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Abstract

In this paper we introduce and study the concept of optimal and surely
optimal dual martingales in the context of dual valuation of Bermudan
options, and outline the development of new algorithms in this context.
We provide a characterization theorem, a theorem which gives conditions
for a martingale to be surely optimal, and a stability theorem concern-
ing martingales which are near to be surely optimal in a sense. Guided
by these results we develop a framework of backward algorithms for con-
structing such a martingale which can be utilized for computing an upper
bound of the Bermudan product. The methodology is purely dual in the
sense that it doesn’t require certain input approximations to the Snell
envelope. In an Itô-Lévy environment we outline a particular regression
based backward algorithm which allows for computing dual upper bounds
without nested Monte Carlo simulation. Moreover, as a by-product this
algorithm also provides approximations to the continuation values of the
product, which in turn determine a stopping policy. We hence obtain
lower bounds at the same time. We finally supplement our presentation
with numerical experiments.
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1 Introduction

It is well-known that the evaluation of Bermudan callable derivatives comes
down to solving an optimal stopping problem. For many callable exotic prod-

1This paper is an extended version of the previous preprint Schoenmakers and Huang
(2010). Supported by DFG Research Center Matheon “Mathematics for Key Technologies”
in Berlin.

2Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstr. 39, 10117 Berlin,
{schoenma,zhang,huang}@wias-berlin.de
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ucts, e.g. interest products, the underlying state space is high-dimensional how-
ever. As such these products are usually computationally expensive to solve with
deterministic (PDE) methods and therefore simulation based (Monte Carlo)
methods are called for. The first developments in this respect concentrated
on the construction of a “good” exercise policy. We mention, among others,
regression based methods by Carriere (1996), Longstaff and Schwartz (2001),
and Tsistsiklis and Van Roy (2001), the stochastic mesh method of Broadie and
Glasserman (2004), and quantization algorithms by Bally and Pages (2003).
Especially for very high dimensions, Kolodko and Schoenmakers (2004) devel-
oped a policy improvement approach which can be effectively combined with
Longstaff and Schwartz (2001) for example (see Bender et al. (2008) and Ben-
der et al. (2006)).

As a common feature, the aforementioned simulation methods provide lower
biased estimates for the Bermudan product under consideration. As a new
breakthrough, Rogers (2002), and Haugh and Kogan (2004) introduced a dual
approach, which comes down to minimizing over a set of martingales rather
than maximizing over a family of stopping times. By its very nature the dual
approach gives upper biased estimates for the Bermudan product and after its
discovery several numerical algorithms for computing dual upper bounds have
been proposed. Probably the most popular one is the method of Andersen and
Broadie (2004), although this method requires nested Monte Carlo simulation
(see also Kolodko and Schoenmakers (2004) and Schoenmakers (2005)). In a
Wiener environment, Belomestny et al. (2009) provides a fast generic method for
computing dual upper bounds which avoids nested simulations. Further Brown
et al. (2009) consider dual optimization via enlarging the information were an
exercise decision may depend on. In this setting they also provide an example
were a tight dual upper bound can be obtained by non-nested simulation.

The algorithms for computing dual upper bounds so far have in common
that they start with some given “good enough” approximation of the Snell
envelope and then construct the Doob martingale due to this approximation.
In a recent paper by Rogers (2010), points out how to construct a particular
’good’ martingale via a sequence of martingales which are constant on an even
bigger time interval. In this construction no input approximation to the Snell
envelope is used. The methods proposed in this paper have some flavor of
the method of Rogers (2010), in the sense that no approximation to the Snell
envelope is involved either. In a recent paper Desai et al. (2010) treat the dual
problem by methods from convex optimization theory.

In applications of the algorithm of Andersen and Broadie (2004) one gen-
erally observes that the lower the variance of the upper bound estimator, i.e.
the closer the corresponding martingale is to a surely optimal one, the sharper
is the corresponding dual upper bound. Actually this observation was not well
studied from a mathematical point of view so far. In this paper, we study this
phenomenon as one of our main contributions and give an explanation of it.

The structure of this paper is as follows. Starting with a short resume of well-
known facts on Bermudan derivatives in Section 2, we analyze in Section 3 the
almost sure property of the dual representation in detail. There we introduce the
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concept of a surely optimal martingale, which is loosely speaking, a martingale
that minimizes the dual representation with a particular almost sure property.
In this respect we will point out that a martingale which minimizes the dual
representation is not necessarily surely optimal, and on the other hand, a surely
optimal martingale is generally not unique.

In Section 4 we present, as one of the main contributions of this paper, a
characterization theorem for surely optimal martingales (Theorem 6). Moreover,
we provide another result that guarantees that a martingale is surely optimal if
it satisfies a certain measurability criterion (Theorem 11).

Guided by the new theoretical insights we develop in Section 6 algorithms
for constructing dual martingales that are based on minimization of the variance
(respectively expected conditional variance) of corresponding dual representa-
tions and estimators. Also we compare (sample) variance minimization with
direct minimization of the (sample) expectation (as in Desai et al. (2010)), and
illustrate by two stylized examples that variance minimization may allow for
smaller sample sizes. As for computational complexity, this is of particular ben-
efit. Moreover, we present in an Itô-Lévy environment a regression based back-
ward procedure that constructs a dual martingale via minimizing backwardly in
time the expected (conditional) variances of the dual estimators corresponding
to the Snell envelope. We so obtain a martingale that allows for computing
upper bounds without nested Monte Carlo (like in Belomestny et al. (2009)).
Furthermore we obtain, as a by-product, estimations of continuation values.
Thus, as a result, we end up with a procedure that computes upper bounds
as well as lower bounds simultaneously via a non-nested simulation procedure.
The procedure effectively boils down to linear Monte Carlo based regression,
thus is straightforward to implement and may be considered as a valuable al-
ternative to the non-nested method of Belomestny et al. (2009), where a dual
martingale is obtained by constructing a discretized Clark-Ocone derivative of
some (input) approximation to the Snell envelope via regression. In particular,
our new procedure only requires regression at each exercise date, in contrast to
the procedure of Belomestny et al. (2009) that requires regression at each time
point of a sufficient refinement of the exercise grid.

In Section 7, we present a numerical study of our algorithm. We illustrate at
several multi-dimensional benchmark products a backward regression algorithm
that, regarding accuracy and computational effort, produces fast lower and up-
per bounds. In particular, we price a Bermudan basket put which has been
considered in Bender et al. (2006) and a Bermudan max-call which has been
considered in Andersen and Broadie (2004). The lower and upper bounds are in
the same range as their benchmark counterparts at a significant less computa-
tional effort however. We also test our method at a Bermudan max-call option
with an up-and-out feature, a product which is more sensitive with regard to
delta-hedging.
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2 Bermudan derivatives and optimal stopping

Let (Zi : i = 0, 1, . . . , T )1 be a non-negative stochastic process in discrete time
on a filtered probability space (Ω,F , P ), adapted to a filtration F := (Fi :
0 ≤ i ≤ T ) which satisfies E|Zi| < ∞, for 0 ≤ i ≤ T. The measure P may be
considered as a pricing measure and the process Z may be seen as a (discounted)
cash-flow which an investor may exercise once in the time set {0, ..., T}. Hence,
she is faced with a Bermudan product. A well-known fact is that a fair price of
such a derivative is given by the Snell envelope

Y ∗i = sup
τ∈{i,...,T},

EiZτ , 0 ≤ i ≤ T, (1)

at time i = 0. In (1), τ denotes a stopping time, Ei := EFi denotes the con-
ditional expectation with respect to the σ-algebra Fi, and sup (inf) is to be
understood as essential supremum (essential infimum) if it ranges over an un-
countable family of random variables. Let us recall some well-known facts (e.g.
see Neveu (1975)).

1. The Snell envelope Y ∗ of Z is the smallest super-martingale that domi-
nates Z.

2. A family of optimal stopping times is given by

τ∗i = inf{j : j ≥ i, Zj ≥ Y ∗j }, 0 ≤ i ≤ T.

In particular,
Y ∗i = EiZτ∗i , 0 ≤ i ≤ T,

and the above family is the family of first optimal stopping times if several
optimal stopping families exist.

The optimal stopping problem (1) has a natural interpretation from the
point of view of the option holder: she seeks for an optimal exercise strategy
which optimizes her expected payoff. On the other hand, the seller of the option
rather seeks for the minimal cash amount (smallest supermartingale) he has to
have at hand in any case the holder of the option exercises.

3 Duality and surely optimal martingales

We briefly recall the dual approach proposed by Rogers (2002) and, indepen-
dently, Haugh and Kogan (2004). The dual approach is based on the following
observation: for any martingale (Mj) with M0 = 0 we have

Y ∗0 = sup
τ∈{0,...,T}

E0Zτ = sup
τ∈{0,...,T}

E0 (Zτ −Mτ ) ≤ E0 max
0≤j≤T

(Zj −Mj) , (2)

1For notational convenience we have chosen for this stylized time set. The reader may refor-
mulate all statements and results in this paper for a general discrete time set {T0, T1, . . . , TJ}
in a trivial way.
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hence the right-hand side provides an upper bound for Y ∗0 . Rogers (2002) and
Haugh and Kogan (2004) showed that (2) holds with equality for the martingale
part of the Doob decomposition of Y ∗, i.e. Y ∗j = Y ∗0 + M∗j − A∗j , where M∗ is
a martingale with M∗0 = 0, and A∗ is predictable with A∗0 = 0. More precisely
we have

M∗j =

j∑
l=1

(Y ∗l − El−1Y
∗
l ) , A∗j =

j∑
l=1

(
Y ∗l−1 − El−1Y

∗
l

)
, (3)

from which we see A∗ is non-decreasing due to Y ∗ being a supermartingale. In
addition, they showed that

Y ∗0 = max
0≤j≤T

(
Zj −M∗j

)
a.s. (4)

The next lemma, by Kolodko and Schoenmakers (2006), provides a somewhat
more general class of supermartingales, which turns relation (2) into an equality
such that moreover (4) holds.

