
Multilevel dual approach for pricing American
style derivatives1

Denis Belomestny2, John Schoenmakers3, Fabian Dickmann2

October 12, 2012

In this article we propose a novel approach to reduce the computational complex-
ity of the dual method for pricing American options. We consider a sequence of
martingales that converges to a given target martingale and decompose the original
dual representation into a sum of representations that correspond to different levels
of approximation to the target martingale. By next replacing in each representation
true conditional expectations with their Monte Carlo estimates, we arrive at what
one may call a multilevel dual Monte Carlo algorithm. The analysis of this algorithm
reveals that the computational complexity of getting the corresponding target upper
bound, due to the target martingale, can be significantly reduced. In particular, it
turns out that using our new approach, we may construct a multilevel version of the
well-known nested Monte Carlo algorithm of Andersen and Broadie (2004) that is,
regarding complexity, virtually equivalent to a non-nested algorithm. The perfor-
mance of this multilevel algorithm is illustrated by a numerical example.
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1 Introduction

Efficient methods for pricing high-dimensional American options have been a challenge for
decades. While for a low or moderate dimensional underlying process, deterministic (PDE)
based methods may be applicable, for higher dimensions Monte Carlo simulation based meth-
ods are virtually the only way out. Besides the absence of curse of dimensionality, Monte Carlo
methods are quite popular because of their genericity. In the nineties a number of regression
methods for constructing “good” exercise policies, hence price lower bounds, were introduced
and studied in the literature (see Carriere (1996), Longstaff and Schwartz (2001), and Tsitsiklis
and Van Roy (1999)). Among various other developments, we mention the stochastic mesh
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method of Broadie and Glasserman (2004), the quantization method by Bally and Pages (2003),
and the policy iteration method by Kolodko and Schoenmakers (2006). The latter method may
be effectively combined with the Longstaff-Schwartz approach as presented in Bender et al.
(2008).

The aforementioned methods have in common that they provide an exercise policy for the
American product. Based on this policy one may simulate a lower bound for its price. This is
what is called the primal approach. A new direction in Monte Carlo simulation of American
options was the dual approach, developed by Rogers (2002) and independently by Haugh and
Kogan (2004), related to earlier ideas in Davis and Karatzas (1994). In this approach one
looks for a “good” martingale rather than a “good” stopping time. Based on this martingale
the price of an American derivative may be bounded from above. In fact, this price upper
bound may be represented by a “look-back” option due to the difference of the cash-flow and
the martingale. Meanwhile, several numerical algorithms for computing dual upper bounds
have appeared in the literature. Probably one of the most popular ones is the method of
Andersen and Broadie (2004). A drawback of this method is its computational complexity due
to the need for nested Monte Carlo simulation. In recent years a number of approaches towards
reducing the complexity of the AB algorithm appeared in the literature. As one remedy to the
complexity issue, Belomestny et al. (2009) proposed a dual simulation algorithm which does
not require nested simulation and uses regression to approximate the integrand in a martingale
representation. Joshi (2007) suggested to exclude exercise at sub-optimal points to improve
the efficiency of the AB algorithm. In Broadie and Cao (2008) a variance reduction approach
based on martingale control variates was introduced. Another non-nested regression based dual
algorithm was proposed in Schoenmakers et al. (2012) in the context of a study of optimal dual
martingales (approximated by “low variance” martingales). Furthermore, in Belomestny (2012)
an efficient dual algorithm is constructed which is based on convex optimization and empirical
variance penalization.

Each of the above mentioned approaches can improve the efficiency of the AB algorithm
significantly in some situations. However, none of them is provably uniformly superior (at least
asymptotically) to the nested AB algorithm in terms of numerical complexity. For example,
although the complexity of Belomestny et al. (2009) method is a multiple of the number of
Monte Carlo paths N , the corresponding multiplicative constant is proportional to the number
of basis functions used to approximate a target martingale. In order to ensure convergence,
this number should go to infinity together with N at some rate which in turn depends on the
problem at hand.

The main goal of this paper is to enhance the efficiency of dual algorithms by using a “multi-
level” idea in the spirit of Giles (2008). In Giles (2008) a multilevel Monte Carlo estimator is
presented, which is based on approximate solutions of a stochastic differential equation given a
sequence of different time discretization steps. For instance, by this method the complexity of
simulating a European option can be significantly reduced. In this paper we apply the multilevel
idea to a sequence of martingales (rather than time discretization steps). Based on this sequence
of martingales we will construct a new multilevel dual estimator for the American option. As
a special case we obtain a multilevel version of the Andersen-Broadie algorithm. Under some
assumptions we will prove that the complexity of this algorithm is (almost) equivalent to a
non-nested Monte Carlo algorithm. As a byproduct of our complexity analysis we derive, to our
knowledge for the first time, convergence rates of the Andersen-Broadie algorithm. In particular,
our analysis reveals that, under some assumptions, the upper bias induced by inner simulations
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converges to zero at rate O(1/k), with k being the number of inner simulations. The latter
feature was observed empirically in the early literature (see, e.g., Kolodko and Schoenmakers
(2004)), but has not yet had a theoretical explanation.

The structure of the paper is as follows. In Section 2 we recap the primal and dual approaches
for optimal stopping in the context of American options. The main setup and prerequisites
including a key Theorem 5 are presented in Section 3. After a complexity analysis of the
standard dual approach in Section 4 we present and analyze the multi-level dual estimator in
Section 5. Section 6 concludes with a detailed numerical study of the multilevel version of the
Andersen-Broadie algorithm.

2 Primal and Dual valuation of American options

Let (Zj)j≥0 be a nonnegative adapted process on a filtered probability space (Ω,F = (Fj)j≥0,P)
representing the discounted payoff of an American option, so that the holder of the option
receives Zj if the option is exercised at time j ∈ {0, ...,J } with J ∈ N+. The pricing of American
options can be formulated as a primal-dual problem. Let Yj denote the time j solution to this
problem. The primal representation corresponds to the following optimal stopping problems:

Y ∗j = max
τ∈T [j,...,J ]

EFj [Zτ ], j = 0, . . . ,J ,

where T [j, . . . ,J ] is the set of F-stopping times taking values in {j, . . . ,J }. During the nineties
the primal approach was the only method available. More recently a quite different “dual”
approach has been discovered by Rogers (2002) and Haugh and Kogan (2004). The next theorem
summarizes their results.

Theorem 1 Let M denote the space of adapted martingales, then we have the following dual
representation for the value process Y ∗j

Y ∗j = inf
M∈M

EFj

[
max

s∈{j,...,J}
(Zs −Ms +Mj)

]
= max

s∈{j,...,J}
(Zs −M∗s +M∗j ) a.s.,

where

(1) Y ∗j = Y ∗0 +M∗j −A∗j

is the (unique) Doob decomposition of the supermartingale Y ∗j . That is, M∗ is a martingale and
A∗ is an increasing process with M0 = A0 = 0 such that (1) holds.

