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Abstract

The Doss-Sussmann (DS) approach is used for uniform simulation of the Cox-
Ingersoll-Ross (CIR) process. The DS formalism allows to express trajectories of
the CIR process through solutions of some ordinary differential equation (ODE) de-
pending on realizations of a Wiener process involved. By simulating the first-passage
times of the increments of the Wiener process to the boundary of an interval and
solving the ODE, we uniformly approximate the trajectories of the CIR process. In
this respect special attention is payed to simulation of trajectories near zero. From
a conceptual point of view the proposed method gives a better quality of approxi-
mation (from a path-wise point of view) than standard, or even exact simulation of
the SDE at some deterministic time grid.
AMS 2010 subject classification. Primary 65C30; secondary 60H35.
Keywords. Cox-Ingersoll-Ross process, Doss-Sussmann formalism, Bessel func-
tions, confluent hypergeometric equation.

1 Introduction

The Cox-Ingersoll-Ross process V (t) is determined by the following stochastic differential
equation (SDE)

dV (t) = k(λ− V (t))dt+ σ
√
V dw(t), V (t0) = V0, (1)

where k, λ, σ are positive constants, and w is a scalar Brownian motion. Due to [6] this
process has become very popular in financial mathematical applications. The CIR process
is used in particular as volatility process in the Heston model [14]. It is known ([15], [16])
that for V0 > 0 there exists a unique strong solution Vt0,V0(t) of (1) for all t ≥ t0 ≥ 0. The
CIR process V (t) = Vt0,V0(t) is positive in the case 2kλ ≥ σ2 and nonnegative in the case
2kλ < σ2. Moreover, in the last case the origin is a reflecting boundary.

As a matter of fact, (1) does not satisfy the global Lipschitz assumption. The diffi-
culties arising in a simulation method for (1) are connected with this fact and with the
natural requirement of preserving nonnegative approximations. A lot of approximation
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methods for the CIR processes are proposed. For an extensive list of articles on this
subject we refer to [3] and [7]. Besides [3] and [7] we also refer to [1, 2, 12, 13], where a
number of discretization schemes for the CIR process can be found. Further we note that
in [18] a weakly convergent fully implicit method is implemented for the Heston model.
Exact simulation of (1) is considered in [5, 9] (see [3] as well).

In this paper, we consider uniform pathwise approximation of V (t) on an interval
[t0, t0 + T ] using the Doss-Sussmann transformation ([8], [21], [20]) which allows for ex-
pressing any trajectory of V (t) by the solution of some ordinary differential equation that
depends on the realization of w(t). The approximation V (t) will be uniform in the sense
that the path-wise error will be uniformly bounded, i.e.

sup
t0≤t≤t0+T

∣∣V (t)− V (t)
∣∣ ≤ r almost surely, (2)

where r > 0 is fixed in advance. In fact, by simulating the first-passage times of the
increments of the Wiener process to the boundary of an interval and solving this ODE,
we approximately construct a generic trajectory of V (t). Such kind of simulation is more
simple than the one proposed in [5] and moreover has the advantage of uniform nature.
Let us consider the simulation of a standard Brownian motion W on a fixed time grid

t0, ti, ..., tn = T.

Although W may be even exactly simulated at the grid points, the usual piecewise linear
interpolation

W (t) =
ti+1 − t
ti+1 − ti

W (ti) +
t− ti
ti+1 − ti

W (ti+1)

is not uniform in the sense of (2). Put differently, for any (large) positive number A, there
is always a positive probability (though possibly small) that

sup
t0≤t≤t0+T

∣∣W (t)−W (t)
∣∣ > A.

Therefore, for path dependent applications for instance, such a standard, even exact,
simulation method may be not desirable and a uniform method preserving (2) may be
preferred. Apart from applications however, uniform simulation of trajectories of an SDE
in the sense of (2) may be considered as an interesting mathematical problem in its own
right.

We note that the original DS results rely on a global Lipschitz assumption that is not
fulfilled for (1). We therefore have introduced the DS formalism that yields a correspond-
ing ODE which solutions are defined on random time intervals. If V gets close to zero
however, the ODE becomes intractable for numerical integration and so, for the parts of
a trajectory V (t), that are close to zero, we are forced to use some other (non-DS) ap-
proach. For such parts we here propose a different uniform simulation method. Another
restriction is connected with the condition

α :=
(
4kλ− σ2

)
/8 > 0. (3)

We underline that the case α > 0 is more general than the case 2kλ ≥ σ2 that ensures
positivity of V (t), and stress that in the literature many convergence proofs for numerical
integration schemes for (1) are based on the assumption 2kλ ≥ σ2. However, for example,
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in [1] and [12] convergence without this assumption is obtained with a strong error inverse
proportional to the logarithm of the number of time steps (loosely speaking). We expect
that the results here obtained for α > 0 can be extended to the case where α ≤ 0, however
in a highly nontrivial way. Therefore, the case α ≤ 0 will be considered in a subsequent
work.

The paper is organized as follows. The next two sections are devoted to DS formalism
in connection with (1) and to some auxiliary propositions. In Section 4 we deal with the
one-step approximation and in Section 5 with the convergence of the proposed method. A
first simulation algorithm is described in Section 5.1. Section 6 is dedicated to the uniform
construction of trajectories close to zero resulting in a main simulation algorithm and a
corresponding convergence theorem. In Section 7 we present a numerical experiment and
discuss some beneficial issues of the main algorithm in certain applications. The more
technical parts are deferred to the Appendix.

2 The Doss-Sussmann transformation

2.1 Due to the Doss-Sussmann approach ([8], [15], [20], [21]), the solution of (1) may be
expressed in the form

V (t) = F (X(t), w(t)), (4)

where F = F (x, y) is some deterministic function and X(t) is the solution of some
ordinary differential equation depending on the part w(s), 0 ≤ s ≤ t, of the realization
w(·) of the Wiener process w(t).

Let us recall the Doss-Sussmann formalism according to [20], V.28. In [20] one con-
siders the Stratonovich SDE

dV (t) = b(V )dt+ γ(V ) ◦ dw(t). (5)

The function F = F (x, y) is found from the equation

∂F

∂y
= γ(F ), F (x, 0) = x, (6)

and X(t) is found from the ODE

dX

dt
=

1

∂F/∂x(X(t), w(t))
b(F (X(t), w(t)), X(0) = V (0). (7)

It turns out that application of the DS formalism after the Lamperti transformation
U(t) =

√
V (t) (see [7]) leads to more simple equations. The Lamperti transformation

yields the following SDE with additive noise

dU = (
α

U
− k

2
U)dt+

σ

2
dw, U(0) =

√
V (0) > 0, (8)

where α is given in (3). Let us seek the solution of (8) in the form

U(t) = G(Y (t), w(t)) (9)
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in accordance with (4)-(7). Because the Ito and Stratonovich forms of equation (8) coin-
cide, we have

b(U) =
α

U
− k

2
U, γ(U) =

σ

2
.

The function G = G(y, z) is found from the equation

∂G

∂z
=
σ

2
, G(y, 0) = y,

i.e.,

G(y, z) = y +
σ

2
z, (10)

and Y (t) is found from the ODE

dY

dt
=

α

Y + σ
2
w(t)

− k

2
(Y +

σ

2
w(t)), Y (0) = U(0) =

√
V (0) > 0. (11)

From (9), (10), and solution of (11), we formally obtain the solution U(t) of (8):

U(t) = Y (t) +
σ

2
w(t). (12)

Hence
V (t) = U2(t) = (Y (t) +

σ

2
w(t))2. (13)

2.2 Since the Doss-Sussmann results rely on a global Lipschitz assumption that is not
fulfilled for (1), solution (13) has to be considered only formally. In this section we
therefore give a direct proof of the following more precise result.

Proposition 1 Let Y (0) = U(0) =
√
V (0) > 0. Let τ be the following stopping time:

τ := inf{t : V (t) = 0}.

