
Uniform approximation of the CIR process via exact
simulation at random times∗

Grigori N. Milstein† John Schoenmakers‡

November 20, 2015

Abstract

In this paper we uniformly approximate the trajectories of the Cox-Ingersoll-
Ross (CIR) process. At a sequence of random times the approximate trajectories
will be even exact. In between, the approximation will be uniformly close to the
exact trajectory. From a conceptual point of view the proposed method gives a
better quality of approximation in a path-wise sense than standard, or even exact
simulation of the CIR dynamics at some deterministic time grid.
AMS 2010 subject classification. Primary 65C30; secondary 60H35.
Keywords. Cox-Ingersoll-Ross process, Sturm-Liouville problem, Bessel functions,
confluent hypergeometric equation.

1 Introduction

The Cox-Ingersoll-Ross (CIR) process X(s) = Xt,x(s) is determined by the following
stochastic differential equation (SDE)

dX(s) = k(λ−X(s))ds+ σ
√
X(s)dw(s), X(t) = x, s ≥ t ≥ 0, (1)

where k, λ, σ are positive constants, and w is a scalar Brownian motion. The associated
second order differential operator

L := k (λ− x)
∂

∂x
+

1

2
σ2x

∂2

∂x2
(2)

is referred to as the generator of the process X. Due to [11] this process has become very
popular in financial mathematical applications. The CIR process is used in particular as
volatility process in the Heston model [17]. It is known ([18]) that for x > 0 there exists
a unique strong solution Xt,x(s) of (1) for all s ≥ t ≥ 0. The CIR process X(s) = Xt,x(s)
is positive in the case 2kλ ≥ σ2 and nonnegative in the case 2kλ < σ2. Moreover, in the
last case the origin is a reflecting boundary.
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As a matter of fact, (1) does not satisfy the global Lipschitz assumption. The difficul-
ties arising in a usual simulation method, such as the Euler method for example, for (1)
are connected with this fact and with the natural requirement of preserving nonnegative
approximations. A lot of approximation methods for the CIR processes are proposed. For
an extensive list of articles on this subject we refer to [3] and [12]. Besides [3] and [12] we
also refer to [1, 2, 15, 16], where a number of discretization schemes for the CIR process
can be found. Further we note that in [25] a weakly convergent fully implicit method is
implemented for the Heston model. Exact simulation of (1) at some deterministic time
grid is considered in [9, 13] (see [3] as well).

In [22], we considered uniform path-wise approximation of X(s) on an interval [t, t+T ]
using the Doss-Sussmann transformation ([27]) which allows for expressing any trajectory
of X(s) by the solution of some ordinary differential equation that depends on the real-
ization of w(s). The approximation X(s) in [22] is uniform in the sense that the path-wise
error is uniformly bounded, i.e.

sup
t≤s≤t+T

∣∣X(s)−X(s)
∣∣ ≤ r almost surely, (3)

where r > 0 is fixed in advance.
In order to explain the idea behind uniform pathwise approximation, let us consider

the uniform pathwise approximation for a Wiener process W (t). First consider simulating
W on a fixed time grid

t0, t1, ..., tn = T.

Although W may be even exactly simulated at the grid points, the usual piecewise linear
interpolation

W (t) =
ti+1 − t
ti+1 − ti

W (ti) +
t− ti
ti+1 − ti

W (ti+1) (4)

is not uniform in the sense of (3). Put differently, for any (large) positive number A, there
is always a positive probability that

sup
t0≤t≤t0+T

∣∣W (t)−W (t)
∣∣ > A.

Therefore, for path dependent applications for instance, such a standard, even exact,
simulation method may be not desirable and a uniform method preserving (3) may be
preferred. Apart from applications however, uniform simulation of trajectories of an SDE
in the sense of (3) may be considered as an interesting mathematical problem in its own
right. In fact, it is a research topic that received considerable attention in recent years.
For example, see [6] for an approach concerning a certain diffusion class that involves
a rejection sampling method. The idea of simulating first passage times to construct
uniform approximations was also used in [5] and in [7] a pathwise approach is studied in
connection with rough path analysis. We further refer to the recent related papers [8] and
[10].

To uniformly approximate W (t), t ≥ t0, (where W (t0) is known) we simulate the
points (tm + θm,W (tm + θm)−W (tm)), m = 0, 1, 2, ..., by simulating θm as being the
first-passage (stopping) time of the Wiener process W (t)−W (tm), t ≥ tm, to the boundary
of the interval [−r, r]. So, |W (t)−W (tm)| ≤ r for tm ≤ t ≤ tm + θm and, moreover, the
random variable rm := W (tm + θm)−W (tm), that takes values −r or +r with probability
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1/2, respectively, is independent of the stopping time θm. The values W (t0), ...,W (tm), ...,
where tm is the random time tm = t0 + θ0 + ... + θm−1 and W (tm) = W (tm−1) + rm−1,
are exactly simulated values of the Wiener process W (t) at random times tm. Clearly, the
piecewise linear interpolation (4) satisfies

sup
s≥t0

∣∣W (s)−W (s)
∣∣ ≤ 2r almost surely, (5)

i.e., a uniform path-wise approximation for a Wiener process W (t) is achieved.
In [22], we approximately construct a generic trajectory of X(s) by simulating the first-

passage times of the increments of the Wiener process to the boundary of an interval and
solving the ordinary differential equation after using the Doss-Sussmann transformation.
Such kind of simulation is more simple than the one proposed in [9] and moreover has the
advantage of uniform nature. The uniform approximation is connected with simulation
of space-time bounded diffusions in fact (see [23] and Ch. 5 of [24]). We note that the
results of [22] are obtained under the restriction 4kλ > σ2. For the case 4kλ ≤ σ2 we did
not succeed to extend the results of [22] in a Doss-Sussmann context. In this paper we
therefore follow an alternative approach.

Let ∆ > 0 be a small number, x > ∆, and τ(x) be the first-passage time of the
trajectory X0,x(s) to the boundary to the band (x − ∆, x + ∆). If x ≤ ∆, we denote
by τ(x) the first-passage time of X0,x(s) to the upper bound of [0, 2∆). Clearly, for any
Markov moment τ the line segment between the points (τ, x) and (τ+τ(x), Xτ,x(τ+τ(x))
uniformly (with exactness 2∆) approximates the trajectory Xτ,x(s), τ ≤ s ≤ τ + τ(x). To
simulate τ(x) we solve a parabolic boundary value problem for the distribution function
of τ(x) by separation of variables. The corresponding Sturm-Liouville problem in the
region x > ∆ is regular. The case 0 < x ≤ ∆ is more complicated. If 2kλ/σ2 ≥ 1
then the point x = 0 is not attainable in contrast to the case 2kλ/σ2 < 1 when x = 0
is attainable. These distinctions result in different boundary value problems. In the
next section we construct the distributions needed in terms of solutions of the confluent
hypergeometric equation. There the simulated random values of X0,x(τ(x)) belong to a
fixed space discretization grid 0 = x0 < x1 < x2 < ··· < xn < ··· . In Section 3, we develop
uniform approximation of the CIR process using the squared Bessel processes. We obtain
there the required distributions in terms of Bessel functions. However, in contrast to
Section 2, the simulated values of X0,x(τ(x)) do not belong to a fixed space discretization
grid anymore, while they are still exact. In Section 4 we give some guidelines for numerical
implementation of the proposed methods. In particular, we there consider the method
of Section 3, and exemplify in full detail the case 4kλ = σ2, which is at the border of
applicability of the method in [22] in fact.

