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Abstract

In this paper we propose a jump-diffusion Libor model with jumps in a
high-dimensional space (Rm) and test a stable non-parametric calibration
algorithm which takes into account a given local covariance structure.
The algorithm returns smooth and simply structured Lévy densities, and
penalizes the deviation from the Libor market model. In practice, the
procedure is FFT based, thus fast, easy to implement, and yields good
results, particularly in view of the severe ill-posedness of the underlying
inverse problem.

1 Introduction

The calibration of financial models has become an important topic in financial
engineering because of the need to price increasingly complex options consistent
with prices of standard instruments liquidly traded in the market. The choice
of an underlying model is crucial with respect to its statistical relevance on the
one hand, and the possibility of calibrating it with ease on the other. In order to
cover stylized facts in financial data such as implied volatility smiles and heavy
tails, more complex models, i.e. models beyond Black-Scholes, are called for.

During the last decade Lévy-based models have drawn much attention, as
these models are capable to describe complex but realistic behavior of financial
time series. In particular, these models are well-suited to cover jumps, heavy
tails, and to match implied volatility surfaces observed in stock and interest
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rate markets. For modelling stock prices, pure jump Lévy processes were already
proposed in Eberlein and Keller (1995), and Eberlein, Keller and Prause (1998).
In Cont and Tankov (2003) regularized approaches for calibrating jump-diffusion
stock price models were considered.

In the interest rate world the Libor market model developed by Brace,
Gatarek and Musiela (1997), Jamshidian (1997), and Miltersen, Sandmann and
Sondermann (1997), has become one of the most popular and advanced tools
for modelling interest rates and interest rate derivatives. This in spite of a main
drawback; the Libor market model cannot explain implied volatility surfaces
typically observed in the cap markets. In order to handle this issue, different
extensions involving processes with jumps have been proposed. Glasserman and
Kou (2003) developed a jump-diffusion Libor model and proposed some explicit
specifications of the driving jump processes. In Remark 2 we will discuss their
approach in comparison with the present one. Eberlein and Özkan (2005) study
the Libor model driven by a Lévy process. In this particular setting they give
exponential integral representations for the Libor rates, and derive respective
pricing formulas for caps. The most general framework for Libor models driven
by jump measures is provided in Jamshidian (2001). Jamshidian’s (2001) results
will serve as baseplate for this article.

The central theme in this paper is a well structured jump-diffusion Libor
model which allows for robust and efficient calibration. Special focus is put on
modeling jumps with a tractable dependence structure which enables a feasible
and robust calibration procedure later on. An effective treatment of this issue is
missing in Glasserman and Kou (2003) and Eberlein and Özkan (2005) in fact.
The starting point will be a given Libor market model with known deterministic
volatility structure. For instance, this market model might be obtained from
a calibration procedure involving at the money (ATM) caps, ATM swaptions,
and/or a historically identified forward rate correlation structure. Meanwhile,
calibration procedures for Libor market models are well studied in the litera-
ture (e.g. Brigo and Mercurio (2001) or Schoenmakers (2005)). Yet, our main
goal is the development of a specific jump-diffusion Libor model which can be
calibrated to the cap-strike matrix in a robust way and which is, in a sense,
as near as possible to the given market model. In particular, this model will
be furnished in such a way that the (local) covariance structure of the jump-
diffusion model coincides with the (local) covariance structure of the market
model. We have three main reasons for doing so: (1) The price of a cap in a
Libor market model does not depend on the (local) correlation structure of the
forward Libors. However, this correlation structure may contain important in-
formation such as, for instance, prices of ATM swaptions. We therefore do not
want to destroy this correlation structure as given by the input market model
when calibrating the extended model to the cap(let)-strike volatility matrix. (2)
The lack of smile behavior of the input market model, which is regarded as a
rough intermediate approximation of a smile explaining jump-diffusion model,
is considered to be a consequence of Gaussianity of the driving random forces
(Wiener processes). So, loosely speaking, we want to perturb these forces to
non-Gaussian ones by using jumps, while maintaining the (local) covariance
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structure of the given market model, hence the correlation structure implicitly.
(3) Last but not least, by preserving the covariance structure we obtain a quite
robust calibration procedure.

Many papers on calibration methods for Lévy based models focus on cer-
tain parametrizations of the underlying Lévy process. Since the characteristic
triplet of a Lévy process is a priori an infinite-dimensional object, the parametric
approach is always exposed to the problem of miss-specification. This is par-
ticularly the case when parametrizations are chosen just in view of generating
different shapes of jump distributions, without further economical motivation.
In this paper we therefore employ the nonparametric approach of Belomestny
and Reiss (2004) which utilizes explicit inversion of a Fourier based pricing
formula and a regularization in the spectral domain.

The outline of the paper is as follows. We recall in Section 2 the general
arbitrage-free Libor framework developed in Jamshidian (2001). The covariance
preserving jump-diffusion extension of the Libor market model is constructed in
Section 3. In Section 4 we recap Fourier-based representations for Caplet prices
in the spirit of Carr and Madan (1999), Glasserman and Merener (2003). The
algorithm for calibrating to a full cap-strike matrix is developed in Section 5,
and a real life calibration is carried out in Section 6. Technical details and
derivations are given in the Appendix.

2 General framework for Libor models with jumps

Consider a fixed sequence of tenor dates 0 =: T0 < T1 < T2 < . . . Tn, called
a tenor structure, together with a sequence of so called day-count fractions
δi := Ti+1 − Ti, i = 1, . . . , n − 1. With respect to this tenor structure we
consider zero coupon bond processes Bi, i = 1, . . . , n, where each Bi lives on
the interval [0, Ti] and ends up with its face value Bi(Ti) = 1. With respect to
this bond system we deduce a system of forward rates, called Libor rates, which
are defined by

Li(t) :=
1

δi

(
Bi(t)

Bi+1(t)
− 1

)
, 0 ≤ Ti, 1 ≤ i ≤ n− 1.

Note that Li is the annualized effective forward rate to be contracted for at date
t, for a loan over a forward period [Ti, Ti+1]. Based on this rate one has to pay
at Ti+1 an interest amount of $δiLi(Ti) on a $1 notional.
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2.1 Arbitrage free dynamics

On a filtered measurable space (Ω,F ,Ft) we consider a Libor model under the
terminal measure Pn within the following framework (Jamshidian (2001)),

dLi

Li−
= −

n−1∑

j=i+1

δjLj−

1 + δjLj−
η⊤i ηjdt+ η⊤i dW

(n)

−
∫

E

ν(n)(dt, du)ψi(t, u)




n−1∏

j=i+1

(
1 +

δjLj−ψj(t, u)

1 + δjLj−

)
− 1





+

∫

E

ψi(t, u)(µ− ν(n))(dt, du), i = 1, ..., n− 1, (1)

with ω → µ(dt, du, ω) being a random point measures on R+×E, where E is an
abstract Lusin space, and ν(n)(dt, du, ω) is the (Pn,F)-compensator on R+ ×E
of µ. In (1), W (n) is a d-dimensional standard Brownian motion under Pn, and
the filtration (Ft)t≥0 is assumed to contain the natural filtrations generated by
W (n) and µ, respectively. Further, (ω, t) → ψi(t, ·, ω) are predictable processes
of functions on E, and ηi are d-dimensional predictable column vector processes.
The random measure µ is assumed to be of the form

µ =
∑

n≥1

1Tn(ω)=tδ(t,βt(ω))(dt, du), (2)

where β is in general an optional process, and Tn, n = 1, 2, .. is a sequence of
stopping times with disjoint graphs, i.e. Tn(ω) 6= Tm(ω) for n 6= m.
The framework (1) may be cast into a somewhat different form. Let us consider

a partition E :=
m⋃

k=1

Ek, where E1, ..., Em are Lusin spaces with Ek ∩ El = ∅

for k 6= l, and define µk := µ|Ek
, ψik := ψi|Ek

, ν
(n)
k := ν(n)|Ek

, for k = 1, ...,m.
Then (1) becomes

dLi

Li−
= −

n−1∑

j=i+1

δjLj−

1 + δjLj−
η⊤i ηjdt+ η⊤i dW

(n)

−
m∑

k=1

∫

Ek

ν
(n)
k (dt, duk)ψik(t, uk)




n−1∏

j=i+1

(
1 +

δjLj−ψjk(t, uk)

1 + δjLj−

)
− 1




+

m∑

k=1

∫

Ek

ψik(t, uk)(µk − ν
(n)
k )(dt, duk), i = 1, ..., n− 1. (3)

In particular, it easily follows that ν(n)
k is the Pn-compensator of µk with respect

to F . Note that in general EF
(k)
t ν

(n)
k (ω, dt, du) is the compensator of µk with

respect to the restricted filtration F (k)
t := Ft ∩ σ{µ([0, s] × C) : s ≤ t, C ∈

B(Ek)}, t ≥ 0 (thus not ν(n)
k ). As shown in Belomestny and Schoenmakers
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(2006), the representation (3) is in fact equivalent to (1), but somewhat more
natural as it suggest the use of a system of m point processes with phase space
R+ × R as in the papers of Glasserman and Kou (2001), and Glasserman and
Merener (2003).

