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Abstract In this paper we present a dual representation for the multiple
stopping problem, hence multiple exercise options. As such it is a natural gen-
eralization of the method in Rogers (2002) and Haugh and Kogan (2004) for
the standard stopping problem for American options. We term this representa-
tion as a 'pure martingale’ dual as it is solely expressed in terms of an infimum
over martingales rather than an infimum over martingales and stopping times
as in Meinshausen and Hambly (2004). For the multiple dual representation
we propose Monte Carlo simulation methods which require only one degree of
nesting.

Keywords Multiple stopping - Dual representations - Multiple callable
derivatives

Mathematics Subject Classification (2000) 60G40 - 62L15

JEL Classification C61 - C63

1 Introduction

The key issue in valuation of financial derivatives with several exercise rights is
solving a multiple stopping problem. Such derivatives are encountered, for ex-
ample, in electricity markets (swing options) and interest rate markets (chooser
caps). Typically, the dimension of the underlying financial object is rather
high, for instance a Libor interest rate model, and therefore Monte Carlo

Work related to project ’Financial derivatives and valuation of risk’, supported by the DFG
Research Center MaTHEON ‘Mathematics for key technologies’ in Berlin.

J. Schoenmakers

Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstr. 39, D-10117 Berlin,
Germany.

E-mail: schoenma@wias-berlin.de



2 John Schoenmakers

based methods are called for. In this respect the last decades have seen several
breakthroughs for standard American (or Bermudan style) derivatives, hence
the standard stopping problem. Among the most popular ones are the regres-
sion based methods of Longstaff and Schwartz (2001), Tsitsiklis and Van Roy
(2001), and alternative approaches by Andersen (1999), Broadie and Glasser-
man (2004) and others. These methods allow for the computation of a lower
approximation of the price of the product under consideration by straightfor-
ward (non-nested) Monte Carlo simulation when the underlying dimension is
not too high. More recently, Kolodko and Schoenmakers (2006) proposed a
policy improvement procedure and it is demonstrated in Bender et al. (2006)
and Bender et al. (2008) that this method can be effectively combined with
Longstaff and Schwartz (2001) for very high-dimensional products. In Bender
and Schoenmakers (2006) this policy iteration method is extended to multi-
ple stopping problems. Evaluation of products with multiple exercise rights
(on a low dimensional underlying) is also possible by using trinomial forests
(Jaillet et al., 2004). In Carmona and Touzi (2008) a Malliavin calculus based
approach for the valuation of swing options is presented.

In Rogers (2002) and Haugh and Kogan (2004) a dual approach is devel-
oped (inspired by Davis and Karatzas (1994)) which allows for computing tight
upper bounds for American style products. Jamshidian (2007) proposed a mul-
tiplicative version of the dual representation, Belomestny and Milstein (2006),
and Belomestny et al. (2009b) proposed to compute upper bounds based on the
concept of consumption processes. Effective algorithms for dual upper bounds
are proposed in Andersen and Broadie (2004), Kolodko and Schoenmakers
(2004), and Belomestny et al. (2009a). For products with multiple exercise
possibilities Meinshausen and Hambly (2004) found a dual representation for
the marginal excess value of the product due to one additional exercise right.
In this representation an infimum over a family of stopping times and a family
of martingales is involved. Generalizations of this method to multiple exer-
cise products under volume constraints are developed in Bender (2008) and
Aleksandrov and Hambly (2008). While the mentioned methods for multiple
exercise products have shown to be feasible in practice, the question whether a
‘pure martingale’ dual representation for the multiple stopping problem exists
as a natural extension of the dual representation for the single exercise case,
in terms of an infimum over martingales (only), was still open. The main re-
sult in this paper is such a dual representation and so fills this gap. Moreover
we propose Monte Carlo simulation methods for this representation, which
require at most one degree of nesting, just as in the one-exercise case. As such
the proposed procedures are natural extensions of the corresponding ones for
the single exercise case. In particular, one of them may be seen as a natural
generalization of the primal-dual approach in Andersen and Broadie (2004).
It is more or less clear that the numerical potential of the proposed simulation
procedures for the multiple dual is inherited from the numerical qualities of
the methods for the standard (additive) dual extensively documented in the
literature. Therefore, we prefer to communicate the new multiple dual repre-
sentation together with a brief description of its implementation in this paper,
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and consider an in depth numerical study to be more suitable for subsequent
work. The main result, Theorem 2.5, is derived in Section 2, and the descrip-
tion of the simulation procedures is given in Section 3.