Remark 2 In Schoenmakers et al. (2012) it is shown that in general there are infinitely many
martingales M◦ such that

Y ∗j = max
s∈{j,...,J}

(Zs −M◦s +M◦j ) a.s.
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Theorem 1 implies that, for an arbitrarily chosen martingale M with M0 = 0, the value

E

[
max

s∈{0,...,J}
(Zs −Ms)

]
defines an upper bound for the price of American option Y ∗0 , and the upper bound will be
tight if the chosen martingale M is close to the Doob martingale part M∗ of the discounted
true value process Y ∗j , which we shall refer to as the “optimal” martingale. Not surprisingly,
finding such an optimal martingale is no easier than solving the original stopping problem.
The so-called martingale duality approach aims at finding a martingale that approximates the
“optimal” martingale and then use this approximation to compute an upper bound for the price
of the American option by Monte Carlo. There are several methods known for approximating
the “optimal” martingale M∗. In Andersen and Broadie (2004) the Doob martingale part of a
given approximation to the Snell envelope is constructed by sub-simulations. In this way quite
tight lower and upper bounds for a number of test examples were obtained. However, as we will
see later on, the complexity of this method can be rather high, especially if a high precision of
calculation is required. Therefore the complexity reduction of the dual algorithms is of primal
importance and is one of the main aims of this paper.

3 Main setup, prerequisites, and central results

Let (Mk)k∈N be a sequence of F′-martingales starting at 0 (Mk
0 = 0) with respect to an enlarged

probability space (Ω,F′ = (F ′j)j≥0, P ), where Fj ⊂ F ′j for each j. It is supposed that the sequence

(Mk)k∈N converges in some sense to a target martingale M which is F-adapted. The need for
an enlarged probability space in order to approximate the martingale M is best illustrated in
the following canonical situation.

Example 3 Let Y = (Yj)0≤j≤J be some given F-adapted process and M = (Mj)0≤j≤J be the
Doob martingale corresponding to Y, i.e.,

(2) Mj =

j∑
i=1

(
Yi − EFi−1 [Yi]

)
.

A typical way to obtain an approximation Mk to M is to estimate the conditional expectations
in (2) by Monte Carlo simulation within the following setup. Consider

(3) Mk
j =

j∑
i=1

(
Yi −

1

k

k∑
l=1

ξ
(l)
i

)
,

where, conditionally F, all random variables ξ
(l)
i , l = 1, ..., k, i = 1, ...,J , are independent and

moreover, for each particular i, conditionally i.i.d. for 1 ≤ l ≤ k, such that the F-conditional

law of ξ
(1)
i equals its Fi−1-conditional law, and such that

EF

[
ξ
(l)
i

]
= EFi−1

[
ξ
(l)
i

]
= EFi−1

[
ξ
(1)
i

]
= EFi−1 [Yi] .

In this setup we obviously have that Mk is an F′-martingale with F ′j = Fj ∨ σ
{
ξ
(l)
p , p = 1, ..., j,

l = 1, ...k
}
.
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Our aim is to approximate the target upper bound:

Y (M) := E

[
max

j=0,...,J
(Zj −Mj)

]
= E[Z(M)]

with
Z(M) = max

j=0,...,J
(Zj −Mj).

Note that any F-stopping time τ is also an F′-stopping time, so by Doob’s sampling theorem
E
[
Mk
τ

]
= 0, and we have

Y ∗0 = sup
F-stopping times τ

E [Zτ ]

= sup
F-stopping times τ

E
[
Zτ −Mk

τ

]
≤ E

[
max

j=0,...,J
(Zj −Mk

j )

]
= Y (Mk),

i.e., Y (Mk) is an upper bound for any k ∈ N.

Remark 4 In the setting of Example 3 we have that Y (Mk) is upper biased with respect to
Y (M). Indeed, by Jensen’s inequality it follows that

Y (Mk) ≥ E

[
max

j=0,...,J

(
Zj − EF

[
Mk
j

])]
= E

[
max

j=0,...,J
(Zj −Mj)

]
= Y (M).

We are now interested in the convergence behavior of Z(Mk) to Z(M) as k →∞, and consider
in this context the following set of assumptions.

(AC) The numerical complexity of obtaining a single realization of Mk
j is of order O(k) for each

j = 1, . . . ,J .

It should be noted that (AC) is not really an assumption as it can always be achieved after a
suitable re-parametrization of the martingale sequence. The next two assumptions describe the
rate of convergence to the target martingale.

(AR) There exists an F-adapted martingale M such that

E

[
max

j=0,...,J
(Mk

j −Mj)
2

]
≤ Bk−β, k ∈ N,

for some β > 0 and B > 0.

(AR’) There exists an F-adapted martingale M such that

max
j=0,...,J

∣∣∣EF

[
Mk
j −Mj

]∣∣∣ ≤ Ak−α, EF

[
max

j=0,...,J
(Mk

j −Mj)
2

]
≤ Bk−β,

F-almost surely, for all k ∈ N, some β > 0, α ≥ β/2, A > 0 and B > 0.

5



Let us further consider the random sets

Q = {j : Zj −Mj = Z(M)} , Qk =
{
j : Zj −Mk

j = Z(Mk)
}
, k ∈ N,

and define the F-measurable random variable

(4) Λ := min
j /∈Q

(Z(M)− Zj +Mj) ,

with Λ := +∞ if Q = {0, ...,J }. We then introduce the following two conditions.

(AL) Λ satisfies E [Λ−a] <∞, for some a > 0.

(AQ) #Q = 1 a.s.

In terms of the different assumptions spelled out above, we now have the following central
theorem which is proved in Section 7.1.

Theorem 5 Under assumption (AR) alone it holds that

|E[Z(Mk)−Z(M)]| ≤ Ck−γ , E

[(
Z(Mk)−Z(M)

)2]
≤ Bk−β(5)

with γ = β/2 and some C > 0. If assumptions (AR’), (AL) and (AQ) are additionally satisfied,
then (5) holds true with γ = min {α, βmin {1, (a+ 1)/2}} .