Henceforth we consider in (1) only random point measures with finite ac-
tivity, i.e., µ is of the form (2) and for each t > 0, µ([0, t] × E) < ∞. In order
to guarantee that the Libor processes Li are nonnegative we further require
that ψi > −1 in (1), and then set ϕi := ln(ψi + 1). Let (sl, ul), l = 1, ..., Nt,
denote the jumps of µ up to time t for an ω ∈ Ω. Using the fact that at a jump
time sl, ∆Li(sl, ω) = Li(sl−, ω)ψi(sl, ul, ω) = Li(sl−, ω)(eϕi(sl,ul,ω) − 1), and
so Li(sl, ω) = Li(sl−, ω)eϕi(sl,ul,ω), we obtain by the Ito-substitution rule for
jump processes (with ω suppressed),

d lnLi =
1

Li−
dLi −

1

2
|ηi|2dt+ d

Nt∑

l=1

(ϕi(sl, ul) − ψi(sl, ul))

= −1

2
|ηi|2dt−

n−1∑

j=i+1

δjLj−

1 + δjLj−
η⊤i ηjdt+ η⊤i dW

(n)

−
∫

E

ν(n)(dt, du)(eϕi(s,u) − 1)

n−1∏

j=i+1

1 + δjLj−e
ϕj(s,u)

1 + δjLj−
+ d

Nt∑

l=1

ϕi(sl, ul).

(4)

The logarithmic analog of (3) directly follows from (4),

d lnLi = −1

2
|ηi|2dt−

n−1∑

j=i+1

δjLj−

1 + δjLj−
η⊤i ηjdt+ η⊤i dW

(n) (5)

−
m∑

k=1

∫

Ek

ν
(n)
k (dt, duk)(eϕik(s,uk) − 1)

n−1∏

j=i+1

1 + δjLj−e
ϕjk(s,uk)

1 + δjLj−

+ d

m∑

k=1

N
(k)
t∑

l=1

ϕik(s
(k)
l , u

(k)
l ),

with ϕik := ln(ψik + 1) and (s
(k)
l , u

(k)
l ), l = 1, ..., N

(k)
t , denoting the jumps of

µk up to time t. The logarithmic representation (4) (or equivalently (5)) will be
the basic framework for our purposes.

3 Jump diffusion extension of a Libor market

model

We first specialize to a jump-diffusion Libor model which is driven by a Poisson
random measure with marks in some multi-dimensional space.
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3.1 Poisson driven multi-dimensional jumps

On the space R+ ×E, where now E := Rm, we consider a jump measure µ with
deterministic (Pn,F)-compensator of the form

ν(n)(dt, du1, ..., dum) := λ(t)p1(du1) · · · pm(dum)dt =: λ(t)p(du)dt,

with pi(dui) being Borel probability measures on R, and λ a non-negative locally
integrable Borel function on [0,∞). As a consequence, the jump times of the
measure µ are Poisson distributed with locally finite intensity measure λ(t)dt,
and in particular, given a jump time τ, µ({τ}, ω) = δ(τ,uτ )(ω), where the jump
uτ ∈ Rm is sampled by drawing it’s components ui independently from the
measures pi(dui), i = 1, ...,m, respectively. Furthermore, by this construction,
the Pn standard Brownian motion W (n) is independent of µ.

3.2 Extending the Libor market model

Within the framework in Section 2 we now introduce a jump-diffusion Libor
model using the jump measure constructed in Section 3.1, that in a sense can
be seen as an extension or perturbation of a (given) Libor market model. Let
γi(t) ∈ Rd be the (given) deterministic volatility structure of the market model,
resulting for instance from some standard calibration procedure to ATM caps
and ATM swaptions or historical data. To exclude local redundancies we assume
that the matrix (γi,l(t))1≤i<n,1≤l≤d has full rank d for all t. In connection with
the Poisson measure introduced in Section 3.1 we consider deterministic vector
functions βi(t) ∈ R

m, i = 1, ..., n − 1, take a sequence of constants ri with
0 ≤ ri ≤ 1, and then set

ηi :=
√

1 − r2i γi, ϕi(t, u) := ri u
⊤βi(t) (6)

in (4) to yield,

d lnLi = −1

2
(1 − r2i )|γi|2dt−

n−1∑

j=i+1

δjLj−

1 + δjLj−

√
(1 − r2i )(1 − r2j )γ⊤i γjdt

+
√

1 − r2i γ
⊤
i dW

(n) + rid

Nt∑

l=1

u⊤l βi(sl) (7)

−λ(t)dt
∫

Rm

(
exp(ri u

⊤βi) − 1
)
p(du)

n−1∏

j=i+1

1 + δjLj− exp(rj u
⊤βj)

1 + δjLj−
.

Note that in (7) the market model is retrieved by taking ri ≡ 0, and so, for
small ri, (7) may be seen as a jump diffusion perturbation of the Libor market
model.
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3.3 The jump drift of ln Li under Pn

Let us consider the third term in (7), i.e. the “jump drift” of lnLi under the
terminal measure Pn. The computation of this term is of particular importance,
for example, in a Monte Carlo simulation of the model. For a fixed time t > 0
we consider the expression

(∗) :=

∫

Rm

p(du)
(
exp(riu

⊤βi(t) − 1
) n−1∏

j=i+1

[
1 + δjLj−(t) exp(rju

⊤βj(t))
]
. (8)

Using the abbreviation xj := δjLj−(t) exp(rju
⊤βj(t)), the product in (8) my be

expanded as

n−1∏

j=i+1

(1 + xj) = 1 +
∑

i<j<n

xj +
∑

i<j1<j2<n

xj1xj2

+
∑

i<j1<j2<j3<n

xj1xj2xj3 + ...+ xi+1 · · · xn−1.

Let us take a generic term of degree 1 ≤ d < n− i (with t suppressed),

xj1 · · · xjd
= δj1Lj1− · · · δjd

Ljd− exp(rj1u
⊤βj1) · · · exp(rjd

u⊤βjd
),

for i < j1 < j2 < · · · < jd < n, and observe that
∫

Rm

p(du)eriu
⊤βi exp(rj1u

⊤βj1) · · · exp(rjd
u⊤βjd

)

=

∫

Rm

p(du) exp
[
u⊤(riβi + rj1βj1 + · · · + rjd

βjd
)
]

=

m∏

l=1

∫

R

pl(dul) exp [ul(riβil + rj1βj1l + · · · + rjd
βjdl)]

=

m∏

l=1

φpl
(−iriβil − irj1βj1l · · · −irjd

βjdl),

with φpl
being the characteristic function of pl. Note that the existence of φpl

(z)
in some ball {z ∈ C : |z| < A} has to be assumed. By analogue computations
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and collecting terms we thus obtain

(∗) = −1 +

m∏

l=1

φpl
(−iriβil)+

n−1−i∑

d=1

∑

i<j1<j2<···<jd<n

δj1Lj1− · · · δjd
Ljd−×

×
[

m∏

l=1

φpl
(−iriβil − irj1βj1l · · · −irjd

βjdl) −
m∏

l=1

φpl
(−irj1βj1l · · · − irjd

βjdl)

]

=: ̺p,r,β
i +

n−1−i∑

d=1

∑

i<j1<j2<···<jd<n

δj1Lj1− · · · δjd
Ljd−̺

p,r,β
i;j1,...,jd

.

Once the model inputs ri, jump loadings t→ βi(t), 1 ≤ i < n, and jump compo-
nent measures pl with characteristic functions φpl

, 1 ≤ l ≤ m, are calibrated or
simply given, the real valued functions t→ ̺p,r,β

i (t), t→ ̺p,r,β
i;j1,...,jd

(t), 1 ≤ i < n,
i < j1 < j2 < · · · < jd < n, can be computed in closed form and, in princi-
ple, can even be stored outside the Monte Carlo simulator. Thus considering
these functions as given, the simulation of lnLi in the terminal measure may be
carried out straightforwardly via the formula

d lnLi = −1

2
(1 − r2i )|γi|2dt−

n−1∑

j=i+1

δjLj−

1 + δjLj−

√
(1 − r2i )(1 − r2j )γ⊤i γjdt

+
√

1 − r2i γ
⊤
i dW

(n) + rid

Nt∑

l=1

u⊤l βi(sl) (9)

−
n−1∏

j=i+1

(1 + δjLj−)−1 λ(t)dt
[
̺p,r,β

i (t)+

+
n−1−i∑

d=1

∑

i<j1<j2<···<jd<n

δj1Lj1− · · · δjd
Ljd−̺

p,r,β
i;j1,...,jd

(t)



 .

We underline that the structure of the dynamics (9), hence the feasibility of
standard Monte Carlo simulation of every forward Libor in the terminal mea-
sure, is a consequence of our model design in Sections 3.1 and 3.2. In particular
it is due to the special product structure of the generally high dimensional jump
measure p and the linear structure of the log-Libor factor loadings (6).

