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Abstract

We introduce a new Monte Carlo method for constructing the exercise
boundary of an American option in a generalized Black-Scholes framework.
Based on a known exercise boundary, it is shown how to price and hedge the
American option by Monte Carlo simulation of suitable probabilistic represen-
tations in connection with the respective parabolic boundary value problem.
The method presented is supported by numerical experiments.

1 Introduction

We consider the general one-dimensional American style option in a generalized
Black-Scholes framework

dXt = Xt(a(t, Xt)dt + O'(t, Xt))th), X(] =T, (1)
dBt = T(t, Xt)Btdt, BO = 1, 0 S t S T. (2)

In (1), (2), the process X is the price of a risky asset, B is the price of a locally
riskless asset, and r, a, o are smooth and bounded functions from [0,7] x R* — R,
such that the system (1) and (2) has a unique solution. Due to the American
style option contract the holder has the right to exercise the option at any time ¢
with 0 < ¢t < T, yielding a payoff f(X;), where f is a continuous function from
R™ to R*. For example, an American put with strike price K > 0 is specified by

/(@) = (K - 2)*.

*Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstr. 39, 10117 Berlin ;
E-mail: milstein@wias-berlin.de; Ural State University, Lenin Street 51, 620083 Ekaterinburg,
Russia.

"Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstr. 39, 10117 Berlin ;
E-mail: reiss@wias-berlin.de. Supported by the DFG Research Center “Mathematics for key tech-
nologies” (FZT 86) in Berlin.

tWeierstrass Institute for Applied Analysis and Stochastics, Mohrenstr. 39, 10117 Berlin ;
E-mail: schoenma@wias-berlin.de




If we set @ = r in (1) we obtain the price process X in the risk neutral mea-
sure. We recall that with respect to the risk neutral measure the discounted process
X (t) := e Jor(®X)ds X (1) is a martingale and the price u(t, X;) of the option is given
by

u(t,w) = sup Blem I £ (x1) (3)
TE€ET:,T
where T;r represents the set of stopping times 7 taking values in [¢t,T], and X5* is
the solution of (1) with X" = z, see e.g. [5]. It is well known that if the function f
is bounded, non-increasing and convex, then u(¢, z) in (3) can be seen as the solution
of a free boundary value problem where the free boundary 7y is given by an equation
z = g(t), such that

u(t,z) = f(x), for t=T or z < g(t),
ou 1 O?u ou

_ 2,,2
Lu._a+— @4—7".’17%—7’"11,—0 z > g(t), (4)

and that the so-called ,;smooth fitting (pasting) principle” is fulfilled at y(¢), ¢t < T

M| = L)l )
x wlg(t) Oz " latg(t)

See e.g. [5, 12, 14] and the references therein for detailed studies of American
options. The curve +y is called the exercise boundary or critical price curve in the
sense that it is optimal to hold the option if X; > g(¢) and to exercise when X; < g(¢).
The option price u(t,z) in the domain G := {(t,z) : 0 <t < T, z > g(t)} is the
solution of the Dirichlet boundary value problem

ou 1 2 282u U
Lu :E%—— @%—m:%—ru—o (6)
uy = flz), (7)

where the boundary ¥ consists of y for 0 < ¢ < T and the ray {(T,z) | z > g(T)}.

A hedging strategy for the American option is a self-financing portfolio (¢y, ¥4),
where ¢; and 1; are the amounts an option writer should hold in riskless B and
risky asset S, respectively, in order to hedge the payoff of the option when the
option holder exercises. It is known [5], that a self-financing hedging strategy is
given by

1 0

Yy = E(U(t,Xt)—Xtﬁ(t,Xt))a (8)
ou

vy = %(t;Xt):

where

Vi = u(t, Xy) = @By + 9 Xy

is the value of the replicating portfolio, i.e. at any time 7 the holder exercises, it is
guaranteed that V' (7) > f(S;) and the portfolio satisfies the self-financing condition

dV, = ¢ d By + 1, d X
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Moreover, due to (4) and (5) the function v(t, z) := 3 (t,z) satisfies the boundary
T
value problem
ov 1, ,0% . v
E—I—Eaxw%—(ax%—rx)% = 0, (tz)egaq, (9)
vy = fz). (10)

In general, determination of the exercise boundary < is a challenging task and,
in particular, if v is known, both the option value and the hedging strategy can be
computed by Monte Carlo simulation of (6), (7), (9), (10).

For the standard American put where f(z) = (K —z)* with respect to the stan-
dard Black Scholes model, analytical approximations and asymptotic expressions for
the exercise boundary near maturity have been studied extensively in the literature.
For instance, see [1, 2, 4, 6, 13, 15] and the references therein. For the general case,
however, the problem has to be solved by numerical methods. As a new alternative,
we construct in Section 4 a Monte Carlo method for the determination of the critical
exercise boundary . We will explain this method in detail for the one-dimensional
case, and then we present a generalization for the multi-dimensional case.

Since for construction of a hedging strategy one needs at any time ¢ the individual

0
values u(t, X;) and v(t, X;) = 8—u(t, X;) at the known state X; of the market, Monte
T

Carlo methods are quite appealing, particularly in more dimensions. Of course, the
computation time for attaining an accuracy € by a standard Monte Carlo method
which is typically of order O(¢72) independent of the dimension might be higher than
the required time of some finite difference method for dimension one. However, due
to ease of implementation, various possibilities of variance reduction (see Section
2), application of higher order integration schemes, and parallelizing opportunities,
even in one dimension Monte Carlo simulation turns out to be a valuable tool. In
Section 2, we give various probabilistic representations for solutions of boundary
value problems (6)-(7) and (9)-(10) connected to respective stochastic differential
equations (SDEs), provided that the critical price curve v is known. There we
also investigate some issues of variance reduction. In Section 3, we propose some
algorithms for Monte Carlo evaluation of u(t,z) and v(¢,z) under known exercise
boundary. These algorithms are based on the results of [8], [9].

