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2 John S
hoenmakersbased methods are 
alled for. In this respe
t the last de
ades have seen severalbreakthroughs for standard Ameri
an (or Bermudan style) derivatives, hen
ethe standard stopping problem. Among the most popular ones are the regres-sion based methods of Longsta� and S
hwartz (2001), Tsitsiklis and Van Roy(2001), and alternative approa
hes by Andersen (1999), Broadie and Glasser-man (2004) and others. These methods allow for the 
omputation of a lowerapproximation of the pri
e of the produ
t under 
onsideration by straightfor-ward (non-nested) Monte Carlo simulation when the underlying dimension isnot too high. More re
ently, Kolodko and S
hoenmakers (2006) proposed apoli
y improvement pro
edure and it is demonstrated in Bender et al. (2006)and Bender et al. (2008) that this method 
an be e�e
tively 
ombined withLongsta� and S
hwartz (2001) for very high-dimensional produ
ts. In Benderand S
hoenmakers (2006) this poli
y iteration method is extended to multi-ple stopping problems. Evaluation of produ
ts with multiple exer
ise rights(on a low dimensional underlying) is also possible by using trinomial forests(Jaillet et al., 2004). In Carmona and Touzi (2008) a Malliavin 
al
ulus basedapproa
h for the valuation of swing options is presented.In Rogers (2002) and Haugh and Kogan (2004) a dual approa
h is devel-oped (inspired by Davis and Karatzas (1994)) whi
h allows for 
omputing tightupper bounds for Ameri
an style produ
ts. Jamshidian (2007) proposed a mul-tipli
ative version of the dual representation, Belomestny and Milstein (2006),and Belomestny et al. (2009b) proposed to 
ompute upper bounds based on the
on
ept of 
onsumption pro
esses. E�e
tive algorithms for dual upper boundsare proposed in Andersen and Broadie (2004), Kolodko and S
hoenmakers(2004), and Belomestny et al. (2009a). For produ
ts with multiple exer
isepossibilities Meinshausen and Hambly (2004) found a dual representation forthe marginal ex
ess value of the produ
t due to one additional exer
ise right.In this representation an in�mum over a family of stopping times and a familyof martingales is involved. Generalizations of this method to multiple exer-
ise produ
ts under volume 
onstraints are developed in Bender (2008) andAleksandrov and Hambly (2008). While the mentioned methods for multipleexer
ise produ
ts have shown to be feasible in pra
ti
e, the question whether a'pure martingale' dual representation for the multiple stopping problem existsas a natural extension of the dual representation for the single exer
ise 
ase,in terms of an in�mum over martingales (only), was still open. The main re-sult in this paper is su
h a dual representation and so �lls this gap. Moreoverwe propose Monte Carlo simulation methods for this representation, whi
hrequire at most one degree of nesting, just as in the one-exer
ise 
ase. As su
hthe proposed pro
edures are natural extensions of the 
orresponding ones forthe single exer
ise 
ase. In parti
ular, one of them may be seen as a naturalgeneralization of the primal-dual approa
h in Andersen and Broadie (2004).It is more or less 
lear that the numeri
al potential of the proposed simulationpro
edures for the multiple dual is inherited from the numeri
al qualities ofthe methods for the standard (additive) dual extensively do
umented in theliterature. Therefore, we prefer to 
ommuni
ate the new multiple dual repre-sentation together with a brief des
ription of its implementation in this paper,



A pure martingale dual for multiple stopping 3and 
onsider an in depth numeri
al study to be more suitable for subsequentwork. The main result, Theorem 2.5, is derived in Se
tion 2, and the des
rip-tion of the simulation pro
edures is given in Se
tion 3.2 The multiple stopping problem and its dual representationLet (Zi : i = 0, 1, . . . , T ) be a non-negative sto
hasti
 pro
ess in dis
rete timeon a �ltered probability spa
e (Ω,F , P ), adapted to some �ltration F := (Fi :
0 ≤ i ≤ T ) whi
h satis�es

T∑

i=1

E|Zi| <∞.The pro
ess Z may be seen as a (dis
ounted) 
ash-�ow, whi
h an investor mayexer
ise L times, subje
ted to the additional 
onstraint that it is not allowedto exer
ise more than one right at the same date. The goal of the investor isto maximize his expe
ted gain by making optimal use of his L exer
ise rights.This goal may be formalized as a multiple stopping problem.De�nition 2.1 For notational 
onvenien
e in our further analysis we extendthe 
ash-�ow pro
ess in a trivial way by Zi :≡ 0 and Fi :≡ FT for i > T .Let us de�ne for ea
h �xed 0 ≤ i ≤ T and L, Si(L) as the set of F-stoppingve
tors τ := (τ (1), . . . , τ (L)) su
h that i ≤ τ (1) and, for all l, 1 < l ≤ L,
τ (l−1) + 1 ≤ τ (l). The multiple stopping problem then 
omes down to �nd afamily of stopping ve
tors τ∗i ∈ Si(L) su
h that for 0 ≤ i ≤ T,