Discussion (Andersen & Broadie algorithm) Example 3 basically describes the setup of the
Andersen and Broadie (2004) (AB) algorithm. In this algorithm, M is the Doob martingale
part of some approximation Y to the Snell envelope, and the sequence of martingales (Mk) is

constructed using sub-simulations, where for each i the random variables ξ
(l)
i are simulated as

i.i.d. copies according to the distribution of Yi, conditionally on Fi−1. It is not difficult to see
that for the AB algorithm (AR) holds with β = 1, provided E[Y 2

i ] <∞ for i = 0, . . . ,J . Indeed,

since all ξ
(l)
i are independent conditionally F, it holds for each j,

E
[
(Mk

j −Mj)
2
]

= E EF

{ j∑
i=1

(
EFi−1 [Yi]−

1

k

k∑
l=1

ξ
(l)
i

)}2


=
1

k

J∑
i=1

E EFi−1

[(
EFi−1 [Yi]− ξ(1)i

)2]
≤ 1

k

J∑
i=1

E[Y 2
i ].

In the AB algorithm the estimator Mk (cf. (3)) is bias-free, so the first part of (AR’) holds
with α =∞. Further if, for example, the proxy process Y in the AB algorithm is almost surely
bounded, a similar argumentation as above shows that (AR’) holds with β = 1. A bounded
proxy process is for instance easily obtained when the cash-flow process Zj , j = 0, . . . ,J , is
bounded.
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4 Standard Monte Carlo dual upper bound

Fix some natural numbers N and K, and consider the estimator:

Y N,K =
1

N

N∑
n=1

max
j=0,...,J

(Z
(n)
j −MK,(n)

j )

=:
1

N

N∑
n=1

Z(n)(MK)

based on a set of trajectories{
(Z

(n)
j ,M

K,(n)
j ), n = 1, ..., N, j = 0, . . . ,J

}
of the vector process (Z,MK). Let us study the numerical complexity of Y N,K .

4.1 Complexity analysis

Under assumption (AR) only we have due to Theorem 5 that for some C > 0

E
[(
Y N,K − Y (M)

)2] ≤ N−1 Var
[
Z(MK)

]
+ CK−β

=: N−1vK + CK−β, K →∞.(6)

In order to obtain

√
E
[
(Y N,K − Y (M))2

]
≤ ε, we thus may take

K =

⌈
(2C)1/β

ε2/β

⌉
, and next N =

⌈
2vK
ε2

⌉
with dxe denoting the first integer which is larger than or equal to x. Assuming that vK is
non-increasing, the required computation time to reach the accuracy ε, hence the complexity, is
then given, up to a constant, by

CN,K(ε) := NK = O

v
⌈

(2C)1/β

ε2/β

⌉
ε2+2/β

 .

In the usual case, where M is the Doob martingale of some approximation Y to the Snell envelope
Y ∗, we have that Var [Z(M)] > 0 and vK → v∞ 6= 0 leading to CN,K(ε) of order O(ε−2−2/β),
hence O(ε−4) for the AB algorithm. As the following example shows, the AB algorithm may
have rate ε−4 in general indeed.

Example 6 Consider the simple situation where J = 2, Z0 = Z1 = 0, Y ∗0 = 0 and M∗0 = M∗1 =
0. Define a target martingale via M0 = 0, M1 = Y1 − EY1 = ξ − E[ξ] with a r.v. ξ given by

ξ =


3b/2 with probability 1/4

b with probability 1/2

b/2 with probability 1/4
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for some b > 0. Note that E[ξ] = b and Var[ξ] = b2/8. The approximation

MK
1 = ξ − 1

K

K∑
l=1

ξ(l),

where ξ(l) are i.i.d. copies of ξ, gives us

Z(MK) = max
(
0,−MK

1

)
= max

(
0,

1

K

K∑
l=1

ξ(l) − ξ

)
.

Hence

∆K := E[Z(MK)]− E[Z(M)] = E

( 1

K

K∑
l=1

ξ(l) − ξ

)+

− (E ξ − ξ)+


and it is easy to check that

∆K ≥
1

2
E

( 1

K

K∑
l=1

ξ(l) − b

)+
 =

b/
√

8

2
√
K

E

( 1√
K

K∑
l=1

ξ(l) − b
b/
√

8

)+
 � b

4
√
πK

as K →∞. Moreover, it obviously holds

E
[(
Z(MK)−Z(M)

)2]
= O(1/K), K →∞.

Thus, (AR) holds with β = 1 and the decay of the bias is proportional to K−β/2 leading to the
complexity rate ε−4 for the AB algorithm in this case.

Remark 7 It is easy to see that in Example 6 (AL) is violated for all a > 0.

Remark 8 If Var [Z(M)] = 0 (e.g., the target martingale M is the Doob martingale of Y ∗) we
have

vK = Var
[
Z(MK)

]
≤ E

[
(Z(MK)−Z(M))2

]
≤ BK−β,

and as a result

CN,K(ε) = O

(
1

ε2/β
.

)
That is, if β ≥ 1 the complexity of the AB algorithm is even less than or equal to the complexity
of the plain Monte Carlo algorithm!

Under the more restrictive assumptions (AR’), (AL), and (AQ), Theorem 5 yields (cf. (6))

E
[(
Y N,K − Y (M)

)2] ≤ N−1vK + CK−2γ , K →∞,

so in order to get

√
E
[
(Y N,K − Y (M))2

]
≤ ε, we then may take

K =

⌈
(2C)1/2γ

ε1/γ

⌉
, N =

⌈
2vK
ε2

⌉
, yielding CN,K(ε) = O

v
⌈

(2C)1/2γ

ε1/γ

⌉
ε2+1/γ

 .
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Corollary 9 Under (AR’), (AL), and (AQ) the complexity of the standard AB algorithm, where
α =∞, β = 1, may be reduced to

O

(
1

ε2+
2
a+1

)
in the case vK → v∞ 6= 0, and 0 < a ≤ 1. That is, the AB complexity is of order O(ε−3−δ) for
arbitrary small δ > 0.

Discussion

• (AL) is fulfilled for all 0 ≤ a < q + 1 when Λ > 0 has density g in a neighborhood of zero
such that g(z) = O(|z|q) for some q ≥ 0 as |z| → 0.

• If M = M∗ then, using (1), (4), and the fact that Y ∗0 = Z(M∗),

Λ = min
j /∈Q

(
Y ∗0 − Zj +M∗j

)
= min

j /∈Q

(
Y ∗j − Zj +A∗j

)
≥ min

j /∈Q

(
Y ∗j − Zj

)
≥ min
{j:Y ∗j >Zj}

(
Y ∗j − Zj

)
.

Hence, the condition (AL) is fulfilled if

P(Y ∗j − Zj < δ|Y ∗j > Zj) . δq, δ → 0,(7)

for all j = 1, . . . ,J and some q > a. The condition (7) bounds the probability of staying
in the δ-vicinity of the exercise boundary {Y ∗j ≤ Zj} in the case of continuation and is
similar to the so-called margin condition in Belomestny (2011). As we will see, (7) leads
to faster convergence rates of the standard Andersen-Broadie dual algorithm.

