,

it is not difficult to see that there exists R′
u > 0 such that GR′

u
⊂ Φηu

(U), hence

(i) is proved. �
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Proof of Proposition 3.9

From the Taylor formula for semi-groups it follows that

Psfu =
r∑

k=0

sk

k!
Akfu +

1

r!

∫ s

0

(s − τ)rPτAr+1fudτ.

Due to (3.10), for 0 ≤ τ ≤ s < Ru we have

∥∥PτAr+1fu

∥∥ ≤ sup
0≤τ≤s

‖Pτ‖
∥∥Ar+1fu

∥∥ ≤ sup
0≤τ≤s

‖Pτ‖

(
1

Ru
+ ε

)r+1

(r + 1)!

for any ε > 0. It thus follows that
∥∥∥∥∥Psfu −

r∑

k=0

sk

k!
Akfu

∥∥∥∥∥ ≤

(
1

Ru
+ ε

)r+1

sr+1 sup
0≤τ≤s

‖Pτ‖ ,

which converges to zero when r → ∞, if |s| < Ru/(1 + εRu). Since ε > 0 is

arbitrary, the first statement is proved.

The commutation property AkPtfu = PtA
kfu and the boundedness of Pt

for t ≥ 0 imply that for |s| < Ru,

∞∑

k=0

|s|k

k!

∥∥AkPtfu

∥∥ =

∞∑

k=0

|s|k

k!

∥∥PtA
kfu

∥∥ ≤ ‖Pt‖

∞∑

k=0

|s|k

k!

∥∥Akfu

∥∥ < ∞.

Since Ptfu ∈ D(Ak) for all k ≥ 0, (3.11) follows.

Proof of Theorem 4.1

For r ≥ 0 define Ar f̃u =: grf̃u with f̃u(x) = exp
[
iu⊤x

]
, and write

Ar+1f̃u = A
(
gr exp(iu⊤x)

)
=

∑

|α|≥1

aα(x)∂xα

(
gr exp(iu⊤x)

)
.

Leibniz formula implies

Ar+1f̃u =
∑

|α|≥1

aα(x)
∑

β≤α

α!

β!(α − β)!
∂xβgr∂xα−β exp(iu⊤x)

=




∑

|α|≥1

aα(x)
∑

β≤α

α!

β!(α − β)!
(iu)α−β∂xβgr



 exp(iu⊤x).

Hence, the following recurrent formula holds

gr+1 =
∑

|α|≥1

aα(x)
∑

β≤α

α!

β!(α − β)!
(iu)α−β∂xβgr. (8.10)
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Similar formulas for derivatives of gr+1 can be obtained:

∂xρgr+1 =
∑

|α|≥1

∑

β≤α

α!

β!(α − β)!
(iu)α−β

∑

η≤ρ

ρ!

η!(ρ − η)!
∂xηaα ∂xρ−η+βgr.

Since the underlying process is affine, all derivatives of a of order higher than

one are zero and thus, by induction, gr is polynomial in x of degree at most

equal r. We so get for |ρ| ≤ r + 1,

∂xρgr+1 =
∑

η≤ρ, |η|≤1

ρ!

η!(ρ − η)!

∑

|α|≥1

∑

β≤α

α!

β!(α − β)!
(iu)α−β∂xηaα ∂xρ−η+βgr

By defining

Γr := max
|β|≤r

|∂xβgr| ,

we obtain the following estimate for x ∈ X,

|∂xρgr+1| ≤ Γr(1 + ‖x‖)
∑

η≤ρ,
|η|≤1

ρ!

η!(ρ − η)!

∑

|α|≥1

∑

β≤α

α!

β!(α − β)!
|u|

α−β
Da

|α|

with |u| := [|u1| , ..., |un|]. Hence, by the simple relations

∑

{η:|η|≤1}

ρ!

η!(ρ − η)!
= 1 + |ρ|,

∑

β≤α

α!

β!(α − β)!
|u|α−β ≤ (1 + ‖u‖)|α|,

∑

α,|α|=k

1 =
(k + n − 1)!

k!(n − 1)!
≤ 2n+k,

with ‖u‖ = maxi=1,...,n |ui|, we have

Γr+1 ≤ 2nΓr(r + 2)(1 + ‖x‖)
∑

k≥1

2k(1 + ‖u‖)kDa

k (8.11)

= 2nΓr(r + 2)(1 + ‖x‖)θ(‖u‖),

where the series in (8.11) is convergent due to assumption (4.2). As a conse-

quence, (4.3) holds. �

Proof of Proposition 4.5

From (8.10) we have with a0 := 0,

gr+1 =
∑

α,β,γ≥0

aα
α!

β!(α − β)!
(iu)α−βgr,γ

γ!

(γ − β)!
xγ−β1|γ|≤r1β≤α1β≤γ
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=
∑

β,γ≥0

gr,γ+β

(
γ + β

β

)
xγ1|γ+β|≤rbβ

=
∑

|γ|≤r

xγ
∑

|β|≤r−|γ|

gr,γ+β

(
γ + β

β

)
b0

β

+
∑

|γ|≤r

∑

|β|≤r−|γ|

gr,γ+β

(
γ + β

β

) ∑

κ, |κ|=1

b1
β,κxγ+κ

=
∑

|γ|≤r+1

xγ
∑

|β|≤r−|γ|

gr,γ+β

(
γ + β

β

)
b0

β

+
∑

|γ|≤r+1

xγ
∑

|κ|=1, κ≤γ

∑

β, |β|≤r+1−|γ|

gr,γ−κ+β

(
γ − κ + β

β

)
b1

β,κ,

where empty sums are to be interpret as zero. The second recursion follows

from (r + 1)hr+1 = η−1h̃r+1 + rhr with A(hrfu) = h̃r+1fu and h̃r+1 computed

via (4.6) with gr replaced by hr. �
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