Then equation (11) has a unique solution Y (t) on the interval [0, τ), the solution U(t) of
(8) is expressed by formula (12) on this interval, and V (t) is expressed by (13).

Proof. Let (w(t), V (t)) be the solution of the SDE system

dw = dw(t), dV = k(λ− V )dt+ σ
√
V (t)dw (t) ,

which satisfies the initial conditions w(0) = 0, V (0) > 0. Then U(t) =
√
V (t) > 0 is a

solution of (8) on the interval [0, τ). Consider the function Y (t) = U(t)− σ
2
w(t), 0 ≤ t < τ.

Clearly, Y (t) + σ
2
w(t) > 0 on [0, τ). Due to Itô’s formula, we get

dY (t) = dU(t)− σ

2
dw(t) =

αdt

Y + σ
2
w(t)

− k

2
(Y +

σ

2
w(t))dt,

i.e., the function U(t)− σ
2
w(t) is a solution of (11). The uniqueness of Y (t) follows from

the uniqueness of V (t).
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2.3 So far we were starting at the moment t = 0. It is useful to consider the Doss-
Sussmann transformation with an arbitrary initial time t0 > 0 (which even may be a
stopping time, for example, 0 ≤ t0 < τ). In this case, we obtain instead of (11) for

Y = Y (t; t0) = U(t)− σ

2
(w(t)− w(t0)) =

√
V (t)− σ

2
(w(t)− w(t0)), t0 ≤ t < t0 + τ,

the equation

dY

dt
=

α

Y + σ
2
(w(t)− w(t0))

− k

2
(Y +

σ

2
(w(t)− w(t0))), (14)

Y (t0; t0) =
√
V (t0), t0 ≤ t < t0 + τ,

with α given by (3). Clearly,

V (t) = (Y (t; t0) +
σ

2
(w(t)− w(t0)))2, t0 ≤ t < t0 + τ. (15)

3 Auxiliary propositions

3.1 Let us consider in view of (14) solutions of the ordinary differential equations

dy0

dt
=

α

y0
− k

2
y0, y0(t0) = y0 > 0, t ≥ t0 ≥ 0, (16)

which are given by

y0(t) = y0
t0,y0

(t) = [y2
0e
−k(t−t0) +

2α

k
(1− e−k(t−t0))]1/2, t ≥ t0. (17)

In the case α > 0, that is by (3) 4kλ > σ2, we have: if y0 >
√

2α/k then y0
t0,y0

(t) ↓
√

2α/k

as t → ∞ and if 0 < y0 <
√

2α/k then y0
t0,y0

(t) ↑
√

2α/k as t → ∞. Further y0(t) =√
2α/k is a solution of (16).

3.2. Our next goal is to obtain estimates for solutions of the equation

dy

dt
=

α

y + σ
2
ϕ(t)

− k

2
(y +

σ

2
ϕ(t)), y(t0) = y0, t0 ≤ t ≤ t0 + θ, (18)

(cf. (14) ) for a given continuous function ϕ(t).

Lemma 2 Let α ≥ 0. Let yi(t), i = 1, 2, be two solutions of (18) such that yi(t)+ σ
2
ϕ(t) >

0 on [t0, t0 + θ], for some θ with 0 ≤ θ ≤ T. Then∣∣y2(t)− y1(t)
∣∣ ≤ ∣∣y2(t0)− y1(t0)

∣∣ , t0 ≤ t ≤ t0 + θ. (19)
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Proof. We have

d(y2(t)− y1(t))2 = 2(y2(t)− y1(t)) (20)

×
(

α

y2(t) + σ
2
ϕ(t)

− k

2
(y2(t) +

σ

2
ϕ(t))− α

y1(t) + σ
2
ϕ(t)

+
k

2
(y1(t) +

σ

2
ϕ(t))

)
dt.

From here

(y2(t)− y1(t))2 = (y2(t0)− y1(t0))2

+2

∫ t

t0

[−α (y2(s)− y1(s))2

(y1(s) + σ
2
ϕ(s))(y2(s) + σ

2
ϕ(s))

− k

2
(y2(s)− y1(s))2]ds

≤ (y2(t0)− y1(t0))2,

whence (19) follows.

Proposition 3 For any α > 0 it holds∣∣∣√Vt0,V 2
0

(t)−
√
Vt0,V 1

0
(t)
∣∣∣ ≤ ∣∣∣∣√V 2

0 −
√
V 1

0

∣∣∣∣ , t0 ≤ t <∞. (21)

Proof. In the case 2kλ ≥ σ2, we have√
Vt0,V i0 (t) = Y i(t; t0) +

σ

2
(w(t)− w(t0)) > 0, (22)

Y i(t0; t0) =
√
V i

0 , i = 1, 2, t0 ≤ t <∞,

where the Y i(t; t0) satisfy (14). So, by Lemma 2 with ϕ(t) = w(t)− w(t0),∣∣Y 2(t; t0)− Y 1(t; t0)
∣∣ ≤ ∣∣∣∣√V 2

0 −
√
V 1

0

∣∣∣∣ , t0 ≤ t <∞

and (21) follows since Y 2(t; t0) −Y 1(t; t0) =
√
Vt0,V 2

0
(t) −

√
Vt0,V 1

0
(t). The general case

α > 0 is proved in Appendix A.

3.3 Now consider (18) for a continuous function ϕ satisfying

|ϕ(t)| ≤ r, t0 ≤ t ≤ t0 + θ ≤ t0 + T, (23)

for some r > 0 and 0 ≤ θ ≤ T. Along with (16), (18) with (23), we further consider the
equations

dy

dt
=

α

y + σ
2
r
− k

2
(y +

σ

2
r), y(t0) = y0, (24)

dy

dt
=

α

y − σ
2
r
− k

2
(y − σ

2
r), y(t0) = y0. (25)

Let us assume that y0 ≥ σr > 0, and consider an η > 0, to be specified below, that
satisfies

y0 ≥ η ≥ σr > 0. (26)
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The solutions of (16), (18) with (23), (24), and (25) are denoted by y0(t), y(t), y−(t), and
y+(t), respectively, where y0(t) is given by (17). By using (17) we derive straightforwardly
that

y−(t) = [(y0 +
σ

2
r)2e−k(t−t0) +

2α

k
(1− e−k(t−t0))]1/2 − σ

2
r, t0 ≤ t ≤ t0 + θ, (27)

y+(t) = [(y0 −
σ

2
r)2e−k(t−t0) +

2α

k
(1− e−k(t−t0))]1/2 +

σ

2
r, t0 ≤ t ≤ t0 + θ. (28)

Note that y−(t) + σr/2 > 0 and y+(t) > σr/2, t0 ≤ t ≤ t0 + θ. Due to the comparison
theorem for ODEs (see, e.g., [11], Ch. 3), the inequality

α

y + σ
2
r
− k

2
(y +

σ

2
r) ≤ α

y + σ
2
ϕ(t)

− k

2
(y +

σ

2
ϕ(t)) ≤ α

y − σ
2
r
− k

2
(y − σ

2
r),

which is fulfilled in view of (23) for y > σr/2, then implies that

y−(t) ≤ y(t) ≤ y+(t), t0 ≤ t ≤ t0 + θ. (29)

The same inequality holds for y(t) replaced by y0(t). We thus get∣∣y(t)− y0(t)
∣∣ ≤ y+(t)− y−(t), t0 ≤ t ≤ t0 + θ. (30)

Proposition 4 Let α > 0, the inequalities (23) and (26) be fulfilled for a fixed η > 0,
and let θ ≤ T. We then have∣∣y(t)− y0(t)

∣∣ ≤ Cr(t− t0) ≤ Crθ, t0 ≤ t ≤ t0 + θ, with (31)

C =
σk

2
+

4ασ

3η2
e
k
2
T .