Ei

L∑

l=1

Zτ∗l
i

= sup
τ∈Si(L)

Ei

L∑

l=1

Zτ (l) , (2.1)where hen
eforth Ei := EFi
denotes 
onditional expe
tation with respe
t tothe σ-algebra Fi, and where sup is to be understood as essential supremum(if it ranges over an un
ountable family of random variables). The pro
ess onthe right-hand-side of (2.1) is 
alled the Snell envelope of Z under L exer
iserights and we denote it by Y ∗L
i . In the 
ase of one exer
ise right we usuallywrite Y ∗

i := Y ∗1
i . Note in view of De�nition 2.1 that, (a) if i > T then Y ∗L

i = 0for any L ≥ 0, and, (b) if L ≥ T−i+1 then we may trivially take τ∗l
i = i+l−1for 1 ≤ l ≤ L in (2.1).We re
all from Bender and S
hoenmakers (2006) that the multiple stoppingproblem 
an be redu
ed to L nested stopping problems with one exer
ise rightin the following way. Y ∗0 := 0, Y ∗1 is the Snell envelope of Z. For general

L, L ≥ 1, Y ∗L is the Snell envelope of the pro
ess Zi + Ei Y
∗L−1
i+1 (seen asgeneralized 
ash-�ow) under one exer
ise right. It is thus natural to de�ne(as in Bender and S
hoenmakers (2006)) for ea
h L = 1, 2, . . . , the stoppingfamily

σ∗L
i = inf{j ≥ i : Zj + Ej Y

∗L−1
j+1 ≥ Y ∗L

j }, i ≥ 0, (2.2)



4 John S
hoenmakersi.e. the �rst optimal stopping family for exer
ising the �rst of L exer
ise rights.The family of optimal stopping ve
tors τ∗L
i ∈ Si(L) for the multiple stoppingproblem with L exer
ise rights and 
ash-�ow Z is 
onne
ted with (2.2) via

τ
∗1,L
i = σ∗L

i ,

τ
∗l+1,L
i = τ

∗l,L−1

σ∗L
i +1

, 1 ≤ l < L. (2.3)The redu
tion (2.2), (2.3) is intuitively 
lear: It basi
ally says, that the investorhas to 
hoose the �rst stopping time of the stopping ve
tor in the followingway: De
ide, at time i whether it is better to take the 
ash-�ow Zi and entera new 
ontra
t with L − 1 exer
ise rights starting at i + 1, or to keep the Lexer
ise rights. Then, after entering the stopping problem with L− 1 exer
iserights, he pro
eeds in the same (optimal) way.2.1 Case L = 1; the standard stopping problemIn the 
ase of one exer
ise right L = 1 we have the standard stopping problem.Let us re
all some well-known fa
ts (e.g. see Neveu (1975)).1. The Snell envelope Y ∗ of Z is the smallest super-martingale that dominates
Z.2. A family of optimal stopping times is given by

τ∗i = inf{j : j ≥ i, Zj ≥ Y ∗
j }, 0 ≤ i ≤ T.In parti
ular, the above family is the family of �rst optimal stopping timesif several optimal stopping families exist.2.2 Dual representation for the standard stopping problemFor the standard stopping problem, that is one exer
ise right L = 1, we havethe (additive) dual representation theorem whi
h we state in a form suitablefor our purposes:Theorem 2.2 Rogers (2002), Haugh and Kogan (2004)If M is the set of all F-martingales, it holds

Y
∗,1
i = Y ∗

i = inf
M∈M

Ei max
i≤j≤T

(Zj +Mi −Mj) (2.4)
= max

i≤j≤T

(
Zj +M∗

i −M∗
j

) a.s. (2.5)with M∗ being the unique Doob martingale of Y ∗, that is Y ∗ = Y ∗
0 +M∗ −A∗where M∗ is a martingale, A∗ is predi
table and nonde
reasing, and M∗

0 =
A∗

0 = 0.For the results in this paper the almost sure statement (2.5) is very impor-tant. Therefore, and be
ause of its appealing simpli
ity, let us shortly re
allthe proof:



A pure martingale dual for multiple stopping 5Proof For any martingale M we have
Y ∗

i = sup
i≤τ≤T

EiZτ = sup
i≤τ≤T

Ei [Zτ +Mi −Mτ ]