Usually, the exercise curve =y is not explicitly known and so for implementation
of the methods presented in Section 2 and Section 3, one needs to construct
first. For example, v may be obtained by a finite difference method [5] which solves
u(t, z) by a parabolic system of differential inequalities. In a standard Black-Scholes
environment, 7 can also be constructed from the solution of a canonical optimal
stopping problem (3). So the critical price curve plays a key role in pricing and
hedging American options. In Section 4 we present a Monte Carlo construction of
the curve  without preliminary knowledge of the price u(¢, z) in the whole domain
G. The critical price curve 7y is built step-by-step where at each step we principally
use the Snell envelope. The proposed procedure can be seen as an alternative to
direct solutions of the corresponding Stefan problem [12, 14] (for example, by finite
difference methods). Besides the fact that a pure Monte Carlo construction of the
exercise boundary < is interesting from a theoretical point of view, this procedure
is easy to implement and requires only few storage capacity.
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2 Probabilistic representations for price and hedge
of the American option under known exercise
boundary

The solution to the problem (6)-(7) has the following probabilistic representation
u(t,z) = B |e= I rsX0ds gty | (4 7)€ G, (11)
where X" is the solution of the SDE
dXs = X(r(s, X5)ds + o(s, Xs)dWy), Xi=uz, s>t (12)

and
T = Tt’m =TA inf{s : (st;’z) S fy} (13)

is a stopping time which is defined as the first time the process of (s, X,) reaches
the boundary #¥ (see Fig. 1). We should note that a more rigorous notation for (12)
would be

dX, = Xs(rds + JdWs) 1{T>s},

but we use (12) as long as it does not lead to confusion.
As a probabilistic representation for the solution to problem (9)-(10) we have,

v(t,z) = B[f'(X7)], (t,z) €G, (14)
where X% satisfies the equation
dX, = X,((r(s, X,) + 0*(s, X,))ds + (s, X,)dW,), Xy =z, s > 1, (15)

and 7 as in (13).
In general, the solution to problem (6)-(7) has various probabilistic representa-
tions:

u(t, @) = B (XL 4 7610), (16)
where X, Y, Z satisfy the system of SDEs

dXs, = X(r(s,Xs) — u(s, Xs)o(s, Xs))ds + o(s, Xs) XsdW,, Xy =2z, (17)
dY, = —r(s,X,)Yids+ p(s, X,)Y,dW,, Yi=1, (18)
dZ, = F(s,X,)Y:dW,, Zi=0, (19)

where u(-,-) and F(-,-) are rather arbitrary functions, however, with good analytical
properties and 7 = 7%® is the first time the process X in (17) hits the boundary #.
The usual probabilistic representation (11) is a particular case of (16) — (19) with
p =0, F =0, see, e.g. [3]. The representation for u # 0, F' = 0 follows from
Girsanov’s theorem and then for F' # 0 from EZ = 0.

Consider the random variable 7 := f(X5*)Y-%! + Z5%10 While the mathemati-
cal expectation E7 does not depend on y and F, the variance Var n = En? — (En)?
does. So, for a Monte Carlo estimation of (16) the variance may be reduced by suit-
ably choosing the functions p and F. In this respect two variance reduction methods
are well known: The method of importance sampling where one takes F' = 0 and
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seeks for a proper u, and, the method of control variates where one takes y = 0
and seeks for a proper F. For both methods it is shown that, in principle, the vari-
ance can be reduced to zero. A generalization of these methods is obtained in [11].
We should note that, in fact, these variance reduction methods concern the Cauchy
problem for equations of parabolic type, although the method of importance sam-
pling is considered for boundary value problems as well in [7]. Here we carry over
the results of [11] for the boundary value problem (6)-(7). We introduce the process

Ns = U(S A T, Xt,a: )Yt,z‘,l 4 Zt,z‘,l,O )

SAT SAT SAT

Clearly o .
= U’(ta .’L'), Nr = f(XT’m)Y;-’E’ + ZT’Z’ Y =npr=mn.

Theorem 2.1 Let p and F' be such that for any x € G there is a solution of the
system (17)-(19) on the interval [t, T]. The variance Var n is equal to

TNAT a
Var n = E'/ YSQ(UXSa—u(s, X,) +u(s, X,)u(s, X,) + F(s, X,))*ds (20)
: x

provided that the mathematical expectation in (20) exists. In particular, if p and F
are such that

ou
— F =0 21
oo+ up+ , (21)

then Var n = 0 and 1, is deterministic and independent of s € [t, T].
Proof. By Ito’s formula, we obtain
0
dn, = 1gsglLu(s, X,)Yeds + a—u(s,Xs)XSKa(s,Xs)dWs
x
+u(s, Xs)u(s, X,)YsdW, + F(s, X,)Y,dW,]
0
Lrsat 5o (5 X2 Xeo (s, X.) + u(s, Xou(s, X.) + F(s, X,)YdW,,
x

where Lu = 0 is taken into account. We thus get

n(s) = u(t,z)+

/ Liroa [g—Z(a,Xa)Xaa(a,Xa) +ula, X (e, Xo) + Fla, X.)| YadW,.
t

Hence, (20) follows and the last assertion is obvious.

Remark 2.2 Clearly p and F' from Theorem 2.1 cannot be constructed without
knowing u(s, z). Nevertheless, the theorem claims a general possibility of variance
reduction by properly choosing the functions p and F.

In the same way, we obtain via (14)-(15) the following representations for the
solution of problem (9)-(10):

v(t, z) = Bl (X10(7))Year (T) + Ziw10(7)], (22)



where X, Y, Z satisfy the system of SDEs

dX, = X,(r(s,X,)+ 02(3, X,) — (s, Xy)o(s, X,))ds + o(s, X,) X, dW,, (23)
ay, = (s, X,)Y,dW;, (24)
dZ, = F(s,X,)Y,dW,, (25)

with the initial conditions
Xt =T, Y;: = ]_, Zt =0. (26)
Remark 2.3 It is interesting to see that for

p=p+o,

(23) coincides with (17) and, as a consequence, their solutions X as well as the
stopping times 7 for hitting the boundary ¥ coincide as well. In particular, for
u=0, p=o0c, F=0 we obtain

wt) = B e ([ —rlsxas) £062)

v(t,z) = E exp (/(;T—@ds + a(s,Xs)dWs> f(XE®), (27)

where X satisfies SDE (12) and 7 is defined by (13). Formulas (27) allow us to
evaluate u(t,z) and v(t,z) by Monte Carlo simulation using the same trajectories
for X.