Lemma 1 Let S be a supermartingale with S0 = 0. Assume that Zj−Y ∗0 ≤ Sj,
1 ≤ j ≤ T . It then holds that

Y ∗0 = max
0≤j≤T

(Zj − Sj) a.s. (5)

For the proof see Kolodko and Schoenmakers (2006).

Example 2 Obviously, by taking for S the Doob martingale as constructed in
(3), Lemma 1 applies. However, the Doob martingale is not the only one. For
example, in the case Z > 0 a.s. we may also take

Sj = (N∗j − 1)Y
∗

0 ,

where N∗ is the multiplicative Doob part of the Snell envelope. More precisely,
Y ∗j = Y ∗0 N

∗
j B
∗
j for a martingale N∗ with N∗0 = 1 and predictable B∗ with

B∗0 = 1. Hence

N∗j =

j∏
l=1

Y ∗l
El−1Y ∗l

, B∗j =

j∏
l=1

El−1Y
∗
l

Y ∗l−1

. (6)

Indeed, since B∗ is non-increasing due to Y ∗ being a supermartingale, we have

Sj = Y
∗

0

(
Y ∗j
Y ∗0 B

∗
j

− 1

)
≥ Y

∗

0

(
Y ∗j
Y ∗0
− 1

)
= Y ∗j − Y

∗

0 ≥ Zj − Y
∗

0 ,

thus, Lemma 1 applies again.

The multiplicative Doob decomposition in (6) is used by Jamshidian (2007)
for constructing a multiplicative dual representation. In a comparative study,
Chen and Glasserman (2007) pointed out however, that from a numerical point
of view additive dual algorithms perform better due to the nice almost sure
property (4).
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Remark 3 It is not true that for any martingale M which turns (2) into equal-
ity the almost sure statement (4) holds. As a simple counterexample, consider
T = 1, Z0 = 0, Z1 = 2, M0 = 0, and M1 = ±1 each with probability 1/2. Indeed,
we see that Y ∗0 = 2 = E0(2−M1) = E0 max(0, 2−M1), but, Y ∗0 6= max(0, 2−M1)
a.s.

In order to have a unified dual representation for the Snell envelope Y ∗i at
any i, it is convenient to drop the assumption that martingales start at zero.
We then may restate the dual theorem as

Y ∗i = inf
M∈M

Ei max
i≤j≤T

(Zj −Mj +Mi) (7)

= max
i≤j≤T

(
Zj −M∗j +M∗i

)
a.s., (8)

for any i, 0 ≤ i ≤ T, where M is the set of all martingales and M∗ is the Doob
martingale part of Y ∗.

In view of Remark 3 and Examples 2, a martingale for which the infimum
(7) is attained must not necessarily satisfy an almost sure property such as (8),
and, martingales which do satisfy such almost sure property are generally not
unique. We hence propose the following concept of surely optimal martingales.

Definition 4 We say that a martingale M is surely optimal for the Snell
envelope Y ∗ at a time i, 0 ≤ i ≤ T, if it holds

Y ∗i = max
i≤j≤T

(Zj −Mj +Mi) a.s. (9)

Remark 5 Obviously, the Doob martingale of Y ∗ is surely optimal at each
i, 0 ≤ i ≤ T, and any martingale M is trivially surely optimal at i = T.
However, it is not true that sure optimality for some i with i < T implies sure
optimality at i + 1. As a counterexample let us consider T = 2, and Z0 = 4,
Z1 = 0, Z2 = 2. Take as martingale M0 = 0, M1 = ±1, each with probability
1/2, and M2 = M1 ± 1, each with probability 1/2 conditional on M1. Then
max0≤j≤2 (Zj −Mj +M0) = 4 a.s. Since we have trivially Y ∗0 = 4, M is surely
optimal at i = 0. But, max1≤j≤2 (Zj −Mj +M1) = 2 −M2 + M1 /∈ F1, so M
is not surely optimal for Y ∗ at i = 1.

4 Characterization of surely optimal martingales

In this section we give a characterization of martingales that are surely optimal
for all i = 0, . . . , T.

Theorem 6 A martingale M with M0 = 0 is surely optimal for i = 0, . . . , T, if
and only if there exists a sequence of adapted random variables (ζi)0≤i≤T, such
that Ei−1ζi = 1, and ζi ≥ 0 for all 0 < i ≤ T, and

Mi = M∗i −A∗i +

i∑
l=1

(
A∗l −A∗l−1

)
ζi, (10)
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where, respectively, M∗ is the Doob martingale and A∗i the predictable process
of the Snell envelope Y ∗ as given in (3).

Proof. i) Let us assume that M is surely optimal as stated. Then by (9) it
holds for any 0 < i ≤ T,

Y ∗i−1 = max
i−1≤j≤T

(Zj −Mj +Mi−1)

= max(Zi−1,Mi−1 −Mi + max
i≤j≤T

(Zj −Mj +Mi))

= max(Zi−1,Mi−1 −Mi + Y ∗i ). (11)

Since Zi−1 ≤ Y ∗i−1, and since Zi−1 < Y ∗i−1 implies A∗i−1 = A∗i , we obtain from
(11) and the Doob decomposition Y ∗i = Y ∗0 +M∗i −A∗i

Y ∗i−1 − Zi−1 = (Mi−1 −Mi + Y ∗i − Zi−1)
+

=
(
Mi−1 −Mi +M∗i −M∗i−1 −A∗i +A∗i−1 + Y ∗i−1 − Zi−1

)+
= 1Zi−1<Y ∗i−1

(
Mi−1 −Mi +M∗i −M∗i−1 + Y ∗i−1 − Zi−1

)+
+ 1Zi−1=Y ∗i−1

(
Mi−1 −Mi +M∗i −M∗i−1 −A∗i +A∗i−1

)+
.

So we must have

1Zi−1<Y ∗i−1

(
Y ∗i−1 − Zi−1

)
=

1Zi−1<Y ∗i−1

(
Mi−1 −Mi +M∗i −M∗i−1 + Y ∗i−1 − Zi−1

)
, and

1Zi−1=Y ∗i−1

(
Mi−1 −Mi +M∗i −M∗i−1 −A∗i +A∗i−1

)+
= 0,

respectively. Hence we get

1Zi−1<Y ∗i−1

(
Mi−1 −Mi +M∗i −M∗i−1

)
= 0, and (12)

1Zi−1=Y ∗i−1

(
Mi−1 −Mi +M∗i −M∗i−1 −A∗i +A∗i−1

)
= −1Zi−1=Y ∗i−1

µi, (13)

for some non-negative Fi-measurable random variable µi. W.l.o.g. we assume
that µi ≡ 0 on the set {Zi−1 < Y ∗i−1}. By taking Fi−1 conditional expectations
on both sides of (13), and using the martingale property of both M and M∗,
and the predictability of A∗, it then follows that

Ei−1µi = 1Zi−1=Y ∗i−1
Ei−1µi = 1Zi−1=Y ∗i−1

(
A∗i −A∗i−1

)
. (14)

In particular, since µi ≥ 0 almost surely, it follows from (14) that µi = 0 on the
set {A∗i = A∗i−1} (in which {Zi−1 < Y ∗i−1} is contained as a subset). We next
define

ζi :=

{(
A∗i −A∗i−1

)−1
µi, if A∗i > A∗i−1,

1, else,
(15)

and we see that we have a.s. µi =
(
A∗i −A∗i−1

)
ζi. By (14) we have (using the

convention 0 · ∞ = 0)

Ei−1ζi = 1A∗i>A∗i−1
Ei−1

(
A∗i −A∗i−1

)−1
µi + 1A∗i=A∗i−1

= 1A∗i>A∗i−1
1Zi−1=Y ∗i−1

+ 1A∗i>A∗i−1
1Zi−1<Y ∗i−1

+ 1A∗i=A∗i−1
= 1,

7



since the middle term is trivially zero. We thus obtain from (12) and (13)

Mi−1 −Mi +M∗i −M∗i−1 −A∗i +A∗i−1 = −
(
A∗i −A∗i−1

)
ζi,

from which (10) follows.

ii) Conversely, if a martingale M satisfies (10), we have for any 0 ≤ i ≤ T,

max
i≤j≤T

(Zj −Mj +Mi) = max
i≤j≤T

(
Zj −M∗j +A∗j −

j∑
l=1

(
A∗l −A∗l−1

)
ζl

+M∗i −A∗i +

i∑
l=1

(
A∗l −A∗l−1

)
ζl

)

= Y ∗i + max
i≤j≤T

(
Zj − Y ∗j −

j∑
l=i+1

(
A∗l −A∗l−1

)
ζl

)
≤ Y ∗i ,

and then by (7) the almost sure optimality follows.

By Theorem 6 we have immediately the following alternative characterization
of almost sure martingales. It basically says that a martingale is surely optimal
if the Snell envelope can be representated in a way that resembles the Doob
decomposition but where the predictable process is replaced by a process which
is in general only adapted.

Corollary 7 A martingale M with M0 = 0 is surely optimal for i = 0, . . . , T, if
and only if there exists an non-decreasing adapted process N with N0 = 0 such
that2

Y ∗i = Y ∗0 +Mi −Ni.

Proof. If M is surely optimal as stated, we have by the “if” part of Theorem 6
(see (10)),

Y ∗i − Y ∗0 −Mi = −
i∑
l=1

(
A∗l −A∗l−1

)
ζi = −Ni, (16)

with N being adapted, non-decreasing and N0 = 0. Conversely, if

Y ∗i = Y ∗0 +Mi −Ni

for some martingale M, M0 = 0, and non-decreasing adapted N, N0 = 0, we
consider for each i, 0 ≤ i ≤ T,

max
i≤j≤T

(Zj −Mj +Mi) = max
i≤j≤T

(
Zj − Y ∗j −Nj + Y ∗i +Ni

)
≤ Yi,∗

and then apply (7) again.

We have the following remark.