≤ Ei max
i≤j≤T

(Zj +Mi −Mj) .For the martingale M∗ it then holds
Y ∗

i ≤ Ei max
i≤j≤T

(
Zj +M∗

i −M∗
j

)

≤ Ei max
i≤j≤T

(
Zj + Y ∗

i +A∗
i − Y ∗

j −A∗
j

)

≤ Y ∗
i + Ei max

i≤j≤T

(
A∗

i −A∗
j

)
= Y ∗

i ,sin
e for all j, 0 ≤ j ≤ T, Y ∗
i − EiY

∗
i+1 = A∗

i+1 −A∗
i ≥ 0, and thus

Y ∗
i = Ei max

i≤j≤T

(
Zj +M∗

i −M∗
j

)
. (2.6)Moreover, by

max
i≤j≤T

(
Zj +M∗

i −M∗
j

)
= max

i≤j≤T

(
Zj + Y ∗

i +A∗
i − Y ∗

j −A∗
j

)

≤ Y ∗
i + max

i≤j≤T

(
A∗

i −A∗
j

)
= Y ∗

iand (2.6) we have (2.5).The 
orner stone for generalizing Theorem 2.2 to the multiple stoppingproblem is the following simple proposition whi
h is a slight extension of (2.5)in a sense.Proposition 2.3 Let (Zi : 0 ≤ i ≤ T ) be a nonnegative integrable 
ash-�ow pro
ess with Snell envelope Y ∗ and let Y ∗ = Y ∗
0 +M∗ − A∗ be its Doobde
omposition as in Theorem 2.2. It then holds for ea
h j, 0 ≤ j < T,

EjY
∗
j+1 = Ej max

j<l≤T

(
Zl −M∗

l +M∗
j

)
= max

j<l≤T

(
Zl −M∗

l +M∗
j

) a.s.Proof For �xed 0 ≤ j < T, we have by (2.5)
Y ∗

j+1 = max
j<l≤T

(
Zl −M∗

l +M∗
j+1

) a.s., (2.7)so on the one hand it holds
EjY

∗
j+1 = Ej max

j<l≤T

(
Zl −M∗

l +M∗
j

)
.By the Doob de
omposition of Y ∗ and (2.7), we have

EjY
∗
j+1 = Y ∗

j+1 +M∗
j −M∗

j+1 = max
j<l≤T

(
Zl −M∗

l +M∗
j+1

)
+M∗

j −M∗
j+1

= max
j<l≤T

(
Zl −M∗

l +M∗
j

) a.s.on the other hand.



6 John S
hoenmakersRemark 2.4 (i) It is not di�
ult to see that a further generalization of Propo-sition 2.3 is not possible in the sense that in general
Ej max

p<l≤T

(
Zl −M∗

l +M∗
j

) a.s.
6= max

p<l≤T

(
Zl −M∗

l +M∗
j

)if p > j. (ii) Proposition 2.3 is related to the analysis of supersolutions in Chenand Glasserman (2007).2.3 Dual representation for the multiple stopping problemWe are now ready for proving the following theorem whi
h is a natural gener-alization of Theorem 2.2 and Proposition 2.3 to the multiple exer
ise 
ase.Theorem 2.5 It holds for all 0 ≤ i ≤ T, L = 1, 2, ...

Y ∗L
i = inf

M(1),...,M(L)∈M
Ei max

i≤j1<···<jL

L∑

k=1

(
Zjk

+M
(k)
jk−1

−M
(k)
jk

) (2.8)
= max

i≤j1<···<jL

L∑

k=1

(
Zjk

+M∗L−k+1
jk−1

−M∗L−k+1
jk

) a.s., (2.9)and in addition
EiY

∗L
i+1 = max

i<j1<···<jL

L∑

k=1

(
Zjk

+M∗L−k+1
jk−1

−M∗L−k+1
jk

) a.s., (2.10)with j0 := i, and where for k = 1, ..., L, M∗k is the Doob martingale of theSnell envelope for k exer
ise rights. That is
Y ∗k = Y ∗k

0 +M∗k −A∗kwith A∗ predi
table, and M∗k
0 = A∗k

0 = 0. In parti
ular, for ea
h k, A∗k
i isnonde
reasing in i.Proof For any set of martingales M (1), ...,M (L) ∈ M we have(with τ (0) := j0 := i),

Y ∗L
i = sup

i≤τ (1)<...<τ (L)

Ei

L∑

k=1

Zτ (k)

= sup
i≤τ (1)<...<τ (L)

Ei

L∑

k=1

(
Zτ (k) +M

(k)

τ (k−1) −M
(k)

τ (k)

)

≤ sup
i≤τ (1)<...<τ (L)