In particular, C is independent of t0, y0, and r (provided (26) holds).

Proof. We estimate the difference y+(t)− y−(t). It holds

y+(t) = z−(t) +
σ

2
r, y−(t) = z+(t)− σ

2
r,

y+(t)− y−(t) = σr − (z+(t)− z−(t)), (32)

where

z±(t) = [(y0 ±
σ

2
r)2e−k(t−t0) +

2α

k
(1− e−k(t−t0))]1/2.

Further,

z+(t)− z−(t) =
(z+(t))2 − (z−(t))2

z+(t) + z−(t)
=

2y0σre
−k(t−t0)

z+(t) + z−(t)
. (33)

Using the inequality (a2 + b)1/2 ≤ a+ b/2a for any a > 0 and b ≥ 0, we get

z+(t) ≤ (y0 +
σ

2
r)e−

k
2

(t−t0) +
α

k

(1− e−k(t−t0))

(y0 + σ
2
r)e−

k
2

(t−t0)
,

z−(t) ≤ (y0 −
σ

2
r)e−

k
2

(t−t0) +
α

k

(1− e−k(t−t0))

(y0 − σ
2
r)e−

k
2

(t−t0)
,
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whence

z+(t) + z−(t) ≤ 2y0e
− k

2
(t−t0) +

α

k

(1− e−k(t−t0))

e−
k
2

(t−t0)

2y0

(y2
0 −

σ2

4
r2)

.

Therefore

1

z+(t) + z−(t)
≥ 1

2y0e
− k

2
(t−t0)

1− α

k(y2
0 −

σ2

4
r2)

(ek(t−t0) − 1)

 .

From (33) we have that

z+(t)− z−(t) ≥ σre−
k
2

(t−t0)

1− α

k(y2
0 −

σ2

4
r2)

(ek(t−t0) − 1)


and so due to (32) we get

0 ≤ y+(t)− y−(t) ≤ σr(1− e−
k
2

(t−t0)) +
ασr

k(y2
0 −

σ2

4
r2)

(e
k
2

(t−t0) − e−
k
2

(t−t0)).

Since 1− e−qϑ ≤ qϑ for any q ≥ 0, ϑ ≥ 0, and y2
0 −

σ2

4
r2 ≥ 3

4
η2 due to (26), we obtain

0 ≤ y+(t)− y−(t) ≤ σrk

2
(t− t0) +

4ασr

3kη2
e
k
2

(t−t0)k(t− t0).

From this and (30), (31) follows with C =
σk

2
+

4ασ

3η2
e
k
2
T .

Corollary 5 Under the assumptions of Proposition 4, we get by taking η = y0,∣∣y(t)− y0(t)
∣∣ ≤ (σk

2
+

4ασ

3y2
0

e
k
2
T

)
rθ,

=

(
D1 +

D2

y2
0

)
rθ, t0 ≤ t ≤ t0 + θ,

where D1 := σk/2 and D2 := 4ασe
k
2
T/3 only depend on the parameters of the CIR process

under consideration and the time horizon T.

4 One-step approximation

Let us suppose that for tm, t0 ≤ tm < t0 + T, V (tm) is known exactly. In fact, tm may
be considered as a realization of a certain stopping time. Consider Y = Y (t; tm) on some
interval [tm, tm + θm] with ym := Y (tm; tm) =

√
V (tm), given by the ODE (cf. (14)),

dY

dt
=

α

Y + σ
2
(w(t)− w(tm))

− k

2
(Y +

σ

2
(w(t)− w(tm))), (34)

Y (tm; tm) =
√
V (tm), tm ≤ t ≤ tm + θm.
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Assume that
ym =

√
V (tm) ≥ σr. (35)

Due to (15), the solution V (t) of (1) on [tm, tm + θm] is obtained via√
V (t) = Y (t; tm) +

σ

2
(w(t)− w(tm)), tm ≤ t ≤ tm + θm. (36)

Though equation (34) is (just) an ODE, it is not easy to solve it numerically in a straight-
forward way because of the non-smoothness of w(t). We are here going to construct an
approximation ym(t) of Y (t; tm) via Proposition 4. To this end we simulate the point
(tm + θm, w(tm + θm)−w(tm)) by simulating θm as being the first-passage (stopping) time
of the Wiener process w(t) − w(tm), t ≥ tm, to the boundary of the interval [−r, r].
So, |w(t)− w(tm)| ≤ r for tm ≤ t ≤ tm + θm and, moreover, the random variable
w(tm + θm) − w(tm), which equals either −r or +r with probability 1/2, is indepen-
dent of the stopping time θm. A method for simulating the stopping time θm is given in
Appendix B. Proposition 4 and Corollary 5 then yield,

|Y (t; tm)− ym(t)| ≤
(
D1 +

D2

y2
m

)
r (tm+1 − tm) , tm ≤ t ≤ tm+1 with (37)

tm+1 := min(tm + θm, t0 + T ),

where ym(t) is the solution of the problem

dym

dt
=

α

ym
− k

2
ym, ym(tm) = Y (tm; tm) =

√
V (tm)

that is given by (17) with (tm, ym) = (tm,
√
V (tm)). We so have,√

V (t) = Y (t; tm) +
σ

2
(w(t)− w(tm)) = ym(t) +

σ

2
(w(t)− w(tm)) + ρm(t),

where due to (37),

|ρm(t)| ≤
(
D1 +

D2

y2
m

)
r (tm+1 − tm) , tm ≤ t ≤ tm+1. (38)

We next introduce the one-step approximation
√
V (t) of

√
V (t) on [tm, tm+1] by√

V (t) := ym(t) +
σ

2
(w(t)− w(tm)), tm ≤ t ≤ tm+1. (39)

Since |w(tm+1)− w(tm)| = r if tm+1 = tm + θm < t0 + T, and |w(tm+1)− w(tm)| ≤ r if
tm+1 = t0 + T, the one-step approximation (39) for t = tm+1 is given by√

V (tm+1) := ym(tm+1) +
σ

2
(w(tm+1)− w(tm)) = (40)

ym(tm+1) +
σ

2
·
{
rξm with P (ξm = ±1) = 1/2, if tm+1 = tm + θm < t0 + T,
ζm if tm+1 = t0 + T,

with ζm = w(t0 + T )− w(tm) being drawn from the distribution of

Wt0+T−tm conditional on max
0≤s≤t0+T−tm

|Ws| ≤ r, (41)

where W is an independent standard Brownian motion. For details see Appendix B. We
so have the following theorem.
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Theorem 6 For the one-step approximation V (tm+1) due to the exact starting value
V (tm) = V (tm) = y2

m, we have the one step error∣∣∣∣√V (tm+1)−
√
V (tm+1)

∣∣∣∣ ≤ (D1 +
D2

V (tm)

)
r (tm+1 − tm) . (42)

5 The first convergence theorem

In this section we develop a scheme that generates approximations
√
V (t0) =

√
V (t0),√

V (t1), ... ,
√
V (tn+1), where n = 0, 1, 2, ..., and t1, ..., tn+1 are realizations of a sequence

of stopping times, and show that the global error in approximation
√
V (tn+1) is in fact

an aggregated sum of local errors, i.e.,

r
n∑

m=0

(
D1 +

D2

V (tm)

)
(tm+1 − tm) ≤ rT

(
D1 +

D2

η2
n

)
,

with ym =
√
V (tm), provided that ym ≥ σr for m = 0, ..., n, and so ηn := min0≤m≤n ym ≥

σr.
Let us now describe an algorithm for the solution of (1) on the interval [t0, t0 + T ] in

the case α ≥ 0. Suppose we are given V (t0) and r such that√
V (t0) ≥ σr.

For the initial step we use the one-step approximation according to the previous section
and thus obtain (see (40) and (42))√

V (t1) = y0(t1) +
σ

2
(w(t1)− w(t0)),√

V (t1) =

√
V (t1) + ρ0(t1),

where ∣∣ρ0(t1)
∣∣ ≤ (D1 +

D2

V (t0)

)
r (t1 − t0) =: C0r(t1 − t0). (43)

Suppose that √
V (t1) ≥ σr.