Remark 1 Based on (9) we may consider different Libor model approxima-
tions. For example we may freeze Lj− at zero (see Glasserman and Merener
(2003)), hence replace Lj− with Lj(0) in (9). As an alternative, if the ri are
small enough and the magnitudes of δjLj are small enough as well, one could
drop in (9) the terms of order (δjLj)

2 and higher. Of course, any such attempt
needs careful investigation which is considered beyond the scope of this article.
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For related approximations in the context of the standard Libor market model,
see for instance Kurbanmuradov, Sabelfeld and Schoenmakers (2002).

Remark 2 It is interesting to consider and compare our setup with the one
Glasserman and Kou (2003). A common goal of our approach and the one
in Glasserman & Kou (2003) is specializing from a general Libor framework
with jumps to a subclass of models which are tractable from an analytic point
of view and from a simulation point of view. There is an essential difference
in the way of specializing however. In particular, the way of modeling the
dependence structure for different forwards is different in Glasserman & Kou
(2003): Glasserman & Kou (2003) deal with a set of (possibly correlated) marked
point processes with a simple state space ([0,∞)). The jumps of a forward Libor
Lj are then due to the aggregated effect of a subset Ij of these point processes
to which Lj is sensitive via a simple sensitivity function u→ u− 1 for the mark
u ∈ [0,∞). What is missing in Glasserman & Kou (2003) is in fact a tractable
framework for the dependence structure of the different one-dimensional point
processes. Of course, taking just a single point process on [0,∞) would lead to
perfectly correlated jumps of all forward Libors which may be too restrictive in
practice.

In our approach we have only one (compound Poisson) point process, but
with a richer state space (Rm), and a sensitivity function of the form ψi =
exp

[
uTβi

]
− 1 for the mark u ∈ R

m. Given a jump time τ the components of u
are independently sampled and coupled via the vector βi specific for Li which
determines the dependence structure of the Libor jumps. In particular when a
jump time occurs all forwards jump in a correlated way determined by the vec-
tors βi. So in our setup the jump dependencies are naturally structured which,
as we will see, allows for a feasible calibration procedure. Furthermore, the
special choice of the sensitivity function ψi leads to more analytical tractability.

3.4 Dynamics of Li under Pi+1

We now consider for i = 1, ..., n − 1 the dynamics of Li under Pi+1. From (7)
we see that the logarithm of the last Libor rate Ln−1 has the following simple
dynamics in the Pn measure,

d lnLn−1 = −1

2
(1 − r2n−1)|γn−1|2dt+

√
1 − r2n−1γ

⊤
n−1dW

(n)

+rn−1d

Nt∑

l=1

u⊤l βn−1(sl) − λ(t)dt

∫

Rm

(
exp(rn−1 u

⊤βn−1) − 1
)
p(du), (10)

and thus belongs to the class of additive models, i.e., the process Xn−1(t) :=
lnLn−1(t) − lnLn−1(0) has independent increments. By using Lemma 3 be-
low for instance, we can derive straightforwardly the characteristic function of
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Xn−1(t),

Φn(z; t) :=EPn exp[izXn−1(t)] = exp [ψn(z; t)] with (11)

ψn(z; t) := −z
2

2
(1 − r2n−1)

∫ t

0

|γn−1(s)|2ds− iz

∫ t

0

[1
2
(1 − r2n−1)|γn−1(s)|2ds+

λ(s)ds

∫

Rm

(
exp(rn−1 u

⊤βn−1(s)) − 1
)
p(du)

]

+

∫ t

0

λ(s)ds

∫

Rm

(eiz rn−1u⊤βn−1(s) − 1)p(du). (12)

For 1 ≤ i < n−1 the dynamics of of Li under Pi+1 is more complicated. By the
fact that Li is a martingale under Pi+1 we observe from the general framework
(1) that

dLi

Li−
=: η⊤i dW

(i+1) +

∫

E

ψi(t, u)
(
µ− ν(i+1)

)
(dt, du), (13)

where

dW (i+1) = −
n−1∑

j=i+1

δjLj−

1 + δjLj−
ηjdt+ dW (n)

is a standard Brownian motion under Pi+1, and

ν(i+1)(dt, du) = ν(n)(dt, du)

n−1∏

j=i+1

(
1 +

δjLj−ψj(t, u)

1 + δjLj−

)
(14)

is the compensator process of µ under the measure Pi+1. For the more specialized
setup introduced in this section, which is based on (6), (14) reads

ν(i+1)(dt, du) = λ(t)p(du)dt

n−1∏

j=i+1

1 + δjLj− exp(rj u
⊤βj)

1 + δjLj−
, (15)

and (13) reads

dLi

Li−
=
√

1 − r2i γ
⊤
i dW

(i+1) +

∫

Rm

(
eri u⊤βi(t) − 1

)(
µ− ν(i+1)

)
(dt, du), (16)

i = 1, ..., n− 1. The logarithmic version of (16) is seen from (7) to be

d lnLi = −1

2
(1 − r2i )|γi|2dt+

√
1 − r2i γ

⊤
i dW

(i+1) (17)

+rid

Nt∑

l=1

u⊤l βi(sl) −
∫

Rm

(
exp(ri u

⊤βi) − 1
)
ν(i+1)(dt, du).

In particular, for i < n − 1 the compensator (15) is non-deterministic in the
present setup and, as a consequence, lnLi is generally not additive under Pi+1

for i < n− 1. However, by freezing in (15) the Libor terms, i.e. replacing Li−

by Li−(0), we may obtain a deterministic approximative compensator and so
an additive approximation of lnLi under Pi+1.
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3.5 Preserving the local covariance structure

We recall the following standard lemma proved in Belomestny and Schoenmakers
(2006).

Lemma 3 If J(t) =
∑Nt

l=1 ϕ(sl, ul) is a compound Poisson process in Rq with
jump intensity λ(t)dt, independent jumps in a measurable space E with prob-
ability measure p(du), and ϕ : R+ × E → R

q is deterministic, then (i) the
characteristic function of J(t) is given by

Eeiz⊤J(t) = exp

[∫ t

0

λ(s)ds

∫

E

(eiz⊤ϕ(s,u) − 1)p(du)

]
, z ∈ R

q,

and (ii) for the expectation and covariance structure of J(t) we have

EJl(t) =

∫ t

0

λ(s)ds

∫

E

ϕl(s, u)p(du),

Cov(Jl(t), Jl′(t)) =

∫ t

0

λ(s)ds

∫

E

ϕl(s, u)ϕl′(s, u)p(du), 1 ≤ l, l′ ≤ q.

Let us now write the integrated random term in (7) as

ξi(t) :=
√

1 − r2i

∫ t

0

γ⊤i dW
(n) + ri

Nt∑

l=1

u⊤l βi(sl)

=:
√

1 − r2i ξ
D
i (t) + riξ

J
i (t). (18)

By Lemma 3 the characteristic function of the jump process ξJ is then given by

Eeiz⊤ξJ (t) = exp




∫ t

0

λ(s)ds



φp




n−1∑

j=1

zjβj(s)



− 1







 ,

with φp(y) :=
∫
p(du) exp

[
iu⊤y

]
, y ∈ Rm, being the characteristic function of

p. For the covariance matrix Lemma 3 yields

Cov(ξJ
i (t), ξJ

j (t)) =

∫ t

0

λ(s)ds

∫

Rm

β⊤
i (s)uu⊤βj(s)p(du)

=:

∫ t

0

λ(s)dsβ⊤
i (s)Σβj(s)

with Σkl :=
∫
ukulp(du) being the cross moments of jump components uk and

ul. Since the Brownian motion and the jumps are independent we have for the
local covariance (actually the predictable compensator) of ξi and ξj in (18),

Cov(dξi(t), dξj(t)) =
√

(1 − r2i )(1 − r2j )γ⊤i (t)γj(t) + rirjλ(t)β
⊤
i (t)Σβj(t) dt.

(19)
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Our main idea is to consider jump diffusion extensions of a (given) pure
Libor market model which preserve the (given) local covariance structure of the
market model. To this aim we consider in (7) the case where r :≡ ri for all i.
Then (19) yields

Cov(dξi, dξj) = (1 − r2)γ⊤i γj + r2λβ⊤
i Σβj dt.

We then assume βj = Aγj for some m× d matrix A which gives

Cov(dξi, dξj) = γ⊤i (I − r2I + r2λA⊤ΣA)γj /dt.

The requirement that the local covariances (19) coincide with the local covari-
ances of the market model now leads to the condition

λA⊤ΣA = Id,

and in particular m ≥ d. Since Σ is (time independent) positive definite there is
a unique positive symmetric m×m matrix C such that Σ = C2. Then for any
column-orthogonal m× d matrix Q we have a solution

A = λ−1/2C−1Q.

Note that in general Q and λ may depend on t. Without loss of generality
(i.e. without affecting the input Libor market model) we may assume that the
(n− 1) × d matrix (γj,r) is an upper triangular matrix in the sense

γn−j,l = 0 for 1 ≤ l < d− j + 1, j = 1, ..., d.

