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2 John Shoenmakersbased methods are alled for. In this respet the last deades have seen severalbreakthroughs for standard Amerian (or Bermudan style) derivatives, henethe standard stopping problem. Among the most popular ones are the regres-sion based methods of Longsta� and Shwartz (2001), Tsitsiklis and Van Roy(2001), and alternative approahes by Andersen (1999), Broadie and Glasser-man (2004) and others. These methods allow for the omputation of a lowerapproximation of the prie of the produt under onsideration by straightfor-ward (non-nested) Monte Carlo simulation when the underlying dimension isnot too high. More reently, Kolodko and Shoenmakers (2006) proposed apoliy improvement proedure and it is demonstrated in Bender et al. (2006)and Bender et al. (2008) that this method an be e�etively ombined withLongsta� and Shwartz (2001) for very high-dimensional produts. In Benderand Shoenmakers (2006) this poliy iteration method is extended to multi-ple stopping problems. Evaluation of produts with multiple exerise rights(on a low dimensional underlying) is also possible by using trinomial forests(Jaillet et al., 2004). In Carmona and Touzi (2008) a Malliavin alulus basedapproah for the valuation of swing options is presented.In Rogers (2002) and Haugh and Kogan (2004) a dual approah is devel-oped (inspired by Davis and Karatzas (1994)) whih allows for omputing tightupper bounds for Amerian style produts. Jamshidian (2007) proposed a mul-tipliative version of the dual representation, Belomestny and Milstein (2006),and Belomestny et al. (2009b) proposed to ompute upper bounds based on theonept of onsumption proesses. E�etive algorithms for dual upper boundsare proposed in Andersen and Broadie (2004), Kolodko and Shoenmakers(2004), and Belomestny et al. (2009a). For produts with multiple exerisepossibilities Meinshausen and Hambly (2004) found a dual representation forthe marginal exess value of the produt due to one additional exerise right.In this representation an in�mum over a family of stopping times and a familyof martingales is involved. Generalizations of this method to multiple exer-ise produts under volume onstraints are developed in Bender (2008) andAleksandrov and Hambly (2008). While the mentioned methods for multipleexerise produts have shown to be feasible in pratie, the question whether a'pure martingale' dual representation for the multiple stopping problem existsas a natural extension of the dual representation for the single exerise ase,in terms of an in�mum over martingales (only), was still open. The main re-sult in this paper is suh a dual representation and so �lls this gap. Moreoverwe propose Monte Carlo simulation methods for this representation, whihrequire at most one degree of nesting, just as in the one-exerise ase. As suhthe proposed proedures are natural extensions of the orresponding ones forthe single exerise ase. In partiular, one of them may be seen as a naturalgeneralization of the primal-dual approah in Andersen and Broadie (2004).It is more or less lear that the numerial potential of the proposed simulationproedures for the multiple dual is inherited from the numerial qualities ofthe methods for the standard (additive) dual extensively doumented in theliterature. Therefore, we prefer to ommuniate the new multiple dual repre-sentation together with a brief desription of its implementation in this paper,



A pure martingale dual for multiple stopping 3and onsider an in depth numerial study to be more suitable for subsequentwork. The main result, Theorem 2.5, is derived in Setion 2, and the desrip-tion of the simulation proedures is given in Setion 3.2 The multiple stopping problem and its dual representationLet (Zi : i = 0, 1, . . . , T ) be a non-negative stohasti proess in disrete timeon a �ltered probability spae (Ω,F , P ), adapted to some �ltration F := (Fi :
0 ≤ i ≤ T ) whih satis�es

T∑

i=1

E|Zi| <∞.The proess Z may be seen as a (disounted) ash-�ow, whih an investor mayexerise L times, subjeted to the additional onstraint that it is not allowedto exerise more than one right at the same date. The goal of the investor isto maximize his expeted gain by making optimal use of his L exerise rights.This goal may be formalized as a multiple stopping problem.De�nition 2.1 For notational onveniene in our further analysis we extendthe ash-�ow proess in a trivial way by Zi :≡ 0 and Fi :≡ FT for i > T .Let us de�ne for eah �xed 0 ≤ i ≤ T and L, Si(L) as the set of F-stoppingvetors τ := (τ (1), . . . , τ (L)) suh that i ≤ τ (1) and, for all l, 1 < l ≤ L,
τ (l−1) + 1 ≤ τ (l). The multiple stopping problem then omes down to �nd afamily of stopping vetors τ∗i ∈ Si(L) suh that for 0 ≤ i ≤ T,

Ei

L∑

l=1

Zτ∗l
i

= sup
τ∈Si(L)

