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A method for pricing European contingent claims (options) based on Monte Carlo
simulation with variance reduction is presented. The evolution of the option price can
be formulated as a Kolmogorov final value problem and thus be calculated
numerically either by solving the deterministic partial differential equation or by
simulating a large number of trajectories of the corresponding stochastic differential
equation. The authors discuss a Monte Carlo simulation method combined with
variance reduction obtained from a Girsanov transformation of the stochastic
differential equation by a correction term that is obtained as a rough solution of the
partial differential equation computed by a classical numerical method. The trade-off
between these methods is investigated and it is shown that the composite method is

more efficient than either the standard Monte Carlo or the classical numerical
method.

1. INTRODUCTION

The subject of this paper is a general and efficient pricing method for nonstandard financial
derivatives, e.g. exotic options, interest rate derivatives, etc. The need for such a method
arises from the situation in the financial markets, which have been strongly increasing in
competition and complexity over the last decade.

From stochastic finance theory, the evaluation of a wide class of derivatives comes down
to the computation of the expectation functional

Ef(XTY). (1.1)

The stochastic process X describes the price evolution of one or more underlying financial
quantities such as stock prices, exchange indices, etc., under a risk-neutral probability
measure. The process X is supposed to have the initial value x at time ¢ The function f
specifies the value of the derivative at the exercise time T'. Depending on the style of the
derivative, T can be a fixed time or a stopping time. With the exception of some special
cases, analytic expressions for (1.1) cannot be given, so we have to search for numerical
solutions.

Our method for the computation of (1.1) will be based on Monte Carlo simulation
applied to numerical discretizations of stochastic differential equations. The Monte Carlo
method is ideal for parallel processing. Moreover one can tackle a great diversity of pricing
problems with one and the same implementation of this method. However, in view of the
rather high variance of the random variable f(X7) in (1.1) in practice, straightforward
Monte Carlo simulation has the disadvantage of slow convergence. To solve this problem,
we transform the process X into a process X by a Girsanov transformation such that

Ef(XEY) =Ef(X7)0r, (1.2)

where © is some correction process. Now the variance of the random variable f(X 7)®r on
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the right-hand side of (1.2) can be reduced considerably if we have a rough estimate for (1.1).
There are various ways to get this estimate.

We will solve the backward Kolmogorov equation for (1.1} in (¢, x) by standard numerical
methods using a rough space-time grid. For instance, we use finite-difference schemes like
the ADI method or the Crank—Nicolson method. We shall also deal with the application of
finite-clement methods like the Galerkin and the orthogonal collocation methods. These
last methods have the advantage of presenting the approximate solution of (1.1) in spline
form. As a result the approximation is available at every point (2, x) directly, i.e. an extra
interpolation procedure between the grid points as in the case of finite-difference methods is
not required. As an alternative one can implement multinomial tree models based on the
Markov property for X, or, if known, one can use analytical approximations of (1.1).

The method described above is implemented and tested on a variety of nonstandard
traded derivatives. Several interesting phenomena can be observed and will be discussed.
For instance, if one has an approximation of (1.2) with an error € in some suitable (Sobolev)
sense, then under some weak restrictions the variance of f(X7)®7 on the r.h.s. of (1.2) can
be reduced to a factor O(e?) times the original variance of f(X7) in (1.1).

In the Monte Carlo simulation of the tracks of the underlying stochastic processes, we
used weak schemes of different order. As expected, it turns out that the performance of the
variance reduction method is better when higher-order schemes are used.