We then go to the next step and consider the expression√
V (t) = Y (t; t1) +

σ

2
(w(t)− w(t1)), (44)

where Y (t; t1) is the solution of the problem (see (34))

dY

dt
=

α

Y + σ
2
(w(t)− w(t1))

− k

2
(Y +

σ

2
(w(t)− w(t1))), (45)

Y (t1; t1) =
√
V (t1), t1 ≤ t ≤ t1 + θ1.

10



Now, in contrast to the initial step, the value
√
V (t1) is unknown and we are forced

to use
√
V (t1) instead. Therefore we introduce Y (t; t1) as the solution of the equa-

tion (45) with initial value Y (t1; t1) =
√
V (t1). From the previous step we have that∣∣Y (t1; t1)− Y (t1; t1)

∣∣ =

∣∣∣∣√V (t1)−
√
V (t1)

∣∣∣∣ = |ρ0(t1)| ≤ C0r(t1 − t0). Hence, due to

Lemma 2, ∣∣Y (t; t1)− Y (t; t1)
∣∣ ≤ ρ0(t1) ≤ C0r(t1 − t0), t1 ≤ t ≤ t1 + θ1. (46)

Let θ1 be the first-passage time of the Wiener process w(t1 + ·)− w(t1) to the boundary
of the interval [−r, r]. If t1 + θ1 < t0 + T then set t2 := t1 + θ1, else set t2 := t0 + T. In
order to approximate Y (t; t1) for t1 ≤ t ≤ t2 let us consider along with equation (45) the
equation

dy1

dt
=

α

y1
− k

2
y1, y1(t1) = Y (t1; t1) =

√
V (t1).

Due to Proposition 4 and Corollary 5 it holds that∣∣Y (t; t1)− y1(t)
∣∣ ≤ (D1 +

D2

V (t1)

)
r (t2 − t1) =: C1r (t2 − t1) , t1 ≤ t ≤ t2, (47)

and so by (46) we have∣∣Y (t; t1)− y1(t)
∣∣ ≤ r(C0(t1 − t0) + C1 (t2 − t1)), t1 ≤ t ≤ t2. (48)

We also have (see (44))√
V (t) = Y (t; t1) +

σ

2
(w(t)− w(t1)) = y1(t) +

σ

2
(w(t)− w(t1)) +R1(t), (49)

where ∣∣R1(t)
∣∣ ≤ r(C0(t1 − t0) + C1 (t2 − t1)), t1 ≤ t ≤ t2. (50)

We so define the approximation√
V (t) := y1(t) +

σ

2
(w(t)− w(t1)), that satisfies (51)√

V (t) =

√
V (t) +R1(t) , t1 ≤ t ≤ t2, (52)

and then set √
V (t2) = y1(t2) +

σ

2
(w(t2)− w(t1)) = (53)

y1(t2) +
σ

2
·
{

rξ1 with P (ξ1 = ±1) = 1/2, if t2 = t1 + θ1 < t0 + T,
ζ1 if t2 = t0 + T,

,

cf. (40) and (41). We thus end up with a next approximation
√
V (t2) such that∣∣∣∣√V (t2)−

√
V (t2)

∣∣∣∣ =
∣∣R1(t2)

∣∣ ≤ r(C0(t1 − t0) + C1 (t2 − t1)). (54)

11



From the above description it is obvious how to proceed analogously given a generic

approximation sequence of approximations
√
V (tm), m = 0, 1, 2, ..., n, with V (t0) = V (t0),

that satisfies by assumption √
V (tm) ≥ σr, for m = 0, ..., n, and (55)∣∣∣∣√V (tn)−

√
V (tn)

∣∣∣∣ ≤ r

n−1∑
m=0

(
D1 +

D2

V (tm)

)
(tm+1 − tm) (56)

=: r
n−1∑
m=0

Cm (tm+1 − tm) .

Indeed, consider the expression√
V (t) = Y (t; tn) +

σ

2
(w(t)− w(tn)),

where Y (t; tn) is the solution of the problem

dY

dt
=

α

Y + σ
2
(w(t)− w(tn))

− k

2
(Y +

σ

2
(w(t)− w(tn))), (57)

Y (tn; tn) =
√
V (tn), tn ≤ t ≤ tn + θn,

for a θn > 0 to be determined. Since
√
V (tn) is unknown we consider Y (t; tn) as the

solution of the equation (57) with initial value Y (tn; tn) =
√
V (tn). Due to (56) and

Lemma 2 again, we have

∣∣Y (t; tn)− Y (t; tn)
∣∣ ≤ r

n−1∑
m=0

Cm (tm+1 − tm) , tn ≤ t ≤ tn + θn.

In order to approximate Y (t; tn) for tn ≤ t ≤ tn + θn, we consider the equation

dyn

dt
=

α

yn
− k

2
yn, yn(tn) = Y (tn; tn) =

√
V (tn). (58)

By repeating the procedure (47)-(54) we arrive at√
V (t) := yn(t) +

σ

2
(w(t)− w(tn)), tn ≤ t ≤ tn+1, (59)

satisfying∣∣∣∣√V (t)−
√
V (t)

∣∣∣∣ = |Rn(t)| ≤ r

n∑
m=0

(
D1 +

D2

V (tm)

)
(tm+1 − tm) , tn ≤ t ≤ tn+1, (60)

with Rn(t) := Y (t; tn)− yn(t), tn ≤ t ≤ tn+1, and in particular∣∣∣∣√V (tn+1)−
√
V (tn+1)

∣∣∣∣ ≤ r

n∑
m=0

(
D1 +

D2

V (tm)

)
(tm+1 − tm) . (61)
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Proposition 7 Let the initial value
√
V (t0) be known with accuracy ε, i.e., the known√

V (t0) is such that ∣∣∣∣√V (t0)−
√
V (t0)

∣∣∣∣ ≤ ε, (62)

and let
√
V (tm) ≥ η ≥ σr, m = 0, 1, ..., n. Then∣∣∣∣√V (tn+1)−

√
V (tn+1)

∣∣∣∣ ≤ ε+ r
n∑

m=0

(
D1 +

D2

η2

)
(tm+1 − tm) , (63)

where V (tn+1) = Vt0,V (t0)(tn+1).

Proof. Inequality (63) follows from (61) with V (tn+1) = Vt0,V̄ (t0)(tn+1), (62), and (see
Proposition 3) ∣∣∣√Vt0,V (t0)(tn+1)−

√
Vt0,V̄ (t0)(tn+1)

∣∣∣ ≤ ∣∣∣∣√V (t0)−
√
V (t0)

∣∣∣∣ .

Remark 8 In principle it is possible to use the distribution function Q (see (85)) for

constructing
√
V (t) for tn < t < tn+1. However, we rather consider for tn ≤ t ≤ tn+1 the

approximation √
Ṽ (t) := yn(t) +

σ

2
w̃n(t), tn ≤ t ≤ tn+1,

where (a) for tn+1 < t0 + T, w̃ is an arbitrary continuous function satisfying

w̃(tn) = 0, w̃(tn+1) = w(tn+1)− w(tn) = rξn, max
tn≤t≤tn+1

|w̃n(t)| ≤ r,

and (b) for tn+1 = t0 + T, one may take w̃(t) ≡ 0. As a result we get similar to (86) an
insignificant increase of the error,∣∣∣∣√V (t)−

√
Ṽ (t)

∣∣∣∣ ≤ r
n∑

m=0

(
D1 +

D2

V (tm)

)
(tm+1 − tm) + σr, tn < t < tn+1.

Let us consolidate the above procedure in a concise way.