We assume (for technical reasons in fact) that the (n− 1) ×m matrix (βj,r) is
also an upper triangular matrix,

βn−j,l =
d∑

r=1

Al,rγn−j,r = 0, for 1 ≤ l < m− j + 1, j = 1, ...,m. (20)

In particular this entails that the jumps of Ln−1 are driven by a single jump
measure. We will achieve (20) by the additional requirement m = d (dimension
of the jump space equal to the number of Brownian motions) and by taking the
orthogonal matrix Q such that C−1Q, hence A, is a lower triangular (square)
matrix with positive diagonal elements. Thus, A is uniquely determined by

AA⊤ = λ−1Σ−1, A is lower triangular with positive diagonal (21)

(hence time independent). As a further specialization we take λ to be time
independent. Note that u⊤βi = (Du)⊤D−1βi for any regular diagonal matrix
D. So, multiplication of all jump random variables with an arbitrary factor and
respective components of βi with this factor’s inverse yields the same model.
Therefore, without any restriction we may fix the jump variances αk defined as

αk :=

∫
u2

kpk(duk) − κ2
k, where (22)

κk :=

∫
ukpk(duk) (23)

12



is the mean of the kth jump component, as we like. As a convenient choice we
take them all equal, i.e. we set αk ≡: α, k = 1, . . . ,m. Next, we will choose α

such that ||A||F :=
√∑m

k,l=1 |Akl|2 =
√
m = ||Im||F , which is equivalent to

||C−1||2F =

m∑

k=1

1

λΣ
k

= λm, (24)

where λΣ
k , k = 1, ...,m, denote the eigenvalues of Σ. Then by the result of

Appendix 7.3 it follows that (24) is equivalent to

αλ =

α+ m−1
m

m∑

p=1

κ2
p

α+
m∑

p=1

κ2
p

.

It is easy to show that this quadratic equation in α has one positive and one
negative solution, and that for large m the positive solution α+ ≈ 1/λ. We
therefore set

α :=
1

λ
≡ αk, k = 1, . . . ,m.

By denoting the columns of C by ck, k = 1, . . . ,m, we have for k, l = 1, ...,m,
c⊤k cl = e⊤k C

2el = Σkl = αkδkl +κkκl. We so have in particular βn−1,l(s) ≡ 0 for
1 ≤ l < m, and

βn−1,m(s) = Am,mγn−1,m(s) = λ−1/2(e⊤mC
2em)−1γn−1,m(s)

=
γn−1,m(s)√
λ(α + κ2

m)
=

γn−1,m(s)√
1 + λκ2

m

. (25)

Hence the dynamics of lnLn−1 is driven by a single jump variable um under a
jump distribution pm, with mean κm and variance λ−1.

Discussion Before turning to the calibration let us summarize the main fea-
tures of our model and describe the main ideas behind the calibration procedure.
For any i = 1, . . . , n− 1 the main parameters of the model for Li under Pn in
(7) are

1. Vector functions γj(t), j = i, . . . , n − 1 which determine the correlation
structure of the Libor Market Model we start with.

2. Vector functions βj(t), j = i, . . . , n−1 that scale the jumps and are related
to γj(t) as in (20).

3. The intensity λ of the driving Poisson process Nt.

4. The weight r which determines the balance between diffusion and jump
components in Li.

13



5. Jump component measures p1, . . . , pm.

Note that while the first four components are of parametric nature (we pa-
rameterize the functions γi(t) later on), the measures pi are the nonparametric
ingredients of the model. In the first pre-calibration step we fit a Libor mar-
ket model using at-the-money caplets and at-the-money swaptions for example.
This gives us vector functions γ1(t), . . . , γn−1(t), and then β1(t), . . . , βn−1(t)
up to parameters α and κ1(t), . . . , κm(t) defined in (22) and (23) respectively.
Note that due to the covariance constraint (20) we avoid a complete calibra-
tion of the β’s that renders the procedure more stable. Finally, we calibrate λ
(which equals 1/α), r, and p1, . . . , pm (and so the κ’s) to the whole matrix of
caplet volatilities. By imposing a triangle structure on the γ’s and β’s it will
be achieved that the dynamic of Li depends on pi, . . . , pm only. This in turn
makes it possible to develop a calibration algorithm which starts with i = n− 1
and proceeds backwardly in such a way that at the time i < n− 1 all measures
pi+1, . . . , pm are already estimated and it remains to determine pi.

4 Pricing caplets

A caplet for the period [Tj , Tj+1] with strikeK is an option which pays (Lj(Tj)−
K)+δj at time Tj+1, where 1 ≤ j < n. It is well-known that under the Tj+1 - for-
ward measure the caplet price has the following simple representation. Writing
Ej+1 for the expectation under this measure, we have

Cj(K) = Bj+1(0)Ej+1[(Lj(Tj) −K)+δj ]

for price of the j-th caplet at time zero. Thus the j-th caplet price is determined
by the dynamics of Lj under Pj+1 only. We now recall the FFT pricing method
of Carr and Madan, which basically goes as follows. It turns out natural to
transform for a fixed j the strike variable into a log-forward moneyness variable
defined by

v := ln
K

Lj(0)
.

In terms of log-forward moneyness the j-th caplet price is then given by

Cj(v) := δjBj+1(0)Lj(0)Ej+1[(e
Xj(Tj) − ev)+],

where Xj(t) := lnLj(t) − lnLj(0). We further introduce an auxiliary function

Oj(v) := δ−1
j B−1

j+1(0)L−1
j (0)Cj(v) − (1 − ev)+

= Ej+1(e
Xj(Tj) − ev)+ − (1 − ev)+

= 1v≥0Ej+1(e
Xj(Tj) − ev)+ + 1v≤0Ej+1(e

v − eXj(Tj))+,

where the third expression is basically due to the put-call parity and follows
from the identity (a − b)+ = a − b + (b − a)+ and the fact Ej+1e

Xj(Tj) = 1.
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In the Appendix we derive further characteristic properties of the function Oj .
The Fourier transform of Oj is given by

F{Oj}(z) =

∫ ∞

−∞

Oj(v)e
ivzdv =

1 − Φj+1(z − i;Tj)

z(z − i)
. (26)

This can be proved via a straightforward reformulation of a similar result in Cont
and Tankov (2003) in the context of jump-diffusion asset model (see Belomestny
and Schoenmakers (2006)).

Most importantly, if the characteristic function of Xj(Tj) is explicitly given,
for example by (11), and (12) in the case j = n − 1, we obtain an analytical
caplet pricing formula via Fourier inversion,

Cj(K) = δjBj+1(0)(Lj(0) −K)+ +

δjBj+1(0)Lj(0)

2π

∫ ∞

−∞

1 − Φj+1(z − i;Tj)

z(z − i)
e
−iz ln K

Lj(0) dz. (27)

For a fixed j, j < n− 1, let now lnLj be given by (17). As noted at the end
of Section 3, we may then obtain an additive approximation X̃j(Tj) of Xj(Tj)
via (17) by replacing ν(j+1) with the approximative compensator

ν̃(j+1)(dt, du) := λ(t)dt p(du)

n−1∏

l=j+1

1 + δlLl(0) exp(rl u
⊤βl)

1 + δlLl(0)
. (28)

Hence, approximative caplet prices C̃j(K) are obtained from (27), using an ap-
proximation Φ̃j+1 of the characteristic function Φj+1, which in turn is obtained
by replacing in (11)-(12), n − 1, n, and ν(n)(dt, du) = λ(dt)p(du), respectively
with j, j + 1, and ν̃(j+1)(dt, du) from (28).

Remark 4 The quality of the approximation in (28) has been analyzed in [14].
In particular they show that this approximation yields good results for typical
lengths of tenor structures in practice.

5 Calibration

Let us first consider the calibration to a panel of caplets corresponding to matu-
rity Tn−1 and different strikesK−N < · · · <K−1 <K0 := Ln−1(0)<K1 < · · · <
KN . So, suppose that caplet prices Cn−1,j corresponding to Kj, −N ≤ j ≤ N ,
are available. We first transform the observations Cn−1,j and strikes Kj to

On−1,j := δ−1
n−1B

−1
n (0)L−1

n−1(0)Cn−1,j − (1 − evj )+, (29)

vj := ln
Kj

Lj(0)
, −N ≤ j ≤ N. (30)

Our calibration procedure relies essentially upon the next formula which follows
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from (11), (12), (26), and taking the assumptions of Section 3.5 into account.

ψn(z;Tn−1) = Ln(Φn(z;Tn−1)) = Ln
(
1 − z(z + i)F{On−1}(z + i)

)

= −θ
2
n−1z

2

2
− iκn−1z − ζn−1 + ζn−1F{µn−1}(z), (31)

with abbreviations

θ2n−1 := (1 − r2)

∫ Tn−1

0

|γn−1(s)|2ds, (32)

κn−1 := λTn−1

∫

R

(
exp(r uβn−1,m(s)) − 1

)
pm(u) du

+
1

2

∫ Tn−1

0

(1 − r2)|γn−1(s)|2ds

ζn−1 := λTn−1, (33)

µn−1(·) := T−1
n−1

∫ Tn−1

0

r−1β−1
n−1,m(s) pm(r−1β−1

n−1,m(s) ·) ds, (34)

with Ln(w) := ln |w| + iArgw, −π < Argw ≤ π denoting the main branch of
the logarithm, and pm being the density of pm which we now assume to exist.