2. EVALUATION OF DERIVATIVES: SOME GENERAL RESULTS

Here, we consider European-style derivative securities. A European-style derivative secur-
ity, also called a European option, is a contingent claim with exercise date T and payoff
function f(Xr), where X, := (X, ..., X9 represents a set of underlying financial quan-
tities such as stock prices interest rates, etc. A derivative which may be exercised at a time
prior to T is called American-style security; or an American option,

As an example we consider the X% to represent the prices of a set of stocks. We assume
that the stock prices follow the set of stochastic differential equations given by

d
dX? = pxPdt+ Y ouxPaw?,  i=1,....d, X,=x, n0<t<T. Q1)

r=1

In this model the driving process W is the d-dimensional standard Brownian motion, the
quantities o;, determine the correlation structure of the stock prices and the u; are the
expected return rates of the stocks. For simplicity we assume that the stocks pay no
dividend. Then, along the lines of standard Black-Scholes theory, one can show that the
price of a European option specified by the payoff function f at a time point t < T is a
function P of ¢ and x, where x is the state of the art of the stock prices at time ¢ and P(z, x)
satisfies a parabolic differential equation. Using the so-called ‘risk-neutral valuation argu-
ment’, one can then show that the solution of this differential equation is represented by

P(t, x) = e TOEL(XT). (2.2)

In this expression, r is the risk-free interest rate and X is the price process of the same
stocks in a risk-neutral world, by which we mean that X satisfies the stochastic differential
equation (2.1) with every u; replaced by r. Details about the Black—Scholes theory and risk-
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neutral valuation can be found in Black and Scholes (1973) and Cox and Ross (1976),
respectively. The valuation of options for which the price can be represented as in (22) is

the central theme of our research. We will give some examples.

Example 2.1. Standard put and call options
In the case of a single stock S and a payoff function given by f(ST) = max(K — Sr,0) or
f(Sr) = min(Sr — K, 0), we speak of a (standard) European put or call option, respectively.
K is called the strike price and is specified in the option contract. European call and put
options can be evaluated analytically by the well-known Black-Scholes formulas.

Example 2.2. Asian put and call options
Suppose the payoff of an option is specified by

1 (T 1 (T
max(K——I S,dt, 0] or max(——j S, dt—K,0].
T Jo T Jo

Then we speak of an Asian put or call option, respectively, with strike price K. Let us
consider the two-dimensional process (S, A;) which is governed by the equations

d§3 = r.§, dt +U|§[ de,
N 1 4 -
dAl = —fS( dt, Ao = 0,

again by Black-Scholes and risk-neutral

where o is the volatility of the stock price S. Then,
be represented

valuation arguments, it can be shown that the price of the Asian option can

as in (2.2), namely
P(t5.a) =V ESST AT)
— " T9E max(K - 47,0,

where f(x,y) = max(K — y, 0) for an Asian put, or f(x, y) := max(y — K, 0) for an Asian

call, option. Although for this Asian option analytical representations for the option prices
have been recently found, their computation is highly intractable, so we should use numer-
Monte Carlo methods, or known approximation formulas, or

jcal approximation methods,
we use the method as developed and described in this paper.

Example 2.3. Generalized Asian options
As a test problem for our new valuation method we consider a generalization of the

standard Asian option. We consider two stocks SO and S@ and specify the option contract

by the payoff value

T
max (K - —;—, J min(Sﬁl), SSZ)) dt, 0).
0

quations given in(2l) ford =2

t the two stock prices follow the system of e
A(1 ~(2)
$§ and a new process G,

We suppose thal
As before, by introducing the risk-neutral stock prices S ) and

which satisfies

4G, = lem(S‘,", §Pyar,  Go=0,
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we can show that the option price of this generalized Asian option is represented by

P51, 5,8) = e T0g (50 g2 gy
=e¢ 70 max(K - G%£, 0),

with f(x, y, z) := max(X — z, 0). Note that for 52 1 oo this generalized Asian put collapses
to a standard Asian put and we

have P(z, 5,, o0, 8) = A(t,s1,g), with o = ,/a,’, + 0,72. For
51 1 0o, we have a similar result.

The derivative valuation method
method combined with a variance

the accuracy of the Monte Carlo method in more detail.