Analogue to Theorem 2.1 we can proof
Var(f/(XE5)YEoH 4 76710) = 0 (25)
if 7 and F are such that
ng—z +ofi+ F=0. (29)

Let p and F be such that (21) is fulfilled. Differentiating (21) with respect to z

then yields

v op OF
x5“+w+uw+u5—+5;—0. (30)

Hence, by comparing (29) and (30) we see that for
~ ou OF
= + , F = U— + a9
p=HRTo or Oz
the variances of the Monte Carlo estimators of the probabilistic representations (16)
and (22) for evaluation of u and v respectively are both equal to zero. Moreover,

according to Remark 2.3, in both simulations the we can use the same trajectories
for X.

(31)

Remark 2.4 In particular, if one reduces the variance (20) by the method of con-
trol variates, i.e. by taking u = 0 and choosing F' suitably, then for i = o and
F = 0F/0z we may expect for (28) reduced variance too.
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Remark 2.5 It is known that an American option is equivalent to a European
option with a consumption process involved, see [5, 12]. As a consequence, there
exists a consumption function ¢(¢,z) > 0 such that u(¢, z) in (4) satisfies

% + %aQ(t, :v)f% +r(t, :v)xg—z —rteutelt,e) =0,  u(T,z)=f(a).
Due to (4) it follows that
iy Jo if z > g(t),
) = tor(t, )2 (@) — r(t2)ef @) + (L 5) (@) iz < (1)

In particular, if f(z) = (K — z)*, we get

0 if z > g(¢),
c(t,z) = {Kr(t,x) if:v<§(t)-

3 Numerical random walk algorithms under known
critical price curve

For a European option we have to solve the Cauchy problem for a partial differential
equation of parabolic type. In particular, in the European case we have 7 = T in
representations (11) and (16), and so we can use a Monte Carlo approach based on
usual numerical schemes for SDEs both in mean-square and weak sense (see, e.g.
[11]). For American options, however, we are faced with boundary value problems
and then a number of complications arise. For example, 7 — ¢ in (11) may take
arbitrarily small values and therefore numerical integration of (12) with a fixed
step h is not appropriate. In particular, it is not possible to apply mean-square
Euler approximations. Nonetheless, application of simple weak approximations is
possible, when we take into account restrictions connected with the requirement
that X cannot leave the domain G.

3.1 Methods of orders 1 and 1/2

Let consider the explicit weak Euler scheme applied to (17)-(19):

X0 ~ X:=z+h(rt,z)z —o(t,z)ult, z)z) + h'2o(t, z)xt
VY o~ Y =y —hr(t,z)y + B u(t, @)y,

ZpTt o~ Zi=z+ h2E(t, z)y€, (32)

€ is a random variable taking values 1 with probability 1/2: P[§ = —1] = P[{ = 1]
= 1/2 and h > 0 is a time integration step being sufficiently small. We see that if
 is close to g(t) the variable X can be outside of G and therefore a random walk
due to a scheme with fixed step h for all points of the t-layer G; := {z : (t,z) € G}
is not quite suitable. As a better approach, which is essentially developed in [8],
it is possible to control the step of numerical integration h when (¢,z) is close to
the boundary ~. In principle, we decrease the integration step such that the next
state of the chain (32) remains in the domain G. The idea is basically as follows.
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First we follow a random walk based on (32) until we reach a narrow layer near the
boundary 0G of G where in particular the solution v may be approximated with
sufficient accuracy by known boundary conditions. Then we proceed by suitably
replacing the state x reached at the last step by either a state at the boundary or a
state in the inside of G where the scheme (32) may be used again. Some methods
based on this idea have been obtained in [8]. In [9] one constructs a random walk
with respect to scheme (32) where a fixed time step h can be chosen for each ¢-layer.
However, if a point (¢, zx) of the random walk is close to the boundary 7, we replace
(tx,zx) in an appropriate way by a random point (tz, X;) where X; can take two
well specified values with certain probabilities: either z; = g(tx), i.e. the random
walk stops at the boundary, or a value z; inside G where (32) applies again. Below
we explain this method more precisely.

Let us denote the two different states of X in (32) by z™" and 277, 277 <
ztT. Since the coefficients in (32) are bounded by assumption there exists (for
each particular ¢-layer) a magnitude A > 0 such that = > g(t) + Ah'/2 implies
=~ > g(t+ h). If (¢,z) is such that 2=~ > g(¢t + h), we perform a usual step
according to (32). If =~ < g(t+h) (and consequently z < g(t)+Ah'/?) we introduce
a random variable X* which takes two values 2~ = g(¢) and z* = z + Ah'/? with
probabilities p and ¢ = 1 — p, respectively, where

)\hl/2

RS g(t)’ (33)

p

We note that always p > 1/2, and if z = g(t), then p = 1.
The idea behind is that for any function V' (z) with continuous second derivative
we have,

E[V(X*)] = pV(g(t)) +qV (z + AnY/?) = V(z) + O(h) (34)

for p given by (33), ¢ = 1 — p. Hence, E[V(X*)] is given by linear interpolation at
z of the function V between g(t) and z + Ah'/2. Now we are ready to present the
complete algorithm.

Let (to, zo) € G be a point at which the value u(tg, ) is required. We introduce
a time discretization

t0<t1<...<tm:T, tk+1—tk:hk, kZO,...,m—l.

By the following algorithm we construct a Markov chain (tx, X%, Y, Zx) with
(tr, X3) in the bounded domain G, k = 0,1, ..., k, up to a random time t. , k < m,
where the chain is stopped, for solving the boundary value problem (6)-(7).