The uniform approximation methods developed in this paper can be applied for any set
of positive parameters k, λ, σ of the CIR process, in contrast to the method in [22] (though
the latter approach is in certain respects more simple). Moreover, we here simulate exact
values of the CIR process at random exactly simulated times. As a consequence, the
convergence of the methods as ∆ ↓ 0 is obvious.
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2 Distribution functions for first-passage times of CIR

trajectories to boundaries of narrow bands

2.1 The main construction

The space domain for the equation (1) is the real semi-axis [0,∞) as Xt,x(s) ≥ 0 for any
s ≥ t ≥ 0, x ≥ 0. Consider a space discretization

0 = x0 < x1 < x2 < · · · < xn < · · · , (6)

where we assume for simplicity that xi+1 − xi = ∆, i = 0, 1, ... .
Let the initial value x for the solution X0,x(s), s ≥ 0, be equal to xn for some n ≥ 2.

Let τ(xn) be the first-passage time of the trajectory X0,xn(s) to the boundary of the band
(xn−1, xn+1), i.e., X0,xn(τ(xn)) is equal either to xn−1 or to xn+1, and xn−1 < X0,xn(s) <
xn+1 for 0 ≤ s < τ(xn). If the initial value x is equal to x1 then X0,x1(s) attains x2

with probability 1 for some time τ(x1), which is the first-passage time of the trajectory
X0,x1(s) to the upper bound of the band [0, x2), i.e., X0,x1(τ(x1)) is equal to x2, and
0 ≤ X0,x1(s) < x2 for 0 ≤ s < τ(x1). So, the random variable τ(xn) is defined such that
for any xn from the set {x1, x2, ...} we get X0,xn(τ(xn)) belonging to the same set. We
now set

X0 = x = xn, xn ∈ {x1, x2, ...}, τ 1 = τ(X0), X1 = X0,X0(τ 1).

By repeating the above scheme for x = X1 in the same way one gets τ 2 = τ(X1), X2 =
X0,X1(τ 2). Due to autonomy of equation (1), we have X2 = X0,X1(τ 2) = Xτ1,X1(τ 1 +τ 2) =
X0,X0(τ 1 +τ 2). Continuing we obtain the sequence τm = τ(Xm−1), Xm = X0,Xm−1(τm) =
Xτ1+...+τm−1,Xm−1(τ 1+...+τm) = X0,X0(τ 1+...+τm). The points (0, X0), (τ 1, X1), ..., (τ 1+
...+ τm, Xm) belong to the trajectory (s,X0,X0(s)).

If the initial value x is not equal to xn, we first model X1 to be equal to one of nodes
and then repeat the previous construction. If 0 ≤ x = X0 < x1 + ∆/2 then X1 is equal to
X0,x(τ

1) where τ 1 is the first-passage time of the trajectory X0,x(s) to the upper bound
of the band [0, x2), i.e., X0,x(τ

1) is equal to x2, and 0 ≤ X0,x(s) < x2 for 0 ≤ s < τ 1.
If xn − ∆/2 ≤ x = X0 < xn + ∆/2, n = 2, 3, ..., then X1 = X0,x(τ

1) where τ 1 is the
first-passage time of the trajectory X0,x(s) to the boundary of the band (xn−1, xn+1), i.e.,
X0,x(τ

1) is equal either to xn−1 or to xn+1, and xn−1 < X0,x(s) < xn+1 for 0 ≤ s < τ 1.
Suppose for m = 1, 2, ..., the sequence (0, X0), (τ 1, X1), ..., (τ 1 + ... + τm, Xm) is

constructed. As an approximative trajectory X0,x(s), we take the polygonal line which
passes through the points of the following sequence:

X0,x(s) = X i−1 +
X i −X i−1

τ i
(s−

(
τ 0 + ...+ τ i−1

)
), (7)

τ 0 + ...+ τ i−1 ≤ s ≤ τ 0 + ...+ τ i, i = 1, 2, ... ,

where τ 0 := 0 for notational convenience. Because for i = 0, 1, 2, ..., X i = X0,x(τ
0 + ...+

τ i) = X0,x(τ
0 + ... + τ i), and both the trajectory X0,x(s) and the line segment (7) of the

polygonal line connecting the points (τ 0 + ... + τ i−1, X i−1) and (τ 0 + ... + τ i, X i), i > 0,
belong to a band of width 2∆, we have obtained the following proposition.
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Proposition 1 Approximation (7) satisfies

sup
0≤s<∞

∣∣X0,x(s)−X0,x(s)
∣∣ ≤ 2∆, (8)

i.e., this approximation is uniform.

Remark 2 If one is only interested in CIR trajectories on a time interval [0, T ], one may
carry out the construction (7) until

τ 0 + ...+ τ i−1 ≤ T ≤ τ 0 + ...+ τ i

and truncate the interpolation at T accordingly.

2.2 Probabilities connected with attainability of boundaries and
boundary value problems for the probabilities

If 0 ≤ x < x1 + ∆/2 then X0,x(s) with probability 1 attains x2 for some time τ(x) which
is the first-passage time of X0,x(s) to the upper bound of the band [0, x2). If xn −∆/2 ≤
x < xn + ∆/2, n = 2, 3, ..., then X0,x(τ(x)), where τ(x) is the first-passage time of the
trajectory X0,x(s) to the boundary of the band (xn−1, xn+1), attains either xn−1 or xn+1

with probability 1. Let pl(x) be the probability P (X0,x(τ(x)) = xn−1) and pr(x) :=
P (X0,x(τ(x)) = xn+1). Clearly, pl(x) + pr(x) = 1. Though we need pl(x) and pr(x) for
xn−∆/2 ≤ x < xn+∆/2 only, we shall consider these functions for xn−1 ≤ x < xn+1. The
probability pl(x) satisfies the one-dimensional Dirichlet problem for the elliptic equation
(cf. [24], Ch. 6, Sec. 3),

Lp = 0, pl(xn−1) = 1, pl(xn+1) = 0 (9)

with L defined in (2). From (9) we have (in particular, for xn−∆/2 ≤ x < xn+∆/2, n =
2, 3, ...)

pl(x) =

∫ xn+1

x
ξ−

2kλ
σ2 e

2k
σ2 ξdξ∫ xn+1

xn−1
ξ−

2kλ
σ2 e

2k
σ2 ξdξ

, (10)

hence

pr(x) = 1− pl(x) =

∫ x
xn−1

ξ−
2kλ
σ2 e

2k
σ2 ξdξ∫ xn+1

xn−1
ξ−

2kλ
σ2 e

2k
σ2 ξdξ

. (11)

For simulating τ(x) and X0,x(τ(x)) we need the probabilities

u(t, x) := P (τ(x) < t), for 0 ≤ x < x1 + ∆/2, (12)

and

ul(t, x) := P (τ(x) < t, X0,x(τ(x)) = xn−1), (13)

ur(t, x) := P (τ(x) < t, X0,x(τ(x)) = xn+1),

for xn −
∆

2
≤ x < xn +

∆

2
, n = 2, 3, ...