2 The multiple stopping problem and its dual representation

Let (Z;: i=0,1,...,T) be a non-negative stochastic process in discrete time
on a filtered probability space (2, F, P), adapted to some filtration F := (F; :
0 < i < T) which satisfies

T
> E|Zi| < o.
1=1

The process Z may be seen as a (discounted) cash-flow, which an investor may
exercise L times, subjected to the additional constraint that it is not allowed
to exercise more than one right at the same date. The goal of the investor is
to maximize his expected gain by making optimal use of his L exercise rights.
This goal may be formalized as a multiple stopping problem.

Definition 2.1 For notational convenience in our further analysis we extend
the cash-flow process in a trivial way by Z; := 0 and F; := Fp for i > T.

Let us define for each fixed 0 < i < T and L, S;(L) as the set of F-stopping
vectors T = (T(l),...,T(L)) such that i < 7 and, for all I, 1 < [ < L,
70=1 41 < 7 The multiple stopping problem then comes down to find a
family of stopping vectors 7 € S;(L) such that for 0 <¢ < T,

L L
EiZZT.*l = sup EiZZT(L), (2.1)
-1 ‘ T€S; (L) -1

where henceforth E; := Ex, denotes conditional expectation with respect to
the o-algebra F;, and where sup is to be understood as essential supremum
(if it ranges over an uncountable family of random variables). The process on
the right-hand-side of (2.1) is called the Snell envelope of Z under L exercise
rights and we denote it by Y;*L. In the case of one exercise right we usually
write Y;* := Y;*!. Note in view of Definition 2.1 that, (a) if i > T then Y;*X =0
for any L > 0, and, (b) if L > T'—i+1 then we may trivially take 7! =i+[—1
for 1 <! < Lin (2.1).

We recall from Bender and Schoenmakers (2006) that the multiple stopping
problem can be reduced to L nested stopping problems with one exercise right
in the following way. Y*0 := 0, Y*! is the Snell envelope of Z. For general
L, L > 1, Y*L is the Snell envelope of the process Z; + E; YiiLl_l (seen as
generalized cash-flow) under one exercise right. It is thus natural to define
(as in Bender and Schoenmakers (2006)) for each L = 1,2,..., the stopping
family

oyt =inf{j>i: Z;+ E; YT >y R, i>0, (2.2)
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i.e. the first optimal stopping family for exercising the first of L exercise rights.
The family of optimal stopping vectors 7L € S;(L) for the multiple stopping
problem with L exercise rights and cash-flow Z is connected with (2.2) via

*1,L _  _«L
T; =o0;",
*l+1,L _ =, L—1
; =Tty 1<I<L. (2.3)

The reduction (2.2), (2.3) is intuitively clear: It basically says, that the investor
has to choose the first stopping time of the stopping vector in the following
way: Decide, at time i whether it is better to take the cash-flow Z; and enter
a new contract with L — 1 exercise rights starting at ¢ + 1, or to keep the L
exercise rights. Then, after entering the stopping problem with L — 1 exercise

rights, he proceeds in the same (optimal) way.

2.1 Case L = 1; the standard stopping problem

In the case of one exercise right L = 1 we have the standard stopping problem.
Let us recall some well-known facts (e.g. see Neveu (1975)).

1. The Snell envelope Y* of Z is the smallest super-martingale that dominates
Z.
2. A family of optimal stopping times is given by

7 =inf{j:j>1, ZjZYj*}, 0<i<T.

K3

In particular, the above family is the family of first optimal stopping times
if several optimal stopping families exist.