Ei

L∑

l=1

Zτ (l) , (2.1)where heneforth Ei := EFi
denotes onditional expetation with respet tothe σ-algebra Fi, and where sup is to be understood as essential supremum(if it ranges over an unountable family of random variables). The proess onthe right-hand-side of (2.1) is alled the Snell envelope of Z under L exeriserights and we denote it by Y ∗L
i . In the ase of one exerise right we usuallywrite Y ∗

i := Y ∗1
i . Note in view of De�nition 2.1 that, (a) if i > T then Y ∗L

i = 0for any L ≥ 0, and, (b) if L ≥ T−i+1 then we may trivially take τ∗l
i = i+l−1for 1 ≤ l ≤ L in (2.1).We reall from Bender and Shoenmakers (2006) that the multiple stoppingproblem an be redued to L nested stopping problems with one exerise rightin the following way. Y ∗0 := 0, Y ∗1 is the Snell envelope of Z. For general

L, L ≥ 1, Y ∗L is the Snell envelope of the proess Zi + Ei Y
∗L−1
i+1 (seen asgeneralized ash-�ow) under one exerise right. It is thus natural to de�ne(as in Bender and Shoenmakers (2006)) for eah L = 1, 2, . . . , the stoppingfamily

σ∗L
i = inf{j ≥ i : Zj + Ej Y

∗L−1
j+1 ≥ Y ∗L

j }, i ≥ 0, (2.2)



4 John Shoenmakersi.e. the �rst optimal stopping family for exerising the �rst of L exerise rights.The family of optimal stopping vetors τ∗L
i ∈ Si(L) for the multiple stoppingproblem with L exerise rights and ash-�ow Z is onneted with (2.2) via

τ
∗1,L
i = σ∗L

i ,

τ
∗l+1,L
i = τ

∗l,L−1

σ∗L
i +1

, 1 ≤ l < L. (2.3)The redution (2.2), (2.3) is intuitively lear: It basially says, that the investorhas to hoose the �rst stopping time of the stopping vetor in the followingway: Deide, at time i whether it is better to take the ash-�ow Zi and entera new ontrat with L − 1 exerise rights starting at i + 1, or to keep the Lexerise rights. Then, after entering the stopping problem with L− 1 exeriserights, he proeeds in the same (optimal) way.2.1 Case L = 1; the standard stopping problemIn the ase of one exerise right L = 1 we have the standard stopping problem.Let us reall some well-known fats (e.g. see Neveu (1975)).1. The Snell envelope Y ∗ of Z is the smallest super-martingale that dominates
Z.2. A family of optimal stopping times is given by

τ∗i = inf{j : j ≥ i, Zj ≥ Y ∗
j }, 0 ≤ i ≤ T.In partiular, the above family is the family of �rst optimal stopping timesif several optimal stopping families exist.2.2 Dual representation for the standard stopping problemFor the standard stopping problem, that is one exerise right L = 1, we havethe (additive) dual representation theorem whih we state in a form suitablefor our purposes:Theorem 2.2 Rogers (2002), Haugh and Kogan (2004)If M is the set of all F-martingales, it holds

Y
∗,1
i = Y ∗

i = inf
M∈M

Ei max
i≤j≤T

(Zj +Mi −Mj) (2.4)
= max

i≤j≤T

(
Zj +M∗

i −M∗
j

) a.s. (2.5)with M∗ being the unique Doob martingale of Y ∗, that is Y ∗ = Y ∗
0 +M∗ −A∗where M∗ is a martingale, A∗ is preditable and nondereasing, and M∗

0 =
A∗

0 = 0.For the results in this paper the almost sure statement (2.5) is very impor-tant. Therefore, and beause of its appealing simpliity, let us shortly reallthe proof:



A pure martingale dual for multiple stopping 5Proof For any martingale M we have
Y ∗

i = sup
i≤τ≤T

EiZτ = sup
i≤τ≤T

Ei [Zτ +Mi −Mτ ]

≤ Ei max
i≤j≤T

(Zj +Mi −Mj) .For the martingale M∗ it then holds
Y ∗

i ≤ Ei max
i≤j≤T

(
Zj +M∗

i −M∗
j

)

≤ Ei max
i≤j≤T

(
Zj + Y ∗

i +A∗
i − Y ∗

j −A∗
j

)

≤ Y ∗
i + Ei max

i≤j≤T

(
A∗

i −A∗
j

)
= Y ∗

i ,sine for all j, 0 ≤ j ≤ T, Y ∗
i − EiY

∗
i+1 = A∗

i+1 −A∗
i ≥ 0, and thus

Y ∗
i = Ei max

i≤j≤T

(
Zj +M∗

i −M∗
j

)
. (2.6)Moreover, by

max
i≤j≤T

(
Zj +M∗

i −M∗
j

)
= max

i≤j≤T

(
Zj + Y ∗

i +A∗
i − Y ∗

j −A∗
j

)