Ei max
i≤j1<···<jL

L∑

k=1

(
Zjk

+M
(k)
jk−1

−M
(k)
jk

)

= Ei max
i≤j1<···<jL

L∑

k=1

(
Zjk

+M
(k)
jk−1

−M
(k)
jk

)
,



A pure martingale dual for multiple stopping 7from whi
h it follows that Y ∗L
i is less than or equal to the right-hand-side of(2.8). We will next show that this inequality is sharp and that moreover (2.9)and (2.10) hold, by indu
tion on the number of exer
ise rights L.Due to De�nition 2.1, for all j > T we have Zj ≡ 0, and Mj ≡ MT forany M ∈ M. Thus, for L = 1 the statements 
ollapse to the statements ofTheorem 2.2 and Proposition 2.3.Now suppose the Theorem holds for L exer
ise rights. By the Bellman prin
ipleit holds,

Y ∗L+1
i = max

[
Zi + EiY

∗L
i+1, EiY

∗L+1
i+1

]
,hen
e Y ∗L+1

i may be seen as the Snell envelope of the 
ash-�ow Zi + EiY
∗L
i+1under one exer
ise right. So by the standard dual representation Theorem 2.2(and taking into a

ount the 
onventions in De�nition 2.1),

Y ∗L+1
i = max

i≤j1

(
Zj1 + Ej1Y

∗L
j1+1 +M∗L+1

i −M∗L+1
j1

) a.s., (2.11)where M∗L+1 is the Doob martingale of Y ∗L+1
i satisfying M∗L+1

0 = 0. By theindu
tion hypothesis on (2.10) it now follows that
Y ∗L+1

i = max
i≤j1

(
Zj1 +M∗L+1

i −M∗L+1
j1

+ max
j1<p1<···<pL

L∑

k=1

(
Zpk

+M∗L−k+1
pk−1

−M∗L−k+1
pk

))(with p0 := j1)
= max

i≤j1<j2<···<jL+1

L+1∑

k=1

(
Zjk

+M∗L+1−k+1
jk−1

−M∗L+1−k+1
jk

)(with j0 := i). Hen
e we obtain (2.9) for L + 1 rights. Next, by applyingProposition 2.3 to the 
ash-�ow Zi + EiY
∗L
i+1, and the indu
tion hypothesis(2.10) for L exer
ise rights again we obtain,

EiY
∗L+1
i+1 = max

i<j1

(
Zj1 + Ej1Y

∗L
j1+1 +M∗L+1

i −M∗L+1
j1

)

= max
i<j1

(
Zj1 +M∗L+1

i −M∗L+1
j1

+ max
j1<p1<···<pL

L∑

k=1

(
Zpk

+M∗L−k+1
pk−1

−M∗L−k+1
pk

))(with p0 := j1)
= max

i≤j1<···<jL+1

L+1∑

k=1

(
Zjk

+M∗L+1−k+1
jk−1

−M∗L+1−k+1
jk

)hen
e (2.10) for L + 1 rights. Finally, A∗L+1 is nonde
reasing as it is thepredi
table part of the Snell envelope of the generalized 
ash�ow Zi +EiY
∗L
i+1.



8 John S
hoenmakersRemark 2.6 In a typi
al appli
ation of Theorem 2.5 one has i = 0 and L <

T + 1 (the 
ase L ≥ T − i+ 1 is trivial as already noted in Se
tion 2.2). Then,obviously, the domain of the maximum operator in (2.9) and (2.10) 
an berestri
ted to 0 ≤ j1 < · · · < jL ≤ T and 0 < j1 < · · · < jL ≤ T, respe
tively.3 Primal-dual Monte Carlo methods for multiple stoppingIn this se
tion we show in parti
ular how well known dual approa
hes for theone exer
ise 
ase su
h as the primal-dual algorithm of Andersen and Broadie(2004) may be generalized to the multiple exer
ise 
ase. In this 
ontext weassume that the 
ash-�ow pro
ess Z is of the form (with slight abuse of nota-tion)
Zi = Zi(Xi) 0 ≤ i ≤ T, (3.1)for some underlying (possibly high-dimensional) Markovian pro
ess X. More-over it is assumed that we are given approximations Y (k)

i of Y ∗k
i , k = 1, ..., L,whi
h are of the form

Y
(k)
i = Y

(k)
i (Xi), 0 ≤ i ≤ T, 1 ≤ k ≤ L. (3.2)Remark 3.1 As an immediate 
onsequen
e of (3.1) the Snell envelopes are alsoof the form