5



2.2.1 The region xn −∆/2 ≤ x < xn + ∆/2, n = 2, 3, ...

If xn − ∆/2 ≤ x < xn + ∆/2, n = 2, 3, ..., we use (13) in the following way. First we
simulate X0,x(τ(x)) according to probabilities (10)-(11). If we get X0,x(τ(x)) = xn−1 then
for simulating τ(x) we use the conditional probability

P (τ(x) < t | X0,x(τ(x)) = xn−1) =
ul(t, x)

pl(x)
,

and if X0,x(τ(x)) = xn+1, we use

P (τ(x) < t | X0,x(τ(x)) = xn+1) =
ur(t, x)

pr(x)
.

The functions ul(t, x) and ur(t, x) satisfy the equation

∂u

∂t
= Lu, t > 0, xn−1 < x < xn+1, n = 2, 3, ..., (14)

The function ul(t, x) satisfies the initial condition

ul(0, x) = 0, (15)

and the boundary conditions

ul(t, xn−1) = 1, ul(t, xn+1) = 0. (16)

The function ur(t, x) satisfies the initial condition

ur(0, x) = 0, (17)

and the boundary conditions

ur(t, xn−1) = 0, ur(t, xn+1) = 1. (18)

To get homogeneous boundary conditions for the problem (14)-(16) we introduce

vl = ul −
xn+1 − x

xn+1 − xn−1

(19)

and for the problem (14), (17)-(18)

vr = ur −
x− xn−1

xn+1 − xn−1

. (20)

The function vl satisfies the equation (for the corresponding n = 2, 3, ...)

∂vl
∂t

=
1

2
σ2x

∂2vl
∂x2

+ k(λ− x)[
∂vl
∂x
− 1

xn+1 − xn−1

], t > 0, xn−1 < x < xn+1, (21)

with the initial condition

vl(0, x) = − xn+1 − x
xn+1 − xn−1

(22)
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and the homogeneous boundary conditions

vl(t, xn−1) = 0, vl(t, xn+1) = 0. (23)

The function vr satisfies the equation (for the corresponding n = 2, 3, ...)

∂vr
∂t

=
1

2
σ2x

∂2vr
∂x2

+ k(λ− x)[
∂vr
∂x

+
1

xn+1 − xn−1

], t > 0, xn−1 < x < xn+1, (24)

with the initial condition

vr(0, x) = − x− xn−1

xn+1 − xn−1

(25)

and the homogeneous boundary conditions of the form (23).
For construction of the Green function of problem (21)-(23) we apply the method

of separation of variables. By separation of variables we get T (t)X (x) as elementary
independent solutions to the homogeneous equation corresponding to (21), i.e.

∂v

∂t
= Lv,

satisfying (23). We thus have

T ′(t) + µT (t) = 0, i.e., T (t) = T0e
−µt, µ > 0, (26)

and
1

2
σ2xX ′′ + k(λ− x)X ′ + µX = 0 (27)

with the homogeneous boundary conditions

X (xn−1) = X (xn+1) = 0. (28)

Introduce

p(x) := exp(−2k

σ2
x) · x

2kλ

σ2 , q(x) :=
2

σ2x
p(x), xn−1 < x < xn+1, n = 2, 3, ...

Then (27) can be expressed in the self-adjoint form

(p(x)X ′)′ + µq(x)X = 0, X (xn−1) = X (xn+1) = 0. (29)

On the intervals (xn−1, xn+1), n = 2, 3, ..., we have p(x) > 0, q(x) > 0, i.e., the Sturm-
Liouville problem (29) is regular. Therefore all the eigenvalues µj, j = 1, 2, ..., of problem
(29) (hence (27)-(28)) are positive. Let Xj, j = 1, 2, ..., be the corresponding eigenfunc-
tions which are orthogonal w.r.t. the scalar product

〈f, g〉 :=

∫ xn+1

xn−1

f(y)g(y)q(y)dy.

It is well known that the solution of the problem (21)-(23) is equal to

vl(t, x) =

∫ xn+1

xn−1

G(x, ξ, t)q(ξ)vl(0, ξ)dξ (30)

+

∫ t

0

∫ xn+1

xn−1

G(x, ξ, t− s)q(ξ)[−k(λ− ξ) 1

xn+1 − xn−1

]dξds,
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where the Green function

G(x, ξ, t) =
∞∑
j=1

e−µjt
Xj(x)Xj(ξ)
‖Xj‖2 , ‖Xj‖2 =

∫ xn+1

xn−1

q(ξ)X 2
j (ξ)dξ. (31)

The function vr(t, x) is found analogously.
The eigenvalues µj and eigenfunctions Xj can be found in terms of the solutions of the

confluent hypergeometric equation (the Kummer equation). Indeed, the general solution
of the linear equation (27) is given by the formula

X (x) = C1Φ(b, c; ζ) + C2Ψ(b, c; ζ), (32)

where C1 and C2 are arbitrary constants,

b =
2kλ

σ2
+
µ

k
, c =

2kλ

σ2
; ζ = −2k

σ2
x

and Φ(b, c; ζ), Ψ(b, c; ζ) are the known linear independent solutions of the confluent hy-
pergeometric equation

ζy′′ζζ + (c− ζ)y′ζ − by = 0 (33)

(see [4], Sec. 6.2). The problem (24)-(25) is solved analogously.

2.2.2 The region 0 ≤ x < x1 + ∆/2

If 0 ≤ x < x1 + ∆/2 then X0,x(τ(x)) = x2 with probability 1 and for simulating τ(x) we
use the probability (12). Here we do not give a method for computing the probability
u(t, x) in (12) in the spirit of Section 2.2.1. As an alternative, such a method will be
presented in the next section in the context of another, computationally more tractable
approach. On the other hand, from a practical point of view, one could apply the following
approximate result derived in [22],

u(t, x) ≈ 1− 2xγ (2∆)−γ
∞∑
m=1

J−2γ

(
π−2γ,m

√
x

2∆

)
π−2γ,mJ−2γ+1(π−2γ,m)

exp

[
−
σ2π2

−2γ,m

16∆
t

]
, 0 ≤ x ≤ 2∆,

where γ := 1/2−kλ/σ2, J−2γ is a Bessel function of the first kind, and π−2γ,m,m = 1, 2, ...
are the positive zeros of J−2γ.