≤ Y ∗
i + max

i≤j≤T

(
A∗

i −A∗
j

)
= Y ∗

iand (2.6) we have (2.5).The orner stone for generalizing Theorem 2.2 to the multiple stoppingproblem is the following simple proposition whih is a slight extension of (2.5)in a sense.Proposition 2.3 Let (Zi : 0 ≤ i ≤ T ) be a nonnegative integrable ash-�ow proess with Snell envelope Y ∗ and let Y ∗ = Y ∗
0 +M∗ − A∗ be its Doobdeomposition as in Theorem 2.2. It then holds for eah j, 0 ≤ j < T,

EjY
∗
j+1 = Ej max

j<l≤T

(
Zl −M∗

l +M∗
j

)
= max

j<l≤T

(
Zl −M∗

l +M∗
j

) a.s.Proof For �xed 0 ≤ j < T, we have by (2.5)
Y ∗

j+1 = max
j<l≤T

(
Zl −M∗

l +M∗
j+1

) a.s., (2.7)so on the one hand it holds
EjY

∗
j+1 = Ej max

j<l≤T

(
Zl −M∗

l +M∗
j

)
.By the Doob deomposition of Y ∗ and (2.7), we have

EjY
∗
j+1 = Y ∗

j+1 +M∗
j −M∗

j+1 = max
j<l≤T

(
Zl −M∗

l +M∗
j+1

)
+M∗

j −M∗
j+1

= max
j<l≤T

(
Zl −M∗

l +M∗
j

) a.s.on the other hand.



6 John ShoenmakersRemark 2.4 (i) It is not di�ult to see that a further generalization of Propo-sition 2.3 is not possible in the sense that in general
Ej max

p<l≤T

(
Zl −M∗

l +M∗
j

) a.s.
6= max

p<l≤T

(
Zl −M∗

l +M∗
j

)if p > j. (ii) Proposition 2.3 is related to the analysis of supersolutions in Chenand Glasserman (2007).2.3 Dual representation for the multiple stopping problemWe are now ready for proving the following theorem whih is a natural gener-alization of Theorem 2.2 and Proposition 2.3 to the multiple exerise ase.Theorem 2.5 It holds for all 0 ≤ i ≤ T, L = 1, 2, ...

Y ∗L
i = inf

M(1),...,M(L)∈M
Ei max

i≤j1<···<jL

L∑

k=1

(
Zjk

+M
(k)
jk−1

−M
(k)
jk

) (2.8)
= max

i≤j1<···<jL

L∑

k=1

(
Zjk

+M∗L−k+1
jk−1

−M∗L−k+1
jk

) a.s., (2.9)and in addition
EiY

∗L
i+1 = max

i<j1<···<jL

L∑

k=1

(
Zjk

+M∗L−k+1
jk−1

−M∗L−k+1
jk

) a.s., (2.10)with j0 := i, and where for k = 1, ..., L, M∗k is the Doob martingale of theSnell envelope for k exerise rights. That is
Y ∗k = Y ∗k

0 +M∗k −A∗kwith A∗ preditable, and M∗k
0 = A∗k

0 = 0. In partiular, for eah k, A∗k
i isnondereasing in i.Proof For any set of martingales M (1), ...,M (L) ∈ M we have(with τ (0) := j0 := i),

Y ∗L
i = sup

i≤τ (1)<...<τ (L)

Ei

L∑

k=1

Zτ (k)

= sup
i≤τ (1)<...<τ (L)

Ei

L∑

k=1

(
Zτ (k) +M

(k)

τ (k−1) −M
(k)

τ (k)

)

≤ sup
i≤τ (1)<...<τ (L)

Ei max
i≤j1<···<jL

L∑

k=1

(
Zjk

+M
(k)
jk−1

−M
(k)
jk

)

= Ei max
i≤j1<···<jL

L∑

k=1

(
Zjk

+M
(k)
jk−1

−M
(k)
jk

)
,



A pure martingale dual for multiple stopping 7from whih it follows that Y ∗L
i is less than or equal to the right-hand-side of(2.8). We will next show that this inequality is sharp and that moreover (2.9)and (2.10) hold, by indution on the number of exerise rights L.Due to De�nition 2.1, for all j > T we have Zj ≡ 0, and Mj ≡ MT forany M ∈ M. Thus, for L = 1 the statements ollapse to the statements ofTheorem 2.2 and Proposition 2.3.Now suppose the Theorem holds for L exerise rights. By the Bellman prinipleit holds,