Y ∗k
i = Y ∗k

i (Xi), k = 1, ..., L, (3.3)so (3.2) is a quite natural assumption.It is meanwhile industrial standard to obtain approximations of the form(3.2) by regression methods. For the single exer
ise 
ase (Bermudan derivativesfor example) the methods of Longsta� and S
hwartz (2001) and Tsitsiklis andVan Roy (2001) are quite popular, and for the multiple exer
ise 
ase (e.g. swingoptions) one may apply these methods re
ursively as explained in Se
tion 3.1.One generally obtains in this way sub-optimal exer
ise strategies, hen
e lowerbounds for the optimal value. In Se
tion 3.2 it is des
ribed how to in
orporate(e.g. regression based) approximations for the Snell envelope in a Monte Carlopro
edure for dual upper bounds.3.1 Re
ap of regression based approa
hesLet us re
ap brie�y how well-known regression methods su
h as the methodof Longsta� and S
hwartz (2001) and Tsitsiklis and Van Roy (2001) may bere
ursively applied to the multiple exer
ise problem. As these methods arebroadly known, we do not explain them here in detail but merely re
all thatfor the single exer
ise 
ase, both methods end up with an expansion of the
ontinuation fun
tion in terms of a properly 
hosen and 'ri
h enough' system



A pure martingale dual for multiple stopping 9of basis fun
tions on the state spa
e. That is, for an approximation of the(single exer
ise) Snell envelope one obtains formally
C∗

i (Xi) := Ei Y
∗
i+1(Xi+1) ≈

R∑

r=0

βirψr(Xi) =: Ci(Xi), 0 ≤ i < T,where (ψr : R
d → R

d, r = 0, 1, 2, ...) is a (
ountable) set of basis fun
tionsand R some number whi
h determines the number of basis fun
tions involvedin the regression. (Note that due to De�nition 2.1, CT :≡ 0.) The 
oe�
ients
(βir) are obtained by a regression pro
edure applied to a Monte Carlo sampleof traje
tories of X. In Clement et al. (2002) it is analyzed that for a suitableset of basis fun
tions under suitable 
onditions Ci → C∗

i , when the numberof traje
tories and the number of basis fun
tions involved go to in�nity in asuitable relationship.Appli
ation of the above regression method to the multiple exer
ise prob-lem is des
ribed by the following indu
tive s
heme:� Step 1 : Constru
t with our favorite regression method for 0 ≤ i ≤ T(approximations to) the 
ontinuation fun
tions C(1)
i (·) of the single exer
iseproblem.� Step k : Let the 
ontinuation fun
tions C(p)

i (·), 0 ≤ i ≤ T, of the (approx-imative) multiple exer
ise problem for p exer
ise rights be 
onstru
ted forall 1 ≤ p ≤ k ≤ L, that is,
C

∗p
i (Xi) := Ei Y

∗p
i+1(Xi+1) ≈

R∑

r=0

β
(p)
ir ψr(Xi) =: C

(p)
i (Xi)(with C(p)

T :≡ 0). Then,� If k < L, de�ne the 
ash-�ow pro
ess
Z̃i(Xi) := Zi(Xi) + C

(k)
i (Xi)with C

(k)
T :≡ 0, and apply our favorite regression method to obtain(approximations to) the 
ontinuation fun
tion C̃i(Xi) 
orresponding tothe Snell envelope of Z̃i under one exer
ise right. Then set

C
(k+1)
i (Xi) := C̃i(Xi), 0 ≤ i ≤ T.� if k = L, then stop.Indu
tive appli
ation of the above s
heme thus yields a system of (approxi-mate) 
ontinuation fun
tions C(k)

i (·), 1 ≤ k ≤ L, 1 ≤ i ≤ T. At this stage onemay take as approximations for the Snell envelopes (Y ∗k
i : 1 ≤ i ≤ T, 1 ≤ k ≤

L),

Y
(k)
i (Xi) := max[Zi(Xi) + C

(k−1)
i (Xi), C

(k)
i (Xi)] (3.4)with C(0) :≡ 0.
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hoenmakersIt is important to note that while approximations (3.4) may be a

urate,they 
an be biased from above or below. For bounding the Snell envelopesfrom above and below later on, we also need lower bounds however. For thiswe 
onstru
t for ea
h k, 1 ≤ k ≤ L, a system of (sub-optimal) exer
ise poli
ies
(τp,k

i : 1 ≤ i ≤ T, 1 ≤ p ≤ k) as follows. De�ne τ0,k
i := i−1, and for 0 < p ≤ k,

τ
p,k
i = inf{j : τp−1,k

i < j ≤ T, Zj(Xj) + C
(k−p)
j (Xi) ≥ C

(k−p+1)
j (Xj)}. (3.5)Then the pro
ess de�ned by

Y
(k)
i := Ei

k∑

p=1

Z
τ

p,k

i

(3.6)due to the stopping family (3.5) is Xi measurable and is a lower bound pro
ess,i.e. Y (k)
i (Xi) ≤ Y ∗k