2Note that N is not assumed to be predictable.
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Remark 8 Let the martingale M with M0 = 0 be surely optimal for i =
0, . . . , T. For the non-decreasing process N defined by (16) it holds that

Y ∗i −Mi +Mi−1 − Zi−1 = Y ∗i−1 −Ni +Ni−1 − Zi−1 =: Ui,

and since by (16), Ni −Ni−1 =
(
A∗i −A∗i−1

)
ζi, we obtain from (11)

(Ui)
+

= Y ∗i−1 − Zi−1 a.s.

So, in particular we have that (Ui)
+

is Fi−1-measurable while Ui itself is gen-
erally not, except for the case where M = M∗. A similar observation will be
encountered later on in (25).

Remark 9 In a complete market environment, Corollary 7 implies that Y ∗0 +M
may be considered as a discounted dynamic hedge portfolio whenever M is a
martingale that is surely optimal at {0, ..., T}.

From Theorem 6 it is clear that there exist infinitely many martingales which
are surely optimal for all i = 0, . . . , T. In the following example we construct a
one-parametric family of such martingales which includes the Doob martingale
of the Snell envelope.

Example 10 Let us assume Z > 0 a.s. (if Z is strictly bounded from below by
a constant −K, we may consider the equivalent stopping problem due to Z+K).
Then Y ∗ > 0 a.s., and for any α, 0 ≤ α ≤ 1, we consider

ζi := 1− α+ α
Y ∗i

Ei−1Y ∗i
= 1− α+ α

N∗l
N∗l−1

,

where N∗ is the martingale part of the multiplicative decomposition Y ∗i = Y ∗0 N
∗
i B
∗
i

of the Snell envelope (see Example 2). Obviously, it holds Ei−1ζi = 1 and ζi ≥ 0,
and hence, by Theorem 6 we obtain for every 0 ≤ α ≤ 1 a martingale

Mi = M∗i −A∗i +

i∑
l=1

(
A∗l −A∗l−1

)(
1− α+ α

N∗l
N∗l−1

)

= M∗i − αA∗i + α

i∑
l=1

(
A∗l −A∗l−1

) N∗l
N∗l−1

,

which is surely optimal for i = 0, ..., T. Thus, for α = 0 (i.e. ζi ≡ 1) we retrieve
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the standard Doob martingale of the Snell envelope, and for α = 1 we obtain

Mi = Y ∗i − Y ∗0 +

i∑
l=1

(
A∗l −A∗l−1

) N∗l
N∗l−1

=

i∑
l=1

(
Y ∗l − Y ∗l−1 + Y ∗l−1

(
1− B∗l

B∗l−1

)
N∗l
N∗l−1

)

= Y ∗0

i∑
l=1

(
N∗l B

∗
l −N∗l−1B

∗
l−1 +B∗l−1

(
1− B∗l

B∗l−1

)
N∗l

)

= Y ∗0

i∑
l=1

B∗l−1

(
N∗l −N∗l−1

)
. (17)

Note that this martingale differs from the martingale Y
∗

0 (N∗i −1) from Example 2
(they would coincide after dropping the factors B∗l−1). It is easy to show (using
Theorem 6 again) that the latter martingale is in general only optimal at i = 0,
while the martingale (17) is surely optimal for all i = 0, ..., T, by construction.

The next theorem provides a key criterion for identifying surely optimal mar-
tingales.

Theorem 11 Let Y ∗ be the Snell envelope of the cash-flow Z and let M be any
martingale. Then, for any i ∈ {0, ..., T} it holds

max
i≤j≤T

(Zj −Mj +Mi) ∈ Fi =⇒ max
i≤j≤T

(Zj −Mj +Mi) = Y ∗i .

Proof. Let us suppose ϑi := maxi≤j≤T (Zj −Mj +Mi) ∈ Fi and define the
stopping time

τi = inf {j ≥ i : Zj −Mj +Mi ≥ ϑi} .

By the definition of ϑi we have i ≤ τi ≤ T almost surely. We thus have

Y ∗i ≥ Ei Zτi ≥ Ei (Mτi −Mi + ϑi) = ϑi,

by Doob’s optional sampling theorem and the fact that ϑi ∈ Fi. On the other
hand we have ϑi = Ei ϑi ≥ Y ∗i due to (7).

Remark 12 While in this paper we work in a discrete time setting, Theorem 11
can be proved in a similar way for continuous time exercise as well.

5 Stability of surely optimal martingales

In equivalent terms, Theorem 11 states that, if a martingale M is such that the
conditional variance of

ϑi(M) := max
i≤j≤T

(Zj −Mj +Mi) (18)
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is zero for some 0 ≤ i ≤ T , i.e.

Vari ϑi(M) := Ei (ϑi(M)− Eiϑi(M))2 = 0, a.s.,

then ϑi(M) = Y ∗i . Hence the martingale M is surely optimal at i. In this sec-
tion we present a stability result for martingales M which are, loosely speaking,
close to be surely optimal at some i, in the sense that Vari ϑi(M) is small. More
specifically, we provide mild conditions on a sequence of martingales (M (n))n≥1

which guarantee that the corresponding upper bounds converge to the Snell
envelope in a sense, although the sequence of martingales (M (n)) does not nec-
essarily converge. We have the following result.

Theorem 13 Let i ∈ {0, ..., T}. If Vari ϑ
(n)
i

P→ 0 for n → ∞, where ϑ
(n)
i :=

ϑi(M
(n)), and if in addition the sequence of martingales

(
M

(n)
i

)
n≥1

is uniformly

integrable, then it holds

Ei ϑ
(n)
i

L1→ Y ∗i .

Proof. Fix an i ∈ {0, ..., T} and suppose that the assumptions of the theorem
are satisfied. Now take an ε > 0. By introducing an auxiliary time S > T and
setting ZS = 0 we next define the stopping time

τ
(n)
i = inf

{
j ≥ i : Zj −M (n)

j +M
(n)
i ≥ Eiϑ(n)

i − ε
}
∧ S.

We thus have with M
(n)
S := M

(n)
T , n ≥ 1,

Y ∗i ≥ Ei Zτ(n)
i

= Ei Zτ(n)
i

1
τ
(n)
i <S

≥ Ei
(
M

(n)

τ
(n)
i

−M (n)
i + Eiϑ

(n)
i − ε

)
1{τ(n)

i <S}

= Ei

(
M

(n)

τ
(n)
i

−M (n)
i + Eiϑ

(n) − ε
)
− Ei

(
M

(n)
T −M (n)

i + Eiϑ
(n)
i − ε

)
1{τ(n)

i =S}

= Eiϑ
(n)
i − ε− Ei

(
M

(n)
T −M (n)

i + Eiϑ
(n)
i − ε

)
1{τ(n)

i =S} a.s.,

hence

Eiϑ
(n)
i ≤ Y ∗i + ε+ Ei

∣∣∣M (n)
T −M (n)

i + Eiϑ
(n)
i − ε

∣∣∣ 1τ(n)
i =S

=: Y ∗i + ε+ Ei U
(n)
i 1

τ
(n)
i =S

a.s. (19)

Now it is easy to see that the family of random variables
(
U

(n)
i

)
n≥1

is uniformly

integrable too. We so may take Kε > 0 such that

sup
n≥0

E U
(n)
i 1

U
(n)
i >Kε

≤ ε.

Further observe that due to a conditional version of Chebyshev’s inequality,

0 ≤ Ei 1{
τ
(n)
i =S

} = Ei1{ϑ(n)
i <Eiϑ

(n)
i −ε

} ≤ Vari ϑ
(n)
i

ε2
P→ 0.

11



Since the family

(
Ei 1{

τ
(n)
i =S

})
n≥0

is bounded by 1, it is uniformly integrable.

Hence, it follows that

Ei1{τ(n)
i =S

} L1→ 0. (20)

We thus have

E U
(n)
i 1

τ
(n)
i =S

= E U
(n)
i 1

U
(n)
i >Kε

1
τ
(n)
i =S

+ E U
(n)
i 1

U
(n)
i ≤Kε

1
τ
(n)
i =S

≤ ε+KεE 1
U

(n)
i ≤Kε

1
τ
(n)
i =S

≤ ε+KεE Ei1τ(n)
i =S

< 2ε

for n > Nε,Kε by (20). So for n > Nε,Kε , we derive from (19)

Eϑ
(n)
i ≤ EYi + ε+ E U

(n)
i 1

τ
(n)
i =S

≤ EY ∗i + 3ε.

Thus,

limn→∞ Eϑ
(n)
i ≤ EY ∗i + 3ε,

where lim denotes lim sup. Since ε > 0 was arbitrary,

limn→∞ Eϑ
(n)
i ≤ EY ∗i .

On the other hand, due to (7) we have Eiϑ
(n)
i ≥ Y ∗i a.s. for all n, so

0 ≤ limn→∞E
∣∣∣Eiϑ(n) − Y ∗i

∣∣∣ = limn→∞

(
Eϑ

(n)
i − EY ∗i

)
≤ 0,

which finally proves Eiϑ
(n)
i

L1→ Y ∗i .

Remark 14 Like Theorem 11, Theorem 13 can be formulated in a continuous
time setting as well with (almost) literally the same proof.

The following simple example illustrates that Theorem 13 would not be true
when the uniform integrability condition is dropped.

Example 15 Take T = 1, Z0 = Z1 = 0, M
(n)
0 = 0, M

(n)
1 =: −ξn with E0ξn =

0, n = 1, 2, . . . Then obviously Y ∗0 = 0, and we have

ϑ
(n)
0 = max(Z0 −M (n)

0 , Z1 −M (n)
1 ) = max(0, ξ(n)) = ξ

(n)
+ .

Now take

ξ(n) =

{
1 with Prob. n−1

n
1− n with Prob. 1

n

(hence E0ξ
(n) = 0). Then, for n → ∞ we have Var0 ϑ

(n)
0 = E0 (ξ

(n)
+ )2 −(

E0ξ
(n)
+

)2

= n−1
n −

(
n−1
n

)2
= n−1

n2 → 0, whereas E0ϑ
(n)
0 = E0ξ

+
n = n−1

n → 1.