Remark 10 Under the additional assumptions (AL) with a ≤ 1, and (AQ), we have by The-
orem 5 that the bias of the Andersen-Broadie estimator is of order O(k−(1+a)/2). In Kolodko
and Schoenmakers (2004) a rate of order O(k−1) was experimentally detected in experiments
but before now, to the best of our knowledge, no theoretical justification for this observation was
given.

In the next section we propose a multi-level Monte-Carlo algorithm for computing Y (M) whose
complexity is under (AR) with β = 1 of order O(ε−2 ln2(ε)), regardless whether (AR’), (AL),
and (AQ) do hold or not!

5 Multilevel dual algorithm

Fix some natural number L > 0. Let k = (k0, . . . , kL) be a sequence of natural numbers satisfying
1 ≤ k0 < k1 < . . . < kL. Write

Y (MkL) = Y (Mk0) +
L∑
l=1

[Y (Mkl)− Y (Mkl−1)](8)

= E[Z(Mk0)] +

L∑
l=1

E[Z(Mkl)−Z(Mkl−1)].
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For a given sequence n = (n0, . . . , nL) with n0 > . . . > nL ≥ 1, we first simulate the initial set
of trajectories {(

Z
(i)
j ,M

k0,(i)
j

)
, i = 1, ..., n0, j = 0, . . . ,J

}
of the vector process (Z,Mk0), and then for each level l = 1, . . . , L independently a set of
trajectories {(

Z
(i)
j ,M

kl−1,(i)
j ,M

kl,(i)
j

)
, i = 1, ..., nl, j = 0, . . . ,J

}
of the vector process (Z,Mkl−1 ,Mkl). Based on these simulations we consider the following
approximation of (8)

Y n,k :=
1

n0

n0∑
i=1

Z(i)(M k0) +

L∑
l=1

1

nl

nl∑
i=1

[
Z(i)(Mkl)−Z(i)(Mkl−1)

]
with Z(i)(Mk) := maxj=0,...,J

(
Z

(i)
j −M

k,(i)
j

)
, i = 1, . . . , nl, k ∈ N, where Mk,(i) denotes the

i-th simulated trajectory of the martingale Mk.

5.1 Complexity analysis

For the bias of the multilevel estimator we obtain by Theorem 5

(9)
∣∣∣E [Y n,k

]
− Y (M)

∣∣∣ =
∣∣∣E [Z(MkL)

]
− E [Z(M)]

∣∣∣ ≤ Ck−γL
and for the variance we have

(10) Var
[
Y n,k

]
= n−10 Var[Z(Mk0)] +

L∑
l=1

1

nl
Var

[
Z(Mkl)−Z(Mkl−1)

]
.

Note that for any l > 0,

Var
[
Z(Mkl)−Z(Mkl−1)

]
≤ E

[(
Z(Mkl)−Z(Mkl−1)

)2]
≤ 2 E

[(
Z(Mkl)−Z(M)

)2]
+ 2 E

[(
Z(Mkl−1)−Z(M)

)2]
≤ 2(Bk−βl +Bk−βl−1) ≤ 4Bk−βl ≤ B̃k−βl ,

by Theorem 5. For notational convenience we assume that B̃ is such that Var[Z(Mk0)] ≤ B̃k−β0 .

Theorem 11 (complexity theorem) Suppose that kl = k0κ
l for some integer k0, κ > 1, and

l = 0, . . . , L. Assume that the inequalities (5) hold with γ ≥ 1/2. Fix some 0 < ε < 1 and set

(11) L =


− ln

kγ0 ε

C
√
2

γ lnκ

 .
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Let

nl =


⌈
2ε−2B̃k−β0 κL(1−β)/2(1− κ−(1−β)/2)−1κ−l(1+β)/2

⌉
, β < 1,⌈

2ε−2B̃(L+ 1)k−10 κ−l
⌉
, β = 1,⌈

2ε−2B̃k−β0 (1− κ−(β−1)/2)−1κ−l(1+β)/2
⌉
, β > 1.

Then

(12)

√
E[(Y n,k − Y (M))

2
] ≤ ε,

while the computational complexity of the estimator Y n,k is, up to a constant, given by

Cn,k(ε) :=

L∑
l=0

klnl =


O(ε−2−(1−β)/γ), β < 1,

O(ε−2 ln2 ε), β = 1,

O(ε−2), β > 1.

5.2 Refined complexity analysis

While the general complexity analysis in Section 5.1 provides the multilevel complexity order
for achieving a specific accuracy ε, it will be advantageous to refine this analysis in the present
context in order to optimize order coefficients in this respect. The idea is a separate treatment
of n0 in the first term of (8). Let us therefore assume that

(13) kl = k0κ
l for 0 ≤ l ≤ L, and nl = n1κ

1−l for 1 ≤ l ≤ L,

for some separate integers n1 and n0 to be determined. Further it is assumed that the kl−1
sub-simulations used for computing Z(Mkl−1) are reused in the computation of Z(Mkl). Then
the numerical complexity of the multi-level estimate Y n,k is given, up to a constant, by

CML = n0k0 +
L∑
l=1

nlkl

= n0k0 + n1k0κL.(14)

In the analysis below we assume that the bias of the Andersen-Broadie algorithm is given by

E
[
Y n,k − Ŷ

]
=

µ∞
k0κL

.

Let us now analyze the variance of Y n,k. For this we assume that there are constants σ2∞ and
V∞ such that

Var[Y n,k] = n−10 Var[Z(Mk0)] +
L∑
l=1

n−1l Var
[
Z(Mkl)−Z(Mkl−1)

]
= n−10 σ2∞ +

L∑
l=1

n−1l k−1l V∞

= n−10 σ2∞ + n−11 k−10 V∞κ
−1L.
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For fixed L, k0 and accuracy ε, we are now going to minimize the complexity (14) over n0 and
n1 under the constraints (

µ∞
k0κL

)2

︸ ︷︷ ︸
squared bias

+ n−10 σ2∞ + n−11 k−10 V∞κ
−1L︸ ︷︷ ︸

variance

= ε2,

for fixed L and k0 such that the bias µ∞k
−1
0 κ−L < ε, i.e.,

(15) L >
ln ε−1 + ln (µ∞/k0)

lnκ
.