i (Xi).Obviously, the stopping family (τp,k
i ) satis�es for ea
h

k the 
onsisten
y relation
τ

1,k
i > i =⇒ τ

p,k
i = τ

p,k
i+1, 1 ≤ p ≤ k. (3.7)Due to (3.7) we have in addition,

Y
(k)
i 1{τ

1,k

i
>i} = 1{τ

1,k

i
>i}Ei

k∑

p=1

Z
τ

p,k

i

= 1{τ
1,k

i
>i}Ei1{τ

1,k

i
>i}

k∑

p=1

Z
τ

p,k

i

= 1{τ
1,k

i
>i}Ei

k∑

p=1

Z
τ

p,k

i+1
= 1{τ

1,k

i
>i}EiEi+1

k∑

p=1

Z
τ

p,k

i+1

= 1{τ
1,k

i
>i}EiY

(k)
i+1, (3.8)whi
h is in the 
ase L = 1 a 
orner stone of the primal-dual algorithm (Ander-sen and Broadie, 2004). The lower bounds Y may be 
onstru
ted by a standard(non-nested) Monte Carlo simulation using (3.5).3.2 Dual simulation pro
edures for the multiple stopping problemFor any approximation Y (k), 1 ≤ k ≤ L, for example obtained from (3.4) or(3.6), we may 
onstru
t the Doob martingale M (k) of Y (k), via

M
(k)
i −M

(k)
i−1 = Y

(k)
i − Ei−1Y

(k)
i , 1 < i ≤ T,
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onsider for ea
h i, 0 ≤ i ≤ T, the upper bound
Y

up,L
i := Ei max

i≤j1<···<jL

L∑

k=1

(
Zjk

+M
(L−k+1)
jk−1

−M
(L−k+1)
jk

)

= Ei max
i≤j1<···<jL

L∑

k=1


Zjk

−

jk∑

r=jk−1+1

Y (L−k+1)
r +

jk∑

r=jk−1+1

Er−1Y
(L−k+1)
r




= Ei max
i≤j1<···<jL

L∑

k=1

(
Zjk

+ Y
(L−k+1)
jk−1

− Y
(L−k+1)
jk

+

jk−1∑

r=jk−1

(
ErY

(L−k+1)
r+1 − Y (L−k+1)

r

)



= Y
(L)
i + Ei max

i≤j1<···<jL

L∑

k=1

(
Zjk

+ Y
(L−k)
jk

− Y
(L−k+1)
jk

+

jk−1∑

r=jk−1

(
ErY

(L−k+1)
r+1 − Y (L−k+1)

r

)


 =: Y
(L)
i +∆

(L)
i (3.9)

(note that Y (0) ≡ 0). The following proposition gives an estimate for thedi�eren
e of the upper bound (3.9) due to an approximation to the Snellenvelope and the approximation itself.Proposition 3.2 W.l.o.g. we may assume that Y (k)
T = Y ∗k

T = ZT , 1 ≤ k ≤ L.It then holds for 0 ≤ i ≤ T,

∆
(L)
i = Y

up,L
i − Y

(L)
i (3.10)

≤ Ei

L∑

k=1

T−1∑

r=i

[(
Zr + ErY

(k−1)
r+1 − Y (k)

r

)+

+
(
ErY

(k)
r+1 − Y (k)

r

)+
]
.



12 John S
hoenmakersProof From (3.9) we obtain by rearranging terms,
Y

up,L
i − Y

(L)
i = Ei max

i≤j1<···<jL

(
L∑

k=1

(
Zjk

+ Ejk
Y

(L−k)
jk+1 − Y

(L−k+1)
jk

)

+

j1−1∑

r=i

(
ErY

(L)
r+1 − Y (L)

r

)
+

L∑

k=1

(
Y

(L−k)
jk

− Ejk
Y

(L−k)
jk+1

)
+

L∑

k=2

(
Ejk−1

Y
(L−k+1)
jk−1+1 − Y

(L−k+1)
jk−1

)
+

L∑

k=2

jk−1∑

r=jk−1+1

(
ErY

(L−k+1)
r+1 − Y (L−k+1)

r

)




= Ei max
i≤j1<···<jL

(
L∑

k=1

(
Zjk

+ Ejk
Y

(L−k)
jk+1 − Y

(L−k+1)
jk

)

+

j1−1∑

r=i

(
ErY

(L)
r+1 − Y (L)

r

)
+

L−1∑

k=1

jk+1−1∑

r=jk+1

(
ErY

(L−k)
r+1 − Y (L−k)

r

)