2.2 Dual representation for the standard stopping problem

For the standard stopping problem, that is one exercise right L = 1, we have
the (additive) dual representation theorem which we state in a form suitable
for our purposes:

Theorem 2.2 Rogers (2002), Haugh and Kogan (2004)
If M is the set of all F-martingales, it holds

Y =Y = inf E; max (Z; + M; — M;) (2.4)
MeM 1<j<T
= z‘rgng‘agXT (Zj + M; — M) as. (2.5)

with M* being the unique Doob martingale of Y*, that is Y* =Y + M* — A*
where M* is a martingale, A* is predictable and nondecreasing, and M =
*
=0.
0

For the results in this paper the almost sure statement (2.5) is very impor-
tant. Therefore, and because of its appealing simplicity, let us shortly recall
the proof:
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Proof For any martingale M we have
Y= sup E;Z.= sup FE;[Z;+ M; — M,]
i<T<T i<T<T

< E; ; — M;).
< Ei max (Z; + M; — M;)

For the martingale M* it then holds

Y <E; max (Z + M — MJ*)

< El- max (Z +Y + A — A*)
i<j<T

<Y*+E nax, (A; - A;)zY;*,

since for all j,0<j < T, Y - E; Yzj_l Aj, 1 — A7 >0, and thus
Y =F; max (Z + M — MJ*) . (2.6)
Moreover, by
max (Z; + M — M;) = max (Z; + Y + A] =Y — A)

i<j<T J i<j<T
<Y*—|— max (A A*)* Y*
G<T

and (2.6) we have (2.5).

The corner stone for generalizing Theorem 2.2 to the multiple stopping
problem is the following simple proposition which is a slight extension of (2.5)
in a sense.

Proposition 2.3 Let (Z; : 0 < i < T) be a nonnegative integrable cash-
flow process with Snell envelope Y* and let Y* =Yy + M* — A* be its Doob
decomposition as in Theorem 2.2. It then holds for each j, 0 < j < T,

EjYji1 = Bj max (Z— M + Mj) = max (Z— M + M) as.

Proof For fixed 0 < j < T, we have by (2.5)
Yi= max. (Zi— M} + M;,,) as., (2.7)
J

so on the one hand it holds

BYj = By s (20— M7 +305).

By the Doob decomposition of Y* and (2.7), we have

E; YJ*+1 YJ+1 + M — Mj J+1 = J@&T (Zl - Ml* + M;':Ll) + M MJ*+1
= max (Z— M + M;-‘) a.s.

J<IST

on the other hand.
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Remark 2.4 (i) It is not difficult to see that a further generalization of Propo-
sition 2.3 is not possible in the sense that in general

Ei Prglang (Zl - M + M;) 7& pIEZaSXT (Zl - My + M;)

if p > j. (ii) Proposition 2.3 is related to the analysis of supersolutions in Chen
and Glasserman (2007).

2.3 Dual representation for the multiple stopping problem

We are now ready for proving the following theorem which is a natural gener-
alization of Theorem 2.2 and Proposition 2.3 to the multiple exercise case.

Theorem 2.5 It holds for all 0<:<T,L=1,2,...

L
Yi*L - M(l)),,,i)l}\/_f[(L)eM E; Z-Sjlnﬁ“.’iﬂ ; (ij + Mg(le - M;?) (2.8)
) —
= omt, 2 (Zu 4 MG MG s, 09
and in addition
L
EY;E =  max Z (ij + M;i:k""l - M;‘kL—kH) a.s., (2.10)

i<j1<-<jrL
J1 J =1

with jo = 4, and where for k = 1,.... L, M** is the Doob martingale of the
Snell envelope for k exercise rights. That is

Y*k _ Yb*k +M*k _A*k
with A* predictable, and Mi* = A3F = 0. In particular, for each k, A% is

nondecreasing in 1i.

Proof For any set of martingales M), .., M) € M we have
(with 7(0) := jg := 1)

3

L
Yi*L = sup E; E Z )
i<t <. <r(@) =1

= sw By (Zew + MU, - M)

L
i<t <. <7 (@) k—1

L
< su E; ma (Z‘ +Mm® M(k))
- ig-,—(l)<,1.?<-,—(L) i§j1<")'(<jL ; Tk Jk=1 Jk
L
_ ) (k) (k)
= Ei iSjlrg%.).%jL Z (ZJ’“ T Mj’“* N Mjk ) ’

k=1
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from which it follows that Y;*% is less than or equal to the right-hand-side of
(2.8). We will next show that this inequality is sharp and that moreover (2.9)
and (2.10) hold, by induction on the number of exercise rights L.

Due to Definition 2.1, for all j > T we have Z; = 0, and M; = My for
any M € M. Thus, for L = 1 the statements collapse to the statements of
Theorem 2.2 and Proposition 2.3.