Y ∗L+1
i = max

[
Zi + EiY

∗L
i+1, EiY

∗L+1
i+1

]
,hene Y ∗L+1

i may be seen as the Snell envelope of the ash-�ow Zi + EiY
∗L
i+1under one exerise right. So by the standard dual representation Theorem 2.2(and taking into aount the onventions in De�nition 2.1),

Y ∗L+1
i = max

i≤j1

(
Zj1 + Ej1Y

∗L
j1+1 +M∗L+1

i −M∗L+1
j1

) a.s., (2.11)where M∗L+1 is the Doob martingale of Y ∗L+1
i satisfying M∗L+1

0 = 0. By theindution hypothesis on (2.10) it now follows that
Y ∗L+1

i = max
i≤j1

(
Zj1 +M∗L+1

i −M∗L+1
j1

+ max
j1<p1<···<pL

L∑

k=1

(
Zpk

+M∗L−k+1
pk−1

−M∗L−k+1
pk

))(with p0 := j1)
= max

i≤j1<j2<···<jL+1

L+1∑

k=1

(
Zjk

+M∗L+1−k+1
jk−1

−M∗L+1−k+1
jk

)(with j0 := i). Hene we obtain (2.9) for L + 1 rights. Next, by applyingProposition 2.3 to the ash-�ow Zi + EiY
∗L
i+1, and the indution hypothesis(2.10) for L exerise rights again we obtain,

EiY
∗L+1
i+1 = max

i<j1

(
Zj1 + Ej1Y

∗L
j1+1 +M∗L+1

i −M∗L+1
j1

)

= max
i<j1

(
Zj1 +M∗L+1

i −M∗L+1
j1

+ max
j1<p1<···<pL

L∑

k=1

(
Zpk

+M∗L−k+1
pk−1

−M∗L−k+1
pk

))(with p0 := j1)
= max

i≤j1<···<jL+1

L+1∑

k=1

(
Zjk

+M∗L+1−k+1
jk−1

−M∗L+1−k+1
jk

)hene (2.10) for L + 1 rights. Finally, A∗L+1 is nondereasing as it is thepreditable part of the Snell envelope of the generalized ash�ow Zi +EiY
∗L
i+1.



8 John ShoenmakersRemark 2.6 In a typial appliation of Theorem 2.5 one has i = 0 and L <

T + 1 (the ase L ≥ T − i+ 1 is trivial as already noted in Setion 2.2). Then,obviously, the domain of the maximum operator in (2.9) and (2.10) an berestrited to 0 ≤ j1 < · · · < jL ≤ T and 0 < j1 < · · · < jL ≤ T, respetively.3 Primal-dual Monte Carlo methods for multiple stoppingIn this setion we show in partiular how well known dual approahes for theone exerise ase suh as the primal-dual algorithm of Andersen and Broadie(2004) may be generalized to the multiple exerise ase. In this ontext weassume that the ash-�ow proess Z is of the form (with slight abuse of nota-tion)
Zi = Zi(Xi) 0 ≤ i ≤ T, (3.1)for some underlying (possibly high-dimensional) Markovian proess X. More-over it is assumed that we are given approximations Y (k)

i of Y ∗k
i , k = 1, ..., L,whih are of the form

Y
(k)
i = Y

(k)
i (Xi), 0 ≤ i ≤ T, 1 ≤ k ≤ L. (3.2)Remark 3.1 As an immediate onsequene of (3.1) the Snell envelopes are alsoof the form

Y ∗k
i = Y ∗k

i (Xi), k = 1, ..., L, (3.3)so (3.2) is a quite natural assumption.It is meanwhile industrial standard to obtain approximations of the form(3.2) by regression methods. For the single exerise ase (Bermudan derivativesfor example) the methods of Longsta� and Shwartz (2001) and Tsitsiklis andVan Roy (2001) are quite popular, and for the multiple exerise ase (e.g. swingoptions) one may apply these methods reursively as explained in Setion 3.1.One generally obtains in this way sub-optimal exerise strategies, hene lowerbounds for the optimal value. In Setion 3.2 it is desribed how to inorporate(e.g. regression based) approximations for the Snell envelope in a Monte Carloproedure for dual upper bounds.3.1 Reap of regression based approahesLet us reap brie�y how well-known regression methods suh as the methodof Longsta� and Shwartz (2001) and Tsitsiklis and Van Roy (2001) may bereursively applied to the multiple exerise problem. As these methods arebroadly known, we do not explain them here in detail but merely reall thatfor the single exerise ase, both methods end up with an expansion of theontinuation funtion in terms of a properly hosen and 'rih enough' system