 ,and then the statement easily follows (mind the 
onventions in De�nition 2.1).Remark 3.3 If in Proposition 3.2 the approximation Y (L)
i is a lower bound,i.e. Y (L)

i ≤ Y ∗L
i , we have in (3.10) on the other hand 0 ≤ Y

up,L
i − Y

(L)
i . If inparti
ular Y (k)

· = Y ∗k
· for 1 ≤ k ≤ L, the right-hand-side of inequality (3.10)is zero, so then (3.10) yields Y up,L

i = Y
(L)
i = Y ∗k

i . In this sense the estimate(3.10) is sharp. Proposition 3.2 may be 
onsidered as a generalization of asimilar result for the 
ase L = 1 in Andersen and Broadie (2004) and Kolodkoand S
hoenmakers (2004).For 
onstru
ting multiple dual upper bounds we now have two options: the�rst one is a dual pro
edure based on approximations to the Snell envelope(for example (3.4)) and the se
ond one is a dual pro
edure based on approx-imations to optimal stopping times (for example (3.6)). The pro
edures arebrie�y des
ribed below (for a more algorithmi
 des
ription see the preprintversion of this paper, S
hoenmakers (2009)).Pro
edure based on approximations to the Snell envelopeFor arbitrary but given approximations to the Snell envelopes Y (k), 1 ≤ k ≤ L((3.4) for example), the implementation of (3.9) within the Markovian frame-work around (3.1)�(3.3) naturally leads to a (one-degree) nested Monte Carlosimulation. Let us take w.l.o.g. i = 0 and assume L ≤ T + 1 to ex
lude triv-ialities. In fa
t, by splitting of the (given) approximation Y (L)
0 in (3.9) , oneneeds to simulate the di�eren
e term ∆

(L)
0 . As a rule, this will redu
e thevarian
e of the estimation remarkably. In prin
iple, the 
orresponding MonteCarlo simulation may be organized as follows:



A pure martingale dual for multiple stopping 13Develop in a straightforward way a (formally non-nested) Monte Carlo pro
e-dure for ∆(L)
0 in whi
h, besides the given fun
tions Y (l)

r (X) (being approxima-tions to the Snell envelope), the 
onditional expe
tation ErY
(l)
r+1 is generi
allyde
lared as (an at this level known) fun
tion of the underlying state X, exer-
ise date r, and number of exer
ise possibilities l. Next, the implementationof this 
onditional expe
tation fun
tion itself requires a one-step inner sim-ulation pro
edure starting at X. After ea
h one-step inner simulation, from

X inner
r = X to X inner

r+1 say, one reads the value of the given (approximate) Snellenvelope Y (l)
r+1(X

inner
r+1 ) and then takes the average over the inner simulations.For an illustration in the 
ase L = 1, T = 3, see Figure 1, upper pi
ture.Remark 3.4 It should be noted that, sin
e for any (�nite) set of random vari-ables (ςi : i ∈ I) it holds Emaxi∈I ςi ≥ maxi∈I Eςi, it follows analogously toAndersen and Broadie (2004) (and also Kolodko and S
hoenmakers (2004))that the above pro
edure yields a Monte Carlo estimate of Y up,L

0 whi
h isbiased up, i.e. the expe
tation of this estimate is an upper bound.Remark 3.5 We underline that the above pro
edure is essentially di�erent fromthe one in Meinshausen and Hambly (2004) as it may be applied dire
tly to anyapproximation to the Snell-envelope (given in 
losed form for instan
e) andthus may be regarded as 'stopping time free'. In 
ontrast, the Meinshausenand Hambly (2004) method always involves a set of 'good' stopping times forthe multiple stopping problem besides a set of 'good' martingales.Remark 3.6 In view of Proposition 3.2 we may modify the Monte Carlo pro-
edure in an obvious way to obtain a pro
edure whi
h estimates the upperbound
Y

(L)
0 +Ei

L∑

k=1

T−1∑

r=0

[(
Zr + ErY

(k−1)
r+1 − Y (k)

r

)+

+
(
ErY

(k)
r+1 − Y (k)

r

)+
]
≥ Y

up,L
0 .Clearly, in this method no path-wise maximization pro
edure is involved. Thepri
e one may have to pay however is a higher upper bound. But, due toRemark 3.3 this upper bound may be still tight if the input approximationsof the Snell envelopes are good enough.Pro
edure based on approximations to optimal stopping timesLet us now 
onsider an arbitrary but given family of (sub-optimal) exer
isepoli
ies (τp,k

i : 1 ≤ i ≤ T, 1 ≤ p ≤ k), 1 ≤ k ≤ L, whi
h satis�es the
onsisten
y 
ondition (3.7) (for example the one obtained from (3.5)). Su
h afamily yields by (3.6) a set of lower approximations to the Snell envelope for
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hoenmakerswhi
h, by (3.7), (3.9) (for i = 0) takes the form,
Y

up,L
0 := Y

(L)
0 + E0 max

0≤j1<···<jL≤T

L∑

k=1

(
Zjk

+ Y
(L−k)
jk

− Y
(L−k+1)
jk

(3.11)
+

jk−1∑

r=jk−1

1{τ
1,L−k+1
r =r}

(
ErY

(L−k+1)
r+1 − Y (L−k+1)

r

)