Algorithm 3.1
Initialisation: Set (t9, Xo, Yo, Zo) := (to, Zo, 1,0);
If Xo = g(ty) then k := 0, i.e. t, := tg, and stop.
While (Xy > g(tx) and k < m) do:

Consider the values z*" and 2=, z=~ < z*™*
given by (32) for £ = +1, with t = &, z = X}, and h = h.



If 7= < g(tr+1) then:

Carry out the following step: With probability p, given by (33) with
t =ty, x = X, h = hy, and an appropriate choice of A\;, we assign,

(L X, Vi, Z1) = (br, 9(tk), Yir Zi), K= k.
With probability ¢ = 1 — p we set
(te, Xx, Ve, Z1) i= (txy Xi 4+ Aehy'>, Vi, Zi).
else: (hence if 27~ > g(tx11)):
Carry out (32) to obtain (tg11, Xkr1, Yat1, Zet1)-
Logically, Algorithm 3.1 will end up with either Xy = g(tx) and kK = k, or k = m,

where in the latter case we set kK = m. With respect to the above constructed Markov
chain we have the following theorem.

Theorem 3.2 It holds
|E(f(Xn)Yn + ZH) - U(to, $0)| < Ch’; (35)
where h = maxi<x<m hi, and C does not depend on ty, z¢, h.

We omit the proof (which can be done similar to [9]), but give some heuristic ar-
guments justifying (35). The one-step error for the points which are not too close
to OG (“usual” points) is O(h?) and because the number of all the steps does not
exceed O(1/h), the contribution of these steps to the global error is O(h). Further,
due to (34), the one-step error of the other points is O(h). Fortunately, it turns out
that the mean number of these large (O(h)) one-step errors is bounded by a constant
which is independent of h. As a consequence, their total error contribution is O(h)
also and as a result the global error is O(h), i.e. (35) holds.

Clearly, the result of Theorem 3.2 is also true for the function v solving the
boundary value problem (9)-(10). For instance, if we take in (23)-(25) ji = 0, F' = 0,
we get

|E[f'(X.) Y] — v(to,z0)| < Ch, (36)
where the process X and in particular x and X,, coincide with the solution of the
first SDE in (32) under x4 = 0. So in this example we can use the paths of X
obtained by Algorithm 3.1 for computing both v and v. However, the process Y in
(36) has to be computed by the scheme (see (24))

Yipn =Y + h,lg/QU(tk, Xi)Vike, Yo =1. (37)

Remark 3.3 If we simplify Algorithm 3.1 by stopping the chain, k¥ := k, hence
X, = Xy, as soon as 7~ < g(tgs1), we obtain a more simple random walk. It can
be shown that the method based on simulation of the expectation in (35) by this
algorithm converges also, but, the order of convergence is then only O(h'/?) (see
Ou(t, x~

Ou(t, a7) = f'(z7) at

the curve v we can obtain even with this simple random walk again a method of
order 1 by Monte Carlo simulation of

E((f(z) + [z )(Xe —2)Ye + Zx),

[9]). However, if one takes advantage of the known fact that

due to the fact that
|E((f(z7) + f'(2)(Xe — 27))Ye + Zs) — u(to, z0)| < Ch.



3.2 Methods of order 3/2

For constructing a method of an order higher than one we use instead of the
Euler scheme a weak second order scheme and use the fact that the derivative
Ou(t,z)/0x = f'(z) is known on the critical price curve . It should be noted, how-
ever, that knowledge of this derivative is a special feature of American options which
does not apply for general boundary value problems.

Let us write the first equation of the system (17)-(19) in the form

dX, = X,(a(t, X,)dt + o(t, X,))dW,). (38)

Application of weak second order scheme (see, for example, [7]) to (17)-(19) gives
the following one-step approximation for Xffh, which we denote by X again,

Xt,ﬂ

on N X :=z + zoth'/?

1 %)
+zah + 5(1002 + xzaa—g)(fz —1)h

1. 8o oo, 1, ,, 00 0% NNy
Hology ol eg)+ gt (g, tags) ot ep IEh
oa  _._.  0a 1 .,., 0a 0%, . h?
+[x§ +xa(a+$% + g% (2% +$@))]7- (39)

In (39) the functions @ and o and their derivatives are computed at (¢,z) and
¢ is a three point random variable taking values —+/3, 0, /3, with probabilities
P(¢ = 0) = 2/3, P(¢€ = ++/3) = 1/6. For the corresponding approximations Y and
7 of Yfﬁ;y and Zttf,’ly’z, respectively, we have similar expressions. For instance, if
u = 0, we obtain for Y:

. 1 or
th;,z’y R = y—ryh— §0$Q%§h3/2
1, 8 8 1, 58
5oy~ gy 10— 0T G I (40)

For constant a and o and yu = F' = 0 we obtain,

1 1
X o~ X=z+ zo€h'/? + zah + 5:602({2 —1)h + zacth®? + Ea:azhz,

z 1
Yttjr};y ~ Y=y—yrh+ iyrzhz,

Zpnt = Z =2
Thus, we now have three values for X corresponding to three values of &, which we
denote by ™+ > 2% > 7. Clearly, again there exists a A > 0 (A may depend on ¢)
such that if z > g(t) + Ah'/2, then 2=~ > g(t + h). If z is such that 2=~ > g(t + h),
we carry out a usual step according to (39). If z is such that 2=~ < g(¢ + h) which
implies z < g(t)+Ah'/2, i.e. z is close to g(t), we now consider a random variable X *
taking two values = = g(t) and =+ = z + Ah!/2 with probabilities p and ¢ = 1 — p
given by

(z—27) (z—27)?

g=1l-p=
(

@) (41)

—1_ )
P (xt —z7)?’
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respectively. The idea behind (41) is based on expansion of u(t,-) at = and utilizes
the fact that du(t,z)/0z = f'(x) on the exercise curve «y as follows. For any p and
q with p + ¢ = 1 we may write

u(t,z) = pu(t,z)+ qu(t,x)

= p[u(t,x_)—l—g—Z(t,x_)(:ﬂ—x )+%%(t )z -2 )2 +...]
ou 16%u 9
+q[u(t,x+)+%(t,x+)(x—x )+§W(t )z -z +...]
_ ou _ 16%u _ 9
= plu(t,z )—I—%(t,x Nz —z )+§ﬁ(t,x Wz —z )" +...]
+alu(t,e") + g—z(t, z7)(z — ) + gZZ(t z) @~z )(z o)

+3222(t )z -z +...]