From a theoretical point of view the developed approach can be applied for uniform
approximation of the solutions of a lot of other SDEs. However, in general we will arrive at
a Sturm-Liouville problem where the eigenvalues and eigenfunctions cannot be expressed
in terms of well studied special functions, as in the present section, where the probabilities
ul(t, x) and ur(t, x) can be found in terms of solutions of the Kummer equation. In the
next section we develop uniform approximation of the CIR process using the squared
Bessel process.

3 Using squared Bessel processes

Due to [14], the solution X(s) = Xt,x(s) of (1) has the representation

X(s) = e−k(s−t)Y

(
σ2

4k
(ek(s−t) − 1)

)
, s ≥ t, (34)
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where Y (s) = Yt,x(s) denotes a squared Bessel process with dimension δ = 4kλ/σ2 starting
at x, i.e., Y (s) satisfies the equation

dY (s) = δds+ 2
√
Y (s)dw(s), Y (t) = X(t) = x, (35)

with associated differential operator (generator)

G := δ
∂

∂y
+ 2y

∂2

∂y2
, (36)

see also [26].

3.1 Method

Due to autonomy of (1) and (34), one can start at t = 0. Let x > ∆. Let θ = θ(x) be the
first-passage time of the trajectory Y0,x(ϑ) to the boundary of the band (x−∆, x+∆), i.e.,
Y0,x(θ(x)) is equal either x−∆ or x+ ∆ and x−∆ < Y0,x(ϑ) < x+ ∆ for 0 ≤ ϑ < θ(x).
If x ≤ ∆, we denote by θ(x) the first-passage time of the trajectory Y0,x(s) to the upper
bound [0, 2∆), i.e., Y0,x(θ(x)) = 2∆ and 0 ≤ Y0,x(s) < 2∆ for 0 ≤ s < θ(x).

Due to (34) the solution X0,x(s) of (1) is equal to

X0,x(s) = e−ksY0,x

(
σ2

4k
(eks − 1)

)
, s ≥ 0. (37)

Let us introduce

τ(x) :=
1

k
ln(1 +

4k

σ2
θ(x)). (38)

For 0 ≤ s ≤ τ(x) we have σ2

4k
(eks − 1) ≤ θ(x). Hence for these s we have

x−∆ ≤ Y0,x

(
σ2

4k
(eks − 1)

)
≤ x+ ∆, x > ∆, (39)

Y0,x

(
σ2

4k
(eks − 1)

)
≤ 2∆, x ≤ ∆.

Therefore

(x−∆) e−ks ≤ X0,x(s) ≤ (x+ ∆) e−ks, x > ∆, 0 ≤ s ≤ τ(x), (40)

0 ≤ X0,x(s) ≤ 2∆e−ks, x ≤ ∆, 0 ≤ s ≤ τ(x).

Let us introduce the interpolation

X0,x(s) := xe−ks +
s

τ(x)

(
X0,x(τ(x))ekτ(x) − x

)
e−ks, 0 ≤ s ≤ τ(x). (41)

For x > ∆ we then have by (40),

(x−∆) e−ks ≤ xe−ks − s

τ(x)
∆e−ks ≤ X0,x(s) ≤ xe−ks +

s

τ(x)
∆e−ks ≤ (x+ ∆) e−ks,

and by using (40) again, ∣∣X0,x(s)−X0,x(s)
∣∣ ≤ 2∆e−ks. (42)
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For x ≤ ∆ we have by (40)

0 ≤ xe−ks − s

τ(x)
xe−ks ≤ X0,x(s) ≤ xe−ks +

s

τ(x)
(2∆− x) e−ks ≤ 2∆e−ks

yielding (42) for x ≤ ∆ also.
Denote X0 := x and set

θ0 = 0, θ1 = θ(X0), τ 0 = 0, τ 1 =
1

k
ln(1 +

4k

σ2
θ1), (43)

X1 = X0,X0(τ 1) = e−kτ
1

Y0,X0(θ1),

where Y0,X0(θ1) = X0 ±∆ if X0 > ∆ and Y0,X0(θ1) = 2∆ if X0 ≤ ∆, and construct the
interpolation (41) for τ 0 ≤ s ≤ τ 1.

Then we set

θ2 = θ(X1), τ 2 =
1

k
ln(1 +

4k

σ2
θ2), (44)

X2 = X0,X1(τ 2) = Xτ1,X1(τ 1 + τ 2) = X0,X0(τ 1 + τ 2) = e−kτ
2

Y0,X1(θ2),

where Y0,X1(θ2) = X1 ±∆ if X1 > ∆ and Y0,X1(θ2) = 2∆ if X1 ≤ ∆, and construct the
interpolation (41) for τ 1 ≤ s ≤ τ 2.

Continuing we obtain the sequence

θm = θ(Xm−1), τm =
1

k
ln(1 +

4k

σ2
θm), (45)

Xm = X0,Xm−1(τm) = Xτ0+...+τm−1,Xm−1(τ 0 + ...+ τm) =

X0,X0(τ 0 + ...+ τm) = e−kτ
m

Y0,Xm−1(θm), m = 1, 2, ....

and a piecewise interpolated trajectory

X0,x(s) =

(
X i−1 +

s− (τ 0 + ...+ τ i−1)

τ i

(
X iekτ

i −X i−1
))

e−k(s−(τ0+...+τ i−1)),

(46)

τ 0 + ...+ τ i−1 ≤ s ≤ τ 0 + ...+ τ i, i = 1, 2, ... .

The points (0, X0), (τ 1, X1), ..., (τ 1+...+τm, Xm), ... belong to the trajectory (s,X0,x(s)) .
Unlike the modeling in Section 2, the difference between Xm−1 and Xm is not a multiple
of ∆ here because of presence of the random factor e−kτ

m
. Also, the Xm’s generally do

not jump over a pre-fixed grid like in Section 2. Now, obviously, for the present method
we have the following proposition analogue to Proposition 1.

Proposition 3 Approximation (46) is uniform and satisfies

sup
0≤s<∞

∣∣X0,x(s)−X0,x(s)
∣∣ ≤ 2∆.

If the approximation is only needed on a time interval [0,T], a remark similar to
Remark 2 applies.
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3.2 Simulating θ(x) and Y0,x(θ(x))

In Section 2 we have developed a method of simulating the first-passage time τ(x) of
the solution X0,x(s) of (1). Here we develop analogous methods for simulating θ(x) and
Y0,x(θ(x)) and then use algorithm (43)-(46) for uniform approximation of solutions of (1).
Due to simplicity of (35) in comparison with (1), such an approach is more effective than
the direct one.