3. THE MONTE CARLO METHOD IN PRACTICE

Suppose for some real

-valued random variable X we want to estimate

EX @3.1)
by Monte Carlo simulation. So, if X, X, ... i5an independent sequence of realizations of
X, we consider the unbiased estimator

R .
Sy = Nin (3.2
i=1

for (3.1). However, in many practical situations, especially in those which occur here, the
distribution of X is not exactly known, and so it is not possible to sample directly from a

distribution equal to the distribution of X, Instead we make the following assumption,

Assumption 3.1, For each A > ¢ independent realizations of a random variable X, can be
generated, where X, is an approximation in the distribution of X of order O(A?) (p > 0) as
AlO.

Now we consider the generally biased estimator

N
5N=ﬁzf"iA 3.3)
i=]

and we observe that

EX-&,?,=EX—EXA+EXA—§,AV

=1 €gyst + sty

So we have a deterministic error €yt = O(AP), independent of ¥ » and a statistical error

€stat, for which we have E €tat = 0 and Vareg,, = N-! Var X,. We conclude that if one has
to attain a certain accuracy in the evaluation of (3.1) by means of Monte Carlo simulation
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problem arises: is it possible to choose A and N in such a way that the effort needed to

reach a certain accuracy in some sense is minimal?
We will solve this optimization problem in a statistical model that is specified by the

following definitions and assumptions.

sSes ] Definition 3.2. Let:
For ,
] og:=+VarX;
rlo ' o, 1=,/ VarX,;
the C(A): the computational time needed for one sample of Xa;
1dy Cum(A, N) := NC(A): the total computational time needed for the Monte Carlo
method.

The total error of the Monte Carlo method will be defined as:
£MM 1= €syst + deviation of €gar.

Assumption 3.3. For some g > 0 and A | 0, we assume that

C(A) = B/ANN +o()], oa=ofl+oD)],  eys=ad[l+o(1)]

1) | From these assumptions it follows that, for A | 0,
N
of ; Cuma, N) =211 + o1, (.4
o
emm(A,N) = (ozA‘p +———)[1 + o(1)]. @3.5)
2 VN
Now we can deal with the following two optimization problems:
1€
C*e) := in Cum(A, N), 3.6
a © ((A.N)Immla(A,N)Sf) M ) (3.6)
*(o) = mi A, N). 3.7
£ = a0 B0 g MM N 3.7
© Under the previous assumptions, the following lemma can be verified by elementary
s asymptotic calculus.
Lemma 3.4. There exist a right-hand neighborhood Up of 0 and a neighborhood Uy of
+00 such that
) @ e€clUp = C'(e)€Up and c€ Usx = e*(c) € Up.

(i) If € € Up in problem (3.6) or ¢ € Ux in problem (3.7), there exist unique minimizing
pairs (A, N}) € Up x Us and (A3, N3) € Up X Ucos respectively.

(iii) The functions C* and &* are each other’s inverse on the sets Up and Uy,

(iv) €0« A" |0 A N* 500 <= C*(€) — oo. Moreover,

A*() = €772, gl + 0(D)], (3.8)
2

; N*(&) = Z5 (1 + a/2p)[1 + o1, (3.9)

| 502
C*(e) = mup‘q,a[l +o(1)}, (3.10)