Clearly, for each K > 1, E0

∣∣∣M (n)
1

∣∣∣ 1{∣∣∣M(n)
1

∣∣∣>K} ≥ n−1
n 1{n−1>K} → 1 as n →

∞, hence the
(
M

(n)
1

)
are not uniformly integrable.

12



In view of the next Corollary, Theorem 13 may be considered as a stability
theorem related to Theorem 11.

Corollary 16 Let MUI be a set of uniformly integrable martingales. Then for
any i ∈ {0, . . . , T} it holds: For every ε > 0 there exist a δ > 0 such that[

M ∈MUI and EVari ϑi(M) < δ
]

=⇒ 0 ≤ E ϑi(M)− Y ∗i < ε.

Proof. Suppose the statement is not true for some i. Then there exists an
ε0 > 0 such that for all n ∈ N there exists a martingale M (n) ∈ MUI , for
which EVari ϑi(M

(n)) < 1/n and E ϑi(M
(n)) − Y ∗i ≥ ε0. Since convergence in

L1 implies convergence in probability along a subsequence (indexed again by

n) we thus have Vari ϑi(M
(n))

P→ 0, and E
∣∣ϑi(M (n))− Y ∗i

∣∣ ≥ ε0 along this
subsequence. This contradicts Theorem 13.

Remark 17 Theorem 13 is important in practical situations, for instance, for
(possibly high dimensional) underlyings of jump-diffusion type in a Lévy-Itô
setup. In this environment we may consider the following class of uniformly
integrable martingales.

Let W be an m-dimensional Brownian motion and let N denote a Poisson
random measure, independent of W , with (deterministic) compensator measure
ν(s, du)ds such that∫ t

0

∫
Rq

(u2 ∧ 1)ν(s, du)ds <∞, 0 ≤ t ≤ T.

Let (Ft)0≤t≤T be the filtration generated by W and N , augmented by null sets.
Now let X be a D-dimensional Markov process, adapted to (Ft), and consider
the mappings c : [0, T ]× RD → R≥0 and d : [0, T ]× RD × Rq → R≥0 satisfying

E

∫ T

0

|c(s,Xs)|2ds <∞, E

∫ T

0

∫
Rq
|d(s,Xs, u)|2ν(s, du)ds <∞. (21)

We define the class of uniformly integrable martingales, MUI , as the set of all
martingales M satisfying

Mt = M0 +M c
t +Md

t

= M0 +

∫ t

0

ϕc(s,Xs)dWs +

∫ t

0

∫
Rq
ϕd(s,Xs, u)Ñ(ds, du),

where ϕc and ϕd satisfy

|ϕc| ≤ c, |ϕd| ≤ d,

and Ñ = N − ν is the compensated Poisson measure. Note that M is indeed a
martingale and that the expected quadratic variation of M is given by

E
[
M,M

]
t

= E

∫ t

0

|ϕc(s,Xs)|2ds+ E

∫ t

0

∫
Rq
|ϕd(s,Xs, u)|2ν(s, du)ds

≤ E
∫ t

0

|c(s,Xs)|2ds+ E

∫ t

0

∫
Rq
|d(s,Xs, u)|2ν(s, du)ds.

13



We then have for every t ∈ [0, T ] ,

sup
M∈MUI

E|Mt|2 ≤ sup
M∈MUI

E sup
0≤t≤T

|Mt|2 ≤ sup
M∈MUI

CE
[
M,M

]
T
<∞,

where the second estimation results from the Burkholder-Davis-Gundy inequality
and the third estimation follows from (21). Finally, an application of the de
la Vallée Poussin criterion yields that MUI is indeed a family of uniformly
integrable martingales.

6 New dual algorithms for pricing of Bermudan
derivatives

In this section we consider the design of new dual algorithms for solving multiple
stopping problems, hence pricing Bermudan products, which are based on the
theoretical insights from Theorem 11, Theorem 13, and Corollary 16.

6.1 Dual variance minimization

The trust of Corollary 16 is that, loosely speaking, if one sorts out within a
suitable class of martingales one for which the variance of (18) (for i = 0) is
sufficiently small, then this martingale gives rise to a tight upper bound. In
fact the results of Section 5 provide a necessary theoretical platform for dual
algorithms that aim at minimizing the variance of (18) at i = 0, or the expected
conditional variance (18) for i > 0 over a suitable parametric set of martingales.

Of course, such algorithms only can involve empirical (Monte Carlo based)
estimations of these variances rather than the true ones. Therefore, in the re-
mainder of this work we aim at the development of fast dual algorithms via
minimizing suitable empirical variance estimators that in any case provide true
dual martingales. Hence, the upper bound estimates are upper biased, regard-
less the distance of the estimated variances to the true ones and the “richness”
of the family of martingales.

Naturally, the question about ’how close’ the martingale obtained by em-
pirical minimization is to the true minimizing one, arises. However, such a
study would involve the application of deep results of the theory of empirical
processes (uniform concentration inequalities in connection with specific Vapnik-
Chervonenkis classes, see e.g. Dudley (1999)) and is considered therefore beyond
the scope of this article. But, at least on an intuitive level it is clear that, typi-
cally, if a parametric family of martingales contains one for which the (expected
conditional) variance of (18) is very small, only a relatively small sample size
will be needed to detect a martingale that is at least “close” to this one, by min-
imization of the sample variance (cf. Corollary 16). This we consider a main
appealing feature of variance minimizing dual algorithms. Let us note that, in
contrast, minimization of an (accurate enough) sample version of the expecta-
tion of (18) directly, would typically require a relatively large sample size. In

14



the following two paragraphs, we explore the merits of variance minimization
and minimization of the expectation in a stylized framework where the family
of martingales contains a surely optimal one.

Variance minimization in the presence of a surely optimal martingale

Let Q be some index set andM = {Mq : q ∈ Q} be a set of uniformly integrable
martingales such thatM contains a martingale Mq∗ which is surely optimal at
i = 0. Suppose that for any q ∈ Q we have N samples of ϑ0(Mq,(n)), n = 1, ..., N.
Based on these samples we may estimate Var0 ϑ0(Mq) = Varϑ0(Mq) as usual
by

Var(N) ϑ0(Mq) :=
1

N − 1

N∑
n=1

(
ϑ0(Mq,(n))− ϑ0(Mq)N

)2

, with

ϑ0(Mq)N :=
1

N

N∑
n=1

ϑ0(Mq,(n)). (22)

So, in principle, only two realizations (N = 2) would be enough to identify a q∗

such that

0 = Varϑ0(Mq∗) = Var(2) ϑ0(Mq∗) = min
q∈Q

2∑
n=1

(
ϑ0(Mq,(n))− ϑ0(Mq)N

)2

,

and then obtain Y ∗0 = ϑ0(Mq∗) = ϑ0(Mq∗,(1)). Due to this stylized argumenta-
tion we may expect that in a case where although the set M doesn’t contain a
martingale that is surely optimal at i = 0 but at least one martingale Mq such
that Varϑ0(Mq) is “small enough”, we only need a relatively small sample size
N to estimate this martingale, leading to a tight upper bound Y up0 := Eϑ0(Mq).

Minimization of the expectation in the presence of a surely optimal
martingale

In a stylized example where

T = 2, Z0 = 0, Z1 = ξ, Z2 = 1, with P (ξ ∈ dx) =
1

2
1[0,2](x)dx, (23)

we study minimizing the (estimated) dual expectation of (18) at i = 0 (cf.
(7)) over a parametric family of martingales that contains an almost surely
optimal one. More specifically, we consider multiples of the Doob martingale of
the Snell envelope. This study reveals some surprising insights. In particular,
it shows that in general it may happen that, though the martingale family
contains an almost surely optimal one, the minimization of the (estimated)
expectation yields a martingale that is only asymptotically optimal in the sense
of (7) (for sample sizes going to infinity), but not surely optimal in the sense
of (8)! The full details are presented in Appendix 8. The bottom line is that
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minimization of (estimated) dual expectations may require larger sample sizes,
both for the minimization procedure as well as for the second simulation in order
to determine the (upper biased) upper bound. Conferred with the previous
stylized example, variance minimization would here identify the almost sure
one with only two samples again.

The arguments above suggest to minimize the estimated variance of (18) at
i = 0 over a parametric set of martingales using a relatively small sample size N.
However, since the parametric set of martingalesM needs to be “rich enough”,
in practice there may be many parameters involved, which in turn may lead to a
non-convex minimization problem with many local minima. As a remedy to this
problem, rather than directly minimizing the variance of the dual estimator at
time zero, we propose to minimize backwardly the expected conditional variances
EVari ϑi(M

q) over q ∈ Q, starting from i = T (where the conditional variance
is trivially zero) down to i = 0, using a simple but effective recursive relationship
between ϑi(M

q) and ϑi+1(Mq). This is the subject of the next subsection. For
this backward minimization procedure the arguments above apply as well and
moreover, as we will see, it opens the door to utilizing linear regression, hence
to fast numerical implementations.

6.2 Backward dual variance minimization

Motivated by Section 6.1 we now develop a backward recursive simulation based
algorithm for the construction of a dual martingale M that yields tight upper
bounds. In view of a such a Monte Carlo approach, we assume a Markov
setting generated by some underlying Markov process X := (Xt)0≤t≤T , and a
cash-flow of the form Zj := Zj(Xj) := Z(j,Xj). First we describe the algorithm
in a pseudo language which involves terms such as conditional expectations
and conditional variances. Then, we spell out an implementable Monte Carlo
algorithm where these expressions are replaced by their empirical counterparts.