In principle, the constants θ2n−1, κn−1, ζn−1, and the mixed density µn−1

can be recovered via (31) from complete knowledge of function On−1, hence
a complete system of model consistent caplet prices Cn−1(K), 0 < K < ∞.
Indeed, since F{µn−1}(z) tends to zero as |z| → ∞ due to the Riemann-Lebesgue
lemma, we have

θ2n−1 = −2 lim
z→+∞

z−2ψn(z;Tn−1)

κn−1 = − lim
z→+∞

z−1 Imψn(z;Tn−1), and next,

ζn−1 = lim
z→+∞

(
−ψn(z;Tn−1) −

θ2n−1z
2

2
− iκn−1z

)
,

and then the function F{µn−1}(z) can be found from (31). In practice this ap-
proach breaks down due to incomplete knowledge of On−1 and lack of numerical
stability however.

In Belomestny and Reiss (2004) a more stable procedure is developed which
estimates all spot characteristics θ2n−1,κn−1, ζn−1, and µn−1(·), for a given set
of noisy observations (29) due to a discrete set of strikes (30). This procedure
consists basically of four steps: (i) first, a continuous piece-wise linear approxi-
mation Õn−1 of On−1 is built from the data; (ii) from Õn−1 an approximation
ψ̃n of ψn is obtained; (iii) next the coefficients of the quadratic polynomial on
the right-hand side in (31) are estimated from ψ̃n, under the presence of the
nonparametric nuisance part F{µn−1} (which vanishes at infinity) using appro-
priate weighting schemes; (iv) finally an estimator for µn−1 is obtained via FFT
inversion of the remainder. The steps (i)–(iv) are spelled out in detail below.

16



(i) In view of Appendix 7.4, we construct a continuous piece-wise linear func-
tion v → Õn−1(v) on a grid vj , −N − 1 ≤ j ≤ N + 1, with v−N−1 ≪
v−N < · · · < v−1 < v0 := 0 < v1 < · · · < vN ≪ vN+1, , such that
Õn−1(v) fits the data at vj , j 6= 0, Õn−1(v−N−1) := Õn−1(vN+1) := 0,
and Õ′

n−1(0−) − Õ′
n−1(0+) = 1. The boundary strikes v−N−1, vN+1 are

included to reflect the fact that limv→±∞ On−1(v) = 0.

(ii) By straightforward FFT we compute F{Õn−1}(z + i) and so obtain

ψ̃n(z) := Ln
(
1 − z(z + i)F{Õn−1}(z + i)

)
, z ∈ R. (35)

(iii) With an estimate ψ̃n of ψn at hand, we obtain estimators for the paramet-
ric part (θ2n−1,κn−1, ζn−1) by an averaging procedure using the polynomial
structure in (31) and the decay property of F{µn−1}. For suitable weight
functions wθ, wκ , and wζ constructed in Section 5.1, which have bounded
support U := [−U,U ] with U > 0, and satisfy

∫
wθdu = 0,

∫
u2wθ(u)du = −2,

∫
uwκ(u)du = 1, (36)

∫
u2wζ(u)du = 0,

∫
wζ(u)du = −1,

we compute the estimates

θ̃2n−1 :=

∫
Re(ψ̃n(u))wθ(u)du, (37)

κ̃n−1 :=

∫
Im(ψ̃n(u))wκ(u)du,

ζ̃n−1 :=

∫
Re(ψ̃n(u))wζ(u)du,

for the parameters θ2n−1,κn−1, and ζn−1, respectively.

(iv) The estimate for µn−1 is obtained via the inverse Fourier transform,

µ̃n−1 := ζ̃−1
n−1F

−1

{(
ψ̃n(·) +

θ̃2n−1

2
(·)2 − iκ̃n−1(·) + ζ̃n−1

)
1U

}
, (38)

where u ∈ R and 1U is the indicator function of the set U .

The computational complexity of this estimation procedure is very low. The
only time consuming steps are the three integrations in step (iii) and the inverse
Fourier transform (inverse FFT) in step (iv).
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5.1 Determination of the weights wθ, wκ, and wζ

Let us assume that for some natural number p and C > 0,

max
0≤q≤p

‖µ(q)
n−1‖L2(R) ≤ C (39)

and consider for some U > 0 the following weight functions,

wU,p
θ (u) :=

p+ 3(
1 − 2−2/(p+1)

)
Up+3

|u|p(1|u/U|≤1 − 2 · 12−1/(p+1)≤|u/U|≤1), (40)

wU,p
κ

(u) :=
p+ 2

2Up+2
|u|psign(u)1|u/U|≤1,

wU,p
ζ (u) :=

p+ 1

2
(
22/(p+3) − 1

)
Up+1

|u|p(2 · 12−1/(p+3)≤|u/U|≤1 − 1|u/U|≤1),

which satisfy the conditions (36) by straightforwardly checking.
Following Belomestny and Reiss (2005), we can estimate

|θ̃2n−1 − θ2n−1| ≤
∣∣∣∣
∫

Re(ψ̃n(u) − ψn(u))wU,p
θ (u)du

∣∣∣∣

+

∣∣∣∣
∫

Re(F{µn−1}(u))wU,p
θ (u)du

∣∣∣∣ = (1) + (2). (41)

The second term can be estimated using the identity (iu)pF{µn−1}(u) =

F{µ(p)
n−1}(u), two times Parseval’s isometry, and (40),

(2) ≤
∣∣∣∣
∫

F{µn−1}(u)wU,p
θ (u)du

∣∣∣∣ =

∣∣∣∣∣∣

∫
(iu)pF{µn−1}(u)

(
wU,p

θ (u)

(iu)p

)
du

∣∣∣∣∣∣

=

∣∣∣∣∣∣

∫
F{µ(p)

n−1}(u)
(
wU,p

θ (u)

(iu)p

)
du

∣∣∣∣∣∣
=

1

2π

∣∣∣∣∣∣

∫
µ

(p)
n−1(s)F

−1

{
wU,p

θ (·)
(i·)p

}
(s)ds

∣∣∣∣∣∣

≤ C√
2π

∥∥∥∥∥
wU,p

θ (·)
(·)p

∥∥∥∥∥
L2(R)

=
C(p+ 3)√

π
(
1 − 2−2/(p+1)

)
Up+5/2

≤ C1
(p+ 1)(p+ 3)

Up+5/2
,

for some C1 > 0, which explains the construction of wU,p
θ : for fixed p and U

large, (2) falls with O(U−(p+5/2)). The term (1) is due to the noise and lack of
data. It can be estimated by

(1) ≤ ||ψ̃n − ψn||L∞(U)||wU,p
θ ||L1(U)

= ||ψ̃n − ψn||L∞(U)
2(p+ 3)

(p+ 1)
(
1 − 2−2/(p+1)

)
U2

≤ C2||ψ̃n − ψn||L∞(U)
p+ 3

U2
,
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for some C2 > 0. So we have,

|θ̃2n−1 − θ2n−1| ≤ C2||ψ̃n − ψn||L∞(U)
p+ 3

U2
+ C1

(p+ 1)(p+ 3)

Up+5/2
. (42)

In a similar way we obtain for κn−1, and ζn−1,

|κ̃n−1 − κn−1| ≤ C3||ψ̃n − ψn||L∞(U)
p+ 2

U(p+ 1)
+ C4

(p+ 2)

Up+3/2
, (43)

|ζ̃n−1 − ζn−1| ≤ C5||ψ̃n − ψn||L∞(U)(p+ 3) + C6
(p+ 1)(p+ 3)

Up+1/2
, (44)

for some C3, C4, C5, C6 > 0. Note that even when ‖µ(q)
n−1‖L2(R) is finite for very

large q it is not wise in view of (44) to take p too large. In practice one needs to
accomplish that ||ψ̃n − ψn||L∞(U) is small for a large enough U and then p = 1
or 2 turns out to be a proper choice.

Discussion The order of the error ||ψ̃n−ψn||L∞(U) depends on N , the number
of caplets available, as well as on the type of errors in caplet prices Cn−1,j ,
−N ≤ j ≤ N. For example, assuming that the observed caplet prices are “exact”,
one can show (see [1]) that

||ψ̃n − ψn||L∞(U) ≤ C1∆
2U2eC2θ2

n−1U2

with ∆ = maxj=−N,...,N−1(vj+1 − vj) and some positive constants C1 and C2,
provided that exp(max{v−N ,−vN}) < ∆. So, if θn−1 > 0 the convergence rates
for θ̃n−1, κ̃n−1 and ζ̃n−1 are logarithmic in ∆ and so correspond to a severely
ill-posed problem. The reason for the severe ill-posedness is that we face an
underlying deconvolution problem with a Gaussian like distribution: the law of
the continuous part of Xn−1 is convolved with that of the jump part to give the
density of Xn−1.