for e | 0, where
(a2 \" et q/2p)rere

Ao (a(l " q/zp)> and  ppqa = ot 4D
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Remark 3.5. For practical applications Lemma 3.4 is best interpretated in the following wh
way. Let Do and No be some positive constants. Then, by choosing the
Ae) = D €/P[1 +0(1)] and N(e) = _I!o_[l +o(1)}
0 2 )
- Ta
the computation time becomes
Cle) = 0(27:%) ase 0, It
is
and this is the most efficient order which can be achieved. |
In Duffie and Glynn (1995) several error coefficients are studied in detail for Monte Carlo a2l
simulation of security prices. Tox
50
Wi
4. VARIANCE REDUCT {ON BY GIRSANOV'S TRANSFORMATION w
su
In this section we introduce the variance reduction method, which we use for the Monte
Carlo valuation of derivatives. The method is based on a Girsanov transformation of the th
original stochastic process X. To explain this transformation we need to use Itd’s lemma e
from stochastic calculus. We consider the Itd stochastic differential equation for the d- fu
dimensional process X, X
dX, = a(t, X;)dt +o(t, X)dw,, X, =X0, WSIS T, “.1)
where W, isa standard m-dimensional Wiener process, Xo is an R?-valued random variable al
independent of W, — W, (t 2 1o). The vector-valued function a : [0, T} x RY = R? and the
matrix-valued function o : [0, T} x R — R4*™ are supposed to satisfy sufficient conditions
for the existence and uniqueness for the solution of (4.1) (see Arnold 1974). The solution of
the system (4.1) will be denoted by X;*™. T
Lemma 4.1 (It&’s formula). Suppose v : [0, T} x R? — R has continuous partial derivatives
up to second order. If X is the solution of the system (4.1), then the real-valued process
Y, := (1, X) satisfies the system
V
d m
Y, = Lo(t, X)dt+ Y Y vats Xoou(t, X) awr, 4.2) (

i=1 r=1

xo), where the operator L is defined by

m
E TirOjrVx;x; - ]
: 1

r=1

with initial condition Yy, = v(fo,

d d
Lv:=v+ Zaivx, +%Z
i=1 i=1 j

d
i=1 j=1

From Itd’s lemma we can derive immediately a representation for the solution of the

backward Kolmogorov problem.

Corollary 4.2 (Backward Kolmogorov problem). Suppose u [0, Ty x R? — R belongs to

C2([0, T x R?) and satisfies

Lu=0 inf0, T]x RY, wWT,x)=f(x), x¢€ RY, 4.3)

Volume 1/Number 1



Fast valuation of financial derivatives

where the function f : RY — R belongs to C;(R?). Then, from Itd’s lemma, it follows that
the process Y, := u(t, X,) is a martingale and consequently

Eulty, xo0) =E Y, =E Y7 = Eu(T, X2%) = Ef(X2™).
Taking deterministic initial conditions, it follows that
u(t,x) =Ef(X7"), t€[0,T], xeR’ (4.9)

It can be shown that, with some smoothness and growth conditions on f also, the converse
is true (see Kloeden and Platen 1992).

As we have seen in Section 2, many practical derivative problems can be reformulated as
a backward Kolmogorov problem (4.3). Although direct Monte Carlo simulation of @1
looks attractive, in many cases the variance of the random variable J(X¥¥) turns out to be
so high that a very large number of simulations are needed for a satisfactory estimation, We
will reduce this variance by a method known as the Girsanov transformation method, by
which f(X7¥) is transformed into a new random variable with the same expectation but a
substantially smaller variance.

Let X*% be the solution of the system (4.1) and let u : [0, TT x R? - R be a solution of
the backward Kolmogorov problem (4.3) belonging to (4.1). In system (4.1) we introduce an
extra drift term by replacing the driving Wiener processes W, by —v + W,, where the vector
function v : [0, 7] x R — R™ is supposed to satisfy similar conditions to @ and o. Next, let
X" be the solution of the system

dX, =[a(t, X,) — o(t, X )v(t, X)]dt + o(t, X,) dW,, Xo=x0, t(<t<T, (4.5)

and let the scalar process ©, be the solution of the one-dimensional system

A&, =0, ) vt X)dw;, ©,=6,. 4.6)

r=1

Then, by Lemma 4.1, it follows that

m d
dlu(t, X)8,] = ©, Z(u(t, Xui(e, X)) + Y u(t, X oy, i,)) ), @7

r=1 i=1

with u(to, X,,)®,, = u(to, x0)fo.
Hence, if xp =: x and 6, =: 9 # 0 are deterministic, it follows by the martingale property
of (4.7) that