= pf(z7) +qut,z") +pf' (@7 )(z —27) + qf'(z7)(z — z7)
2,0 ) ople — ) + ol — 2 ) — )+ am(o )+
(42)
where the dots denote terms of order higher than one with respect to A. By next

choosing p and ¢ according to (41) the second order terms in (42) vanish and we
then obtain

u(t,z) = pf(z7)+qu(t,z)+pf(e” )& —27) +qf (z )z —a")+...
= plf(e )+ f@ ) e—z )+ fz )z~ w*)%] +qu(t, ") +. ..

= p[f(x-)+f'<x-><x—x->—f'(x-w/?%]+qu<t,x+>+0(h3/2>. (43)

We are now ready to present a method of order 3/2 by the following algorithm. By
Algorithm 3.4 we construct a Markov chain (t, Xy, Xi, Ya, Zx) with (¢, X) in the
bounded domain G and X,’c being an auxiliary dummy process, for £ = 0,1, ..., K,
up to a random time ¢, , kK < m, where the chain is stopped:

Algorithm 3.4
Initialisation: Set (to, X{, Xo, Yo, Zo) := (o, Zo, Zo, 1, 0);
If Xo = g(to) then K := 0, i.e. t, := tg, and stop.
While (Xy > g(tx) and k < m) do:

Consider the values zt7, 2%, 27~ with 27 > 2% > 2= given by (39),

for € = 0,4++/3, with t = t, = X, and h = hy,.
If 7= < g(tr+1) then:

Carry out the following step: With probability p, given by (41) with
t =ty, ¢ = X, h = h; and an appropriate choice of \;, we assign,

(tk7Xllg7Xk; }/k; Zk) = (tkaXIIg:g(tk);Yk; Zk); k= k.
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With probability g = 1 — p we set
(ks Xy Xiy Vi, Z1) 7= (b, Xi + Mehy/?, Xio + Mhy>, Vi, Za).

else: (hence if 7= > g(tx11))

Carry out (39) and set X ; = X;;; to obtain
(st Xpyrs Xor1, Yeys, Zrsn)

Like Algorithm 3.1, the procedure 3.4 will end up with either X; = g(¢) and
k =k, or kK = m, where in the latter case we set kK = m.

For the Markov chain constructed in Algorithm 3.4 we then have the following
theorem due to interpolation formula (43).

Theorem 3.5 It holds
|E(f(X;“ XKZ)YKZ + ZH) - U(to, $0)| S Ch3/2 ) (44)

where h = maxy<g<m hi, C does not depend on ty, zo, h and the function fis defined
by

XX - { FOE) + P = X = FEOMBS D i<,
f(ch) ’ Zf/{:m-

The proof is similar to the proof of Theorem 3.2

Remark 3.6 As we will see in Section 4, we also know the continuous extension of
the second derivative 8%u(t, r)/dz? inside of G to the boundary 7 :

0%u S Pu, o\ r(tg®))f(9(t) —r(t g(t))g(t) ' (9(1))
52 (L 9() = (s’m(ll_l’?é%(t)) 52 (5 %) = 102(4,9(0)g*(1

We thus have

- - ’.Ti T — 3 T(taxi)f(xi _T(taxi)xifl(xi) T —1 2
u(t,z) = f(z )+ f'(z)( )+ e TP ( )2+ ...

(45)
By using (45) we then get a method of order 3/2 via Monte Carlo simulation of

~

E(f(Xe)Ys + Z4),

with
FX) = fl@) + P ) (X -z ) + 1T (:2_(1;7")(2;;3 ARSI

using a simplified random walk obtained by stopping Algorithm 3.4 as in Remark 3.3
when the guard =~ < g(t) is true (of course the dummy X’ can then be omitted).

12



Remark 3.7 Let us consider the case hy, = h, k = 0,...,m — 1, and assume that
the global error R of Algorithm 3.1 admits a certain expansion in the time step h,

R = Cyh+ O(h") (46)

for some n > 1. The conjecture is that at least n > 3/2, but, practical experiments
even suggest 7 = 2. Assuming that the conjecture n > 3/2 is true we can use a
kind of generalized Richardson extrapolation to obtain a method of order O(h%?)
by applying two times the algorithm with different time steps. Namely, let 7" and
u"? are approximations of u(ty, zo) computed with Algorithm 3.1. Then, we obtain
a more accurate approximation u via

ha hy

W=t T = ult, @) + O(RY). (47)

For further details see [16].

4 Monte Carlo construction of the critical price
curve

In this section we propose a Monte Carlo method for determination of the exercise
curve 7. For this we assume that v is known on the interval [¢,T] : z = g(t),
t <t <T (see Fig. 1) and then proceed with evaluating g(t — h) for a small step h
to the left.

The idea is based on evaluating ¢'(¢). If an approximation §'(f) of ¢'(¢) is known
and that §'(¢) = ¢'(¢) + O(h?), ¢ > 0, then

gt —h) = g(&) — g(Oh+O(h*) = g(t) — §(Oh+ O(R*) + O(h'*7)  (48)

and thus obtain the curve  on the extended interval [t — h, T1.

So for a one-step extension of the exercise curve 7 based on (48) the order
of accuracy is equal to min(2,1 + q). Consequently, the order of accuracy for an
approximation of v on the whole interval [0, 7] is min(1,q). We will evaluate ¢'(¢)
via computing the value of u(Z, z) for some neighbouring point z, with z > Z = g(t)
using the expressions obtained in Section 4.1. The value u(, z) will be computed by
random walk algorithms proposed in Section 3, which is possible since the exercise
curve is assumed to be known on [¢,T]. The connection between ¢'(#) and u(t, z) is
derived in Section 4.1. In Section 4.2 we consider particular algorithms of Section 3
for the computation of g’(?) sketched above. Finally, we will show in Section 4.3 that
the here developed pure Monte Carlo method for the evaluation of the American
exercise boundary, hence the free boundary of a Stefan problem, can be naturally
extended to the multi-dimensional case.