5.1 The first simulation algorithm

• Initialize n := 0; tn := t0;
√
V (tn) =

√
V (t0); ∆ := σr;

(∗) While
√
V (tn) ≥ ∆ and tn < t0 + T do

– simulate an independent random variable ξn with P (ξn = ±1) = 1/2, and θn
as described in Appendix B. If tn + θn < t0 + T, set tn+1 = tn + θn, else set
tn+1 = t0 + T ;

13



– Solve equation (58) on the interval [tn, tn+1] with solution yn and set√
V (tn+1) = yn(tn+1) +

σ

2
·
{
rξn if tn+1 < t0 + T
0 if tn+1 = t0 + T

;

– tnew
n := tn+1;

√
V (tnew

n ) :=
√
V (tn+1); nnew := n+ 1;

So, under the assumption (55) we obtain the estimate (60) (possibly enlarged with
a term σr). The next theorem shows that if a trajectory of V (t) under consideration is
positive on [t0, t0 +T ], then the algorithm is convergent on this trajectory. We recall that
in the case 2kλ ≥ σ2 almost all trajectories are positive, hence in this case the proposed
method is almost surely convergent.

Theorem 9 Let 4kλ ≥ σ2 (i.e., α ≥ 0). Then for any positive trajectory V (t) > 0 on
[t0, t0 + T ] the proposed method is convergent on this trajectory. In particular, there exist
η > 0 depending on the trajectory V (·) only, and r0 > 0 depending on η such that√

V (tm) ≥ η ≥ rσ, m = 0, 1, 2, ...,

for any r < r0. So in particular (55) is fulfilled for all m = 0, 1, ..., and the estimate (60)
implies that for any r < r0,∣∣∣∣√V (t)−

√
V (t)

∣∣∣∣ ≤ r

(
D1 +

D2

η2

)
T, t0 ≤ t ≤ t0 + T,

and (see Remark 8)∣∣∣∣√V (t)−
√
Ṽ (t)

∣∣∣∣ ≤ r

(
D1 +

D2

η2

)
T + σr, t0 ≤ t ≤ t0 + T.

Proof. Let us define

η :=
1

2
min

t0≤t≤t0+T

√
V (t) and

r0 := min

η

σ
,

η(
D1 + D2

η2

)
T

 , (64)

and let r < r0. We then claim that for all m,√
V (tm) ≥ η ≥ rσ. (65)

For m = 0 we trivially have√
V (t0) =

√
V (t0) ≥ 2η ≥ η ≥ r0σ ≥ rσ.

Now suppose by induction that
√
V (tj) ≥ η for j = 0, ...,m. Then due to (61) we have∣∣∣∣√V (tm+1)−

√
V (tm+1)

∣∣∣∣ ≤ r

(
D1 +

D2

η2

)
T ≤ r0

(
D1 +

D2

η2

)
T ≤ η

because of (64). Thus, since
√
V (tm+1) ≥ 2η, it follows that

√
V (tm+1) ≥ η ≥ rσ. This

proves (65) and the convergence for r ↓ 0.
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Remark 10 . In the case where 4kλ ≥ σ2 > 2kλ trajectories will reach zero with positive
probability, that is convergence on such trajectories is not guaranteed by Theorem 9. So it
is important to develop some method for continuing the simulations in cases of very small
V (tm). One can propose different procedures, for instance, one can proceed with standard
SDE approximation methods relying on some known scheme suitable for small V (e.g.
see [3]). However, the uniformity of the simulation would be destroyed in this way. We
therefore propose in the next section a uniform simulation method that may be started in
a value V (tm) ≥ 0 close to zero.

6 Simulation of trajectories close to zero and the

main algorithm

The simulation algorithm in Section 5.1 has a drawback. Even in the case 2kλ ≥ σ2,
where all the trajectories V (t) are positive, we cannot ensure that after a choice of r the

requirement
√
V (tm) ≥ σr will be fulfilled for all m. Of course, in principle it is possible

to decrease r when the trajectory approaches zero (i.e., using an adaptive algorithm with
variable expected time step). However, such an algorithm can be very expensive on parts
of trajectories that get close to zero. This is because the smaller r, the smaller the expected
passage time Eθn = r2 (see Remark 12) and so such parts may require a huge amount of
steps. We therefore propose an alternative procedure if we enter at some random step m
a band (0,∆) of width ∆ > 0 (to be specified later), i.e.√

V (tk) ≥ ∆, k = 0, 1, ...,m− 1, and

√
V (tm) < ∆. (66)

Starting from (tm, V (tm)) we now make a time step ϑ = ϑV (tm) (that may be comparatively
large), such that√

Vtm,V (tm)(t) < 2∆, tm ≤ t < tm + ϑ,
√
Vtm,V (tm)(tm + ϑ) = 2∆. (67)

That is, tm + ϑV (tm) is the first-passage time of the trajectory
√
Vtm,V (tm)(t) to the upper

bound of the band (0, 2∆). One may think of ∆ being large enough compared to r,
but at the same time small enough in order to reach a certain accuracy. For example,
∆ = Ara, 0 < a < 1/2, where A is a positive constant. Although we do not know
the trajectory Vtm,V (tm)(t) on the interval tm < t < tm + ϑ, we do know that it satisfies

inequality (67), and we know its values
√
V (tm) and

√
Vtm,V (tm)(tm + ϑ) = 2∆ at the ends

of the interval. We so take, for example, a straight line L(t) that connects the points

(tm,
√
V (tm)) and (tm + ϑ, 2∆), i.e.,

L(t) :=
t− tm
ϑ

2∆ +
tm + ϑ− t

ϑ

√
V (tm), tm ≤ t ≤ tm + ϑ, (68)

as an approximation to the unknown
√
Vtm,V (tm)(t) on the interval (tm, tm + ϑ), and set√

V (t) := L(t), tm ≤ t ≤ tm + ϑ. For this approximation we so have the error estimate∣∣∣∣√V (t)−
√
Vtm,V (tm)(t)

∣∣∣∣ ≤ 2∆ for tm < t < tm + ϑ, (69)
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while at times tm and tm + ϑ this error is zero due to√
V (tm + ϑ) =

√
Vtm,V (tm)(tm + ϑ) = 2∆. (70)

By Proposition 3 (we assume that α > 0) we have on the other hand,∣∣∣√Vtm,V (tm)(t)−
√
Vtm,V (tm)(t)

∣∣∣ ≤ ∣∣∣∣√V (tm)−
√
V (tm)

∣∣∣∣ , tm ≤ t ≤ tm + ϑ. (71)

Combining inequalities (69) and (71) then yields,∣∣∣∣√V (t)−
√
Vtm,V (tm)(t)

∣∣∣∣ ≤ 2∆ +

∣∣∣∣√V (tm)−
√
V (tm)

∣∣∣∣ , tm < t < tm + ϑ, (72)

while at time tm + ϑ we have by (70) and (71) that∣∣∣∣√V (tm + ϑ)−
√
Vtm,V (tm)(tm + ϑ)

∣∣∣∣ ≤ ∣∣∣∣√V (tm)−
√
V (tm)

∣∣∣∣ . (73)

In other words, the error of
√
V at the time tm + ϑ of passing the band is not larger than

the error at tm when
√
V entered the band. That is, the error does not accumulate when√

V passes through the band (0, 2∆). This property is a key feature in our construction.

6.1 The main simulation algorithm and the main convergence
theorem

The arguments above result in the following (pseudo) algorithm. Let r and ∆ be numbers
such that ∆ ≥ σr.