u(te, x) = Ef (X7)
=Eu(T, X77)072°/6. 4.8)
It is important to note that (4.8) holds regardless the choice of v. Now, what we hope for is

that the variance of the right-hand side of (4.8) is much smaller than the variance of
S(XE*). It can immediately be seen that this variance is even reduced to zero if v satisfies

d
uy, = — Zux,.o'i,, r=1,...,m, 4.9)
i=1
in which case
u(t, X)0, = u(to, X)6 a.s. forevery 0< 1< T. (4.10)
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Unfortunately this choice of v, if possible, requires the complete knowledge of the solution
of the original backward Kolmogorov problem (4.3). However, we can imagine that we have
an approximate solution of (4.3) obtained from other sources, in which case we can use the
following theorem.

Theorem 4.3 (Variance reduction)

@ We assume that there is a constant ¢ > O such that f > c.
(i) Let & be an approximation of  in the following sense: if the real function 7 and the
vector function p are defined by

#=u+nu and Vii=Vu+pl|Vul,

where || - || denotes the Euclidean norm and V denotes the spatial gradient operator,
then we assume that, for 0 <o <} and pp >0, we have || <o and |lp]l < po
uniformly on [0, T] x RY. '

(iii) For the controls

~

1 o 1
ti=—x0'Vit and vi=—-0"Vu,
o u

let X' f, 6';- and X T ©7 be the solution of systems (4.5) and (4.6), respectively.

Then, from (i), (i), and (iii), it follows that
Varu(T, 2200 /6 < (o + po’KIL +o(D], 1m0 40,
where
K :=46"2E J‘T(é',")zua(z, XNV, X)) dt < oo.
0
The constant K can also be expressed as
K = 4u*(ty, x)E J,T""(" X)I2 I1Viogu(t, X)) dt.
o

The proof of this theorem follows from 1tb calculus, (4.1), and the fact that X P> X' and
©° — @ in distribution as 5y, 0y { 0. The last assertion follows from (4.10).

Remark: Assumption (i) is not really a restriction, since, if we split f into its positive and
negative parts by f = f* — f~, then, for every ¢ > 0, we may write

f=("+d-( +o0).

Next we apply the variance reduction method for problem (4.3) separately for f* + ¢ and
[~ + ¢ and add the results.
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5. ON THE EFFICIENCY OF THE MONTE CARLO METHOD
COMBINED WITH VARIANCE REDUCTION

We will study the involved minimal computational effort for the application of the variance
reduction method of the previous section to the Monte Carlo problem

Ef(X}). (5.1)
We assume that the control function ¥ is computed in such a way that

Varu(T, X7)05" 16 = g Var s te®) 5.2)
where ¢ denotes the factor by which the original deviation is reduced and satisfies
0 < ¢ < 1. Itis plausible to assume that this variance reduction is realized at the cost of

g(l —dll+ol), oyo,

computation units, where R,/ > 0 are positive constants, In this assumption we have taken
into account that the required computational effort for ¥ vanishes as ¢ 4 1. Indeed, for a
factor o = 1, we only have to take = (.

Now suppose we want to end up with an estimation of (5.1) with accuracy ¢ in the sense
of Definition 3.2, Then, once the function ¥ is computed to give a variance reduction factor
@?, it follows from Lemma 3.4 that the Monte Carlo method requires an amount

2.2
B2 prall +o(D)] for e 4 0

of computational units. Here 03 := Varf(X2*). Note that we have taken ¢ = 1 in Lemma
3.4. This can be argued as follows. The A in Lemma 3.4 is now represented by the time step
in the stochastic discretization scheme which we are using for the simulation of

W(T, X3 )2 ™ g

and the computation time needed for one track is always proportional to the number of
time steps, regardless of the weak order p of the scheme.