4.1 Some expressions for ¢'(t)

We first derive some useful relations on the curve y by assuming that all derivatives
of u within G extend continuously to the boundary at each point (¢, g(¢)) of v with
t < T. It should be noted that, while the first derivatives from the inside coincide
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with the derivative from the outside of G (see (5)), the second derivatives do not
coincide in general. In what follows all derivatives of u on v have to be considered
as limits from the inside of G. By thus extending equations (5)-(7) and (9)-(10) to
boundary points (¢, g(¢)) of v with ¢ < T, it follows that

%(t, 9(t)) + %cr?(t, g(t))gg(t)%(ta g(8))+
Fr(t,9(0))a(t) oo (1, 9(1)) — r{t, g(u(t, 9(1)) = 0 (19)
u(t,g(t)) = flg(2)), (50)
g—Z(t,g(t)) = fl(g9(t)), 0<t<T. (51)

Differentiating (50) with respect to ¢ yields

ou ou

5 (b 9(0) + 5 (8, g(t)g'(t) = f'(g(t)d'(t), (52)

so by taking (51) into account we obtain

2, (1)) = 0. (53)

Then, combining (49)-(53) gives

0%u _,r(tg(t)f(g(t) — r(t,9(£))g(t) f'(9(2))
a2 (190 =2 (& 90)g"() o
and differentiating (51) with respect to t gives
T 1, 9(1)) + 52 (109 (1) = I"(s()g' (1), (55)
whence — with notations shortened in an obvious way:

V= F0m) — w9 @)

It is important to note that due to (50) and (51) the price and its derivative with
respect to z (”delta”) are continuous on 7. However, the second derivative u_
("gamma” in financial terms) has on 7 a jump of magnitude f”(g(t)) — (¢, g(t)).
For example, for the standard American put where r and o are constant and f(z) =
(K — )™, this jump equals 2rK/(og(t))?.

Since Dy(t) := ull(t, g(t)) is known from (54), we may determine ¢’(¢) from (56)
by computing u}, (¢, g(t)) only. For this purpose we differentiate the left-hand side

tx

of (6) with respect to z in the interior of G to get

1 1
n 2,2, 1M 2 20 _2\/ n 1,0 !
Uy, + =0 T Uy, + (07T + 1T + % (6) ) Uy + xriu, — rou =0,

2 rrxr
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where the argument (¢, z) is suppressed for convenience. Next, by taking the bound-
ary limit to v and using (50), (51) and (54) we obtain

iyt 507G (Dt (07 (0) Frg(6)+ 3°(0)(0")) Do)+ (1) (0(1)) ~74  (5(8)) = 0
(57)
with partially suppressed argument (¢, g(¢)). Thus, to find ¢'(¢) by (56) we need
uy (, g(t)) which in turn may be computed from u. (¢, g(t)) by (57).
Now let p and ¢ be positive numbers to be specified later. For Z := g(t) we then
have
w74 ph?) = u(f,7)+ v (, 7)pht + %u( 2R 4 2 (E5)pP R+ O(h)

6 T

1 1 _
= ﬂ@+f@mw+5Dﬁ%%”+8%@@@ﬁMLHXMH (58)
We are now going to compute u(Z,Z + ph?) with accuracy of order O(h*?) by one
of the Monte Carlo methods discussed in Section 3, using the known part of the
exercise boundary v, see Figure 1.

Simulation of u(i,x+ph®)

xtph"

Figure 1: Backward construction of the exercise boundary

Then u}.({,Z) can be obtained from (58) with accuracy O(h?). As a conse-

quence, see (57) and (56), u;,(¢,Z) and ¢'(f) can then be found with accuracy O(h?)
also. Then, since ¢'(f) can thus be approximated as §'() = ¢'(¢) + O(h?), we may
extend the exercise curve one step h to the left with accuracy by

g(t—h) = g(f) = (Oh + O(A*) + O(h™). (59)

From (59) we see that it doesn’t make sense to choose ¢ > 1. For ¢ < 1, the
evaluation of g(f — h) by g(£) — ¢'(£)h has accuracy O(h'*9).

4.2 Random walk algorithms for evaluating ¢'(¢)

Let us consider the case ¢ = 1/4. We may use Algorithm (3.1) with time steps h for
simulating u(Z, Z + ph'/*) with accuracy O(h) = O(h*?). Note that this simulation
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takes place in the time segment [¢,T] where <y is known. The one-step error of the
evaluation of g(f — h) is thus equal to O(h%*). Usually, if the one-step error of a
method is O(h'™?), ¢ > 0, then the error on a whole interval is O(h?). Heuristically,
this rule is evident, because the one-step errors have to be added and the numbers
of steps is T'/h. Applying this rule, we conclude that our method of backwards
evaluating the whole critical price curve converges and its order of convergence is
equal to O(h'/*). We restrict ourselves to a numerical verification of the convergence
of the method (Section 5), without giving a rigorous proof which would go beyond
the scope of this paper. However, we note that rigorous proofs for related problems,
both linear and non-linear, can be found in [9, 10].

By similar arguments it follows that by computing u(f, Z + ph3/®) via an 3/2-
order algorithm with time steps h, for instance by Algorithm 3.4 (see Section 3.2),
or more simply by a Richardson like method (47) assuming that the conjecture
in Remark 3.7 holds true, we can obtain an algorithm for evaluating the exercise
boundary with accuracy O(h3/8).