Correction of µ̃n−1

Due to numerical as well as statistical errors the estimated µ̃n−1 may not be a
probability density and thus needs to be corrected. Besides that we also want
the variance of Xn−1 to be equal to the Black variance Tn−1(γ

B
n−1)

2, where

γB
n−1 :=

√
1

Tn−1

∫ Tn−1

0

|γn−1|2(s)ds.

In order to accomplish these requirements we construct a new estimate µ̃+
n−1 as

a solution of the following optimization problem,

‖µ̃+
n−1 − µ̃n−1‖2

L2(R) → min, inf
x∈R

µ̃+
n−1(x) ≥ 0 (45)
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subjected to

∫
µ̃+

n−1(v)dv = 1,

∫
v2µ̃+

n−1(v)dv =
Tn−1

(
γB

n−1

)2 − θ̃2n−1

ζ̃n−1

. (46)

The solution has a rather simple form and is given by

µ̃+
n−1(x; ξ, η) := max{0, µ̃n−1(x) − ξ − ηx2}, x ∈ R,

where ξ and η need to be determined such that (46) is satisfied. We note that
by representing µ̃+ as a mixture of given densities, (45)-(46) boils down to a
finite dimensional quadratic optimization problem.

Remark 5 The corrected Lévy density µ̃+
n−1(x) leads to a similar calibration

fit as compared to the uncorrected one. This is illustrated in Figure 1, where the
original as well as fitted caplet volas together with estimates for the Lévy density
µn−1 are shown. While in the top row of Figure 1 the results are obtained using
the corrected version of µ̃n−1, in the bottom row µ̃n−1 is employed to compute
caplet prices.

5.2 Procedure for calibration against terminal caplets

For U > 0 we denote the estimates (37) obtained using the weight functions (40)
by θn−1(U), κn−1(U), ζn−1(U), and the corrected Lévy density is denoted by
µ̃+

n−1(·;U). From (32) and (33) we can directly infer estimates r(U) and λ(U),
respectively. We further have to identify a jump density pm from µ̃+

n−1(·;U) via
(34), while taking into account (25).

Let κµ+ and αµ+ denote the expectation and the variance, respectively, of a
random variable with density µ̃+

n−1(·;U). By plugging (25) into (34), we obtain

∫
vµ̃+

n−1(v;U)dv =
r(U)κm√

1 + λ(U)κ2
m

1

Tn−1

∫ Tn−1

0

γn−1,m(s)ds

=:
r(U)κm√

1 + λ(U)κ2
m

γn−1,m = κµ+ , (47)

from which κm can be solved in principle, and then due to the very construction,

−F{µ̃+
n−1(·, U)}′′(0) =

∫
v2µ̃+

n−1(v;U)dv = αµ+ + κ2
µ+ =

r2(U)
(
γB

n−1

)2

λ(U)
, (48)

which gives combined with (25) and (34),
∫
u2p̂m(u;U) du = λ−1(U) + κ2

m. In
general, when γn−1,m is time dependent, βn−1,m by (25) is time dependent too
and so pm has to be solved from (34) by a numerical procedure under the above
moment restrictions. For example, one could take as an ansatz a mixture of
normal densities. However, let us here follow a more simple and pragmatic way
and assume that the terminal volatility function is time independent,

γn−1,m ≡ γn−1,m = γB
n−1. (49)
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In this case we obtain from (25) and (34) for the jump density,

p̂m(u;U) :=
r(U)γB

n−1√
1 + λ(U)κ2

m

µ̃+
n−1

(
r(U)γB

n−1√
1 + λ(U)κ2

m

u;U

)
, (50)

and then combining (47), (48), and (49) yields

κm(U) :=
κµ+√
λ(U)αµ+

. (51)

Next, substituting (51) in (50) gives

p̂m(u;U) =
r(U)γB

n−1√
1 + κ2

µ+/αµ+

µ̃+
n−1


 r(U)γB

n−1√
1 + κ2

µ+/αµ+

u;U


 . (52)

Finally we consider in view of (34),

µ̂+
n−1(·;U) :=

1

Tn−1

∫ Tn−1

0

√
1 + κ2

µ+/αµ+

r(U)γn−1,m(s)
×

× p̂m





√
1 + κ2

µ+/αµ+

r(U)γn−1,m(s)
·;U



 ds (53)

as estimation for µn−1 used in the log-characteristic function ψ̃n for computing
terminal caplet model prices.

Choice of U

Based on the results of Section 5.1 we could chose U such that the overall
asymptotic error in (42), (43) and (44) is minimized. Putting aside the fact that
convergence rates in Section 5.1 are related to the performance of the procedure
in the worst situation (the worst µn−1 satisfying (39)) which is not necessarily
the case for the given model, such choice of U depends on p, is asymptotic and
likely to be inefficient for small sample sizes. As an alternative one can use a
data-driven method to choose U (see e.g. Belomestny and Spokoiny (2007)).
In the calibration context, however, it seems to be more natural to find U
by minimizing the overall calibration error as suggested in Cont and Tankov
(2004). The authors in Cont and Tankov (2004) proposed to penalize it with
the minimal entropy in order to regularize the underlying optimization problem.
In our case the regularization takes place due to the constraints on the functional
space we are searching in. While in Cont and Tankov (2004) the minimization
is performed over the whole space of Lévy measures (approximated by point
masses), we optimize over a specific parametric family (parameterized with U)
of Lévy triplets. We so determine U simply as the solution of the following
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minimization problem

U∗ = arginfU

N∑

i=−N

|Ĉn−1(Ki;U) − Cn−1,i|2, (54)

where Ĉn−1(·;U) are prices computed from the model due to θn−1(U), κn−1(U),
ζn−1(U), and µ̂+

n−1(·;U).

5.3 Calibration to other caplets

With U∗ is determined via (54) and pm := pm(U∗), we introduce the shifted
densities

pj(u) := pm(u− κj + κm),

hence

κj =

∫

R

u p̂j(u)du, j = 1, . . . ,m. (55)

Let U be the upper triangularm×mmatrix with positive diagonal elements such
that Σ = UU⊤. This decomposition exists because Σ is invertible. From (21) we
then have A = λ−1/2U−⊤. Let us define Σ

(k)
rr′ , k ≤ r, r′ ≤ m, k = 1, ...,m. Since

U is an upper triangular we have Σ(k) = U (k)(U (k))⊤ and A(k) = λ−1/2(U (k))−⊤

with A(k) and U (k) defined analogously to Σ(k). Thus, for knowing A(k) it is
sufficient to know Σ(k).

We now assume d = m = n−1.We determine κj , j = 1, . . . , n−1, recursively
in the following way. For j = n−1, κn−1 is determined from (51), then βn−1,n−1

from (25), and Σ
(n−1)
n−1,n−1 = α+κ2

n−1. Suppose βl,k is determined for l = j, ..., n−
1, k = l, ..., n − 1, where j > 1. For j = m = n − 1 we are in the situation of
Section 5.2. We then consider the matrix

Σ(j−1)(κj−1) :=

[
α+ κ2

j−1 κj−1a
⊤

κj−1a Σ(j)

]
, (56)

with a := [κj , · · ·, κn−1]
⊤, and where the (n−j)×(n−j) matrix Σ

(j)
rr′ is assumed

to be already determined. Note that α = λ−1(U∗) is the common jump variance.
In fact the only unknown parameter to be determined in (56) is κj−1. Further,
it easily follows that,

U (j−1)(κj−1) =

[ (
α+ κ2

j−1

(
1 − a⊤(Σ(j))−1a

))1/2
κj−1a

⊤(U (j))−⊤

U (j)

]

and so

F (j−1)(κj−1) :=
(
U (j−1)

)−⊤

(κj−1) =
[ (

α+ κ2
j−1

(
1 − a⊤(Σ(j))−1a

))−1/2

−
(
α+ κ2

j−1

(
1 − a⊤(Σ(j))−1a

))−1/2
κj−1a

(
U (j)

)−⊤

]
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Next, set according to (20)

βj−1,k(κj−1) = λ−1/2
k∑

r=j−1

F
(j−1)
k,r (κj−1)γj−1,r , k = j − 1, ..., n− 1,

βj−1,k(κj−1) = 0, 1 ≤ k < j − 1.

By a simple trial and error search we then determine κj−1 such that the least
squares fit error of the Tj−1 caplet panel is as small as possible. For each guess
of κj−1 the model caplet prices may be computed by Monte Carlo simulation
of the model, or as an alternative by approximating caplet prices as proposed
at the end of Section 4.