A straightforward Lagrangian analysis (while treating integers as reals) leads to the following
solution:

n∗0 = n∗0(k0, L, ε) =
σ2∞ + σ∞L

√
k−10 V∞

ε2 − µ2∞k−20 κ−2L
,

n∗1 = n∗1(k0, L, ε) =
σ∞κ

−1
√
k−10 V∞ + κ−1Lk−10 V∞

ε2 − µ2∞k−20 κ−2L

= n∗0(k0, L, ε)κ
−1σ−1∞

√
k−10 V∞,

corresponding to a complexity equal to

C∗ML(k0, L, ε) = k0 n
∗
0(k0, L, ε) + k0κLn

∗
1(k0, L, ε)

=

(
L
√
V∞ + σ∞

√
k0
)2

ε2 − µ2∞k−20 κ−2L
.(16)

Next, while keeping k0 and ε fixed, i.e. C∗ML(L) := C∗ML(k0, L, ε), we minimize (16) with respect
to L under the constraint (15). By considering the equation dC∗ML(L)/dL = 0, we obtain after
a little algebra, using L > 0,

κ2Lε2 = σ∞µ
2
∞V−1/2∞ k

−3/2
0 lnκ+ µ2∞k

−2
0 + Lµ2∞k

−2
0 lnκ

=: p+ qL, p, q > 0.(17)

So from (17) we see that necessarily L → ∞ as ε ↓ 0. Let us now reformulate (17) by taking
logarithms as

L =
ln ε−1

lnκ
+

1

2 lnκ
ln(p+ qL)(18)

=
ln ε−1

lnκ
+

ln(qL)

2 lnκ
+O(L−1), ε ↓ 0,

which in turn may be written as

L =
ln ε−1

lnκ +O(L−1)

1− ln(qL)
2L lnκ

,

12



hence we have L = O(ln ε−1), as ε ↓ 0. This implies by (18),

L =
ln ε−1

lnκ
+O

(
ln ln ε−1

)
,

and by iterating (18) once again using q = µ2∞k
−2
0 lnκ, we obtain

(19) L∗(k0, ε) :=
ln ε−1

lnκ
+

ln ln ε−1

2 lnκ
+

ln (µ∞/k0)

lnκ
+O

(
ln ln ε−1

ln ε−1

)
, ε ↓ 0.

In fact, by iterating further in this way, we may obtain asymptotic expressions for the solution
of (18) of arbitrary high order. Expression (19) is sufficient for our purposes however. Note that
in (19) the order term goes to zero and the second term goes to infinity as ε ↓ 0. Therefore,
restriction (15) will be fulfilled provided ε is not too large (the second term is positive for
ε < e−1), and then C∗ML(L) will attain a minimum at the solution of (18). By plugging (19) into
(16) we get for the minimized complexity after some standard asymptotic calculations

C∗ML(k0, L, ε) =(20)

V∞ε
−2
(

ln ε−1

lnκ
+

ln ln ε−1

2 lnκ
+

ln (µ∞/k0)

lnκ
+
σ∞
√
k0√

V∞

)2(
1 +O

(
ln ln ε−1

ln ε−1

))
.

Discussion As the last pragmatic optimization step it looks natural to choose

k∗0 =
4V∞

σ2∞ ln2 κ

that minimizes the term involving k0 in (20). However, this expression for k∗0 should only be
considered as an indicator, while it is better to choose k0 by experience, for example k0 = 100
turns out to be a robust choice. Further we observe that, asymptotically, the optimal value of L
depends on ε and κ only. Thus, as a recipe for a given ε, we propose to choose a suitable k∗0, (e.g.
100), and then compute L∗ from (19), and next determine n∗0 and n∗1. For the Andersen-Broadie
algorithm with β = 1 we have

CAB(ε) =
2
√

2

ε−3
µ∞σ

2
∞,

so the gain of the multilevel approach over the Andersen-Broadie algorithm, expressed as the
ratio of their respective complexities, becomes

R(ε) :=
CAB(ε)

CML(ε)
=

2
√

2 ln2 κ

ε ln2 ε−1
θ

with θ := µ∞σ
2
∞/V∞.

6 Direct numerical comparison with AB

In the next study we will compare the accuracies of the ML and AB algorithms given a certain
computational budget, rather than comparing their complexities asymptotically based on the
optimal choice of L and the optimal allocations of nl and kl, l = 0, ..., L, for achieving a target
accuracy ε that tends to zero. Strictly speaking, we now have to seek for the optimal L and the

13



optimal allocations nl, kl, l = 0, ..., L, given a cost budget C for the ML algorithm, and next
compare the achieved ML accuracy with the accuracy achieved by the AB algorithm based on
the optimal allocation of N and K, given the same cost budget C. In view of the complexity
analysis given in Sections 5.1,5.2, it is not difficult to see that, for example, in the case β = 1 and
AB complexity of order O(ε−3), the ML accuracy εML is superior to the AB accuracy εAB at a
rate εML/εAB = O(C−1/6 lnC) as C →∞. However, a further in depth analysis of the respective
optimal parameters for the ML algorithm given a fixed budget C, is considered beyond the scope
of this article. In order to show that the ML estimator is potentially advantageous compared
to the AB estimator for a fixed (but finite) cost budget C, we propose the following simplified
procedure. Let N and K be the (optimal) allocation for the AB method given some budget
C = NK. We then choose in the multilevel approach k0 and L in such a way that kL = K, i.e.,
we ensure that both methods have the same bias, and next show that by taking L optimally the
variance of the ML estimator may be smaller than the AB variance provided that K (hence C)
is large enough. The details are spelled out below.

6.1 Parameter choice for the ML algorithm

Let us recall the setting of Section 5.2 where the ML computational cost is given by (14) while
the computational cost of the Andersen-Broadie estimate:

Y K,N =
1

N

N∑
l=1

Z(l)(MK)

is equal to NK. Now we are going to compare the variances of the estimates Y k,n and Y K,N ,
given that Y k,n and Y K,N have the same bias and the same computational cost. This leads to
the following constraints:

NK = n0k0 + n1k0κL equal cost

kL = k0κ
L = K equal bias

implying

k0 = Kκ−L, n1 = NL−1κL−1 − n0κ−1L−1.

The variance of Y k,n is given by

Var
[
Y k,n

]
=
v2(0, k0)

n0
+

L∑
l=1

n−1l v2(kl−1, kl)

with v2(kl−1, kl) := Var
[
Z(r)(Mkl)−Z(r)(Mkl−1)

]
and M0 = Z by definition. By assuming the

existence of V∞ and σ∞ such that v(kl−1, kl) = V∞/
√
kl and v(0, k0) = σ∞, at least for large

enough k0, we get

Var
[
Y k,n

]
=
σ2∞
n0

+

L∑
l=1

n−11 κl−1
V2∞
k0κl

=
σ2∞
n0

+
k−10 V2∞L2

NκL − n0
.
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The minimization of the latter expression over n0 gives

n∗0 =
NκL

1 + L
√
V2
∞κ

L

σ2
∞K

=
NκL

1 + L
√
v2(kL−1,K)κL/σ2∞

.(21)

Hence

n∗1 = n∗0

√
v2(kL−1,K)κL−2

σ2∞
(22)

yielding

Var
[
Y k,n∗

]
=

1

NκL

(
σ∞ + L

√
v2(kL−1,K)κL

)2

=:
Θ2
K,L

N
.