To start out on a pseudo algorithmic level we construct a martingale M
backwardly in a recursive way by establishing that from i = T down to i = 0
the expected conditional variances EVariϑi(M) are “as small as possible” in
a sense that we will describe. The martingale M is such that for j > i, any
increment

Mj −Mi is measurable with respect to ∆Fi,j := σ{Xs : i ≤ s ≤ j}. (24)

It is easy to see that the Doob martingale of the Snell envelope meets this
measurability property, however, in general Theorem 6 yields that there may
exist many other surely optimal martingales satisfying this property.

A corner stone of the whole procedure is the following recursion that holds
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for any martingale M and any i < T,

ϑi(M) = max

(
Zi, max

i+1≤j≤T
(Zj −Mj +Mi)

)
= max (Zi, ϑi+1(M) +Mi −Mi+1)

= Zi + (ϑi+1(M) +Mi −Mi+1 − Zi)+
. (25)

Obviously, at every i = 0, ..., T, ϑi(M) only depends on (Mj −Mi)i≤j≤T , and

at the starting time i = T we initially have ϑT (M) = ZT which trivially satisfies
EVarT (ϑT (M)) = 0. Note that if M were already surely optimal, i.e. ϑ(M)
were already equal to Y ∗, then Remark 8 would imply that for Ui := ϑi+1(M)+
Mi −Mi+1 − Zi, (Ui)

+ = ϑi(M)− Zi = Y ∗i − Zi is already Fi-measurable.

Now the essential idea is comprised in the following backward induction: As-
sume that for i+1 ≤ T we have constructed the increments (Mj −Mi+1)i+1≤j≤T
and ϑi+1(M). Now the task is to find a random variable ξi+1 such that

ξi+1 is ∆Fi,i+1-measurable, Eiξi+1 = 0, (26)

that solves the following minimization problem

ξi+1 := arg min
ξ∈∆Fi,i+1, Eiξ=0

EVariϑi(M(ξ))

= arg min
ξ∈∆Fi,i+1, Eiξ=0

EVari (ϑi+1(M)− ξ − Zi)+
. (27)

Intuitively, ξi+1 represents the optimal martingale increment and thus, we put
Mj(ξi+1) − Mi(ξi+1) := Mj − Mi+1 + ξi+1 for j ≥ i + 1. By construction,
the random variable ξi+1 satisfies (26), therefore, we obtain a set of martingale
increments (Mj(ξi+1)−Mi(ξi+1))i≤j≤T , which has now been extended from
j = i+ 1 to j = i and which satisfies for j ≥ i+ 1,

Mj(ξi+1)−Mi+1(ξi+1) = Mj(ξi+1)−Mi(ξi+1) +Mi(ξi+1)−Mi+1(ξi+1)

= Mj −Mi+1

and by construction also the measurability requirement (24). Now we extend
the increments (Mj −Mi+1)i+1≤j≤T from j = i+ 1 to j = i by setting

(Mj −Mi)i≤j≤T = (Mj(ξi+1)−Mi(ξi+1))i≤j≤T

Finally we put
ϑi(M) = Zi + (ϑi+1(M)− ξi+1 − Zi)+

.

After carrying out these steps backwardly from i = T down to i = 0 we end up
with a family of martingale increments (Mj −M0)0≤j≤T , hence a martingale

(Mj)0≤j≤T , as M0 = 0 without loss of generality. This martingale will be
subsequently used to compute a dual upper bound for Y ∗0 via

Y up0 = E max
0≤j≤T

(
Zj −Mj

)
.
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The key step in the above procedure is to find a solution to minimization
problem (27): Suppose that the martingale increments satisfying (26) for some
fixed i may be parameterized as ξi+1(β) where β is some generic parameter.
Based on a set of simulated trajectories of X one may then estimate for some
β (which we specify in more details below) the conditional variance

EVari (ϑi+1(M)− ξi+1(β)− Zi)+
=: EVariU

+
i (β)

by using e.g. kernel estimators (e.g. see Liero (1989)), and next minimize
with respect to β. In particular when the dimension of the parameter space is
very small (typically one-dimensional) this may lead to a feasible Monte Carlo
procedure. However, if the set of martingale increments ξi+1(β) is “rich enough”
and is moreover linearly structured in β, that is

ξi+1(β) =

K∑
k=1

βkm
(k)
i+1,

where β = (β1, . . . , βK) ∈ RK and the random variables m
(k)
i+1, k = 1, . . . ,K,

satisfy (26) for K ≥ 1 sufficiently large, we rather solve the dominating problem

arg min
β∈RK

EVariUi(β) := arg min
β∈RK

EVari (ϑi+1(M)− ξi+1(β)− Zi)

= arg min
β∈RK

EVari

(
ϑi+1(M)−

K∑
k=1

βkm
(k)
i+1

)
. (28)

The reason is twofold. On the one hand, if we succeed to find β◦ ∈ RK such
that EVariUi(β

◦) is sufficiently small (if it were zero, we would have arrived at
a surely optimal martingale increment), then since

arg min
β∈RK

EVarXTiU
+
i (β) ≤ EVariU

+
i (β◦) ≤ EVariUi(β

◦),

EVariU
+
i (β◦) is generally even closer to zero and so β◦ can be considered a good

approximation to (27) as well. On the other hand, most importantly, problem
(28) can be treated as a linear regression problem,

[β◦, γ◦] = arg min
β∈RK ,γ∈RK1

E

∣∣∣∣∣ϑi+1(M)−
K∑
k=1

βkm
(k)
i+1 −

K1∑
k=1

γkψk(i,Xi)

∣∣∣∣∣
2

, (29)

which employs an additional set of basis functions ψk(t, x), k = 1, ...,K1. To see
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this, note that (29) is equivalent to

[β◦, γ◦] = arg min
β∈RK ,γ∈RK1

EEi

(
ϑi+1(M)−

K∑
k=1

βkm
(k)
i+1 − Eiϑi+1(M)

+Eiϑi+1(M)−
K1∑
k=1

γkψk(i,Xi)

)2

= arg min
β∈RK ,γ∈RK1

{
EVari

(
ϑi+1(M)−

K∑
k=1

βkm
(k)
i+1

)

+E

(
Eiϑi+1(M)−

K1∑
k=1

γkψk(i,Xi)

)2
 .

Hence, β◦ satisfies (28). Moreover for γ◦ it holds

γ◦ = arg min
γ∈RK1

E

(
Eiϑi+1(M)−

K1∑
k=1

γkψk(i,Xi)

)2

. (30)

Further, the regression procedure (29) delivers as by-product

Ci(x) :=

K1∑
k=1

γ◦kψk(i, x),

an approximate continuation function that may be used afterwards to define a
stopping rule and to simulate a corresponding lower biased estimation of Y ∗0 .

Remark 18 (i) In virtually all practical applications we are in a setting as
described in Remark 17. In this environment we may model ξi+1 as linear
combinations of the form

ξi+1(β) :=

N1∑
k=1

βck

∫ Ti+1

Ti

ϕck(s,Xs)dWs

+

N2∑
k=1

βdk

∫ Ti+1

Ti

ϕdk(s,Xs, u)dÑ(ds, du), (31)

where N1 +N2 = K and ϕck(s, x) and ϕdk(s, x, u) are suitable sets of basis func-
tions satisfying the conditions in Remark 17. In this setting, we have

m
(k)
i+1 =

∫ Ti+1

Ti

ϕck(s,Xs)dWs +

∫ Ti+1

Ti

ϕdk(s,Xs, u)dÑ(ds, du)

and β = (βc1, . . . , β
c
N1
, βd1 , . . . , β

d
N2

) ∈ RK .
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As an alternative, we may also take

ξi+1(β) :=

K∑
k=1

βk

(
B

(k)
i+1 −B

(k)
i

)
(32)

for an arbitrary given set of discounted tradables
(
B

(k)
j

)
0≤j≤T

where the B
(k)
j =

B(k)(j,Xj) are provided by some specific problem under consideration. For ex-
ample it may happen that discounted European options are available in closed
form. In any case, (31) and (32) satisfy the requirements (26) for any vector
parameter β ∈ RK .

(ii) Suppose that the system of basis martingale increments and basis functions
in the regression based minimization (29) is sufficiently “rich” that there even
exist β◦◦ and γ◦◦ such that

ϑi+1(M)−
K∑
k=1

β◦◦k m
(k)
i+1 −

K1∑
k=1

γ◦◦k ψk(i,Xi) = 0 a.s.

Then one would need only one trajectory for X to identify β◦◦ and γ◦◦ via
(29). This is a similar situation as discussed in Section 6.1: In practice when
the system (31) is rich enough, a relatively low sample size will be sufficient
to solve (29) effectively. This phenomenon will be confirmed by our numerical
experiments in Section 7.

Description of the Monte Carlo algorithm

Let us now spell out the empirical, implementable counterpart of the procedure

described above. Based on a set of trajectories
(
X

(n)
j

)
j=0,...,T

, n = 1, ..., N, we

carry out the following procedure.

Step 1: At i = T we set on each trajectory ϑ
(n)
T := ϑ

(n)
T (M) := ZT (X

(n)
T )

and
(
M

(n)
j −M (n)

T

)
T≤j≤T

= M
(n)
T −M (n)

T = 0 for n = 1, ..., N .

Step 2: For n = 1, ..., N let
(
M

(n)
j −M (n)

i+1

)
i+1≤j≤T

be constructed. For

i = T − 1 down to i = 0, based on the N samples, we solve the regression
problem

[
β̂(i), γ̂(i)

]
:= arg min

β∈RK ,γ∈RK1

1

N

N∑
n=1

(
ϑ

(n)
i+1(M)−

K∑
k=1

βkm
(k,n)
i+1 −

K1∑
k=1

γkψk(i,X
(n)
i )

)2

.
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We then put

ξ̂
(n)
i+1 :=

K∑
k=1

β̂
(i)
k m

(k,n)
i+1 ,

M
(n)
j −M (n)

i :=
(
M

(n)
j −M (n)

i+1

)
+ ξ̂

(n)
i+1,

and

ϑ
(n)
i (M) := Z

(n)
i +

(
ϑ

(n)
i+1(M)− ξ̂(n)

i+1 − Z
(n)
i

)+

.