3.2.1 The region x > ∆

The time θ(y) is the first-passage time of the solution Y0,y(s) of (35) to the boundary of the
band (x−∆, x+∆), x−∆ ≤ y ≤ x+∆. Let pl(y) be the probability P (Y0,y(θ(y)) = x−∆)
and pr(y) = P (Y0,y(θ(y)) = x + ∆), x−∆ ≤ y ≤ x + ∆. Clearly, pl(y) + pr(y) = 1. The
probability pl(y) satisfies the one-dimensional Dirichlet problem for elliptic equation ([24],
Ch. 6, Sec. 3).

Gpl = 0, x−∆ < y < x+ ∆, pl(x−∆) = 1, pl(x+ ∆) = 0 (47)

with G defined in (36). The solution pl(y) of problem (47) is equal to

pl(y) =


y
−2kλ
σ2 +1−(x+∆)

−2kλ
σ2 +1

(x−∆)
−2kλ
σ2 +1−(x+∆)

−2kλ
σ2 +1

, 2kλ
σ2 6= 1,

ln y
x+∆

ln x−∆
x+∆

, 2kλ
σ2 = 1.

Hence the probability

pl(x) = P (Y0,x(θ(x)) = x−∆) =


x
−2kλ
σ2 +1−(x+∆)

−2kλ
σ2 +1

(x−∆)
−2kλ
σ2 +1−(x+∆)

−2kλ
σ2 +1

, 2kλ
σ2 6= 1,

ln x
x+∆

ln x−∆
x+∆

, 2kλ
σ2 = 1,

(48)

and pr(x) = 1− pl(x).
For simulating θ(x) and Y0,x(θ(x)) we need the probabilities

u(t, y) = P (θ(y) < t), x−∆ ≤ y ≤ x+ ∆, (49)

and

ul(t, y) = P (θ(y) < t, Y0,y(θ(y)) = x−∆) , (50)

ur(t, y) = P (θ(y) < t, Y0,y(θ(y)) = x+ ∆) ,

for x−∆ ≤ y ≤ x+ ∆.

We use (50) in the following way. First we simulate Y0,x(θ(x)) according to probabilities
pl(x) and pr(x). If we get Y0,x(θ(x)) = x−∆ then for simulating θ(x) we use the conditional
probability

P (θ(x) < t | Y0,x(θ(x)) = x−∆ ) =
ul(t, x)

pl(x)
(51)

and if Y0,x(θ(x)) = x+ ∆, we use

P (θ(x) < t | Y0,x(θ(x)) = x+ ∆ ) =
ur(t, x)

pr(x)
. (52)
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The functions ul(t, y) and ur(t, y) are the solutions of the first boundary value problem
of parabolic type ([24], Ch. 5, Sec. 3)

∂u

∂t
= Gu, t > 0, x−∆ < y < x+ ∆. (53)

The function ul(t, y) satisfies the initial condition

ul(0, y) = 0, (54)

and the boundary conditions

ul(t, x−∆) = 1, ul(t, x+ ∆) = 0. (55)

To get homogeneous boundary conditions for problem (53)-(55) we introduce

vl(t, y) = ul(t, y)− x+ ∆− y
2∆

. (56)

The function vl(t, y) satisfies the equation

∂vl
∂t

= 2y
∂2vl
∂y2

+
4kλ

σ2
[
∂vl
∂y
− 1

2∆
], t > 0, x−∆ < y < x+ ∆, (57)

with the initial condition

vl(0, y) = −x+ ∆− y
2∆

(58)

and the homogeneous boundary conditions

vl(t, x−∆) = 0, vl(t, x+ ∆) = 0. (59)

Analogous equations can be written out for ur(t, y) and vr(t, y).
In connection with the problem (57)-(59), we use the method of separation of variables

to the homogeneous equation
∂v

∂t
= Gv

with the homogeneous boundary conditions

v(t, x−∆) = 0, v(t, x+ ∆) = 0. (60)

For elementary independent solutions T (t)Y(y) we so have

T ′

T
=

2yY ′′ + δY ′

Y
=: −µ = const,

and for Y(y) we then get the corresponding Sturm-Liouville problem

2yY ′′ + δY ′ + µY = 0, (61)

Y(x−∆) = 0, Y(x+ ∆) = 0, (62)

along with
T (t) = T0e

−µt.
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It can be straightforwardly checked that elementary solutions of (61) are given in terms
of Bessel functions by

Y1(y) = yγJ−2γ

(√
2µy

)
, Y2(y) = yγJ2γ

(√
2µy

)
(63)

with γ =
1

2
− kλ

σ2
=

1

2
− δ

4
(64)

(cf. [22]). If 2γ is not an integer, Y1 and Y2 are independent. If 2γ is an integer, i.e. when

2kλ

σ2
= 1, 2, ... (65)

these solutions are dependent however. In this case we may take as a second independent
solution

Y2(y) = yγY2γ

(√
2µy

)
, (66)

where Y2γ is a Bessel function of the second kind. Note that for (65) we have that σ2 ≤
2kλ, i.e. the boundary 0 is not attainable. We omit the analysis connected with (65)
since it is similar to the derivations below.

Due to the boundary condition (60), the eigenvalues of the problem (61) follow by
requiring that the system

C1J2γ

(√
2µ(x+ ∆)

)
+ C2J−2γ

(√
2µ(x+ ∆)

)
= 0

C1J2γ

(√
2µ(x−∆)

)
+ C2J−2γ

(√
2µ(x−∆)

)
= 0

has a non-trivial solution. Thus we must have

J2γ

(√
2µ(x+ ∆)

)
J−2γ

(√
2µ(x−∆)

)
(67)

−J2γ

(√
2µ(x−∆)

)
J−2γ

(√
2µ(x+ ∆)

)
= 0

Let us denote the solutions with 0 < µ1 < µ2 < · · ·, and the respective eigenfunctions by

Yj(y) = J−2γ

(√
2µj(x+ ∆)

)
yγJ2γ

(√
2µjy

)
(68)

− J2γ

(√
2µj(x+ ∆)

)
yγJ−2γ

(√
2µjy

)
.

We note that the equation (61) can be written in the selfadjoint form

(p(y)Y ′)′ + µq(y)Y = 0 with p(y) = yδ/2, q(y) =
1

2
yδ/2−1, (69)

i.e. eigenfunctions corresponding to different eigenvalues are orthogonal w.r.t. the scalar
product

〈f, g〉 :=

∫ x+∆

x−∆

f(y)g(y)q(y)dy.
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Thus the Green function of the considered problem is given by

G(y, η, t) =
∞∑
j=1

e−µjt
Yj(y)Yj(η)

‖Yj‖2 , (70)

‖Yj‖2 =

∫ x+∆

x−∆

q(ξ)Y2
j (ξ)dξ,

and the solution to (57) is equal to

vl(t, y) =

∫ x+∆

x−∆

G(y, η, t)q(η)vl(0, η)dη

+

∫ t

0

∫ x+∆

x−∆

G(y, η, t− s)q(η)[−4kλ

σ2

1

2∆
]dηds. (71)

3.2.2 The region x ≤ ∆

Let us recall that the scale density s(y) and the speed density m(y) of the process (35)
determined via the relation

1

2

1

m(y)

d

dy

(
1

s(y)

d

dy

)
= δ

d

dy
+ 2y

d2

dy2
,

where the r.h.s. is the generator of the process (35) (see for example, [19], Ch. 4, and
[20], Ch. 6). We thus obtain straightforwardly,

s(y) = Cy−δ/2 and m(y) =
1

4C
yδ/2−1 for arbitrary C > 0.