A pure martingale dual for multiple stopping 9of basis funtions on the state spae. That is, for an approximation of the(single exerise) Snell envelope one obtains formally
C∗

i (Xi) := Ei Y
∗
i+1(Xi+1) ≈

R∑

r=0

βirψr(Xi) =: Ci(Xi), 0 ≤ i < T,where (ψr : R
d → R

d, r = 0, 1, 2, ...) is a (ountable) set of basis funtionsand R some number whih determines the number of basis funtions involvedin the regression. (Note that due to De�nition 2.1, CT :≡ 0.) The oe�ients
(βir) are obtained by a regression proedure applied to a Monte Carlo sampleof trajetories of X. In Clement et al. (2002) it is analyzed that for a suitableset of basis funtions under suitable onditions Ci → C∗

i , when the numberof trajetories and the number of basis funtions involved go to in�nity in asuitable relationship.Appliation of the above regression method to the multiple exerise prob-lem is desribed by the following indutive sheme:� Step 1 : Construt with our favorite regression method for 0 ≤ i ≤ T(approximations to) the ontinuation funtions C(1)
i (·) of the single exeriseproblem.� Step k : Let the ontinuation funtions C(p)

i (·), 0 ≤ i ≤ T, of the (approx-imative) multiple exerise problem for p exerise rights be onstruted forall 1 ≤ p ≤ k ≤ L, that is,
C

∗p
i (Xi) := Ei Y

∗p
i+1(Xi+1) ≈

R∑

r=0

β
(p)
ir ψr(Xi) =: C

(p)
i (Xi)(with C(p)

T :≡ 0). Then,� If k < L, de�ne the ash-�ow proess
Z̃i(Xi) := Zi(Xi) + C

(k)
i (Xi)with C

(k)
T :≡ 0, and apply our favorite regression method to obtain(approximations to) the ontinuation funtion C̃i(Xi) orresponding tothe Snell envelope of Z̃i under one exerise right. Then set

C
(k+1)
i (Xi) := C̃i(Xi), 0 ≤ i ≤ T.� if k = L, then stop.Indutive appliation of the above sheme thus yields a system of (approxi-mate) ontinuation funtions C(k)

i (·), 1 ≤ k ≤ L, 1 ≤ i ≤ T. At this stage onemay take as approximations for the Snell envelopes (Y ∗k
i : 1 ≤ i ≤ T, 1 ≤ k ≤

L),

Y
(k)
i (Xi) := max[Zi(Xi) + C

(k−1)
i (Xi), C

(k)
i (Xi)] (3.4)with C(0) :≡ 0.



10 John ShoenmakersIt is important to note that while approximations (3.4) may be aurate,they an be biased from above or below. For bounding the Snell envelopesfrom above and below later on, we also need lower bounds however. For thiswe onstrut for eah k, 1 ≤ k ≤ L, a system of (sub-optimal) exerise poliies
(τp,k

i : 1 ≤ i ≤ T, 1 ≤ p ≤ k) as follows. De�ne τ0,k
i := i−1, and for 0 < p ≤ k,

τ
p,k
i = inf{j : τp−1,k

i < j ≤ T, Zj(Xj) + C
(k−p)
j (Xi) ≥ C

(k−p+1)
j (Xj)}. (3.5)Then the proess de�ned by

Y
(k)
i := Ei

k∑

p=1

Z
τ

p,k

i

(3.6)due to the stopping family (3.5) is Xi measurable and is a lower bound proess,i.e. Y (k)
i (Xi) ≤ Y ∗k

i (Xi).Obviously, the stopping family (τp,k
i ) satis�es for eah

k the onsisteny relation
τ

1,k
i > i =⇒ τ

p,k
i = τ

p,k
i+1, 1 ≤ p ≤ k. (3.7)Due to (3.7) we have in addition,

Y
(k)
i 1{τ

1,k

i
>i} = 1{τ

1,k

i
>i}Ei

k∑

p=1

Z
τ

p,k

i

= 1{τ
1,k

i
>i}Ei1{τ

1,k

i
>i}

k∑

p=1

Z
τ

p,k

i

= 1{τ
1,k

i
>i}Ei

k∑

p=1

Z
τ

p,k

i+1
= 1{τ

1,k

i
>i}EiEi+1

k∑

p=1

Z
τ

p,k

i+1

= 1{τ
1,k

i
>i}EiY

(k)
i+1, (3.8)whih is in the ase L = 1 a orner stone of the primal-dual algorithm (Ander-sen and Broadie, 2004). The lower bounds Y may be onstruted by a standard(non-nested) Monte Carlo simulation using (3.5).3.2 Dual simulation proedures for the multiple stopping problemFor any approximation Y (k), 1 ≤ k ≤ L, for example obtained from (3.4) or(3.6), we may onstrut the Doob martingale M (k) of Y (k), via