• Initialize n := 0; tn := t0;
√
V (tn) =

√
V (t0); choose ∆ > σr properly (see below)

(∗∗) Run the first simulation algorithm of Section 5.1 from (∗);

• Set m := nnew; tm = tnew
n ;

• If tm = t0 + T then finish the simulation;

• If tm < t0 + T simulate ϑV (tm) according to Appendix C;

• If tm + ϑV (tm) ≥ t0 + T set
√
V (t) =

√
V (tm) on [tm, t0 + T ] and finish;

• If tm + ϑV (tm) < t0 + T set
√
V (t) = L(t) (see (68)) on [tm, tm + ϑV (tm)]; set tnew

n :=

tm + ϑV (tm);
√
V (tnew

n ) = 2∆; Go to (∗∗);

Let us now consider the convergence properties of the main algorithm. Suppose that

for a generic point tn at (∗) we have that

∣∣∣∣√V (tn)−
√
V (tn)

∣∣∣∣ ≤ εn (obviously we may

take ε0 = 0). Then the aggregated error of
√
V (tm) is estimated by (see Proposition 7)∣∣∣∣√V (tm)−

√
V (tm)

∣∣∣∣ ≤ εn + r

m−1∑
k=n

(
D1 +

D2

V (tk)

)
(tk+1 − tk) =: εnew

n .
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Assuming that tm + ϑV (tm) < t0 + T (the other case is similar), the error of
√
V (t) on (tm,

tm + ϑV (tm)), before executing (∗) the next time, is thus estimated by

2∆ +

∣∣∣∣√V (tm)−
√
V (tm)

∣∣∣∣ ≤ 2∆ + εnew
n , (74)

while the error at tnew
n is estimated by εnew

n . The following theorem is now obvious from
the above constructions.

Theorem 11 . Let α > 0. The above algorithm constructs
√
V (t) on [t0, t0 + T ]. It

is completed in a finite number of steps with probability one. The error on [t0, t0 + T ] is
estimated by ∣∣∣∣√V (t)−

√
V (t)

∣∣∣∣ ≤ 2∆ + r

(
D1 +

D2

∆2

)
T. (75)

Moreover, the error in [t0, t0 + T ]\ ∪tm (tm, tm + ϑV (tm)) is estimated by∣∣∣∣√V (t)−
√
V (t)

∣∣∣∣ ≤ r

(
D1 +

D2

∆2

)
T.

By the (in a sense) optimal choice ∆ = Ar1/3, the error (75) is of O(r1/3) and the
algorithm converges for r ↓ 0.

7 Numerical implementation and some applications

In this section we discuss the numerical implementation of the main algorithm and its
merits in some possible applications (e.g. in finance where

√
V may be interpreted as

the volatility of a Heston asset price model). However, we underline that an in-depth
numerical treatment is beyond the scope of the present article. Let us assume that we
need to evaluate the expectation functional

E f(Vt0,V0(t) : t0 ≤ t ≤ t0 + T ), (76)

where f is a function that depends on the whole trajectory of Vt0,V0 .
Now, for instance, suppose that f in (76) does not depend on the parts of the trajectory

that are below a certain level l, l > 0. A simple example is

f(Vt0,V0(t) : t0 ≤ t ≤ t0 + T ) = max
t0≤t≤t0+T

Vt0,V0(t)

with l = V0. We may then choose ∆ =
√
V0/2 in the main algorithm, thus yielding a

uniform convergence rate O(r) in any case of α > 0 (cf. Theorem 11) for those parts
of the trajectories where the function f is sensitive to. Put differently, the particular
(uniform) accuracy of the parts of Vt0,V0 below V0 is irrelevant for the functional f.

Another (financial) example is a call option with strike K on realized volatility upon
a certain level l, l > 0,

Ct0 := E

(∫ t0+T

t0

Vt0,V0(s)1{V≥l}ds−K
)+
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(where for simplicity the interest rate is assumed to be zero). Note that in a Heston
model the integrated volatility process

∫ t
t0
V (s)ds as being the quadratic variation of the

log-asset price process is observable indeed, and so is V (at least in principle). For this
example on may fix ∆ =

√
l/2 in the main algorithm and then a similar remark as in the

previous example regarding accuracy applies.
In the general case, e.g. in the case of general f above, it is advantageous to choose

A in the main algorithm according to Theorem 11 for a given choice of r in an optimal
way. That is, with ∆ = Ar1/3 we have to minimize the global error

2Ar1/3 + r

(
D1 +

D2

A2r2/3

)
T =

(
2A+

D2T

A2

)
r1/3 + rD1T.

Thus, A = (D2T )1/3 =
(

4ασe
k
2
T/3
)1/3

(see Corollary 5) is a suitable choice since r � r1/3

when r is small.

Some illustrative examples

We have implemented the main algorithm for the following CIR parameters,

k = λ = T = 1, t0 = 0, σ =
√

3,

hence 2kλ < σ2 < 4kλ, and α = 1/8. In the algorithm we choose r = 0.01 and ∆ = 0.16821
determined in the above way. In Figure 1 we illustrate some typical trajectories of V . The
first picture depicts a trajectory of V that does not enter the band (0,∆2) = (0, 0.0283),
hence it follows Algorithm 5.1 until T. In the second one the trajectory enters the band
once, continues linearly until the level 4∆2 = 0.11318, and then follows Algorithm 5.1
until T. In the third picture the trajectory enters the band three times.

Appendix

A Addendum to the proof of Proposition 3

It is known that for δ > 1 the Bessel process BESδ is the unique process that satisfies the
integral representation

Z(t) = Z(0) +
δ − 1

2

∫ t

0

1

Z(s)
ds +W (t), 0 ≤ t <∞, (77)

where W is standard Brownian motion, Z(0) > 0, Z(t) ≥ 0 a.s., and that in particular
E
∫ t

0
1

Z(s)
ds <∞, see Appendix A1 in [10], and Ch. XI, Exercise 1.26 in [19]. (For δ ≤ 1

the representation of BESδ is less simple and involves the concept of local time.) From
this fact we will show that for α > 0 the solution of (8) may be represented as

U(t) = U(t0) +

∫ t

t0

(
α

U(s)
− k

2
U(s))ds+

σ

2
(w(t)− w(t0)) , U(t0) > 0, t0 ≤ t <∞. (78)

Let us consider

U(t) = e−k(t−t0)/2Z

(
σ2

4k
(ek(t−t0) − 1)

)
, t0 ≤ t <∞, (79)
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Figure 1: Three sample trajectories that enter the band (0,∆2) = (0, 0.0283) and continue
linearly until the level 4∆2 = 0.11318, 0, 1, and 3 times, respectively.
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where Z is the solution of (77) with δ = 4kλ/σ2 > 1, and Z(0) = U(t0) > 0 (cf. [10]
and the references therein). Note that the function h : t → σ2(ek(t−t0) − 1)/(4k) satisfies
h(t0) = 0, it is smooth and strictly increasing since k > 0. Let us further introduce

W̃ (t)− W̃ (t0) :=
2

σ
e−k(t−t0)/2W (h(t)) +

k

σ

∫ t

t0

e−k(s−t0)/2W (h(s))ds. (80)

Obviously, W̃ (t), t ≥ t0, is a zero mean Gaussian process and moreover by a straight-

forward computation it can be shown that E
(
W̃ (t)− W̃ (t0)

)2

= t − t0, for all t ≥ t0.

Indeed, by some algebra and using the definition of h we obtain

E
(
W̃ (t)− W̃ (t0)

)2

=
4

σ2
e−k(t−t0)h(t) +

4k

σ2
e−k(t−t0)/2

∫ t

t0

e−k(s−t0)/2 min(h(t), h(s))ds

+
k2

σ2

∫ t

t0

∫ t

t0

e−k(s−t0)/2e−k(s̃−t0)/2 min(h(s), h(s̃))dsds̃

=
1

k
(1− e−k(t−t0)) +

4k

σ2
e−k(t−t0)/2

∫ t

t0

e−k(s−t0)/2h(s)ds

+
2k2

σ2

∫ t

t0

e−k(s̃−t0)/2ds̃

∫ s̃

t0

e−k(s−t0)/2h(s)ds

= t− t0.