Now we conclude that, dependent on the choice of ©, the combined method requires a
computation time

2
o6, =11~ 4o+ 2% 1oty gero, s

By similar asymptotic techniques as used in the proof of Lemma 3.4, it can be shown that,
for fixed ¢, the function Ceotai(e, -) has a minimum for

217
o* = K*e¢ 1+ o(1)] 5.4

and we denote the minimum by

* x —1 3
Clowi(€) = L' [1 + o(1)], €y 0. (5.5)
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The constants K* and L* depend on several parameters and are given by

Rl e}
KR 1o = (W) , (5.6)
. 1= REUBR iy, Y2 + (1)2)5 5.7
RiBoon ‘= o2/ 15 + (1/2)7). 61

The corresponding time step size A*(e) and the number of tracks N*(¢) that has to be
generated can be derived by using the formulas in Lemma 3.4, where one has to take
o = p*oy.
Since 0 < //(2 + ) < 1 always, we see that the standard Monte Carlo order O(e~*1/7))
for the computation time is improved to O(e"%f"). So the combined method is always
superior to standard Monte Carlo simulation without variance reduction. However, the
gain is lost if the variance reductor is too expensive, i.e. as / — oo. In that case we observe
that, for fixed ¢, o* 1 1 consistently and C¢,,; tends to the standard Monte Carlo computa-
tion time given in Lemma 3.4. Next, let us consider a very profitable variance reductor, i.e.
we study the case / | 0 while ¢ is fixed. Indeed, it then follows that g* | 0. But, in the model
around Lemma 34, we have o | 0 and we have to be careful with interpretation. For
instance, from Lemma 3.4, it would now follow that N | 0, whereas N is the number of
tracks which is an integer at least equal to 1. The reason for this inconsistency is that the
solution of the optimization problem holds only for larger N. Anyway, we will show that
there is a lower bound /, for /, below which it is no longer advantageous to apply the
variance reduction method.zglr"om Theorem 4.3, it follows that the achievement of a variance
reduction factor ¢* = O(¢7+ ) to end up finally with an accuracy e for the resulting
estimation is guaranteed if we approximate both the solution u of (4.3) and its gradient Vu
at least to that same order. Here we assume for a moment that u and }|Vu|} are bounded and
bounded away from 0, so the orders of relative error and the absolute error can be
considered as the same. We therefore see that applying the variance reduction method
makes no sense if 2+ 1/p)/(2+ 1) > 1 or I < Iy := 1/p. In this case it is better to solve the
problem by using the numerical approximation method alone.
We are going to extend the previous efficiency considerations and formulate some useful
results which can be used to decide whether the application of a certain numerical proce-

dure as variance reductor is advantageous or not. In order to simplify our formulations we
first introduce some notions.

Definition 5.1. Two functions f(x) and g(x) are said to be asymptotically proportional for
x {0, if there is a constant 4 # 0 such that f(x) = Ag(x)[1 +0(1)] as x { 0. If [ is
asymptotically proportional to g, we will write f o g.

It will be convenient to fix a class of numerical procedures for the backward Kolmogorov
equation by the next definition.

Definition 5.2. We say that a numerical procedure for the solution u of the backward
Kolmogorov equation is of class BK(y, v), where y,v > 0, if

(i) for every sufficiently small ¢ > 0, the procedure is able to compute an approximate
solution 4!¢) and its gradient V() simultaneously such that pointwise

W@ —uoxeu and Vi@ - Vul| o €| Vull ase O,

Volume 1/Number 1




Fast valuation of financial derivatives 57

where the pointwise proportional constants are supposed to be bounded and bounded
away from zero on [0, 7] x R?;

(i) for the computation in (i), the number of computational units required by the proce-
dure is proportional to 1/¢”,

If a certain computational method requires a computing time C(e) to achieve an accur-
acy e in the result, we will call C the complexity of the method. Now we are ready to state
the next theorem which is evident from Theorem 4.3 and the expressions (5.4) and (5.5).