Now suppose the Theorem holds for L exercise rights. By the Bellman principle
it holds,
Y = max [Z; + EYH, EYRETY
K3
under one exercise right. So by the standard dual representation Theorem 2.2
(and taking into account the conventions in Definition 2.1),

hence Yi*L+1 may be seen as the Snell envelope of the cash-flow Z; + EiY-iLl

Y = max (Zj, + E;, Y + MPP = MEETY)  as, (2.11)
171

where M*E+1 is the Doob martingale of Y;***! satisfying M;"“"! = 0. By the

induction hypothesis on (2.10) it now follows that

*L+1 . *L4+1 *L+1
Y, = max (Zj, + M M3

L
+ max Z (Zpk + M;ka_lk'H — M;)f_k"’l))

J1<Pp1 PL 1
(With Po = ]1)
L+1

_ _ wL1—k+1 «L+1—k+1
- max S (ij + M — M )
i<j1<j2<-<jrL+1 P

(with jo := 4). Hence we obtain (2.9) for L + 1 rights. Next, by applying
Proposition 2.3 to the cash-flow Z; + EzYljﬁ, and the induction hypothesis
(2.10) for L exercise rights again we obtain,

yrL4+1 ) _y*L *L+1 _ pr+xL+1
EY 5T = ?fﬁ( (ZJI + Ej, Yj1+1 + M; Mjl )

= max (Z;, + M; "+ — M EH
1<J1

L
+_max_ S (Zy + MyE R - M '““))

1<p1<---<
11 <p1 PL 1
(With Po ‘= ]1)
L+1

. _ wL4+1—k+1 wL4+1—k+1
= _max (2, 4 MpEPTR )
1<j1<-<jr41 1

hence (2.10) for L + 1 rights. Finally, A*L*! is nondecreasing as it is the
predictable part of the Snell envelope of the generalized cashflow Z; + EleiLl
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Remark 2.6 In a typical application of Theorem 2.5 one has i = 0 and L <
T +1 (the case L > T — i+ 1 is trivial as already noted in Section 2.2). Then,
obviously, the domain of the maximum operator in (2.9) and (2.10) can be
restricted to 0 < j; <--- < jp <T and 0 < j; < --- < jr < T, respectively.

3 Primal-dual Monte Carlo methods for multiple stopping

In this section we show in particular how well known dual approaches for the
one exercise case such as the primal-dual algorithm of Andersen and Broadie
(2004) may be generalized to the multiple exercise case. In this context we
assume that the cash-flow process Z is of the form (with slight abuse of nota-
tion)

Z;=27;(X;) 0<i<T, (3.1)

for some underlying (possibly high-dimensional) Markovian process X. More-

over it is assumed that we are given approximations Yi(k) of V' k=1,.., L,
which are of the form

1<k<L. (3.2)

Remark 3.1 As an immediate consequence of (3.1) the Snell envelopes are also
of the form

}/i*k — }/Z*k(Xl), k= 17 ceny I;7 (33)

so (3.2) is a quite natural assumption.

It is meanwhile industrial standard to obtain approximations of the form
(3.2) by regression methods. For the single exercise case (Bermudan derivatives
for example) the methods of Longstaff and Schwartz (2001) and Tsitsiklis and
Van Roy (2001) are quite popular, and for the multiple exercise case (e.g. swing
options) one may apply these methods recursively as explained in Section 3.1.
One generally obtains in this way sub-optimal exercise strategies, hence lower
bounds for the optimal value. In Section 3.2 it is described how to incorporate
(e.g. regression based) approximations for the Snell envelope in a Monte Carlo
procedure for dual upper bounds.

3.1 Recap of regression based approaches

Let us recap briefly how well-known regression methods such as the method
of Longstaff and Schwartz (2001) and Tsitsiklis and Van Roy (2001) may be
recursively applied to the multiple exercise problem. As these methods are
broadly known, we do not explain them here in detail but merely recall that
for the single exercise case, both methods end up with an expansion of the
continuation function in terms of a properly chosen and ’rich enough’ system
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of basis functions on the state space. That is, for an approximation of the
(single exercise) Snell envelope one obtains formally

R
Ci(Xs) = E Y (Xiy1) = Zﬁz‘ﬂ/’r(Xi) =:Ci(X;), 0<i<T,
r=0

where (¢, : R — R4 r = 0,1,2,...) is a (countable) set of basis functions
and R some number which determines the number of basis functions involved
in the regression. (Note that due to Definition 2.1, Cr := 0.) The coefficients
(Bir) are obtained by a regression procedure applied to a Monte Carlo sample
of trajectories of X. In Clement et al. (2002) it is analyzed that for a suitable
set of basis functions under suitable conditions C; — C}, when the number
of trajectories and the number of basis functions involved go to infinity in a
suitable relationship.