Case I: δ/2 = 2kλ/σ2 ≥ 1. In this case we have for any r > 0,

S(0, r] :=

∫ r

0

s(y)dy =∞, (72)

M(0, r] :=

∫ r

0

m(y)dy <∞,

Σ(0, r] :=

∫ r

0

S(0, h]m(h)dh =∞,

N(0, r] :=

∫ r

0

m(η)dη

∫ r

η

s(y)dy <∞. (73)

As a consequence of (72), for the process Y in (35) the boundary 0 is unattainable if it
starts somewhere in Y (0) > 0. Therefore, the state space of Y is considered to be (0,∞)
in this case. For details see for example [20].
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Case II: δ/2 = 2kλ/σ2 < 1. In this case we have for any r > 0,

S(0, r] :=

∫ r

0

s(y)dy <∞, (74)

M(0, r] :=

∫ r

0

m(y)dy <∞, (75)

Σ(0, r] :=

∫ r

0

S(0, h]m(h)dh <∞,

N(0, r] :=

∫ r

0

m(η)dη

∫ r

η

s(y)dy <∞. (76)

As a consequence of (74) and (75), the point 0 is a regular boundary point of Y in
(35) (Karlin and Taylor (1981)). That is, 0 is attainable for Y from any starting point
Y (0) > 0, and the process starts afresh after reaching 0 (strong Markov property), and
reaches any positive level in finite time due to (76). Since no atomic speed mass at the
boundary is imposed, the boundary 0 is reflecting.

Let θ(y) be the first-passage time of the solution Y0,y(s) to (35) of the level 2∆, 0 ≤
y ≤ 2∆, and let

q(t, y) := P (θ(y) ≥ t). (77)

Though we need q(t, y) for 0 ≤ y ≤ ∆ only, we shall consider boundary value problems
for q with 0 ≤ y ≤ 2∆.

Proposition 4 (Case I) If 2kλ/σ2 ≥ 1, the probability q in (77) satisfies and is uniquely
determined as a bounded solution of the following mixed initial-boundary value problem,

∂q

∂t
= Gq, 0 < y < 2∆, (78)

q(0, y) = 1, (79)

q(t, 2∆) = 0, q(t, 0) is bounded. (80)

Proof. A bounded solution q (with bounded ∂q/∂y) in the considered case can be con-
structed by separation of variables (see Proposition 6). Due to the boundedness of q, we
may take the Laplace transform

q̂(α, y) :=

∫ ∞
0

e−αtq(t, y)dt, (81)

and then take the Laplace transform of (78)-(80) w.r.t. t, yielding the system

Gq̂ = αq̂(α, y)− 1, q̂(α, 2∆) = 0, q̂(α, 0) is bounded. (82)

Then by setting q̂ =: (1− q̃) /α we obtain,

Gq̃ = αq̃, q̃(α, 2∆) = 1, q̃(α, 0) is bounded. (83)

Since the boundary 0 is not attainable in this case, we may apply the Itô formula to

Q (s, Y (s)) := e−αsq̃ (α, Y (s)) ,
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where Y (s) = Y0,y(s) is the solution of (35). By using (83) we then get

dQ = e−αsq̃y (α, Y (s)) 2
√
Y (s)dw(s),

and so we have

e−αθ(y)q̃ (α, Y (θ(y)))− q̃ (α, y) =

∫ θ(y)

0

e−αs2
√
Y (s)q̃y (α, Y (s)) dw(s).

By now taking expectations and taking into account (83) it follows that

q̃ (α, y) = E
[
e−αθ(y)

]
.

We thus have

q̃(α, y) = E
[
e−αθ(y)

]
= −

∫ ∞
0

e−αtdP (θ(y) ≥ t) (84)

= 1− α
∫ ∞

0

P (θ(y) ≥ t)e−αtdt, (85)

whence

q̂(α, y) =

∫ ∞
0

P (θ(y) ≥ t)e−αtdt, (86)

and so
q(t, y) = P (θ(y) ≥ t) (87)

by uniqueness of the Laplace transform.

Proposition 5 (Case II) Let 2kλ/σ2 < 1. If q(t, y) is a bounded solution of the mixed
initial-boundary value problem consisting of (78)-(80), and the additional boundary con-
dition

lim
y↓0

qy(t, y)

s(y)
= lim

y↓0
qy(t, y)y2kλ/σ2

= 0 uniformly in 0 < t <∞, (88)

then (77) holds, and so in particular the solution of (78)-(80), and (88), is unique. The
existence of q(t, y) follows by construction using the method of separation of variables, see
Proposition 6.

Proof. Let q(t, y) be a solution as stated. Due to the boundedness of q the Laplace
transform (81) exists as above, and by taking the Laplace transform of (78)-(80), and
(88), w.r.t. t we obtain the system consisting of (82) and, additionally,

lim
y↓0

q̂y(α, y)

s(y)
= lim

y↓0
q̂y(α, y)y2kλ/σ2

= 0.

Now by setting q̂ =: (1− q̃) /α we obtain the system consisting of (83), supplemented
with

lim
y↓0

q̃y(α, y)

s(y)
= lim

y↓0
q̃y(α, y)y2kλ/σ2

= 0.

The results in [19], Sec. 4.5, 4.6, (see also [21]) then imply that

q̃(α, y) = E
[
e−αθ(y)

]
,
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and finally we obtain
q(t, y) = P (θ(y) ≥ t)

analogue to (84)-(87).
Remarkably, by the next proposition, (77) can be represented by one and the same

expression for both Case I and Case II.

Proposition 6 For both Case I and Case II, the probability q(t, y) in (77) satisfies,

q(t, y) = 2yγ (2∆)−γ
∞∑
m=1

J−2γ

(
π−2γ,m

√
y

2∆

)
π−2γ,mJ−2γ+1(π−2γ,m)

exp

[
−
π2
−2γ,m

4∆
t

]
, 0 ≤ y ≤ 2∆, (89)

where with γ as in (64), J−2γ is the Bessel function of the first kind with parameter −2γ,
and π−2γ,m, m = 1, 2, ... is the increasing sequence of positive zeros of J−2γ.