That is, W̃ is a Brownian motion adapted to its own filtration. Then using that

δ − 1

2

∫ h(s)

0

1

Z(u)
du =

δ − 1

2

∫ s

t0

1

Z(h(r))
h′(r)dr =

∫ s

t0

α

U(r)
ek(r−t0)/2dr ,

we get from (77) and (79),

U(s) = e−k(s−t0)/2W (h(s)) + e−k(s−t0)/2U(t0) + e−k(s−t0)/2

∫ s

t0

α

U(r)
ek(r−t0)/2dr. (81)

It thus holds by (80) and (81) that

U(t) = e−k(t−t0)/2U(t0) + e−k(t−t0)/2

∫ t

t0

α

U(r)
ek(r−t0)/2dr

+
σ

2

(
W̃ (t)− W̃ (t0)

)
− k

2

∫ t

t0

e−k(s−t0)/2W (h(s))ds

= U(t0)− k

2

∫ t

t0

U(s)ds+
σ

2

(
W̃ (t)− W̃ (t0)

)
+ e−k(t−t0)/2

∫ t

t0

α

U(r)
ek(r−t0)/2dr +

k

2

∫ t

t0

e−k(s−t0)/2ds

∫ s

t0

α

U(r)
ek(r−t0)/2dr. (82)

In particular, the Lebesgue integral
∫ t
t0

α
U(r)

ek(r−t0)/2dr is almost surely an absolutely con-

tinuous function in t on [t0, t0 + T ]. Hence, it is everywhere differentiable except for a
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set of Lebesgue measure zero, and its derivative is equal to αek(t−t0)/2/U(t). From this it
follows that the sum of the two last terms in (82) is equal to

∫ t
t0

α
U(r)

dr. We so arrive at

U(t) = U(t0) +

∫ t

t0

(
α

U(r)
− k

2
U(r))dr +

σ

2

(
W̃ (t)− W̃ (t0)

)
. (83)

From (83) the representation (78) follows for w = W̃ . In particular, the pair (U, W̃ ) in (83)

may be considered as a strong SDE solution on the probability space where W̃ is living
on. We now argue that such a solution is unique. If there would exist two different strong
solutions (U1, W̃ ) and (U2, W̃ ) with coinciding initial values U1(t0) = U2(t0) =: U(t0) > 0,
then the reverse procedure

Zi (s) := ek(h
−1(s)−t0)/2Ui(h

−1(s)), 0 ≤ s <∞, i = 1, 2, (84)

would similarly yield two strong solutions (Z1,W ) and (Z2,W ) of (77) with Z1(0) =

Z2(0) = U(t0) with respect to some (though from W̃ different) Brownian motion W. But,
by uniqueness of the solution to (77) it will follow that Z1 = Z2, and then from (84) that
U1 = U2.

Finally, with Y (t) = U(t)− σ
2

(w(t)− w(t0)) , it holds that

Y (t) = Y (t0) +

∫ t

t0

(
α

Y (s) + σ
2

(w(s)− w(t0))
− k

2

(
Y (s) +

σ

2
(w(s)− w(t0))

))
ds,

for Y (0) = U(0) > 0, 0 ≤ t < ∞, and that in particular Y is an absolutely continuous
function. From this it follows that (20) holds for t0 ≤ t ≤ t0 + T when α > 0 and
ϕ(t) = w(t)− w(t0) is a Brownian trajectory, and then inequality (19) in Lemma 2 goes
through for θ = T.

B Simulation of θm and ζm

For simulating θm we utilize the distribution function

P(t) := P (τ < t),

where τ is the first-passage time of the Wiener process W (t) to the boundary of the
interval [−1, 1]. A very accurate approximation P̃(t) of P(t) is the following one:

P(t) ' P̃(t) =

∫ t

0

P̃ ′(s)ds with

P̃ ′(t) =


2√
2πt3

(e
−

1

2t − 3e
−

9

2t + 5e
−

25

2t ), 0 < t ≤ 2

π
,

π

2
(e
−
π2t

8 − 3e
−

9π2t

8 + 5e
−

25π2t

8 ), t >
2

π
,

and it holds

sup
t≥0

∣∣∣P̃ ′(t)− P ′(t)∣∣∣ ≤ 2.13× 10−16, and sup
t≥0

∣∣∣P̃(t)− P(t)
∣∣∣ ≤ 7.04× 10−18,

21



(see for details [17], Ch. 5, Sect. 3 and Appendix A3 ). Now simulate a random variable U
uniformly distributed on [0, 1], Then compute τ = P−1(U) which is distributed according
to P . That is, we have to solve the equation P̃(τ) = U, for instance by Newton’s method
or any other efficient solving routine. Next set θm = r2τm.

For simulating ζm in (40) we observe that (41) is equivalent with

rWr−2(t0+T−tm) conditional on max
0≤u≤r−2(t0+T−tm)

|Wu| ≤ 1.

We next sample ϑ from the distribution function Q(x; r−2 (t0 + T − tm)), where Q(x; t)
is the known conditional distribution function (see [17], Ch. 5, Sect. 3)

Q(x; t) := P (W (t) < x | max0≤s≤t |W (s)| < 1), − 1 ≤ x ≤ 1, (85)

and set ζm = rϑ. The simulation of the last step looks rather complicated and may be
computationally expensive. However it is possible to take for w(t0 +T )−w(tν) simply any
value between −r and r, e.g. zero. This may enlarge the one-step error on the last step
but does not influence the convergence order of the elaborated method. Indeed, if we set

w(t0+T )−w(tν) to be zero, for instance, on the last step, we get
√
V (t0 + T ) = yν(t0+T )

instead of (40), and∣∣∣∣√V (t0 + T )−
√
V (t0 + T )

∣∣∣∣ ≤ r
ν−1∑
m=0

(
D1 +

D2

V (tm)

)
(tm+1 − tm) + σr, (86)

Remark 12 We have in any step Eθn = r2, the random number of steps before reaching
t0 + T, say ν, is finite with probability one, and Eν = O(1/r2). For details see [17], Ch.
5. In a heuristic sense this means that, if we have convergence of order O(r), we obtain
accuracy O(

√
h), for an (expected) number of steps O(1/h) similar to the standard Euler

scheme.

C Simulation of ϑx

In order to carry out the simulation method for trajectories near zero we have to find the
distribution function of ϑx = ϑx,l, where ϑx,l is the first-passage time of the trajectory
X0,x(s), to the level l. For this it is more convenient to change notation and to write (1)
in the form

dX(s) = k(λ−X(s))ds+ σ
√
Xdw(s), X(0) = x, (87)

where without loss of generality we take the initial time to be s = 0. The function

u(t, x) := P (ϑx,l < t),

is the solution of the first boundary value problem of parabolic type ([17], Ch. 5, Sect. 3)

∂u

∂t
=

1

2
σ2x

∂2u

∂x2
+ k(λ− x)

∂u

∂x
, t > 0, 0 < x < l, (88)

with initial data
u(0, x) = 0, (89)
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and boundary conditions
u(t, 0) is bounded, u(t, l) = 1. (90)

To get homogeneous boundary conditions we introduce v = u − 1. The function v then
satisfies:

∂v

∂t
=

1

2
σ2x

∂2v

∂x2
+ k(λ− x)

∂v

∂x
, t > 0, 0 < x < l, (91)

v(0, x) = −1; v(t, 0) is bounded, v(t, l) = 0. (92)

The problem (91)-(92) can be solved by the method of separation of variables. In this
way the Sturm-Liouville problem for the confluent hypergeometric equation (the Kummer
equation) arises. This problem is rather complicated however. Below we are going to solve
an easier problem as a good approximation to (91)-(92). Along with (87), let us consider
the equations

dX+(s) = kλds+ σ
√
X+dw(s), X+(0) = x, (93)

dX−(s) = k(λ− l)ds+ σ
√
X−dw(s), X−(0) = x, (94)

with 0 ≤ l < λ. It is not difficult to prove the following inequalities

X−(s) ≤ X(s) ≤ X+(s). (95)