As another alternative, we may follow an approach which is based on vl .(¢,Z) =
v (t,Z), the computation of v (¢, Z) from

_ _ _ 1, -
v(L, Z + ph?) = v(t, 2) + vl (L, Z)ph? + =v" (£, %) p*h* + O(h*) (60)

with accuracy O(h?), after the computation of v(f,Z + ph?) from the boundary
value problem (9) (10) with accuracy O(h3?). For instance, by taking ¢ = 1/3 and
using the order 1 algorithm (3.1) with time steps h we can compute v(, Z + ph'/3)
with accuracy O(h) to obtain w” (£ z) = v" (f,Z) by (60) with accuracy O(h'/?)
and, as a result, a method of order O(h!/3) for evaluating the exercise boundary.
Furthermore, by using a Richardson like method (47) in Remark 3.7, or a method
analogue to Section 3.2 based on the fact that v), = u/, is known at the exercise
boundary by (54), we may get order 3/2 Monte Carlo methods for the problem (9)-
(10) as well. Using such a method we may simulate v(Z,Z + ph'/?) with accuracy
O(h*/?) by taking time steps h and so obtain via (60) and v” (f,z) = v _(£,Z), a
method with accuracy of at least O(h!/2).

We should note that, also due to the fact that |7y(T—)| = oo, the presented
Monte Carlo method needs to be started up by some other method on a short
interval, say [T — 4, T|. In this respect one could apply on [T — §,T] a PDE method,
or one could use an in some sense “canonical” Monte Carlo method which is based
on a Bermudan approximation: The interval [T — §, T'] is provided with a small time
grid and it is assumed that the option may be exercised only at these grid points.
Then, in the interval [T — 4, T the exercise boundary is constructed backwardly at
the grid points by a bi-section Monte Carlo search.

4.3 The multi-dimensional case

We now consider the general multi-dimensional American style option in a gener-
alized Black-Scholes framework. This framework is given by (1)-(2) where now X
is a price vector process of risky assets in R%, a is an R? valued vector function, o
is an R¥*¢ valued matrix function in [0,7] x R% with existing inverse o, and W,
is a standard Wiener process in R?. An American style option contract gives the
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holder the right to exercise the option at any 0 < ¢ < T yielding a payoff f(X;),
where f is a certain continuous function from R% to R, which is specified in the
contract. As in Section 1 the price of the option is given by (3), where now the
process X is d-dimensional and solves (1),(2) with a, = r for k = 1,...,d. In the
multi-dimensional case it is known that for a function f, 4 in (3) can be seen as the
solution of a free boundary value problem where an open continuation region G and
the free boundary I' = 8G N {t < T'} are to be determined such that,

8u 1 d 82u d 8u
Lu:= — + - ’ . B _
U= + 3 12 ““(t’x)ax,-axj + ;bz(t’x)axi r(t,z)u =0, (t,z) € G,
u(t,z) = f(x), %(t,x):%(x), i=1,...,d, andt =T or (t,z) €T,
u(tax) = f(x); (t,.’l?) §§ g. (61)

In (61) we have a;;(t, z) := ziz; S 0_, oun(t, 2)oji(t, ©) and b;(t, z) := r(t, z)xi, 4,5 =
1,...d.

Let us assume that I" has a parametrisation z = g(t, v1, ..., vq_1) = g(t,v), where
d > 2. By (61) we so have the following identities in (¢,v),

ultg(t,)) = Fgt,0), )
Mgt = Loy =10 3

where (63) is the multi-dimensional smooth fit property which essentially determines
together with (61) and (62) the exercise boundary. Analogue to the one-dimensional
case we assume that all derivatives of u within G extend continuously to the bound-
ary at each point (¢, g(t,v)) of ' with ¢ < T and all derivatives below are to be
understood as limits from the inside of G. We obtain by differentiating (62),

i 00 + 30 G Gg ) G0 = 3 S ot o) G
and so by (63)
2t 9(t,0) =0, (64)

We now differentiate (63) with respect to ¢ to get for i =1,...,d,

d
0%u g, &f 0Og;

8t8x 83; 0 8t .7:18:1;] ot

where for readability the arguments ¢ and g(¢,v) are suppressed. Differentiating
(63) with respect to v, yields

Pu dg; ~~ Of 8y
- 0r,0T; vy 83:18.7:]- ov,,’

i=1,...,d, a=1,...,d—1.  (66)
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Taking the boundary limit of the PDE (61) to the boundary T yields by (62)-(64),

1 < 8% d of
5 Z aij(t’g(t’v))ax-ax- + sz(tag(tav))% - T(t,g(t,’l)))f = 0. (67)
ij=1 Lt i=1 '

We solve the second derivatives a (t g(t,v)) from the system (66),(67) as follows.

Let for a fixed (¢,v) the vector n(t v) be orthogonal to the surface v — g(¢,v) in
R-space at the point g(¢,v) (we assume this surface to be regular). Then, according
to (66) there exists for each 7 a scalar &;(¢,v) such that
8%u 8 f
T2 (gt v)) — t — &(t,v)n(t, ). 68
o tat0) = 57T (g(t,0)] E(ton(ty).  (69)

j=1,....d

By the symmetry of the matrix

Pu  Pf
8.’L‘i8$]‘ 8:6,833] ij=1,...d

(69)

it follows that &n; = £;n; with n; being the i-th component of n. Hence, there is a
scalar (¢, v) such that & = nn,;. We thus get

%(t’ g(t,v)) = 3_,2_2(:;% (9(t,v)) + n(t, v)ni(t, v)n, (L, v). (70)

By now plugging (70) into (67) we get
318, v) 305 @t 98, 0))mat, v)my (¢, v) +
1Y it gt v)) 52 + T bilt, 9(t,0)) 85 — r(t g(t,v) f = 0. (71)

We thus have to determine the normal n of the surface v — g(¢, v) which is supposed
to be known at time ¢ and then after solving n(¢,v) from (71) we obtain all second
order space derivatives of u via (70). Combining (65) with (70) yields

0%u d 0g; ,
Bioz, + ;n(t , 0)ni(t, v)n;(t,v) == 5 0, 1=1,...,d. (72)
So, once the mixed space-time derivatives 6?;; are computed we may solve for the
time derivatives aa_t in (72) under the assumption that the matrix (69) is invertible
and then extend the exercise boundary to the interval [t — h,T| by
g ;
Gt = ho) = 0t0) — D)k, i= 1, (73)

analogue to the one-dimensional case (48). Therefore we now consider the space-
time derivatives in (65). For this we differentiate the PDE (61) with respect to z,
yielding at the boundary I,

d

0%u 1 &u 0%u of
e b;
ooz | 2 z_: % §:0,0 Z “Oz:0m; | Om
0u aa” of ob; 87"
- =0. 74
Z 8.7:183:] Oz, Z ox; axk 8.7:k (74)

1,j=1
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We next obtain the derivatives Btaz Y (¢, g(t,v)) via (74) by evaluating the third order

derivatives m(t g(t,v)), using the following procedure.