Theorem 5.3 (Complexity). Suppose a numerical procedure of class BK (y, v) is given. Then
this procedure can be used as a variance reductor for which / = v/ min(1, y). If, in addition,

v >£+2max(0, 1-9),

then the computation of (5.1) up to a given accuracy € is more efficient by using Monte
Carlo simulation with the procedure as variance reductor than by solving the Kolmogorov
equation (4.3) up to accuracy ¢ using the numerical procedure alone. Furthermore, the
complexity of the combined method, which we will denote by Cvrmc where VRMC stands
for ‘variance reduced Monte Carlo’, can be expressed as
Cvrmc(e) o € wamman*H1/P),

This complexity has to be compared with both the complexity of the pure Monte Carlo
method, denoted by Cyc, and the complexity of the pure numerical method, denoted by
Chum, for which we have

Cmc(e) x €D and  Cuum(e) o €.

Then, it is immediately apparent that the gain of the combined method over the other two
is maximal for those numerical BK-procedures for which

V=1 :=2+}),

and in that case a complexity of

Cs);)wc(f) & E_m’%%
results.

If a method has complexity proportional to €~* for some x > 0, we will call « the
exponent of complexity of the method. So, the higher «, the greater the computation time
required to achieve a certain accuracy . -

Theorem 5.3 and the interplay of the complexity exponent « with the parameters v and v
is best displayed visually. ., -

If the Monte Carlo tracks are generated by the weak order-one Euler scheme, p = 1, and
if also the parameter y is relatively unfavourable, e.g. y = 0.5, the complexity parameter is
shown in Figure 1. For y & 1, the situation looks better. This is shown in Figure 2. If we use
a higher weak order scheme, e.g. p = 2, for the Monte Carlo tracks, a further substantial
improvement is obtained, as is seen from Figures 3 and 4.
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Complexity parameter x of the three methods
6 T 1 T T T
5+
p=17=05 _.-*" Num -----
4l MC —~—
VRMC ==
3 4ottt t————
,--" |max.improvement .
2+ "
1}F
Vinin Voit
0 Al ] Y ] 1
0 1 2 3 4 5 6
v of numerical method
FIGURE 1
Complexity parameter x of the three methods
6 T T T T T
5+
p=Ly=1 . Num -----
4l MC ——
VRMC +—
3 ottt bttt
_.-7 | max. improvement
2+
1 B c
7" Vmin Vopt
0 ' Y ] Y ] 1
0 1 2 3 4 5 6

v of numerical method

FIGURE 2
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Complexity parameter k of the three methods
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p=2,y=05 7 Num---

2 L ) v max. improvement, . . . .
1}
Vimin Vopt
0 "/ | + 1 oi 1 1 1
0 1 2 3 4 ) 6
v of numerical method
FIGURE 3

Complexity parameter K of the three methods
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5.1 Conclusions and Remarks

If we need to evaluate u(t, x) = Ef(X7*) in one or a few time-space points (£, x) and a
numerical procedure for the accompanying Kolmogorov equation has a complexity com-
parable to the Monte Carlo method, it is very profitable to choose for the Monte Carlo
method and use the numerical procedure as variance reductor. If the track generation
scheme in the Monte Carlo method has weak order p and the numerical method is of class
BK(v, y) with v~ 2 + 1/p, both methods have approximately the same complexity expo-
nent and, by combining these methods, this exponent is reduced by a factor

= 2+1/p
2+ 1/p+2min(l,y)

Obviously, t is always between 1 and 1. In the most ideal case, that is, when p is large,
p 1 ooand y>1, wehave v | 1. In the worst case, that is, when we have some p > 1 but
y | 0, we have 7 1 1, and then there is not much gained. However, typical values for 7 are:
=075 (p=1,y=0.5); t=0667 (p=1,y=0.75); t=06 (p=1,y21);, t=0.71
(p=2,y=05);t=0625(p=1,y=0.75); r=0.55 (p =2,y > 1); and so on.