6 Calibration to real data

In this section we calibrate the model (7) to market data given on 11.01.2004.
The caplet-strike volatility matrix is partially shown in Table 1. The corre-

K/T 0.150 0.200 0.225 0.250 0.300 0.400 0.500 0.600

0.50 0.2604 0.1735 0.1819 0.1969 0.2453 0.2708 0.3197 0.3407

0.75 0.2678 0.2036 0.2052 0.2136 0.2401 0.2598 0.3052 0.3258

1.75 0.2832 0.2587 0.2475 0.2365 0.2227 0.2246 0.2539 0.2733

2.50 0.2850 0.2651 0.2513 0.2334 0.2125 0.2051 0.2234 0.2412

3.50 0.2804 0.2581 0.2432 0.2233 0.2016 0.1856 0.1924 0.2071

4.50 0.2720 0.2474 0.2319 0.2142 0.1934 0.1720 0.1711 0.1821

5.50 0.2625 0.2381 0.2219 0.2079 0.1872 0.1625 0.1566 0.1640

6.50 0.2531 0.2314 0.2144 0.2039 0.1824 0.1557 0.1470 0.1510

7.50 0.2447 0.2270 0.2092 0.2016 0.1788 0.1510 0.1407 0.1418

8.50 0.2375 0.2241 0.2058 0.2002 0.1761 0.1477 0.1367 0.1355

9.50 0.2315 0.2224 0.2036 0.1995 0.1740 0.1454 0.1342 0.1311

11.50 0.2212 0.2206 0.2011 0.1988 0.1707 0.1424 0.1312 0.1253

14.50 0.2149 0.2201 0.2003 0.1987 0.1689 0.1410 0.1302 0.1228

19.50 0.2111 0.2200 0.2001 0.1987 0.1678 0.1404 0.1300 0.1219

Table 1: Caplet volatilities σK
T for different strikes and different tenor dates (in

years).

sponding implied volatility surface is shown in Figure 2.
Pronounced smiles are clearly observable. Due to the structure of the given

data we are going to calibrate the jump diffusion model based on semi-annual
tenors, i.e. δj ≡ 0.5, with n = 41, and where the initial calibration date 01.11.04
is identified with T0 = 0.
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In a pre-calibration a standard market model is calibrated to ATM caps and
ATM swaptions using Schoenmakers (2005). However, we emphasize that the
method by which this input market model is obtained is not essential nor a
discussion point for this paper. For the pre-calibration we have used a volatility
structure of the form

γi(t) = cig(Ti − t)ei, 0 ≤ t ≤ min(Ti, Tj), 1 ≤ i, j < n,

where g is a simple parametric function and ei are unit vectors. The calibration
routine returned ei ∈ R40 with

e⊤i ej = ρij = exp[−0.005|i− j|] 1 ≤ i, j < 41,

such that the matrix (ei,k) is upper triangular, and

g(s) = 0.8 + 0.2e−2.0s.

The ci can be readily computed from

(σATM
Ti

)2Ti = c2i

∫ Ti

0

g2(s) ds, i = 1, . . . , n− 1,

using the initial Libor curve, which is obtained by a standard stripping procedure
from the yield curve at 11.01.04, and is given in Table 2.

Ti Li(0) Ti Li(0) Ti Li(0) Ti Li(0)

0.5 0.0238176 5.5 0.0451931 10.5 0.0509249 15.5 0.0539696

1 0.0264201 6 0.0465074 11 0.0512114 16 0.0540521

1.5 0.0292798 6.5 0.0475881 11.5 0.0515804 16.5 0.0540931

2 0.0320656 7 0.0484201 12 0.0520317 17 0.0540933

2.5 0.0345508 7.5 0.0490942 12.5 0.0524639 17.5 0.054053

3 0.0366693 8 0.0496402 13 0.0528456 18 0.0539728

3.5 0.0385821 8.5 0.0500331 13.5 0.0531757 18.5 0.0538533

4 0.040381 9 0.0502848 14 0.0534529 19 0.053695

4.5 0.0420863 9.5 0.0504889 14.5 0.0536757 19.5 0.0534984

5 0.0437079 10 0.0506932 15 0.0538451 20 0.053268

Table 2: Initial Libor curve.

The further steps are as follows

1. The model for Ln−1 is calibrated as described in Section 5.2 and the cali-
brated parameters are shown in Table 3. The calibrated density pn−1(x)
is plotted in Figure 3. Note that the variance of the distribution corre-
sponding to pn−1 is equal to 1/λ = 10.0 in order to ensure (24).
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r λ κm

0.7 0.1 -0.005

Table 3: Parameters calibrated using terminal caplet volas σK
Tn−1

.

2. Remaining parameters κj , j = 1, . . . , 39, are calibrated sequentially as
described in Section 5.3 with approximation formula (28) being used for
pricing caplets. It turned out experimentally that κj can be taken on the
line

κj = κ40 − 0.0751 ∗ (40 − j), j = 40, . . . , 1.

The quality of the calibration can be seen in Figure 4, where calibrated
volatility curves are shown for several caplet maturities together with orig-
inal caplet volas and ATM caplet volas. The overall root-mean-square fit
we have reached shows to be 0.5%-5%, when the number of caplet panels
ranges from 2 to 20. Fitting all the 40 caplet panels with an accept-
able accuracy (e.g. ≤5%), would require a more flexible structure for pj ,
j < n− 1, however.

For comparison we also present results for a newer data set, 22.10.2008. Fig-
ure 5 shows original and fitted caplet implied volatilities for different maturities
as well as estimated densities µ̃+

n−1(x, U
∗). In the top of Figure 5 the results for

11.01.2004 are presented, whereas the bottom figure corresponds to 22.10.08.
As we can see, the implied volatility curves have quite different shapes for these
two data sets, nevertheless the jump diffusion Libor model is able to reproduce
both of them with an acceptable accuracy. Note that the estimated Lévy mea-
sure for 22.10.08 puts much more mass on negative jumps compared to the Lévy
measure calibrated at 11.01.04. This may be an indication that in crisis times
prices are more strongly influenced by uncertainty about future and negative
expectations.

7 Appendix

7.1 Equivalence of (1) and (3)

Suppose on (Ω,F ,Ft, Pn) we are given η and W (n) as in (3), and for k = 1, ...,m
we are given a random measure µk on R+ ×Ek, with Ek Lusin, of the form (2)

µk =
∑

n≥1

1
T

(k)
n (ω)=t

δ
(t,β

(k)
t (ω))

(dt, du),

where the stopping times (T
(k)
n )k=1,...,m,n≥1 satisfy T (k)

n (ω) 6= T
(l)
m (ω) for n 6= m

or k 6= l. Further let for i = 1, ..., n − 1, k = 1, ...,m, the Ek-valued function
processes ψik be predictable. By treating Ek and El for k 6= l as completely

25



different spaces, i.e.Ek∩El = ∅ (which may be achieved by giving them different
colors if need be), we may construct straightforwardly the Lusin space E :=
m⋃

k=1

Ek and define a random measure µ :=
∑m

k=1 µk on R+ × E. Let now ν
(n)
k

be the (Pn,F)-compensator of µk (which is concentrated on Ek), then it easily

follows that ν(n) :=
∑m

k=1 ν
(n)
k is the (Pn,F)-compensator of µ, and by defining

ψi(t, u, ω) := ψik(t, u, ω) if u ∈ Ek, (3) may be written as (1).

7.2 Proof of Lemma 3

Proof of (i):

Eeiz⊤J(t) = E E
[
eiz⊤ Nt

l=1 ϕ(sl,ul)|Nt

]
= E

[
Nt∏

l=1

eiz⊤ϕ(sl,ul)|Nt

]

= E

(∫ t

0

λ(s)ds
∫ t

0
λ(τ)dτ

∫

E

eiz⊤ϕ(s,u)p(du)

)Nt

=

∞∑

k=0

(∫ t

0 λ(τ)dτ
)k

k!
e−

t
0

λ(τ)dτ

(∫ t

0

λ(s)ds
∫ t

0 λ(τ)dτ

∫

E

eiz⊤ϕ(s,u)p(du)

)k

= exp

∫ t

0

λ(s)ds

∫

E

(eiz⊤ϕ(s,u) − 1)p(du).

Proof of (ii): By differentiating the characteristic function with respect to zl

and z′l we obtain

∂

∂zl
Eeiz⊤J(t) = i

∫ t

0

λ(s)ds

∫

E

eiz⊤ϕ(s,u)ϕl(s, u)p(du)·

· exp

∫ t

0

λ(s)ds

∫

E

(eiz⊤ϕ(s,u) − 1)p(du),

∂2

∂zl∂zl′
Eeiz⊤J(t) = −

∫ t

0

λ(s)ds

∫

E

eiz⊤ϕ(s,u)ϕl′(s, u)p(du)·

·
∫ t

0

λ(s)ds

∫

E

eiz⊤ϕ(s,u)ϕl(s, u)p(du) exp

∫ t

0

λ(s)ds

∫

E

(eiz⊤ϕ(s,u) − 1)p(du)

−
∫ t

0

λ(s)ds

∫

E

eiz⊤ϕ(s,u)ϕl(s, u)ϕl′(s, u)p(du)

· exp

∫ t

0

λ(s)ds

∫

E

(eiz⊤ϕ(s,u) − 1)p(du).