 =: Y
(L)
0 +∆

(L)
0 ,where the Y (l)

r are given by (3.6), and
ErY

(l)
r+1 = Er

l∑

p=1

Z
τ

p,l

r+1
. (3.12)Naturally, the implementation of (3.11) leads to a nested Monte Carlo pro-
edure again, where the lower bound Y (L)

0 
an be a

urately 
omputed by astandard (non-nested) Monte Carlo simulation, using stopping rule (3.5) anda relatively large sample size. In the 
ase L = 1 this usually takes out about90% of the varian
e, depending on the quality of the stopping rule of 
ourse.What is left is the estimation of the nonnegative gap term (see Remark 3.3)
∆

(L)
0 = Y

up,L
0 − Y

(L)
0 .Just as for the previous simulation pro
edure (based on approximations tothe Snell envelope) we may develop a (formally non-nested) Monte Carlo pro-
edure for ∆(L)

0 in whi
h the lower approximation to the Snell envelope Y (l)
rand the 
onditional expe
tation ErY

(l)
r+1 is generi
ally de
lared as (an at thislevel known) fun
tion of the underlying state X, exer
ise date r, and numberof exer
ise possibilities l. Here the implementation of Y (l)

r requires an innersimulation pro
edure based on (3.6) where, in 
ontrast to the previous method,ea
h inner simulation 
ontinuous until all the stopping rules τp,l
r , 1 ≤ p ≤ l,have stopped. Likewise, the implementation of the fun
tion ErY

(l)
r+1 requiresinner simulations based on (3.12) where ea
h inner simulation 
ontinuous untilall the stopping rules τp,l

r+1, 1 ≤ p ≤ l, have stopped. A

ording to (3.11) thelatter fun
tion will only be 
alled in the 
ase where τ1,l
r = r. For an illustrationin the 
ase L = 1, T = 3, see Figure 1, lower pi
ture.Remark 3.7 (i) Remark 3.4 applies again; the above pro
edure yields a MonteCarlo estimate of Y up,L

0 whi
h is biased up. (ii) For L = 1, representation(3.11) and the 
orresponding Monte Carlo pro
edure 
ollapses to the well-known Andersen-Broadie representation and Andersen-Broadie primal-dualalgorithm, respe
tively. Indeed, for L = 1 we get
Y

up,L
0 (X0) = Y 0(X0) + E0 max

0≤j≤T

(
Zj − Y j +

j−1∑

r=0

1{τ=r}

(
ErY r+1 − Y r

)
)(3.13)



A pure martingale dual for multiple stopping 15with the well demonstrated advantage that the term Y 0(X0) may be 
omputedusing an a

urate non-nested Monte Carlo simulation, and that the remaininggap term has typi
ally low varian
e.Remark 3.8 Given the su

ess of the dual representation in the single exer
ise
ase as reported in the literature, it will be obvious that analogue simulationpro
edures for the multiple 
ase as suggested in this paper are potentiallypromising as well. A detailed des
ription and numeri
al study (in
luding a
omparison with the method of Meinshausen and Hambly (2004)) is the sub-je
t of a subsequent arti
le whi
h is 
urrently in preparation.Remark 3.9 In the 
ase where the pro
ess X is adapted to a Brownian �l-tration it looks feasible to 
onstru
t a linear Monte Carlo algorithm for themultiple dual in a similar way as presented in Belomestny et al. (2009a). Thismight be done in future work.Remark 3.10 One may wonder whether it is possible to generalize in a similarway the multipli
ative dual approa
h of Jamshidian (2007) to the multipleexer
ise 
ase. Anyway, the additive multiple dual as 
onstru
ted in this arti
leinherits the ni
e almost sure property of the standard additive dual represen-tation when the optimal martingale is plugged in. The multipli
ative dual failsto have this property, see also the dis
ussion in Chen and Glasserman (2007)(below Prop. 6.8) on this.A
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Y ∗L
0 = inf

M∈M,
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E0 max
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L
X

k=1

`

Zjk
− Mjk

´
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