Since the variance of Y K,N is σ2∞/N, we get

R(K,L) :=
Var

[
Y k,n∗

]
Var [Y K,N ]

=

(
κ−L/2 +

Lv(kL−1,K)

σ∞

)2

.(23)

In the numerical experiment in the next section, we take k0 = Kκ−L, and n∗0 and n∗1 according
to formulas (21) and (22), respectively, for any fixed K and N .

Discussion The above comparison method has the following key features.

• The comparison results do not depend on the actual bias and bias rate (hence complexity
rate) of the AB algorithm.

• For fixed K, the variance ratio R(K,L) in (23) is independent of N (hence C).

• For any L, K ′ > K, it holds that R(K ′, L) ≤ R(K,L).

• If K is sufficiently large, then there exists LK such that R(K,LK) = minL≥1R(K,L) <
1 (significantly).

These features may be interpreted as follows. Let K be as in the last bullet point. Then
every AB estimate due K ′ inner simulations, K ′ ≥ K, and N outer simulations, involving a
total computational costs of C ′ := NK ′, will be outperformed by a particular ML estimate at
the same costs C ′, having the same bias but (significantly) smaller variance. While the ML
accuracy gain based on this comparison strategy might not be very tremendous, the results are
robust in the sense that comparison of an optimal ML parametrization with an optimal AB
parametrization (which both depend on particular knowledge of the bias rate) is avoided. Put
differently, with any given K ′ > K for the AB method, there will be some connected optimal N
that depends on the actual complexity of the AB algorithm for the problem under consideration.
The above comparison then shows that whatever this N may be, i.e., whatever budget C ′ = NK ′

we choose for AB, with this budget we may outperform the corresponding AB estimate with
a more accurate ML estimate using an number of levels LK := minL≥1R(K,L). Furthermore,
it should be noted that in a next turn the ML estimate might be improved further, since the
parameter choices due to the above strategy may not be optimal. Indeed, we know that for
large enough budgets the achievable ML accuracy is (asymptotically) of higher order than the
AB accuracy, and so an ML parametrization that implies the AB bias must be (asymptotically)
suboptimal.
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6.2 Bermudan swaptions in the LIBOR market model

As a case study, we here consider the Bermudan swaption example from Sec. 7 in Kolodko and
Schoenmakers (2006) in the context of the well known LIBOR Market Model. This example is
chosen as it is somehow representative for a situation where a natural but suboptimal stopping
strategy can be constructed in a canonical way, and where the corresponding dual price is asked
for.

Remark 12 Another interesting case study would be the (25 dimensional!) asset based cance-
lable snowball swap studied in Bender et al. (2008). The latter case is a typical example where
the method of Longstaff and Schwartz (2001) fails to give a very tight lower bound, hence where
one is faced with a suboptimal stopping rule that yields a significant duality gap. The descrip-
tion and study of this example is considered too extensive for the present context however, and
therefore postponed to a possible future numerical study.

The dynamics of the LIBOR Market Model with respect to a tenor structure 0 < T1 < . . . < Tn
in the spot LIBOR measure P ∗. are given by the following system of SDE’s (for more details
see, e.g., Schoenmakers (2005) and the references therein),

(24) dLi =
i∑

j=κ(t)

δjLiLj γi · γj
1 + δjLj

dt+ Li γi · dW ∗ 0 ≤ t ≤ Ti, 1 ≤ i < n,

with δi := Ti+1 − Ti, t → γi(t) = (γi,1(t), . . . , γi,d(t)) being deterministic factor loadings, and
κ(t) := min{m : Tm ≥ t} being the next LIBOR fixing date after t. In (24), (W ∗(t) | 0 ≤
t ≤ Tn−1) is a d-dimensional standard Brownian motion under the measure P ∗ induced by the
numeraire

B∗(t) :=
Bκ(t)(t)

B1(0)

κ(t)−1∏
i=1

(1 + δiLi(Ti))

with Bi(t), t ≤ Ti, being zero coupon bonds with face value $1 at their respective maturities Ti,
1 ≤ i ≤ n.

A Bermudan swaption issued at t = 0 gives the holder the right to exercise once a cash-flow

S(Ti) :=

n−1∑
j=i

Bj+1(Ti)δj (Lj(Ti)− θ)

+

,

that is the positive part of the value of a swap contract with settlement dates Ti+1, ..., Tn and
strike θ, at an exercise date out of the set {T1, . . . , TJ } ⊂ {T1, . . . , Tn} specified in the option
contract. So, in the terminology of Section 2 the discounted cashflow process reads

Zj := STj/B∗(Tj), j = 1, ...,J .

Let us recap the data used in the numerical example in Kolodko and Schoenmakers (2006):

• A flat 10% initial LIBOR curve over a 40 period quarterly tenor structure,
i.e. n = 41, δi = 0.25,
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• |γi(t)| = cg(Ti − t),
where g(s) = g∞ + (1− g∞ + as)e−bs, with c = 0.2, a = 1.5, b = 3.5, g∞ = 0.5,

• γi(t) = cg(Ti − t)ei with unit vectors ei being such that
ρij := e>i ej = exp(−ϕ|i− j|), i, j = 1, . . . , n− 1, with ϕ = 0.0413.

We here consider only ATM Bermudan swaptions (i.e., θ = 10%) and yearly exercise oppor-
tunities, hence Ti = T4i, i = 1, . . . , 10. The SDE (24) is simulated via a log-Euler scheme using
∆t = δ/5, hence the solution may be regardes as “practically exact.” As a stopping rule it is
considered

τi = inf

{
j : i ≤ j ≤ J , max

p: j≤p≤J
Ej Zp ≤ Zj

}
, i = 0, . . . ,J .(25)

where the (discounted) European options Ej Zp are computed using the standard swaption
approximation formula (see e.g. Schoenmakers (2005)) that has accuracy better than than 0.3%
relative for this example.

Based on τi we can define the martingale differences:

∆i = EFi [Zτi ]− EFi−1 [Zτi ], i = 1, . . . ,J ,(26)

and then construct a target martingale M with M0 = 0 and

Mi = ∆1 + . . .+ ∆i, i = 1, . . . ,J .

In order to compute the differences ∆i we need sub-simulations. Note that EFi [Zτi ] = EFi [Zτi+1 ]
if τi > i and EFi [Zτi ] = Zi otherwise. Denote by ∆k

i a Monte Carlo estimate for ∆i based on
two sets of k inner trajectories starting from Xi−1 and Xi, respectively. Set for any k ∈ N

Mk
i = ∆k

1 + . . .+ ∆k
i , i = 1, . . . ,J .