Proof. We apply the method of separation of variables. Let us seek for elementary
solutions T (t)Y(y) satisfying (78), hence

2yY ′′T + δY ′T = YT ′.

We so may set
T ′

T
=

2yY ′′ + δY ′

Y
=: −µ = const.

and get the system
T (t) = T0e

−µt, 2yY ′′ + δY ′ + µY = 0. (90)

We recall that elementary independent solutions of (61) are given in terms of Bessel
functions cf. (63)-(66).

i) In Case I, where 2kλ/σ2≥ 1, hence γ ≤ 0, the only feasible elementary solutions
are T (t)Y(y) where Y is of type

Y1(y) = yγJ−2γ

(√
2µy

)
= entire function of y not vanishing at y = 0. (91)

Indeed, if 2γ is not an integer we have in particular that 2γ < 0, and then the second
independent solution is of type

Y2(y) = yγJ2γ

(√
2µy

)
= y2γ × entire function of y not vanishing at y = 0, (92)

which is unbounded for y ↓ 0. On the other hand, if 2γ = 0,−1,−2, ..., the second
independent solution is of type

Y2(y) = yγY2γ

(√
2µy

)
(see (66)), which is also unbounded for y ↓ 0.

ii) In Case II, where 2kλ/σ2 < 1, we have that γ > 0 and in particular that 2γ is
not an integer. Then both solutions (91) and (92) are bounded for y ↓ 0. However, the
solution (92), which is by (64) of type

y1−2kλ/σ2 × entire function of y not vanishing at y = 0,
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yields an elementary solution T (t)Y(y) that clearly violates the boundary condition (88),
while (88) is obviously satisfied for elementary solutions T (t)Y(y) with Y of type (91).

As a result, for both Case I and Case II, solutions of type (91) are feasible only. That
is, we consider

Yγ(y) := Y(y) = yγJ−2γ

(√
2µy

)
. (93)

In view of boundary condition (80) we next require for both cases Yγ (2∆) = 0, leading
to the eigenvalues

µm :=
π2
−2γ,m

4∆
,

and the elementary solutions T (t)Yγ,m(y) with

Yγ,m(y) := yγJ−2γ

(√
2µmy

)
= yγJ−2γ

(
π−2γ,m

√
y

2∆

)
, (94)

m = 1, 2, ... Now, as solution candidate for (77), we consider the Fourier-Bessel series

q(t, y) =
∞∑
m=1

βme
−
π2
−2γ,m

4∆
tYγ,m(y), 0 ≤ y ≤ 2∆, (95)

by (90). The initial condition (79) then yields

1 =
∞∑
m=1

βmYγ,m(y),

from which the coefficients (βm)m=1,2,... may be solved straightforwardly by a well known
orthogonality relation for Bessel functions as in Appendix C of [22]. Let us recall it for
completeness: The well-known relation∫ 1

0

zJ−2γ(π−2γ,kz)J−2γ(π−2γ,k′z)dz =
δk,k′

2
J2
−2γ+1(π−2γ,k)

straightforwardly implies that∫ 2∆

0

Yγ,m(y)Yγ,m′(y)y−2γdy = 2∆δm,m′J
2
−2γ+1(π−2γ,m).

Further we have that∫ 2∆

0

Yγ,m(y)y−2γdy =

∫ 2∆

0

y−γJ−2γ

(
π−2γ,m

√
y

2∆

)
dy

= 2 (2∆)−γ+1

∫ 1

0

z−2γ+1J−2γ (π−2γ,mz) dz

= 2 (2∆)−γ+1 J−2γ+1 (π−2γ,m)

π−2γ,m

,

and so we get

βm =
2 (2∆)−γ

π−2γ,mJ−2γ+1(π−2γ,m)
,
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from which with (94) and (95) expression (89) follows.
Finally, since the series (89) convergence point-wise and uniformly on any compact sub-

set of R>0×(0, 2∆) it is straightforward to check that (89) is a solution of the mixed initial-
boundary value problem of Proposition 4 in Case I, and of the mixed initial-boundary
value problem of Proposition 5 in Case II. In particular, (89) represents (77) in both cases.

Remark 7 It should be noted that in [22] the boundary condition (88), necessary for the
case

2kλ

σ2
< 1, (96)

i.e. Case II in the present setting, was not considered there in fact. As such the related
proof there was incomplete. However, the above analysis shows that in both Case I and
Case II only solutions of type (93) are feasible. Therefore, the results regarding (77) in
[22] go through for (96) also.

4 Some guidelines for numerical implementation

In this section we consider some features regarding the numerical implementation of the
developed methods. In particular we focus on the method proposed in Section 3.

The region x > ∆

From a generic state (t, x) of the CIR process already constructed via (45) we first pro-
ceed by simulating Y0,x(θ(x)). For this one may simulate a random variable U uniformly
distributed on [0, 1], and then set Y0,x(θ(x)) = x−∆ if U < pl(x) with pl(x) given in (48),
else Y0,x(θ(x)) = x+ ∆. Now suppose that Y0,x(θ(x)) = x−∆, the other case is analogue.
We next need to simulate θ(x) by sampling from the conditional distribution (51). Once
this distribution is computed, we obtain θ = θ(x) by solving the equation

ul(θ, x)

pl(x)
= U, where U ∼ Uniform[0, 1], (97)

for θ, and then obtain a new state (tnew, xnew) by setting

τ :=
1

k
ln(1 +

4k

σ2
θ)

tnew := t+ τ,

xnew := e−kτ (x−∆) .

Due to (46) we thus have for t ≤ s ≤ tnew the uniform interpolation

X0,x(s) =

(
x+

s− t
tnew − t

(
xnewek(tnew−t) − x

))
e−k(s−t) (98)

that satisfies ∣∣X0,x(s)−X0,x(s)
∣∣ ≤ 2∆, t ≤ s ≤ tnew.
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Of course the main issue is the computation of ul(θ, x) in (97). By taking y equal to x in
(56), (70), (71), we obtain after a few elementary manipulations,

ul(θ, x) =
1

2
− 2kλ

∆σ2

∞∑
j=1

1

µj

∫ x+∆

x−∆

Yj(x)Yj(η)

‖Yj‖2 q(η)dη

+
2kλ

∆σ2

∞∑
j=1

e−µjθ

µj

∫ x+∆

x−∆

Yj(x)Yj(η)

‖Yj‖2 q(η)dη

+
∞∑
j=1

∫ x+∆

x−∆

e−µjθ
Yj(x)Yj(η)

‖Yj‖2 q(η)vl(0, η)dη.