Step 3: We simulate Ñ new independent samples
(
X̃

(n)
j

)
j=0,...,T

, n =

1, ..., Ñ , which give rise to the new martingale samples

M̃
(n)
i =

i∑
j=1

K∑
k=1

β̂
(j)
k m̃

(k,n)
j , k = 1, ...,K, n = 1, ..., Ñ .

Then, an upper biased estimate for the upper bound is given by

Ŷ up
0 :=

1

Ñ

Ñ∑
n=1

max
0≤i≤T

Z(n)
i (X̃

(n)
i )−

i∑
j=1

K∑
k=1

β̂
(j)
k m̃

(k,n)
j

 . (33)

Step 4: Based on the stopping rule

τ0(Xi) := inf{i ≥ 0 : Zi(Xi) ≥
K1∑
k=1

γ̂
(i)
k ψk(i,Xi)} (34)

we put

Ŷ low
0 :=

1

Ñ

Ñ∑
n=1

Z
(n)

τ0(X̃(n))
(X̃

(n)

τ0(X̃(n))
).

which yields a lower biased estimate to Y ∗0 .

At this point, let us briefly compare our algorithm with the algorithm from
Belomestny et al. (2009). The methodology of Belomestny et al. (2009) to
compute dual martingales is built upon a procedure to numerically approximate
Clark-Ocone derivatives of an approximative Snell envelope Y with respect to a
Wiener filtration. The key ingredient there is to approximate the Clark-Ocone
derivative on a (fine) grid π = {t0, . . . , tN} which contains the exercise grid
{0, 1, . . . , T} using the estimator,

Zπtj :=
1

∆π
j

Etj [∆πWj Yi+1], (35)
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where ∆π
j = tj+1 − tj and ∆πWj = Wtj+1 −Wtj . Due to (35), Belomestny et

al. (2009) in fact have to carry out a regression at each tj ∈ π on the fine grid
π. In contrast, our algorithm only needs to carry out regressions on the coarser
grid of the possible exercise dates {0, . . . , T} ⊂ π. Moreover, (35) requires an
input approximation Y , which needs to be obtained by another method, such
as the method of Longstaff and Schwartz (2001). The tightness of the upper
bound obviously also depends on the quality of this approximation. Finally,
we underline that obtaining numerically the Clark-Ocone derivative (35) in a
non-Wiener filtration (e.g. filtrations generated by Lévy processes) is not so
straightforward, while in our framework, the regression procedure (29) may
include jump martingales as depicted in Remark 17.

7 Numerical examples

In this section we present the numerical results pertaining to the backward al-
gorithm described in Section 6. The performance and accuracy of our algorithm
is illustrated by applying it to the pricing of a Bermudan basket-put on 5 assets
(see e.g. Bender et al. (2006a)) and a Bermudan max-call on 2 and 5 assets (see
e.g. Andersen and Broadie (2004)). We furthermore study our method in case
that the product is less well posed in the sense that the deltas can become highly
negative and reach a point where hedging essentially becomes impossible. This
has repercussions on the choice of suitable martingales. In our test, we price an
up-and-out max-call option, see e.g. Desai et al. (2010). In the examples, the
risk-neutral dynamics of each asset are given as

dXd
t = (r − δ)Xd

t dt+ σXd
t dW

d
t , d = 1, ..., D,

where D ∈ N is the number of assets, W d
t , d = 1, ..., D, are independent one-

dimensional Brownian motions, and r, δ and σ are constant real valued param-
eters. Exercise opportunities are equally spaced at times Tj = jT

J , j = 0, ..., J .
The discounted payoff from exercise at time t is given by

(i) Zt(Xt) = e−rt(K − X1
t+...+XDt

D )+ for the Bermudan basket-put,

(ii) Zt(Xt) = e−rt(max(X1
t , . . . , X

D
t )−K)+ for the Bermudan max-call,

(iii) Zt(Xt) =

e
−rt(max(X1

t , . . . , X
D
t )−K)+, if max 0≤u≤t

1≤d≤D
Xd
u ≤ B,

0 else

for the up-and-out Bermudan max-call with knock out barrier B > 0.

We denote Xt = (X1
t , . . . , X

D
t ). For both products, the time interval [Tj , Tj+1],

j = 0, . . . , J − 1, is partitioned into L equally spaced subintervals of width
∆t = T

N with N = J × L. The implementation can be outlined as follows. We
first simulate M independent samples of Brownian increments

∆Wi = (∆W
1,(m)
i , . . . ,∆W

D,(m)
i ), i = 1, . . . , N, m = 1, . . . ,M.
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Then the trajectories of X
(m)
i = (X

1,(m)
i , . . . , X

D,(m)
i ), i = 1, . . . , N , m =

1, . . . ,M , are given by

X
d,(m)
i = X

d,(m)
i−1 exp

(
(r − δ − 1

2
σ2)∆t+ σ∆W

d,(m)
i

)
, (36)

for d = 1, . . . , D and initial data X0 = (X1
0 , . . . , X

D
0 ).

We now carry out the backward Monte Carlo regression algorithm as de-
scribed in Section 6. In this Wiener setting, we recall Remark 18 (i) and
choose as the spanning family of surely optimal martingales the Wiener in-

tegrals m
(k)
i+1 =

∫ Ti+1

Ti
ϕck(s,Xs)dWs. More precisely, we solve in a first step the

regression problem backward in time

(β̂(i), γ̂(i)) := arg min
(β,γ)

1

M

M∑
m=1

[
ϑ

(m)
i+1 −

K∑
k=1

βk

∫ i+1

i

ϕk(u,X(m)
u )dW (m)

u

−
K1∑
k=1

γkψk(i,X
(m)
i )

]2

, i = T − 1, . . . , 0, (37)

for two families of basis functions (ϕk) =
(
ϕ

(d)
k

)
with ϕ

(d)
k = ϕ

(1)
k , and (ψk),

chosen as explained below. In (37) the Wiener integrals are approximated by
the standard Euler scheme, using the same Brownian increments as in (36).
Finally, a new independent simulation is launched and we estimate an upper
bound Ŷ up0 and a lower bound Ŷ low0 by means of (33) and (34).

As one may expect, the choice of basis functions is crucial to obtain tight
upper and lower bounds. In this respect, special information on the pricing
problem may help us finding suitable basis functions. One way of retrieving
additional information is to employ martingales representations and Itô’s for-
mula to obtain more specific insights into the structure of the pricing dynamics.
We illustrate this by considering the following stylized setting: By the Markov
property of X, we have that Et (ZT (XT )) = f(t,Xt) for some measurable func-
tion f(t, x) and 0 ≤ t ≤ T = TJ . Let us assume that f(t, x) is differentiable in
x. Then, by Itô’s formula and the fact that Et(ZT ) is a martingale we have

ZT (XT )− ETJ−1
(ZT (XT )) =

D∑
d=1

σ

∫ T

TJ−1

fxd(t,Xt)X
d
t dW

d
t .

Recall that ϑ̂T = ZT and ETJ−1
(ZT (XT )) can be expressed in the following

form
ETJ−1

(ZT (XT )) = e−rTJ−1EP (TJ−1, XTJ−1
;T ),

where EP (t, x;T ) is the price of the corresponding European option with ma-
turity T at time t. Thus, it is natural to choose from time T to time TJ−1

European option values for the basis (ψk(t, x)) and the corresponding European
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deltas multiplied by the value of the underlying asset for the basis (ϕk(t, x)).
Although for the following steps (t < TJ−1) there is no easy way to predict
optimal choices of (ψk) and (ϕk), the above analysis suggests to always include
the still-alive European options into the basis (ψk) and include the information
on the European deltas into the basis (ϕk). In fact, based on similar arguments,
this choice of basis functions was already proposed in Belomestny et al. (2009).

7.1 Bermudan basket-put

In this example, we take the following parameter values,

r = 0.05, δ = 0, σ = 0.2, D = 5, T = 3,

and
X1

0 = . . . = XD
0 = x0, K = 100.

We perform the simulation of the underlying asset X from (36) with a time step
size ∆t = 0.01. For Tj ≤ t < Tj+1, j = 0, . . . , J − 1, we choose the set{

1, Pol3(Xt), Pol3(EP (t,Xt;Tj+1)), Pol3(EP (t,Xt;TJ))
}

as basis functions (ψk), where Poln(y) denotes the set of monomials of degree
up to n in the components of a vector y and EP (t,X;T ) denotes the (approxi-
mated) value of a European basket-put with maturity T at time t. Recall that
the family (ψk) serves as the regression basis for the continuation value. Further
we choose{

1,

(
Xd
t

∂EP (t,Xt;Tj+1)

∂Xd
t

)
1≤d≤D

,

(
Xd
t

∂EP (t,Xt;TJ)

∂Xd
t

)
1≤d≤D

}

as a regression basis (ϕk) spanning the family of the surely optimal martingales.
Since there is no closed-form formula for the still-alive European basket-put, we
use the moment-matching method to approximate their values (see e.g. Brigo

et al. (2004), and Lord (2006)). To this end, Let St =
X1
t + . . .+XD

t

D
, and

consider another asset Gt whose risk-neutral dynamic follows

dGt = rGtdt+ σ̃GtdW
1
t ,

where σ̃ is a constant. The value of the European put on this asset can be easily
computed by the well-known Black-Scholes formula, that is,

E[e−rT (K −GT )+] = BS(G0, r, σ̃,K, T ). (38)

If ST and GT have the same moments up to two, then the Black-Scholes price
in (38) can be regarded as a good approximation for the value of the European

24



basket-put E
(
e−rT (K − ST )+

)
, for details see Lord (2006). Since

E(ST ) =
1

D

D∑
d=1

Xd
0 e
rT ,

E(S2
T ) =

1

D2
e2rT

 D∑
i,j=1

Xi
0X

j
0 exp(1i=jσ

2T )


and

E(GT ) = G0e
rT , E(G2

T ) = G2
0e

2rT+σ̃2T ,

we can simply set

G0 =
1

D

D∑
d=1

Xd
0

and

σ̃2 =
1

T
ln

 1

(
∑D
d=1X

d
0 )2

D∑
i,j=1

Xi
0X

j
0 exp(1i=jσ

2T )

 .