Application of the above regression method to the multiple exercise prob-
lem is described by the following inductive scheme:

— Step 1 : Construct with our favorite regression method for 0 < ¢ < T

(approximations to) the continuation functions C’Z-(l) (+) of the single exercise
problem.

— Step k : Let the continuation functions Cl-(p)(-), 0 <1i <T, of the (approx-
imative) multiple exercise problem for p exercise rights be constructed for
all 1 <p <k <L, that is,

R
CIP(X:) o= B Y1 (Xin) = Y BP0 (X:) = O (X3)
r=0

(with C(Tp) :=0). Then,
— If k < L, define the cash-flow process

Zi(X:) = Zi(X:) + P (X;)

with C’;k) := 0, and apply our favorite regression method to obtain
(approximations to) the continuation function C;(X;) corresponding to
the Snell envelope of Z; under one exercise right. Then set

— if k = L, then stop.

Inductive application of the above scheme thus yields a system of (approxi-
mate) continuation functions C’Z-(k)(-), 1<k<L 1<i<T. At this stage one
may take as approximations for the Snell envelopes (Yl*k 1 <i<T1<k<L
L),

v (X;) = max[Z;(X;) + ¢V (Xy), ¢ (X)) (3.4)

with C(© .= 0.
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It is important to note that while approximations (3.4) may be accurate,
they can be biased from above or below. For bounding the Snell envelopes
from above and below later on, we also need lower bounds however. For this
we construct for each k, 1 < k < L, a system of (sub-optimal) exercise policies
(Tf’k :1<i<T,1<p<k) as follows. Define Tio’k :=i—1,and for 0 < p <k,

PF = inf{j P < < T Zi(X) + O TP (XG) = TP (XG)). (3.5)

3

Then the process defined by
k
Y =B Z (3.6)
p=1

due to the stopping family (3.5) is X; measurable and is a lower bound process,
ie. ng) (X;) < Y;**(X;). Obviously, the stopping family (Tf’k) satisfies for each
k the consistency relation

s i= PP =Pk 1<p<k (3.7)

Due to (3.7) we have in addition,

k k
(k) _ _
Y, 1{r§~’“>i} = 1{73*’€>i}Ei ZZT?’“ = 1{7'1-1‘k>i}Ei1{Til’k>i} Z ng*k
p=1 p=1
k k
= 1{T1.1’k>i}Ei Z‘rflﬁ = 1{Tl.l’k>i}EiEi+1 Z Z‘rflﬁ
p=1 p=1
=1 BV (38)

which is in the case L = 1 a corner stone of the primal-dual algorithm (Ander-
sen and Broadie, 2004). The lower bounds Y may be constructed by a standard
(non-nested) Monte Carlo simulation using (3.5).

3.2 Dual simulation procedures for the multiple stopping problem

For any approximation Y *), 1 < k < L, for example obtained from (3.4) or
(3.6), we may construct the Doob martingale M®) of Y(¥)_ via

M® —m® =yv® _g_vy®  1<i<T,

K2
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and consider for each ¢, 0 < i < T, the upper bound

L
up,L _ po (L—k+1) (Lkarl))
Y EZz‘Sjlng)ijL; (ZM My = My,
L Jk Jk
_ . o (L—k+1) (L—k+1)
_E%glng)-(qiz Zis Z Y * Z Era;
k=1 r=jr—1+1 r=jr—1+1
L
o (L—k+1) (L—k+1)
=B x5 (2 + v -y
Jk—1
+ 3 (B k)
r=jk—1
(L) - (L—Fk) ( )
_y& E; (Z vl L=k) _ y(L=k+1
P z's;‘lng)in; et Jr
Je—1
5 (e )| S s e
r=jr—1
(note that Y = 0). The following proposition gives an estimate for the

difference of the upper bound (3.9) due to an approximation to the Snell
envelope and the approximation itself.