Results

Let us write our ML estimator in the form:

Y k,n =
1

n0

n0∑
r=1

Z(r)(Mk0) +
L∑
l=1

1

nl

nl∑
r=1

(
Z(r)(Mkl)−Z(r)(Mkl−1)

)
=:

1

n0

n0∑
r=1

ξ0,k0(r) +

L∑
l=1

1

nl

nl∑
r=1

ξkl−1,kl(r),

where one and the same set of kl inner trajectories is used to compute both Z(Mkl) and
Z(Mkl−1). In the first step, we take n0 = 10000, k0 = 50, κ = 2, L = 3, nl = n0κ

−l, l = 0, ..., L,
and compute the estimates:

v̂(kl−1, kl) =

√√√√ 1

nl

nl∑
r=1

(ξkl−1,kl(r)− ξ̄kl−1,kl)
2, Θ̂K,L =

σ̂∞

κL/2
+ Lv̂(kL−1,K)

with σ̂∞ = v̂(0, 300). The estimated values of v(kl−1, kl) and ΘK,L are presented in Table 1
together with the estimated “optimal” ratios n∗0/N and n∗1/N based on σ̂∞ and v̂(kL−1,K). The
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resulting variance ratio functions R(K,L), L = 1, 2, 3, are shown in Figure 1. In the second
step, we fix the computational budget NK = 106 and then use the optimal values n∗0 and n∗1 to
compute the multilevel estimate Y k,n∗ . For comparison we also give the AB values Y K,N and
their standard deviations. The results are shown in Table 2 for different values of K.

Table 1: Estimates for v(kl−1, kl), n
∗
l and ΘK , l = 1, . . . , 3

l (kl−1, kl) v̂(kl−1, kl) n∗l /N

0 (0,50) 0.006928 0.006803
1 (50,100) 0.002918 0.002199
2 (100,200) 0.002048 0.001100
3 (200,400) 0.001386 0.000550

K = 400 Θ̂K = 0.006300

0 (0,100) 0.006055 0.003993
1 (100,200) 0.002044 0.001001
2 (200,400) 0.001521 0.000501
3 (400,800) 0.001075 0.000250

K = 800 Θ̂K = 0.005366

0 (0,150) 0.006083 0.003127
1 (150,300) 0.001581 0.000590
2 (300,600) 0.001118 0.000295
3 (600,1200) 0.000809 0.000148

K = 1200 Θ̂K = 0.004569

0 (0,200) 0.005986 0.002416
1 (200,400) 0.001443 0.000431
2 (400,800) 0.001040 0.000215
3 (800,1600) 0.000764 0.000108

K = 1600 Θ̂K = 0.004435

0 (0,250) 0.005918 0.001995
1 (250,500) 0.001360 0.000334
2 (500,1000) 0.000971 0.000167
3 (1000,2000) 0.000718 0.000084

K = 2000 Θ̂K = 0.004297

0 (0,300) 0.005954 0.001809
1 (300,600) 0.001198 0.000254
2 (600,1200) 0.000822 0.000127
3 (1200,2400) 0.000602 0.000064

K = 2400 Θ̂K = 0.003949
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Figure 1: The variance ratio function R(K,L) for L = 1, 2, 3.
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7 Proofs

7.1 Proof of Theorem 5

On the one hand, it holds for each k ∈ N and jmax
k := minQk that

Z(Mk)−Z(M) = max
j=0,...,J

(Zj −Mk
j )− max

j=0,...,J
(Zj −Mj)

≤Mjmax
k
−Mk

jmax
k

, a.s.,(27)

and on the other hand, we get for each k ∈ N and Q =: {jmax},

(28) Z(Mk)−Z(M) ≥Mjmax −Mk
jmax .

By (27) and (28) we thus have

E

[(
Z(Mk)−Z(M)

)2]
≤ E

[
max

j=1,...,J

(
Mj −Mk

j

)2]
≤ Bk−β.

Further, by the Cauchy-Schwarz inequality we so have immediately,

|E[Z(Mk)−Z(M)]| ≤
{

E

[
max

j=1,...,J

(
Mj −Mk

j

)2]}1/2

≤
√
B · k−β/2.

Let us now turn to the case where in addition assumptions (AR’), (AL) and (AQ) are fulfilled.
From (27) we obtain for k ∈ N,

EF [Z(Mk)−Z(M)] ≤ EF

[
Mjmax

k
−Mk

jmax
k

]
= EF

[(
Mjmax

k
−Mk

jmax
k

+Mk
jmax −Mjmax

)
1jmax
k 6=jmax

]
+ EF

[
Mjmax −Mk

jmax

]
=: (I) + (II).

Note that Zjmax
k
−Mk

jmax
k
≥ Zjmax −Mk

jmax and hence

{jmax
k 6= jmax} ⊂

{
max

j=1,...,J
(Mj −Mk

j +Mk
jmax −Mjmax) ≥ Λ

}
.

We thus have

PF (jmax
k 6= jmax) ≤ PF

(
max

j=1,...,J
(Mj −Mk

j +Mk
jmax −Mjmax) ≥ Λ

)
≤ PF

(
max

j=1,...,J
(Mj −Mk

j ) ≥ Λ/2

)
+ PF

(
Mk
jmax −Mjmax ≥ Λ/2

)
≤ PF

(
max

j=1,...,J
(Mj −Mk

j ) ≥ Λ/2

)
+ PF

(
max

j=1,...,J
(Mk

j −Mj) ≥ Λ/2

)
By (AR’) and the conditional Markov inequality it follows that

PF

(
max

j=1,...,J
(Mj −Mk

j ) ≥ Λ/2

)
≤ 4B

Λ2
k−β, PF

(
max

j=1,...,J
(Mk

j −Mj) ≥ Λ/2

)
≤ 4B

Λ2
k−β.
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Hence

PF (jmax
k 6= jmax) ≤ 8B

Λ2
k−β

for all k. Furthermore, due to (AR’), and a conditional version of the generalized Hölder in-
equality

E |XY | ≤ ‖X‖p ‖Y ‖q
for 1

p + 1
q ≤ 1 and p, q ≥ 1, we obtain by taking q = 2 and p = max{2, 2/a},

(I) ≤ [PF (jmax
k 6= jmax)]1/p

√
4 EF

[
max

j=1,...,J

(
Mj −Mk

j

)2]
≤ 2 (8B)1/p

Λ2/p
k−β/pBk−β/2 =:

B1

Λ2/p
k−β(1/p+1/2).