M
(k)
i −M

(k)
i−1 = Y

(k)
i − Ei−1Y

(k)
i , 1 < i ≤ T,



A pure martingale dual for multiple stopping 11and onsider for eah i, 0 ≤ i ≤ T, the upper bound
Y

up,L
i := Ei max

i≤j1<···<jL

L∑

k=1

(
Zjk

+M
(L−k+1)
jk−1

−M
(L−k+1)
jk

)

= Ei max
i≤j1<···<jL

L∑

k=1


Zjk

−

jk∑

r=jk−1+1

Y (L−k+1)
r +

jk∑

r=jk−1+1

Er−1Y
(L−k+1)
r




= Ei max
i≤j1<···<jL

L∑

k=1

(
Zjk

+ Y
(L−k+1)
jk−1

− Y
(L−k+1)
jk

+

jk−1∑

r=jk−1

(
ErY

(L−k+1)
r+1 − Y (L−k+1)

r

)



= Y
(L)
i + Ei max

i≤j1<···<jL

L∑

k=1

(
Zjk

+ Y
(L−k)
jk

− Y
(L−k+1)
jk

+

jk−1∑

r=jk−1

(
ErY

(L−k+1)
r+1 − Y (L−k+1)

r

)


 =: Y
(L)
i +∆

(L)
i (3.9)

(note that Y (0) ≡ 0). The following proposition gives an estimate for thedi�erene of the upper bound (3.9) due to an approximation to the Snellenvelope and the approximation itself.Proposition 3.2 W.l.o.g. we may assume that Y (k)
T = Y ∗k

T = ZT , 1 ≤ k ≤ L.It then holds for 0 ≤ i ≤ T,

∆
(L)
i = Y

up,L
i − Y

(L)
i (3.10)

≤ Ei

L∑

k=1

T−1∑

r=i

[(
Zr + ErY

(k−1)
r+1 − Y (k)

r

)+

+
(
ErY

(k)
r+1 − Y (k)

r

)+
]
.



12 John ShoenmakersProof From (3.9) we obtain by rearranging terms,
Y

up,L
i − Y

(L)
i = Ei max

i≤j1<···<jL

(
L∑

k=1

(
Zjk

+ Ejk
Y

(L−k)
jk+1 − Y

(L−k+1)
jk

)

+

j1−1∑

r=i

(
ErY

(L)
r+1 − Y (L)

r

)
+

L∑

k=1

(
Y

(L−k)
jk

− Ejk
Y

(L−k)
jk+1

)
+

L∑

k=2

(
Ejk−1

Y
(L−k+1)
jk−1+1 − Y

(L−k+1)
jk−1

)
+

L∑

k=2

jk−1∑

r=jk−1+1

(
ErY

(L−k+1)
r+1 − Y (L−k+1)

r

)




= Ei max
i≤j1<···<jL

(
L∑

k=1

(
Zjk

+ Ejk
Y

(L−k)
jk+1 − Y

(L−k+1)
jk

)

+

j1−1∑

r=i

(
ErY

(L)
r+1 − Y (L)

r

)
+

L−1∑

k=1

jk+1−1∑

r=jk+1

(
ErY

(L−k)
r+1 − Y (L−k)

r

)


 ,and then the statement easily follows (mind the onventions in De�nition 2.1).Remark 3.3 If in Proposition 3.2 the approximation Y (L)
i is a lower bound,i.e. Y (L)

i ≤ Y ∗L
i , we have in (3.10) on the other hand 0 ≤ Y

up,L
i − Y

(L)
i . If inpartiular Y (k)

· = Y ∗k
· for 1 ≤ k ≤ L, the right-hand-side of inequality (3.10)is zero, so then (3.10) yields Y up,L

i = Y
(L)
i = Y ∗k

i . In this sense the estimate(3.10) is sharp. Proposition 3.2 may be onsidered as a generalization of asimilar result for the ase L = 1 in Andersen and Broadie (2004) and Kolodkoand Shoenmakers (2004).For onstruting multiple dual upper bounds we now have two options: the�rst one is a dual proedure based on approximations to the Snell envelope(for example (3.4)) and the seond one is a dual proedure based on approx-imations to optimal stopping times (for example (3.6)). The proedures arebrie�y desribed below (for a more algorithmi desription see the preprintversion of this paper, Shoenmakers (2009)).Proedure based on approximations to the Snell envelopeFor arbitrary but given approximations to the Snell envelopes Y (k), 1 ≤ k ≤ L((3.4) for example), the implementation of (3.9) within the Markovian frame-work around (3.1)�(3.3) naturally leads to a (one-degree) nested Monte Carlosimulation. Let us take w.l.o.g. i = 0 and assume L ≤ T + 1 to exlude triv-ialities. In fat, by splitting of the (given) approximation Y (L)
0 in (3.9) , oneneeds to simulate the di�erene term ∆