The European deltas can be approximated by

∂BS

∂G0

∂G0

∂Xd
0

= −N (−d1)
1

D
, d = 1, . . . , D,

where d1 =
ln(G0

K ) + (r + σ̃2

2 )T

σ̃
√
T

and N denotes the cumulative standard normal

distribution function. These formulas are straightforwardly extended to the
pricing at times t > 0.

Table 1: Lower and upper bounds for Bermudan basket-put on 5 assets with
parameters r = 0.05, δ = 0, σ = 0.2, K = 100, T = 3 and different J and x0

J x0 Low (SE) Up (SE) BKS Price Interval
90 10.000 (0.000) 10.000 (0.000) [10.000, 10.004]

3 100 2.164 (0.007) 2.168 (0.005) [2.154, 2.164]
110 0.539 (0.004) 0.555 (0.003) [0.535, 0.540]
90 10.000 (0.000) 10.000 (0.000) [10.000, 10.000]

6 100 2.407 (0.006) 2.432 (0.005) [2.359, 2.412]
110 0.573 (0.003) 0.608 (0.003) [0.569, 0.580]
90 10.000 (0.0000) 10.000 (0.000) [10.000, 10.005]

9 100 2.475 (0.0063) 2.539 (0.006) [2.385, 2.502]
110 0.5915 (0.0034) 0.635 (0.003) [0.577, 0.600]

The numerical results are shown in Table 1. We use 1000 paths for estimat-
ing a surely optimal martingale and the continuation function via the regression
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procedure. Another 300000 paths are used to compute the lower bound and
5000 paths are used to compute the upper bound. Note that we have cho-
sen a relatively small sample size (1000) for estimating the martingale in the
regression procedure and a small size (5000) for the simulation of the upper
bound. This confirms the general idea behind our algorithm, that for a rich
enough family of integrable martingales, only a small number of samples are
required for identifying a good approximation to a surely optimal martingale.
Moreover, as the objective of our method is the minimization of variance, for
the subsequent calculation of a tight (upper biased) upper bound, a relatively
small sample size is sufficient again. We compare our results to the price inter-
vals obtained in Bender et al. (2006a) which are displayed in the last column of
Table 1. Typically, the bulk of the computation time is occupied with the simu-
lation of the lower bound which amounts to about 80% of the total computation
time whereas the simulation of the upper bound amounts to about 8% and the
regression procedure to 12%. In this regard, producing good upper bounds in
order of a few minutes is a drastic computational improvement compared to
Bender et al. (2006a) whose upper bounds are computed with nested Monte
Carlo simulation which has a complexity typically of the order

D ×Nouter ×Ninner × J2.

Our method computes the upper bound with a complexity of

D ×N × J,

where N denotes the sample size for calculating the upper bound. Moreover,
the strength of our method in this example is that N can be chosen to be small
whereas in Bender et al. (2006a), the choice was Nouter = 2000 and Ninner =
1000, leading to a complexity 400 times as high as in our case.

7.2 Bermudan max-call

We use the same parameter values as in Section 7.1 except δ = 0.1 and D = 2
or 5. As in the previous example we use European (call) options in the basis
(ψk) and the corresponding deltas in the basis (ϕk). The value of the European
max-call option is computed by the following formula (Johnson (1987)),

Cmax =

D∑
l=1

X l
0

e−δT√
2π

∫
(−∞,dl+]

exp[−1

2
z2]

D∏
l′=1
l′ 6=l

N

 ln
Xl0
Xl
′

0

σ
√
T
− z + σ

√
T

 dz

−Ke−rT +Ke−rT
D∏
l=1

(
1−N

(
dl−
))
, (39)

where

dl− :=
ln

Xl0
K + (r − δ − σ2

2 )T

σ
√
T

, dl+ = dl− + σ
√
T .
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Moreover, straightforward computations reveal that the deltas are given by

∂Cmax
∂X l

0

=
e−δT√

2π

∫
(−∞,dl+]

exp[−1

2
z2]

D∏
l′=1
l′ 6=l

N

 ln
Xl0
Xl
′

0

σ
√
T
− z + σ

√
T

 dz, (40)

and that Cmax satisfies the linear homogeneity3

Cmax =

D∑
l=1

X l
0

∂Cmax
∂X l

0

+K
∂Cmax
∂K

. (41)

Table 2: Lower and upper bounds for Bermudan max-call with parameters
r = 0.05, δ = 0.1, σ = 0.2, K = 100, T = 3 and different D and x0.

D x0 Low (SE) Up (SE) A&B price interval
90 8.0556 (0.021) 8.15284 (0.014) [8.053, 8.082]

2 100 13.8850 (0.027) 14.0145 (0.019) [13.892, 13.934]
110 21.3671 (0.0319) 21.5187 (0.022) [21.316, 21.359]
90 16.5973 (0.0296) 16.7718 (0.027) [16.602, 16.655]

5 100 26.1325 (0.0356) 26.3440 (0.031) [26.109, 26.292]
110 36.7348 (0.0403) 37.0431 (0.039) [36.704, 36.832]

The numerical results are shown in Table 2. They are based on 1000 paths for
the regression procedure, 300000 paths for computing the lower bound and 5000
paths for computing the upper bound. As before, we have chosen a relatively
small number of samples (1000) for estimating the martingale in the regression
procedure. To achieve upper bounds with standard errors of the same magnitude
as the lower bounds, again only a small number of simulation paths is needed.
In this example, 5000 paths were sufficient. The integrals in (39) and (40) are
numerically evaluated using a simple adaptive Gauss-Kronrod procedure with
31 points. The price intervals in the last column are quoted from Andersen and
Broadie (2004). The worst case complexity of Andersen and Broadie (2004) is

D ×Nouter ×Ninner × J2,

where D denotes the dimension, Nouter the number of the outer paths and Ninner

the number of the inner paths and J the number of exercise time points, see eqn.
(18) in Andersen and Broadie (2004). In this example, Andersen and Broadie
(2004) chose Nouter = 1500 and Ninner = 10000 paths. The complexity of our
algorithm is

D ×N × J

where N is the number of simulation paths for the upper bound. Thus, it
should be stressed that the complexity of our algorithm grows linearly and by

3Compare also with (Johnson, 1987, eq. (9)).
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the device of having the minimization of the variance as its objective, typically
we only need few simulation paths to compute upper bounds with low standard
errors. The reduction of computation time by a factor of the ratio of the two
complexities has been observed in experiments with several one-dimensional
products. Typically, of the total computation time, the regression procedure
accounts for 5%, the calculation of the lower bound for 65% and the calculation
of the upper bound for 30%.

7.3 Bermudan up-and-out max-call

Let us now carry out the analysis for the same product as in Section 7.2 with
the additional feature of an upper knock out barrier. In the case of standard
one-dimensional European up-and-out call options, it is well known that the
delta becomes negative when the spot approaches the barrier and once the
barrier is crossed, the delta collapses to zero as the option itself has expired.
This singular behaviour of the delta makes delta-hedging an up-and-out call
virtually impossible when the spot is very close to the barrier. This feature
makes guessing a good class of approximating martingales challenging because
both singularities of collapsing to zero at crossing the barrier and approaching
negative values when the spot is close to the barrier have to be account for. For

(ψk), we use the following basis: denoting Yt := max 0≤u≤t
1≤d≤D

Xd
u, we employ

{
1× ηt × 1Yt≤B , Pol3(Xt)× ηt × 1Yt≤B

}
as a regression basis where ηt = 1− e−α

B−Yt
B serves as a damping factor which

forces the basis elements to drop smoothly to zero when the dynamics of Yt
get close to the barrier. The constant α serves as a weighting factor on the
relative distance to the barrier and in our numerical experiments, we tested
several values for the factor α. This way, we account for the bahaviour that up-
and-out call options drop smoothly to zero when the barrier is approached. The
indicator takes care of the fact once the barrier is hit, the option has expired,
thus its value remains zero. In a similar fashion, we employ as martingale
integrand (ϕk) the deltas of the European max-call expiring at the hitting time
τ := inf{t ≥ 0 : Yt > B},{

η̃t ×
(
Xd
t

∂Cmax(t,Xt; τ)

∂Xd
t

)
1≤d≤D

× 1{Yt≤B}

}
,

where ∂Cmax
∂xd

is from (40) and where the damping factor η̃t = 1 − 2e−α̃
B−Yt
B

caters for the decay of the deltas of up-and-out call options whose spot values
are close to the barrier. As before, the indicator accounts for the fact once the
barrier is crossed, the option has expired and thus all deltas also have expired.

The results of the numerical experiments are displayed in Table 3. We have

chosen a sample size of 1000 paths for the regression procedure, 300000 samples
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Table 3: Lower and upper bounds for up-and-out Bermudan max-call with
parameters r = 0.05, δ = 0.1, σ = 0.2, K = 100, T = 3 and different D and x0.

Barrier D x0 Low (SE) Up (SE)
90 7.998 (0.018) 8.092 (0.024)

170 2 100 13.645 (0.024) 13.758 (0.027)
110 20.784 (0.026) 20.883 (0.030)
90 16.198 (0.022) 16.426 (0.033)

170 5 100 24.808 (0.029) 25.248 (0.039)
110 33.222 (0.030) 34.458 (0.054)

in the simulation of the lower bound and 5000 samples on the simulation of
the upper bound. The figures for dimension D = 2 are based on damping
factors with the weight coefficients α = 20 and α̃ = 16 which seem to produce
a best overall gap between lower and upper bound. The figures for dimension
D = 5 are based on damping factors with the weight coefficients α = 20 and
α̃ = 16. In this example, our method shows a deficiency which becomes clear
for the case of B = 150. Moving closer to the barrier and thus increasing the
probability that the option knocks out almost surely before maturity leads to a
more complex behaviour in the deltas. The increasing gap between lower and
upper bounds is indicating that the choice of approximating martingales is not
good enough. Testing several different bases (ψk) and (ϕk) reveals that the
lower bound is very robust concerning its regression basis whereas the upper
bound is sensitive in terms of the choice of its regression basis. The conlcusion
we draw from this example is that the class of martingales spanned by (ϕk) does
not provide a rich enough class which allows for calculating a tight upper bound
to the Snell envelope. Hence, for products with complex behaviour in the deltas
which complicates the choice of good martingales, our method has problems to
produce tight upper bounds. In such cases, standard inner simulation based
methods as in Andersen and Broadie (2004) or in Desai et al. (2010) produce
better upper bounds at the expense of a drastic increase of complexity however.