Combining (27) with (28) and using assumption (AR’) again for the term (II), we arrive at the
inequality

−Ak−α ≤ E[Z(Mk)−Z(M)] ≤ B1k
−β(1/p+1/2) E

[
1

Λ2/p

]
+Ak−α ≤ Ck−γ

with γ = min {α, βmin {1, (a+ 1)/2}} and some C > 0.

7.2 Proof of Theorem 11

Due to (9) and (11), we have in any case

(29)
∣∣∣E [Y n,k

]
− Y (M)

∣∣∣ ≤ Ck−γ0 κ−Lγ = ε/
√

2.

i) Case β < 1 : We have by (10),

Var
[
Y n,k

]
≤ B̃

L∑
l=0

B̃−12−1ε2kβ0κ
−L(1−β)/2(1− κ−(1−β)/2)κl(1+β)/2k−β0 κ−βl

= 2−1
L∑
l=0

ε2κ−L(1−β)/2(1− κ−(1−β)/2)κ
(L+1)(1−β)/2 − 1

κ(1−β)/2 − 1

κ−(1−β)/2

κ−(1−β)/2

= 2−1
L∑
l=0

ε2κ−L(1−β)/2
(
κ(L+1)(1−β)/2 − 1

)
κ−(1−β)/2

= 2−1ε2
(

1− κ−(L+1)(1−β)/2
)
≤ ε2/2,
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and (12) straightforwardly follows from (29). The order of Cn,k(ε) follows from the estimate

L∑
l=0

klnl ≤
L∑
l=0

k0κ
l
(

2ε−2B̃k−β0 κL(1−β)/2(1− κ−(1−β)/2)−1κ−l(1+β)/2 + 1
)

=

L∑
l=0

κl
(

2ε−2B̃k1−β0 κL(1−β)/2(1− κ−(1−β)/2)−1κ−l(1+β)/2 + k0

)
= k1−β0

(
2ε−2B̃κL(1−β)/2

(
κL(1−β)/2 − κ−(1−β)/2

)
+ k0

κL+1 − 1

κ− 1

)
≤ 2ε−2B̃k1−β0 κL(1−β) + k0κ

L+1

≤ 2ε−2B̃k1−β0 κ

− ln
k
γ
0 ε

C
√
2

γ lnκ
+1

(1−β)

+ k0κ
− ln

k
γ
0 ε

C
√
2

γ lnκ
+2

= 2B̃

(
C
√

2
)(1−β)/γ

ε2+(1−β)/γ κ(1−β) +

(
C
√

2
)1/γ

ε1/γ
κ2

= O(ε−2−(1−β)/γ), ε→ 0

(note that γ ≥ 1/2).
ii) Case β = 1 : By a straightforward calculation, we obtain again

Var
[
Y n,k

]
≤ ε2/2,

as well as (12) via (29). For Cn,k(ε) we now have

Cn,k(ε) ≤
L∑
l=0

k0κ
l
(

2ε−2B̃(L+ 1)k−10 κ−l + 1
)

=

L∑
l=0

(
2ε−2B̃(L+ 1) + k0κ

l
)

= 2ε−2B̃(L+ 1)2 + k0
κL+1 − 1

κ− 1

≤ 2ε−2B̃(L+ 1)2 + k0κ
L+1

≤ 2ε−2B̃

− ln
kγ0 ε

C
√
2

γ lnκ
+ 2

2

+

(
C
√

2
)1/γ

ε1/γ
κ2

= O(ε−2 ln2 ε), ε→ 0

since γ ≥ 1/2.

22



iii) Case β > 1 : For the variance we have

Var
[
Y n,k

]
≤ B̃

L∑
l=0

2−1ε2B̃−1kβ0 (1− κ−(β−1)/2)κl(1−β)/2k−β0

= 2−1ε2(1− κ−(β−1)/2)1− κ(L+1)(1−β)/2

1− κ(1−β)/2

= 2−1ε2
(

1− κ(L+1)(1−β)/2
)
≤ ε2/2

and (12) holds in view of (29). Finally, we derive

Cn,k(ε) ≤
L∑
l=0

k0κ
l
(

2ε−2B̃k−β0 (1− κ−(β−1)/2)−1κ−l(1+β)/2 + 1
)

≤ 2ε−2B̃k1−β0

L∑
l=0

(1− κ−(β−1)/2)−1κl(1−β)/2 + k0κ
L+1

= 2ε−2B̃k1−β0

(
1− κ(L+1)(1−β)/2

)
+ k0κ

L+1

≤ 2ε−2B̃k1−β0 +

(
C
√

2
)1/γ

ε1/γ
κ2

= O(ε−2), ε→ 0,

since γ ≥ 1/2.
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Table 2: The performance of ML estimates with the optimal choice of n∗l , l = 0, . . . , 3, compared
to the performance of the standard AB estimate with NK = 106 and K = kL.

l n∗l kl
1
nl

∑nl
r=1 ξkl−1,kl(r) v̂(kl−1, kl)

0 6600 50 0.0341611 0.00686113
1 2230 100 1.12787e-05 0.00288741
2 1110 200 2.45243e-05 0.00193951
3 550 400 2.74035e-05 0.00140730

Y n∗,k = 0.0340843 sd(Y n∗,k) = 0.0001336

AB N = 2500 K = 400 Y N,K = 0.0341167 sd(Y N,K) = 0.0001111

l n∗l kl
1
nl

∑nl
r=1 ξkl−1,kl(r) v̂(kl−1, kl)

0 3880 100 0.0341174 0.00630161
1 1010 200 6.64818e-06 0.00208278
2 500 400 4.17533e-05 0.00144304
3 250 800 6.16153e-05 0.00101637

Y n∗,k = 0.0340224 sd(Y n∗,k) = 0.0001510

AB N = 1250 K = 800 Y N,K = 0.0341235 sd(Y N,K) = 0.0001676

l n∗l kl
1
nl

∑nl
r=1 ξkl−1,kl(r) v̂(kl−1, kl)

0 3050 150 0.034024 0.00613309
1 600 300 5.96397e-06 0.00167245
2 300 600 -1.46135e-05 0.00114155
3 150 1200 1.42701e-05 0.00078627

Y n∗,k = 0.0340522 sd(Y n∗,k) = 0.0001595

AB N = 850 K = 1200 Y N,K = 0.0340616 sd(Y N,K) = 0.0001903

l n∗l kl
1
nl

∑nl
r=1 ξkl−1,kl(r) v̂(kl−1, kl)

0 2360 200 0.0340537 0.00593753
1 430 400 4.03549e-05 0.00157739
2 210 800 -7.94923e-06 0.00095657
3 100 1600 -7.50145e-05 0.00090936

Y n∗,k = 0.0340111 sd(Y n∗,k) = 0.0001826

AB N = 625 K = 1600 Y N,K = 0.0340312 sd(Y N,K) = 0.0002326
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