(L)
0 . As a rule, this will redue thevariane of the estimation remarkably. In priniple, the orresponding MonteCarlo simulation may be organized as follows:



A pure martingale dual for multiple stopping 13Develop in a straightforward way a (formally non-nested) Monte Carlo proe-dure for ∆(L)
0 in whih, besides the given funtions Y (l)

r (X) (being approxima-tions to the Snell envelope), the onditional expetation ErY
(l)
r+1 is generiallydelared as (an at this level known) funtion of the underlying state X, exer-ise date r, and number of exerise possibilities l. Next, the implementationof this onditional expetation funtion itself requires a one-step inner sim-ulation proedure starting at X. After eah one-step inner simulation, from

X inner
r = X to X inner

r+1 say, one reads the value of the given (approximate) Snellenvelope Y (l)
r+1(X

inner
r+1 ) and then takes the average over the inner simulations.For an illustration in the ase L = 1, T = 3, see Figure 1, upper piture.Remark 3.4 It should be noted that, sine for any (�nite) set of random vari-ables (ςi : i ∈ I) it holds Emaxi∈I ςi ≥ maxi∈I Eςi, it follows analogously toAndersen and Broadie (2004) (and also Kolodko and Shoenmakers (2004))that the above proedure yields a Monte Carlo estimate of Y up,L

0 whih isbiased up, i.e. the expetation of this estimate is an upper bound.Remark 3.5 We underline that the above proedure is essentially di�erent fromthe one in Meinshausen and Hambly (2004) as it may be applied diretly to anyapproximation to the Snell-envelope (given in losed form for instane) andthus may be regarded as 'stopping time free'. In ontrast, the Meinshausenand Hambly (2004) method always involves a set of 'good' stopping times forthe multiple stopping problem besides a set of 'good' martingales.Remark 3.6 In view of Proposition 3.2 we may modify the Monte Carlo pro-edure in an obvious way to obtain a proedure whih estimates the upperbound
Y

(L)
0 +Ei

L∑

k=1

T−1∑

r=0

[(
Zr + ErY

(k−1)
r+1 − Y (k)

r

)+

+
(
ErY

(k)
r+1 − Y (k)

r

)+
]
≥ Y

up,L
0 .Clearly, in this method no path-wise maximization proedure is involved. Theprie one may have to pay however is a higher upper bound. But, due toRemark 3.3 this upper bound may be still tight if the input approximationsof the Snell envelopes are good enough.Proedure based on approximations to optimal stopping timesLet us now onsider an arbitrary but given family of (sub-optimal) exerisepoliies (τp,k

i : 1 ≤ i ≤ T, 1 ≤ p ≤ k), 1 ≤ k ≤ L, whih satis�es theonsisteny ondition (3.7) (for example the one obtained from (3.5)). Suh afamily yields by (3.6) a set of lower approximations to the Snell envelope for



14 John Shoenmakerswhih, by (3.7), (3.9) (for i = 0) takes the form,
Y

up,L
0 := Y

(L)
0 + E0 max

0≤j1<···<jL≤T

L∑

k=1

(
Zjk

+ Y
(L−k)
jk

− Y
(L−k+1)
jk

(3.11)
+

jk−1∑

r=jk−1

1{τ
1,L−k+1
r =r}

(
ErY

(L−k+1)
r+1 − Y (L−k+1)

r

)


 =: Y
(L)
0 +∆

(L)
0 ,where the Y (l)

r are given by (3.6), and
ErY

(l)
r+1 = Er

l∑

p=1

Z
τ

p,l

r+1
. (3.12)Naturally, the implementation of (3.11) leads to a nested Monte Carlo pro-edure again, where the lower bound Y (L)

0 an be aurately omputed by astandard (non-nested) Monte Carlo simulation, using stopping rule (3.5) anda relatively large sample size. In the ase L = 1 this usually takes out about90% of the variane, depending on the quality of the stopping rule of ourse.What is left is the estimation of the nonnegative gap term (see Remark 3.3)
∆

(L)
0 = Y

up,L
0 − Y

(L)
0 .Just as for the previous simulation proedure (based on approximations tothe Snell envelope) we may develop a (formally non-nested) Monte Carlo pro-edure for ∆(L)

0 in whih the lower approximation to the Snell envelope Y (l)
rand the onditional expetation ErY

(l)
r+1 is generially delared as (an at thislevel known) funtion of the underlying state X, exerise date r, and numberof exerise possibilities l. Here the implementation of Y (l)

r requires an innersimulation proedure based on (3.6) where, in ontrast to the previous method,eah inner simulation ontinuous until all the stopping rules τp,l
r , 1 ≤ p ≤ l,have stopped. Likewise, the implementation of the funtion ErY