Proposition 3.2 W.l.o.g. we may assume that Yr} ) = ijk Zr,1 < k<L
It then holds for 0 < i < T,

L T-1
<EY Y [(Z + By MY YW)++ (B - Y,@)T .

k=1 r=t
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Proof From (3.9) we obtain by rearranging terms,

L
vyl _y®) _ B max <Z (Z + B, YR Y@"““))

’ ! i<j1<--<jrL P Tl gt Tk
Jji—1 L
L—k
Z ( r+1 T‘(L ) Z ( ]kY](]c+l )> +
k=1
L L Jr—1
(L—k+1 L—k+1 L—k+1 _
Z (E]" ll/ﬂk 1+1 : }/J(k 1 )) Z Z (E Y;“(‘f‘l ) Y;”(L k+1)>
k=2 k=2r=jr_1+1
. ( ) ( )
o ‘ o (L—k) L=kl
=B me <; (Z]k B g Y )
L—1Jrk+1—1
Z (BYH-v)+3 ¥ (BYEY -vEh) |,
k=1 r=j+1

and then the statement easily follows (mind the conventions in Definition 2.1).

Remark 3.3 If in Proposition 3.2 the approximation Yi(L)
ie. Yi(L) < Y7L, we have in (3.10) on the other hand 0 < Y;"P" — Yi(L). If in
particular Y E) = vk for 1 < k < L, the right-hand-side of inequality (3.10)
is zero, so then (3.10) yields Y;"™* = Yi(L) = Y. In this sense the estimate
(3.10) is sharp. Proposition 3.2 may be considered as a generalization of a
similar result for the case L = 1 in Andersen and Broadie (2004) and Kolodko
and Schoenmakers (2004).

is a lower bound,

For constructing multiple dual upper bounds we now have two options: the
first one is a dual procedure based on approximations to the Snell envelope
(for example (3.4)) and the second one is a dual procedure based on approx-
imations to optimal stopping times (for example (3.6)). The procedures are
briefly described below (for a more algorithmic description see the preprint
version of this paper, Schoenmakers (2009)).

Procedure based on approximations to the Snell envelope

For arbitrary but given approximations to the Snell envelopes Y %) 1 <k < L
((3.4) for example), the implementation of (3.9) within the Markovian frame-
work around (3.1)—(3.3) naturally leads to a (one-degree) nested Monte Carlo
simulation. Let us take w.l.o.g. 2 = 0 and assume L < T + 1 to exclude triv-
ialities. In fact, by splitting of the (given) approximation YO(L) in (3.9) , one
needs to simulate the difference term A((JL). As a rule, this will reduce the
variance of the estimation remarkably. In principle, the corresponding Monte
Carlo simulation may be organized as follows:
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Develop in a straightforward way a (formally non-nested) Monte Carlo proce-
dure for AéL) in which, besides the given functions Yr(l)(X) (being approxima-

tions to the Snell envelope), the conditional expectation ETYT(_?1 is generically
declared as (an at this level known) function of the underlying state X, exer-
cise date r, and number of exercise possibilities [. Next, the implementation
of this conditional expectation function itself requires a one-step inner sim-
ulation procedure starting at X. After each one-step inner simulation, from
Xinmer — X' to XU say, one reads the value of the given (approximate) Snell

envelope YT(Jlr)l( imner) and then takes the average over the inner simulations.
For an illustration in the case L = 1, T' = 3, see Figure 1, upper picture.

Remark 3.4 It should be noted that, since for any (finite) set of random vari-
ables (g; : 7 € I) it holds Emax;crs; > max;er Eg;, it follows analogously to
Andersen and Broadie (2004) (and also Kolodko and Schoenmakers (2004))
that the above procedure yields a Monte Carlo estimate of YOUD’L which is
biased up, i.e. the expectation of this estimate is an upper bound.

Remark 3.5 We underline that the above procedure is essentially different from
the one in Meinshausen and Hambly (2004) as it may be applied directly to any
approximation to the Snell-envelope (given in closed form for instance) and
thus may be regarded as ’'stopping time free’. In contrast, the Meinshausen
and Hambly (2004) method always involves a set of 'good’ stopping times for
the multiple stopping problem besides a set of 'good’ martingales.