6. IMPLEMENTATION OF SOME EXAMPLES

The valuation method developed here is implemented as a Delphi application and tested on
several derivatives. For the simulation of the Monte Carlo tracks, we have used schemes of
first and second order in the weak sense. The first-order scheme is the standard Euler
method; we discretize the time interval [0, T] by equidistant time points ¢, and step length
A. Depending on the noise dimension m, we sample an m-dimensional standard Gaussian
random variable £ and then take A W, = /A £ for the driving Brownian motion. For each
component of & we may also take a two- or three-point random variable with the correct
moments (for details, see Kioeden and Platen 1992). Then, for equation (4.1), the Euler
scheme written in matrix notation is

Xoy1 = Xn + a(tn, Xo)A + 0(ty, Xn)AW,.

For the second-order scheme, we choose a predictor—corrector method from Kloeden and
Platen (1992). This scheme looks fairly complicated and much more computational work is
needed to simulate one Monte Carlo track. However, besides its second-order accuracy, the
predictor—corrector method has better stability properties than the Euler method. For the
numerical approximation procedure, we have used a finite-difference method and a finite-
element method. For the finite-difference method, we have implemented the Du Fort-
Frankel scheme (see e.g. Strikwerda 1989). We choose this explicit scheme because it is
computationally efficient and it is unconditionally stable. The accuracy, however, is moder-
ate, but we don’t care very much about that since the numerical procedure only has to
calculate a rough estimate for the final solution. Intermediate values between the grid points
are calculated by second-order interpolation methods. For the finite-element method, we
have used the orthogonal collocation method (for details, see e.g. Lapidus and Pinder 1982).
Collocation methods have the advantage that they are relatively easy to implement and that
intermediate values can be calculated directly from the spline representation of the approx-
imate solution. A disadvantage of this method, however, is that in general the arising
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collocation matrix, which has to be inverted, has no convenient properties like diagonal
dominance, and inverting this matrix by direct methods takes up a lot of computation time.

Now we will give some results from the application of our developed valuation method to
the Asian option and generalized Asian option described in Section 2. The method is
implemented on a DX-4 PC desktop computer.

Example 6.1. For the Asian put option in Section 2, we take r = 9% annual, o = 30%
annual, Sy = $100, K = $100, and T = 1 year. With these data the undiscounted Asian
put value is known to be $5.00. After running 10000 standard Monte Carlo tracks with
10 time steps and using the weak second-order predictor-corrector method, we find in
about 4 minutes’ computation time an approximation of the option value of 4.96 & 0.09.
Then we run the Du Fort-Frankel variance reductor on a 100 x 20 x 20 grid and find in
about 20 seconds a rough approximation of 4.81. Next, running variance-reduced Monte
Carlo with the same data, we find by simulating 200 tracks in 22 seconds (!) the value of
4,99 £ 0.07.

Example 6.2. The generalized Asian put option in Section 2 is a problem that takes much
more computation time because there are two sources of randomness in the underlying
processes. Besides, the solution space for the parabolic differential equation is one dimen-
sion higher. As an example, we take the following data: » = 9% annual, 0y, = 02, = 28%,
o012 = 031 = —10% annual, SV =$100, S& =$100, XK = $100, and T =1 year. After
10000 standard Monte Carlo tracks using the predictor-corrector method with 10 time
steps, we get after 8 minutes’ computation time the value 10.64 & 0.09. Next, running the
Du Fort-Frankel variance reductorona 100 x 11 x 11 x 11 grid, we find in about 1 minute
the rough approximation 11.6. Then, by running variance reduced Monte Carlo with 400
tracks we find in 2 minutes the value 10.77 £ 0.1. The performance of both methods for this
example is shown in Figures 5 and 6. In Figure 5, f(X;) is plotted against ¢, and, in Figure 6,
f(X)©, is plotted against t. The values in Figure 6 at the terminal time T = 1 are clearly
much more concentrated around the expected value than in the case of Figure 5.
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