(l)
r+1 requiresinner simulations based on (3.12) where eah inner simulation ontinuous untilall the stopping rules τp,l

r+1, 1 ≤ p ≤ l, have stopped. Aording to (3.11) thelatter funtion will only be alled in the ase where τ1,l
r = r. For an illustrationin the ase L = 1, T = 3, see Figure 1, lower piture.Remark 3.7 (i) Remark 3.4 applies again; the above proedure yields a MonteCarlo estimate of Y up,L

0 whih is biased up. (ii) For L = 1, representation(3.11) and the orresponding Monte Carlo proedure ollapses to the well-known Andersen-Broadie representation and Andersen-Broadie primal-dualalgorithm, respetively. Indeed, for L = 1 we get
Y

up,L
0 (X0) = Y 0(X0) + E0 max

0≤j≤T

(
Zj − Y j +

j−1∑

r=0

1{τ=r}

(
ErY r+1 − Y r

)
)(3.13)



A pure martingale dual for multiple stopping 15with the well demonstrated advantage that the term Y 0(X0) may be omputedusing an aurate non-nested Monte Carlo simulation, and that the remaininggap term has typially low variane.Remark 3.8 Given the suess of the dual representation in the single exerisease as reported in the literature, it will be obvious that analogue simulationproedures for the multiple ase as suggested in this paper are potentiallypromising as well. A detailed desription and numerial study (inluding aomparison with the method of Meinshausen and Hambly (2004)) is the sub-jet of a subsequent artile whih is urrently in preparation.Remark 3.9 In the ase where the proess X is adapted to a Brownian �l-tration it looks feasible to onstrut a linear Monte Carlo algorithm for themultiple dual in a similar way as presented in Belomestny et al. (2009a). Thismight be done in future work.Remark 3.10 One may wonder whether it is possible to generalize in a similarway the multipliative dual approah of Jamshidian (2007) to the multipleexerise ase. Anyway, the additive multiple dual as onstruted in this artileinherits the nie almost sure property of the standard additive dual represen-tation when the optimal martingale is plugged in. The multipliative dual failsto have this property, see also the disussion in Chen and Glasserman (2007)(below Prop. 6.8) on this.Aknowledgements The author is grateful to the organizers Mark Broadie, FriedrihHubalek, Damien Lamberton, Peter Laurene, and the partiipants of the 'Conferene onNumerial Methods for Amerian and Bermudan Options' at Vienna, Otober 2008. In thedisussion after Christian Bender's talk on multiple exerise options, Chris Rogers did aguess how a 'pure martingale' multiple dual might look like. His guess was
Y ∗L
0 = inf

M∈M,
M0=0

E0 max
0≤j1<···<jL≤T

L
X

k=1

`

Zjk
− Mjk

´

.Inspired to examine this guess the present paper resulted. The author is also gratefulto Christian Bender who shortened the author's proof of Proposition 2.3, and AnastasiaKolodko for onstrutive remarks.ReferenesAleksandrov, N., Hambly, B.M.: A dual approah to multipleexerise option problems under onstraints. Preprint (2008).http://people.maths.ox.a.uk/hambly/PDF/Papers/oms2rev.pdfAndersen, L.: A Simple Approah to the Priing of Bermudan Swaptions in aMultifator LIBOR Market Model. J. Comp. Finane 3, 5�32 (1999)Andersen, L., Broadie, M.: A primal-dual simulation algorithm for priingmultidimensional Amerian options. Management Sienes 50, No. 9, 1222�1234 (2004)
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210 T=3

210 T=3Fig. 3.1 Illustration for L = 1, T = 3, of inner simulations (dashed lines) from a �xedtrajetory (solid line) for onstruting an upper bound due to an approximation to theSnell envelope (upper piture), and due to an approximation to the optimal strategy, heneoptimal exerise region (above the bold dashed line, lower piture).Belomestny, D., Bender, C., Shoenmakers, J.: True upper bounds for Bermu-dan produts via non-nested Monte Carlo. Math. Finane 19, No. 1 , 53�71(2009a)Belomestny, D., Milstein, G.N.: Monte Carlo evaluation of Amerian optionsusing onsumption proesses. Int. J. Theor. Appl. Finane 9, No. 4, 1�27(2006)Belomestny, D., Milstein, G.N., Spokoiny, V.: Regression methods in priingAmerian and Bermudan options using onsumption proesses. Quant. Fin.9, No. 3, 315�327 (2009b)Bender, C.: Dual Priing of Multi-Exerise Options under Volume Constraints.Preprint (2008). Finane Stoh. to appear.
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