Remark 3.6 In view of Proposition 3.2 we may modify the Monte Carlo pro-
cedure in an obvious way to obtain a procedure which estimates the upper
bound

—

YO(L) +E; Z

L T-—
k=

+ +
{(Zr e A e } =S
1 7r=0

Clearly, in this method no path-wise maximization procedure is involved. The
price one may have to pay however is a higher upper bound. But, due to
Remark 3.3 this upper bound may be still tight if the input approximations
of the Snell envelopes are good enough.

Procedure based on approximations to optimal stopping times

Let us now consider an arbitrary but given family of (sub-optimal) exercise
policies (Tf’k 1 <i<T 1<p<k),1l <k < L, which satisfies the
consistency condition (3.7) (for example the one obtained from (3.5)). Such a
family yields by (3.6) a set of lower approximations to the Snell envelope for
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which, by (3.7), (3.9) (for i = 0) takes the form,

L
Yt =y e By max S (2, YN -y @

0<j1<--<jr<T 7

Jr—1
+ Z 1{T&,L—k+1:7‘} (Erzgizlwrl) _KS«L_]C-H)) ::K((JL) +A((JL)7

T=jk—1

where the Y are given by (3.6), and
o l
1
EY\", =E, szfil' (3.12)
p=1

Naturally, the implementation of (3.11) leads to a nested Monte Carlo pro-

cedure again, where the lower bound K((JL) can be accurately computed by a
standard (non-nested) Monte Carlo simulation, using stopping rule (3.5) and
a relatively large sample size. In the case L = 1 this usually takes out about
90% of the variance, depending on the quality of the stopping rule of course.
What is left is the estimation of the nonnegative gap term (see Remark 3.3)

ABL) _ Klolp,L . XBL)

Just as for the previous simulation procedure (based on approximations to
the Snell envelope) we may develop a (formally non-nested) Monte Carlo pro-

cedure for A(()L) in which the lower approximation to the Snell envelope YT(I)

and the conditional expectation Erifr(j_)l is generically declared as (an at this

level known) function of the underlying state X, exercise date r, and number

of exercise possibilities . Here the implementation of Yr(l) requires an inner
simulation procedure based on (3.6) where, in contrast to the previous method,
each inner simulation continuous until all the stopping rules Tf’l, 1<p<l,
have stopped. Likewise, the implementation of the function ETE/T(Ql requires
inner simulations based on (3.12) where each inner simulation continuous until
all the stopping rules Tf;fl, 1 < p <1, have stopped. According to (3.11) the
latter function will only be called in the case where 71! = r. For an illustration

in the case L = 1, T' = 3, see Figure 1, lower picture.

Remark 3.7 (i) Remark 3.4 applies again; the above procedure yields a Monte
Carlo estimate of XED’L which is biased up. (ii) For L = 1, representation
(3.11) and the corresponding Monte Carlo procedure collapses to the well-
known Andersen-Broadie representation and Andersen-Broadie primal-dual
algorithm, respectively. Indeed, for L = 1 we get

0<j<T

j—1
XBD,L(XO) =Y ,(Xo) + Ey max <Zj — Xj + Z Tir=r} (ETXTH — XT)
r=0

(3.13)
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with the well demonstrated advantage that the term Y (X() may be computed
using an accurate non-nested Monte Carlo simulation, and that the remaining
gap term has typically low variance.

Remark 3.8 Given the success of the dual representation in the single exercise
case as reported in the literature, it will be obvious that analogue simulation
procedures for the multiple case as suggested in this paper are potentially
promising as well. A detailed description and numerical study (including a
comparison with the method of Meinshausen and Hambly (2004)) is the sub-
ject of a subsequent article which is currently in preparation.

Remark 3.9 In the case where the process X is adapted to a Brownian fil-
tration it looks feasible to construct a linear Monte Carlo algorithm for the
multiple dual in a similar way as presented in Belomestny et al. (2009a). This
might be done in future work.

Remark 3.10 One may wonder whether it is possible to generalize in a similar
way the multiplicative dual approach of Jamshidian (2007) to the multiple
exercise case. Anyway, the additive multiple dual as constructed in this article
inherits the nice almost sure property of the standard additive dual represen-
tation when the optimal martingale is plugged in. The multiplicative dual fails
to have this property, see also the discussion in Chen and Glasserman (2007)
(below Prop. 6.8) on this.
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L
Vil = inf Ep max > (Z, — Mj,,) -
MeM, 0<j1<--<g LT

Mp=0 k=1
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