Let us fix (¢,v), z := g(t,v), ¢ > 0, and p > 0. For a tripel (4, j, k) with different
i,J, k and increments h;, h;, hi,, we define the vector

i-th pos. j-th pos. k-th pos.

h!,, =(0,..,0, h{ ,0,.,0, h? ,0,.,0, h{ ,0,.0),

such that (t,z + ph{;,) € G. By a third order Taylor expansion of u at (,z) and
taking into account (62) and (63) we get
of W

W

18U 9 2(1 laz_u 27 2g 18U 2h2q
20227 " T 20227 T 2042
5u 2 24,

o0“u
thhq 2hqhq 2hqhq
T o5,05," " T ani0," 82,0,
18U 3 3 18U 3 16 u 3
hq 3hq 3hq
TS0 6 0z2" 6077
1 a 2y 1 Bu 5 .0
T982200,” " 1 T 2 aa20g,” il
1 &y 4. 1 & ,
- h_qhq - 3 qhq
+2 8x?8xkp it 28x28x,~p
1 u 5.9, 1 Pu 5 .9
_ , _ 1]24
i 8x?8xkp i 283:28%-[)
+ip3h‘?h".hq + O(h*) (75)
8.17,'8.’1)j8$k ik ’

where h := max(|h;|, |hj|,|hx|). Note that in (75) all second order derivatives are
known from (70). By choosing h; = hy = 0 and h; = h, we may compute u(t,z +
phy ) with order O(h*?) by Monte Carlo simulation to obtain % via (75) with
order O(h?). gi’;. We next set hy = 0 and
hi; = h; to compute similarly from (75)

OPu OPu
. 76
0x?0x; + 8:6?83;1- (76)
By next taking h; = 2h;, hy = 0 we compute with (75)
3 3
u u (77)

04
0x20x, * Oz30z;

and then solve for af;g and 3 A g from (76) and (77). In the same way we compute
all derivatives of this form Flnally, by taking h; = h; = hy we compute the
derivatives of the form agia and thus end up with all third order space derivatives

of u with accuracy O(h?).
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5 A numerical experiment for the American put

In this section we present an experimental study of the Monte Carlo procedure in
Section 4 for the computation of the exercise boundary of the standard American
put option. The results computed with our new Monte Carlo procedure will be
compared with benchmark solutions obtained by a standard PDE method.

For the standard American put in a Black Scholes model, r and ¢ in (1)-(2), are
constant, and f(z) = max(K — z,0) in (3), with K being the strike of the option.
For a particular choice of the parameters r,o and K, the "exact” exercise boundary
v is computed by the projected Successive Over Relaxation (SOR) algorithm, a
standard PDE method for solving American options, see e.g. [5], [17]. Note that
the problem considered here is autonomous, only the time 7" — ¢ to maturity of the
option is relevant, rather than specification of the maturity date 7" itself. The result
is shown in Figure 2.

Exercise Boundary

11 7

Critical Price

0 0.05 0.1 015 02 0.25
Time to Maturity

Figure 2: "Exact” exercise boundary computed by a PDE
method; K =10, r = 0.1, 0 = 0.4.

As remarked in Section 4.2, the presented algorithm to construct the exercise
boundary requires the boundary for small maturities as input. For our numerical
study, we started the algorithm from the point (¢, g(¢)) = (T — 0.05, 8.5239), which
has been computed with high accuracy by a PDE method. We construct the exercise
boundary backwards to ¢ = T'— 0.25 by the two Monte Carlo methods described in
Section 4. The results are given in Table 1.

Remark 5.1 Another way to construct the boundary for short maturities is based
on [2, 15], where approximations for the exercise boundary of the American put
in the case of small maturities are analysed. For instance, we have the following
approximation formula:

V(1) ~ Kexp <—\/—02(T—t)ln (8222(:1’—0)).
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T _¢ | gPPE MC I MC 915 9" "%
9 7" () | 915 (8) | err i= = ppp 915 (t) | err JPDF

0 | 10.0000

0.025 8.8439

0.05 8.5239
0.075 8.3102 | 8.2685 -0.0050 | 8.3122 0.00025
0.10 8.1470 | 8.1073 -0.0049 | 8.1292 -0.0022
0.125 8.0145 | 7.9784 -0.0045 | 7.9766 -0.0047
0.15 7.9027 | 7.8729 -0.0038 | 7.8724 -0.0038
0.175 7.8058 | 7.7780 -0.0036 | 7.8058 -0.0040
0.2 7.7202 | 7.6939 -0.0034 | 7.68340 -0.0047
0.225 7.6436 | 7.6198 -0.0031 | 7.6025 -0.0054
0.25 7.5745 | 7.5538 -0.0027 | 7.5265 -0.0063

Table 1. The exercise boundary computed by several algorithms and the cor-
responding errors.

Remarkably, for the example of the American put, the accuracy of both methods

is much better than one would expect from Section 4. Even more, the O(h'/*)-
method seems to be more accurate than the method of order O(h'/3). It is possible
to give an heuristic explanation for these phenomenon, which rely on the special
structure of the pay-off function f and the fact that the parameters r and o are
taken to be constant. However, a detailed investigation concerning accuracy and
convergence of the proposed methods requires considerable further study.
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