According to (95), we consider three boundary value problems: first (88)-(90) and next
similar ones for the equations

∂u+

∂t
=

1

2
σ2x

∂2u+

∂x2
+ kλ

∂u+

∂x
, t > 0, 0 < x < l,

∂u−

∂t
=

1

2
σ2x

∂2u−

∂x2
+ k(λ− l)∂u

−

∂x
, t > 0, 0 < x < l. (96)

From (95) it follows that
u−(t, x) ≤ u(t, x) ≤ u+(t, x),

hence
v−(t, x) ≤ v(t, x) ≤ v+(t, x),

where v− = u− − 1, v+ = u+ − 1.
As the band 0 < x < l = A2r2a, for a certain a > 0, is narrow due to small enough r,

the difference v+ − v− will be small and so we can consider the following problem

∂v+

∂t
=

1

2
σ2x

∂2v+

∂x2
+ kλ

∂v+

∂x
, t > 0, 0 < x < l, (97)

v+(0, x) = −1; v+(t, 0) is bounded, v+(t, l) = 0, (98)

as a good approximation of (91)-(92). Henceforth we write v := v+. By separation of
variables we get as elementary independent solutions to (97), T (t)X (x), where

T ′(t) + µT (t) = 0, i.e. T (t) = T0e
−µt, µ > 0, and (99)

1

2
σ2xX ′′ + kλX ′ + µX = 0, X (0+) is bounded, X (l) = 0. (100)
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It can be verified straightforwardly that the solution of (100) can be obtained in terms of
Bessel functions of the first kind (e.g. see [4]),

X (x) = X±γ (x) := xγJ±2γ

(
σ−1
√

8µx
)

= xγO(x±γ) if x ↓ 0,

with

γ :=
1

2
− kλ

σ2
. (101)

Since X (x) has to be bounded for x ↓ 0 we may take (regardless the sign of γ (!))

X (x) = X−γ (x) =: Xγ(x) = xγJ−2γ

(
σ−1
√

8µx
)
. (102)

In our setting we have α > 0, i.e. γ < 1/4.
The following derivation of a Fourier-Bessel series for v is standard but included for

convenience of the reader. Denote the positive zeros of Jν by πν,m, for example,

J1/2(x) =

√
2

πx
sinx and π1/2,m = mπ, m = 1, 2, ... (103)

Then the (homogeneous) boundary condition Xγ(l) = 0 yields

σ−1
√

8µl = π−2γ,m, i.e., µm :=
σ2π2

−2γ,m

8l
(104)

and we have

Xγ,m(x) := xγJ−2γ

(
σ−1
√

8µmx
)

= xγJ−2γ

(
π−2γ,m

√
x

l

)
.

By the well-known orthogonality relation∫ 1

0

zJ−2γ(π−2γ,kz)J−2γ(π−2γ,k′z)dz =
δk,k′

2
J2
−2γ+1(π−2γ,k),

we get by setting z =
√
x/l∫ l

0

J−2γ(π−2γ,m

√
x

l
)J−2γ(π−2γ,m′

√
x

l
)dx = lδm,m′J

2
−2γ+1(π−2γ,m), hence∫ l

0

Xγ,m(x)Xγ,m′(x)x−2γdx = lδm,m′J
2
−2γ+1(π−2γ,m).

Now set

v(t, x) =
∞∑
m=1

βme
−µmtXγ,m(x), 0 ≤ x ≤ l. (105)

For t = 0 we have due to the initial condition v(0, x) = −1,

−1 =
∞∑
m=1

βmXγ,m(x).
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So for any p = 1, 2, ...,

−
∫ l

0

Xγ,p(x)x−2γdx = βplJ
2
−2γ+1(π−2γκ,p), i.e.

βp = −
∫ l

0
Xγ,p(x)x−2γdx

lJ2
−2γ+1(π−2γ,p)

. (106)

Further it holds that∫ l

0

Xγ,p(x)x−2γdx =

∫ l

0

x−γJ−2γ

(
π−2γ,p

√
x

l

)
dx

= 2l−γ+1

∫ 1

0

z−2γ+1J−2γ (π−2γ,pz) dz

= 2l−γ+1J−2γ+1 (π−2γ,p)

π−2γ,p

by well-known identities for Bessel functions (e.g. see [4]), and (106) thus becomes

βp = − 2

lγπ−2γ,pJ−2γ+1(π−2γ,p)
, p = 1, 2, ..... (107)

So, from v = u− 1, (99) (102), (104), (107), and (105) we finally obtain

u(t, x) = 1− 2xγl−γ
∞∑
m=1

J−2γ

(
π−2γ,m

√
x
l

)
π−2γ,mJ−2γ+1(π−2γ,m)

exp

[
−
σ2π2

−2γ,m

8l
t

]
, 0 ≤ x ≤ l. (108)

It should be noted that, in fact, u from (108) differs from u satisfying (88)-(90). However,
this shouldn’t lead to any confusion.

Example 13 For γ = −1/4 we get from (108) by (103) straightforwardly,

u(t, x) = 1 +
2

π

√
l

x

∞∑
m=1

(−1)m

m
sin

(
πm

√
x

l

)
exp

[
−σ

2π2m2

8l
t

]
.

For solving (96) we set λ− := λ − l, and then apply the Fourier-Bessel series (108)
with γ replaced by

γ− :=
1

2
− kλ−

σ2
= γ +

kl

σ2
. (109)

Example 14 We now consider some numerical examples concerning u+ = u in (108) and
u− given by (108) due to (109). Note that actually in (108) the function u only depends
on σ, l, and γ. That is, u depends on σ, l, and the product kλ. Let us consider a CIR
process with σ = 1, λ = 1, k = 0.75, and let us take l = 0.1. We then compare u+, which
is given by (108) for γ = −0.25 due to (101) (see Example 13), with u− given by (108) for
γ− = −0.175 due to (109). The results are depicted in Figure 2. The sums corresponding
to (108) are computed with five terms (more terms did not give any improvement).
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Figure 2: Left panel u+(0.1, x), right panel u+(0.1, x)− u−(0.1, x), for 0 ≤ x ≤ 0.1

Normalization of u(t, x)

For practical applications it is useful to normalize (108) in the following way. Let us treat
γ as essential but fixed parameter, introduce as new parameters

x

l
= x̃, 0 < x̃ ≤ 1,

σ2t

8l
= t̃, t̃ ≥ 0,

and consider the function

ũ(t̃, x̃) := 1− 2x̃γ
∞∑
m=1

J−2γ

(
π−2γ,m

√
x̃
)

π−2γ,mJ−2γ+1(π−2γ,m)
exp

[
−π2
−2γ,mt̃

]
, 0 < x̃ ≤ 1, t̃ ≥ 0,

that is connected to (108) via

ũ(t̃, x̃) = ũ(
σ2t

8l
,
x

l
) = u(

8lt̃

σ2
, lx̃).

For simulation of ϑx we need to solve the equation

u(ϑx, x) = U, where U ∼ Uniform[0, 1].

For this we set x̃ = x/l and solve the normalized equation ũ(ϑ̃x̃, x̃) = U, and then take

ϑx =
8l

σ2
ϑ̃x̃.

Note that

P (ϑx < t) = P (ϑ̃x̃ <
σ2t

8l
) = ũ(

σ2t

8l
,
x

l
).

We have plotted in Figure 3 the normalized function ũ(t̃, x̃) for γ = −1/4 and x̃ = 0.5.

References

[1] A. Alfonsi (2005). On the discretization schemes for the CIR (and Bessel squared)
processes. Monte Carlo Methods Appl., v. 11, no. 4, 355-384.

26



0.1 0.2 0.3 0.4 0.5

0.2

0.4

0.6

0.8

1.0

Figure 3: Normalized distribution function ũ(t̃, 0.5) for γ = −1/4
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