Hence

EJl(t) =

∫ t

0

λ(s)ds

∫

E

ϕl(s, u)p(du),
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and

EJl(t)Jl′(t) =

∫ t

0

λ(s)ds

∫

E

ϕl′(s, u)p(du) ·
∫ t

0

λ(s)ds

∫

E

ϕl(s, u)p(du)

+

∫ t

0

λ(s)ds

∫

E

ϕl(s, u)ϕl′(s, u)p(du),

and then note that Cov(Jl(t), Jl′ (t)) = EJl(t)Jl′(t) − EJl(t)EJl′ (t).

7.3 Summed reciprocal eigenvalues of Σ

Consider the determinant

Dm :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

α1 + κ2
1 κ1κ2 κ1κ3 κ1κm−1 κ1κm

κ2κ1 α2 + κ2
2 κ2κ3 κ2κm

κ3κ1 κ3κ2 α3 + κ2
3

κm−1κ1 κm−1κ2 αm−1 + κ2
m−1 κm−1κm

κmκ1 κmκ2 κmκm−1 αm + κ2
m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

α1 + κ2
1 κ1κ2 κ1κ3 κ1κm−1 κ1κm

κ2κ1 α2 + κ2
2 κ2κ3 κ2κm

κ3κ1 κ3κ2 α3 + κ2
3

κm−1κ1 κm−1κ2 αm−1 + κ2
m−1 κm−1κm

−κm

κ1
α1 0 0 αm

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

αmDm−1 −
κm

κ1
α1(−1)m−1

∣∣∣∣∣∣∣∣∣∣∣∣

κ1κ2 κ1κ3 κ1κm−1 κ1κm

α2 + κ2
2 κ2κ3 κ2κm

κ3κ2 α3 + κ2
3

κm−1κ2 κm−1κ3 αm−1 + κ2
m−1 κm−1κm

∣∣∣∣∣∣∣∣∣∣∣∣

.

Since ∣∣∣∣∣∣∣∣∣∣∣∣

κ1κ2 κ1κ3 κ1κm−1 κ1κm

α2 + κ2
2 κ2κ3 κ2κm

κ3κ2 α3 + κ2
3 κ3κm

κm−1κ2 αm−1 + κ2
m−1 κm−1κm

∣∣∣∣∣∣∣∣∣∣∣∣

= ... = κ1κm(−1)m−2

∣∣∣∣∣∣∣∣∣∣

α2 0 0
0 α3

0
0

0 0 αm−1

∣∣∣∣∣∣∣∣∣∣

= κ1κm(−1)m−2α2 · · · αm−1,
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we obtain

Dm = αmDm−1 −
κm

κ1
α1(−1)m−1κ1κm(−1)m−2α2 · · · αm−1

= αmDm−1 + κ2
mα1α2 · · · αm−1 = ...

=

(
1 +

m∑

p=1

κ2
p

αp

)
m∏

q=1

αp.

Hence,

Dm(λ) = |Σ − λIm| =

(
1 +

m∑

p=1

κ2
p

αp − λ

)
m∏

q=1

(αq − λ)

=

m∏

q=1

(αq − λ) +

m∑

p=1

κ2
p

m∏

q=1,
q 6=p

(αq − λ) =: · · · +Kλ+ |Σ|,

where the coefficient of λ is given by

K := −
m∑

p=1

m∏

q=1,
q 6=p

αq −
m∑

p=1

m∑

r=1,
r 6=p

κ2
p

m∏

q=1,
q 6=p,q 6=r

αq.

We finally obtain

m∑

p=1

1

λi
= − K

|Σ| =

m∑

p=1

m∏

q=1,
q 6=p

αq +

m∑

p=1

m∑

r=1,
r 6=p

κ2
p

m∏

q=1,
q 6=p,q 6=r

αq

m∏

q=1

αq +

m∑

p=1

κ2
p

m∏

q=1,
q 6=p

αq

=

m∑

p=1

1
αp

+

m∑

p=1

m∑

r=1,
r 6=p

κ2
p

αpαr

1 +

m∑

p=1

κ2
p

αp

.

7.4 Characteristic properties of Oj

By denoting the density of Lj(Tj) with ρLj(Tj) we may write

Cj(K) = Bj+1(0)Ej+1[(Lj(Tj) −K)+δj ]

= Bj+1(0)δj

∫ ∞

K

(y −K)ρLj(Tj)(y)dy,
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and then by differentiating two times with respect to K we obtain

C′′
j (K) = Bj+1(0)δjρLj(Tj)(K).

The density of Xj := lnLj(Tj) − lnLj(0) is obviously given by ρXj (v) :=
ρLj(Tj)(Lj(0)ev)Lj(0)ev, so

ρXj (v) = B−1
j+1(0)δ−1

j C′′
j (Lj(0)ev)Lj(0)ev

= B−1
j+1(0)δ−1

j L−1
j (0)

(
C′′

j (v) − C′
j(v)

)
e−v

=
(
O′′

j (v) −O′
j(v)

)
e−v, v 6= 0,

where O′′
j −O′

j extends continuously at v = 0. In particular, Oj satisfies

O′′
j (v) −O′

j(v) > 0 and O′(0−) −O′(0+) = 1. (57)

On the grid vj , −N − 1 ≤ j ≤ N + 1 we consider a continuous piecewise
linear approximation Õn−1 of On−1,

Õn−1(v) :=

N+1∑

j=−N

1

vj − vj−1
(On−1,j−1vj − vj−1On−1,j + v(On−1,j −On−1,j−1))1[vj−1,vj)(v)

with vj and On−1,j−1 given by (29) and (30), extended with On−1,−N−1 =
ON+1,n−1 = 0 (note that v0 := 0). Then it follows that (with suppressed
subscript n− 1)

d

dv

distr

Õ(v) =

N+1∑

j=−N

Oj −Oj−1

vj − vj−1
1[vj−1,vj)(v) (58)

in (Schwartz) distribution sense. Differentiating in distribution again yields

d2

dv2

distr

Õ(v) =
O−N

v−N − v−N−1
δv−N−1 +

ON

vN+1 − vN
δvN+1

+
N∑

j=−N

(
Oj+1 −Oj

vj+1 − vj
− Oj −Oj−1

vj − vj−1

)
δvj . (59)

Because O satisfies

O′′(v) −O′(v) =
d2

dv2

distr

O − d

dv

distr

O, v 6= 0,
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we consider for v 6= 0,

(
d2

dv2

distr

Õ − d

dv

distr

Õ
)
e−v = −O1 −O0

v1
1[0,v1)(v)e

−v +
ON

vN+1 − vN
δvN+1e

−vN+1

O−N

v−N − v−N−1
δv−N−1e

−v−N−1 − O−N

v−N − v−N−1
1[v−N−1,v−N )(v)e

−v (60)

+

N∑

j=−N
j 6=0

[(
Oj+1 −Oj

vj+1 − vj
− Oj −Oj−1

vj − vj−1

)
δvje

−vj − Oj+1 −Oj

vj+1 − vj
1[vj ,vj+1)(v)e

−v

]
,

which follows from (58) and (59) and some rearranging of terms. Since the
generalised function (60) should be an approximation of the density ρXn−1 ,
integrals over each interval [vj−1, vj), j = −N, ..N + 1, should be non-negative.
This leads to

0 ≤
(
Oj+1 −Oj

vj+1 − vj
− Oj −Oj−1

vj − vj−1

)
e−vj − Oj+1 −Oj

vj+1 − vj

∫
1[vj ,vj+1)(v)e

−vdv

=
Oj+1 −Oj

vj+1 − vj
e−vj+1 − Oj −Oj−1

vj − vj−1
e−vj , j = −N, ...,−N, j 6= 0. (61)

Note that (61) holds if the input data are consistent with a function O which
is convex on both v < 0 and v > 0, and if the grid vj is fine enough. Fur-
ther, the total mass of (60) should be one. This leads straightforwardly to the
requirement,

O0 −O−1

−v−1
− O1 −O0

v1
= 1,

which is a discretisation of the boundary condition (57) in fact.
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Figure 1: Caplet volas from the calibrated model (solid lines), original caplet
volas σK

T (crosses) for different caplet maturities T on the left hand side, and
corrected (top) and uncorrected(bottom) estimates for Lévy density µn−1 on
the right hand side.
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Figure 2: Smoothed caplet implied volatility surface σK
T .
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Figure 3: Density pn−1(x) calibrated using terminal caplet volas σK
Tn−1
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Figure 4: Caplet volas from the calibrated model (solid lines), original caplets
volas σK

T (points) and ATM caplet volas σATM
T (dashed lines) for different caplet

maturities T .
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Figure 5: The comparison of estimation results for two data sets 11.01.2004
(top) and 22.10.08 (bottom). Left-hand side: caplet volas from calibrated model
(solid lines), original caplets volas σK

T (crosses) for different caplet maturities
T ; Right-hand side: estimated densities µ̃+

n−1(x, U
∗).
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