8 Appendix: example from Section 6.1

For the cash-flow process from (23), i.e.

T = 2, Z0 = 0, Z1 = ξ, Z2 = 1, with P(ξ ∈ dx) =
1

2
1[0,2](x)dx,

we obviously have that

Y ∗2 = 1,

Y ∗1 = max (ξ, 1) = 1 + (ξ − 1)
+

Y ∗0 = E0Y
∗
1 = 1 +

1

2

∫
(x− 1)

+
1[0,2](x)dx =

5

4
,
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and so the corresponding (almost sure) Doob martingale has increments given
by

M∗2 −M∗1 = Y ∗2 − E1Y
∗
2 = 0

M∗1 −M∗0 = M∗1 = Y ∗1 − E0Y
∗
1 = (ξ − 1)

+ − 1

4
.

Now consider for α ∈ R the family of martingales {αM∗ : α ∈ R} . Let us note
that we have

Z (α, ξ) := max (Z0 − αM∗0 , Z1 − αM∗1 , Z2 − αM∗2 )

= 1ξ≤1

(
1 +

1

4
α

)+

+ 1ξ>1

(
ξ + α

(
5

4
− ξ
))+

=: 1ξ≤1Z− (α) + 1ξ>1Z+ (α, ξ) .

For the present case study we will later recall on the following facts which follow
by straightforward computations.

Proposition 19 It holds that

EZ (α, ξ) =

{
1
64 (α+ 4) 9α−4

α−1 if α > 8
3 ,

1
64

(3α−8)2

1−α if α ≤ −4,
,

arg min
α≥ 8

3

EZ(α, ξ) =
8

3
with EZ

(
8

3
, ξ

)
=

5

4
= Y ∗0 , and VarZ

(
8

3
, ξ

)
=

125

432
,

arg min
α≤−4

EZ (α, ξ) = −4 with EZ(−4, ξ) =
5

4
= Y ∗0 , and VarZ(−4, ξ) =

125

48
.

Now consider a sample of i.i.d. realizations (ξ(n)), n = 1, ..., N, and for each
α ∈ R the estimator

ZN (α) :=
1

N

N∑
n=1

Z
(
α, ξ(n)

)
(42)

=
1

N

N∑
n=1

(
1ξ(n)≤1Z− (α) + 1ξ(n)>1Z+

(
α, ξ(n)

))
= πNZ− (α) +

1

N

N∑
n=1

1ξ(n)>1Z
(n)
+ (α) ,

where πN := #
{
n : ξ(n) ≤ 1, 1 ≤ n ≤ N

}
/N, as an estimate for the expected

value
E0 max (Z0 − αM∗0 , Z1 − αM∗1 , Z2 − αM∗2 ) .
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Minimization of the (unbiased) sample estimator (42) comes down to solving
for

arg min
α

ZN (α) = arg min
α

{
πNZ− (α) +

1

N

N∑
n=1

1ξ(n)>1Z
(n)
+ (α)

}
(43)

= arg min
α

{
πN

(
1 +

1

4
α

)+

+
1

N

N∑
n=1

1ξ(n)>1

(
ξ(n) + α

(
5

4
− ξ(n)

))+
}
.

W.l.o.g. we may assume that ξ(n) 6= 5/4, ξ(n) 6= 1, and ξ(n) 6= 2 for all n as the
event that ξ attains a constant κ ∈ [0, 2] has zero probability.

We now distinguish and discuss the following possible cases.

Case I: N = 1

(a) If ξ(1) < 1 then for any α ≤ −4 we get Z1 (α) = 0, leading to αinf ∈
(−∞,−4] and

Z (αinf , ξ) = 1ξ>1

(
ξ + αinf

(
5

4
− ξ
))+

, αinf ≤ −4.

So in view of Proposition 19 the best choice is αinf = −4, after which an inde-

pendent new simulation ξ̃(1), ..., ξ̃(Ñ) would yield the estimate

Y Ñ,−4 :=
1

Ñ

Ñ∑
n=1

Z
(
−4, ξ̃(n)

)
with E Y Ñ,−4 = Y ∗0 , and VarY Ñ,−4 =

125

48Ñ
,

(44)
due to the optimal but not surely optimal martingale −4M∗.

(b) If 1 < ξ(1) < 5/4 then π1 = 0 and we have Z1 (αinf) = 0 for αinf =
ξ(1)/(ξ(1) − 5/4) < −4. By Proposition 19 we then have due to an independent

new sample of size Ñ ,

Y Ñ,αinf :=
1

Ñ

Ñ∑
n=1

Z
(
αinf , ξ̃

(n)
)

with E Y Ñ,αinf =
1

64

(3αinf − 8)
2

1− αinf
> Y ∗0 ,

and a significant non-zero variance decay proportional to Ñ−1.

(c) If 1 < ξ(1) < 5/4 then π1 = 0 and we get Z1 (αinf) = 0 for αinf = ξ(1)/(ξ(1)−
5/4) > 8/3. By Proposition 19 we then have due to an independent new sample

of size Ñ ,

Y Ñ,αinf :=
1

Ñ

Ñ∑
n=1

Z
(
αinf , ξ̃

(n)
)

with E Y Ñ,αinf =
1

64
(αinf + 4)

9αinf − 4

αinf − 1
> Y ∗0 ,

and a significant non-zero variance decay proportional to Ñ−1.
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Case II: N > 1 and ξ(n) < 5/4 for all n (probability (5/8)N )

(a) If there is at least one n with 1 < ξ(n) < 5/4 we find for any αinf ≤ −A
< −4 with large enough A > 0, ZN (αinf) = 0. We thus obtain an upper bound

estimator Y Ñ,αinf similar to the one in Case I-b.

(b) If for all n, ξ(n) < 1 (probability (1/2)N ) one may “luckily” find αinf = −4
and then apply the estimator from (44), see Case I-a.

Case III: N > 1 and ξ(n) > 5/4 for all n (probability (3/8)N )

By taking αinf ≥ A > 8/3 for large enough A > 0, we obtain ZN (αinf) = 0.
Thus, the corresponding upper bound estimator has properties similar to Case
I-c (depending on αinf).

Case IV: N > 1 and ξ(n) > 5/4 and ξ(n′) < 5/4 for some pair 1 ≤ n, n′ ≤ N,
(probability 1− (5/8)N − (3/8)N → 1 as N →∞)

This is the most interesting case and also the most probable one for large
N. We now have that ZN (α)→ +∞ for α→ ±∞. Further we observe that the
function

α 7→ ZN (α)

is a non-negative convex piecewise linear map. As a consequence, this map
attains a global (non-negative) minimum at some possibly non-unique −∞ <
αinf <∞. Let us define the set of global minima

Ainf :=
{
αinf ∈ R : ZN (α) ≥ ZN (αinf) for all α ∈ R

}
and consider the collection of ”kink points”

α(0) = −4, α(n) =
ξ(n)

ξ(n) − 5
4

∈ (−∞, 4)∪
(

8

3
,∞
)
, for all n with 1 < ξ(n) < 2,

denoted by K. Then we claim that

Ainf ⊂ (−∞,−4] ∪ (8/3,∞).

If not, there must be some β ∈ Ainf with −4 < β ≤ 8/3. Since β /∈ K, there
must exist αinf , α

′
inf ∈ Ainf ∩ K such that αinf ≤ −4 < β ≤ 8/3 < α′inf and

[−4, 8/3] ⊂ [αinf , α
′
inf ] ⊂ Ainf . Thus, in particular 1 ∈ Ainf . However, this is

impossible. Indeed, 1 ∈ Ainf would imply that ZN (α) attains a global (and
thus also local) minimum at α = 1. Now for small enough δ we have that (note
that the sample is fixed)

ZN (1 + δ) = πN

(
1 +

1

4
(1 + δ)

)+

+
1

N

N∑
n=1

1ξ(n)>1

(
ξ(n) + (1 + δ)

(
5

4
− ξ(n)

))+

=
5

4
+ δ

(
1

4
πN +

1

N

N∑
n=1

1ξ(n)>1

(
5

4
− ξ(n)

))
=:

5

4
+ δ · (∗)
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which never attains a local minimum at δ = 0, except if (∗) = 0. However, it is
easy to check that the latter case corresponds to

1

N

N∑
n=1

1ξ(n)>1

(
ξ(n) − 1

)
=

1

4

which is an event of probability zero.
The important conclusion is that whatever αinf the minimization procedure

for (43) delivers, it must hold that either

αinf ≤ −4 or αinf > 8/3 with probability 1, (45)

and thus one never finds α = 1 (which corresponds to the almost surely optimal
martingale!). Further observe that due to Proposition 19, −4M∗ and 8

3M
∗ are

the only optimal martingales corresponding to (45), but, they are not surely
optimal (M∗ is the only surely optimal one in the class (αM∗)α∈R). Now let us
consider a general result in Desai et al. (2010) that implies that we must have

EZ (αinf,N , ξ)→ Y ∗0 if N →∞.

For the present example that means that the limit set of the sequence (αinf,N )
is just {−4, 8/3} (attracting set!), and that in the limit for N → ∞ one ends
up with either the martingale −4M∗ or 8

3M
∗, which both are optimal but not

surely optimal.
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