Since ul(θ, x) ↑ pl(x) for θ ↑ ∞, we must have

1

2
− 2kλ

∆σ2

∞∑
j=1

1

µj

∫ x+∆

x−∆

Yj(x)Yj(η)

‖Yj‖2 q(η)dη = pl(x)

and thus get by using (58), taking into account (69) and some rearranging,

ul(θ, x) =pl(x) +
∞∑
j=1

e−µjθ
Yj(x)

‖Yj‖2

((
kλ

µjσ2
− x+ ∆

4

)
1

∆

∫ x+∆

x−∆

Yj(η)η
2kλ
σ2 −1dη

+
1

4∆

∫ x+∆

x−∆

Yj(η)η
2kλ
σ2 dη

)
. (99)

In a completely similar way it can be shown that

ur(θ, x) = pr(x)−
∞∑
j=1

Yj(x)

‖Yj‖2 e
−µjθ

((
kλ

µjσ2
− x−∆

4

)
1

∆

∫ x+∆

x−∆

Yj(η)η
2kλ
σ2 −1dη

+
1

4∆

∫ x+∆

x−∆

Yj(η)η
2kλ
σ2 dη

)
. (100)

For small ∆ the integrals in (99) and (100) may be computed accurately by a suitable
quadrature formula while the first integral, in (99) and (100) respectively, may require
some refined quadrature procedure in the case where 2kλ/σ2 < 1 and x − ∆ is close to
zero. Furthermore, typically the eigenvalues µj tend to infinity quite rapidly as j tends
to infinity, see the example below. Therefore it will be usually enough to compute only
the first few terms in the series in (99). Finally, the first few eigenvalues µj have to
be computed numerically from the transcendental equation (67). In this respect, we note
that there are nowadays extensive C++ libraries (or libraries for other program languages)
available, that include transcendental functions and equation solvers for instance, in order
to carry out such procedures.

The region x ≤ ∆

When a generic state (t, x) falls in this region we need to simulate θ = θ(x) from the
distribution due to (89). For this we may solve the equation

1− q(θ, x) = V, where V ∼ Uniform[0, 1]. (101)
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for θ, and a new state (tnew, xnew) is then obtained by setting

τ :=
1

k
ln(1 +

4k

σ2
θ)

tnew := t+ τ,

xnew := 2∆e−kτ ,

and the uniform interpolation between (t, x) and (tnew, xnew) is carried out by (98) again.
It should be noted that, in principle, root searching or other numerical techniques

mentioned above cause bias errors. However, the size of these errors can be kept very small
(almost negligible) by using efficient numerical procedures. In fact, an in-depth treatment
of numerical algorithms and their error analysis based on the developed approach would
require further study and is considered beyond the present scope. Below we restrict
ourselves to an example which shows the vitality of the results obtained.

An example

Let us illustrate the method for 2kλ/σ2 = 1/2, hence γ = 1/4. In fact, this case is at the
borderline of applicability of the method presented in [22], where σ2 < 4kλ was required.

The region x > ∆ : For γ = 1/4 we have

J1/2(z) =

√
2

πz
sin z, J−1/2(z) =

√
2

πz
cos z (102)

and thus (67) implies,

sin
(√

2µ(x+ ∆)
)

cos
(√

2µ(x−∆)
)

− sin
(√

2µ(x−∆)
)

cos
(√

2µ(x+ ∆)
)

= 0, hence

sin
(√

2µ(x+ ∆)−
√

2µ(x−∆)
)

= 0, i.e.

µj =
j2π2

8∆2

(√
x+ ∆ +

√
x−∆

)2

. (103)

Thus, for the eigenfunctions (68) we may take

Yj(y) = sin

(√
2µjy −

√
2µj(x−∆)

)
(104)

while

‖Yj‖2 =

∫ x+∆

x−∆

1

2
ξ−1/2 sin2

(√
2µjξ −

√
2µj(x−∆)

)
dξ

=
∆√

x+ ∆ +
√
x−∆

. (105)
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Further, in (99) and (100) we obtain via straightforward calculus,∫ x+∆

x−∆

Yj(η)η
2kλ
σ2 dη =

∫ x+∆

x−∆

η
1
2 sin

(√
2µjη −

√
2µj(x−∆)

)
dη

= −2∆
√

2
√
µj

+
2
√

∆ + x

µj
sin

(√
2µj(x+ ∆)−

√
2µj(x−∆)

)
+

2
√

2(µj(x+ ∆)− 1)

µj
√
µj

sin2

(√
µj(x+ ∆)/2−

√
2µj(x−∆)/2

)
(106)

and ∫ x+∆

x−∆

Yj(η)η
2kλ
σ2 −1dη =

∫ x+∆

x−∆

η−
1
2 sin

(√
2µjη −

√
2µj(x−∆)

)
dη (107)

=
2
√

2
√
µj

sin2

(√
µj (x+ ∆) /2−

√
µj(x−∆)/2

)
.

Now, by substituting (104), (105), (103) (partially), (106), and (107) in (99) and (100),
we arrive after some algebra at,

ul(θ, x) = pl(x) +
∞∑
j=1

e−µjθ sin

(√
2µjx−

√
2µj(x−∆)

)
× (108)(

− 2

jπ
+

4
√
x+ ∆

j2π2
(√

x+ ∆ +
√
x−∆

) sin

(√
2µj(x+ ∆)−

√
2µj(x−∆)

))
,

and

ur(θ, x) = pr(x) +
∞∑
j=1

e−µjθ sin

(√
2µjx−

√
2µj(x+ ∆)

)
× (109)(

2

jπ
+

4
√
x−∆

j2π2
(√

x+ ∆ +
√
x−∆

) sin

(√
2µj(x+ ∆)−

√
2µj(x−∆)

))
,

respectively, where due to (48),

pl(x) = 1− pr(x) =

√
x+ ∆−

√
x√

x+ ∆−
√
x−∆

,

and µj is given by (103).

Remark 8 Let us note that the eigenvalues (103) blow up with rate j2 as j ↑ ∞ and with
∆−2 as ∆ ↓ 0, that is, for a fixed θ > 0 the series (108) and (109) will converge very fast.
Thus, in particular when ∆ is small, the first few terms of the series are already sufficient
to obtain a very high accuracy for ul(θ, x) and ur(θ, x), respectively.

22



The region x ≤ ∆ : By taking γ = 1/4 in (89), using (102), and the fact that

π−1/2,m =
1

2
(2m− 1)π, m = 1, 2, ...,

we obtain

q(θ, y) =
4

π

∞∑
m=1

(−1)m−1

2m− 1
cos

(
(2m− 1) π

√
y

8∆

)
exp

[
−(2m− 1)2 π2

16∆
θ

]
, 0 ≤ y ≤ 2∆,

(110)
and a remark similar to Remark 8 applies.

Remark 9 Besides the fact that for given θ > 0 the series (108), (109), and (110)
converge very (exponentially) fast in the number of terms, the root search procedures for
(97) and (101) can be carried out very fast as well (by a bisection method for instance),
since the left-hand-sides of (97) and (101) are increasing in θ.
It can be expected that for other parameter constellations similar convergence behavior can
be observed but a detailed analysis is considered beyond the scope of this paper however.
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