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Abstract — This paper is an overview of recent results by Kolodko and Schoenmakers (2006),

Bender and Schoenmakers (2006) on the evaluation of options with early exercise opportunities

via policy improvement. Stability is discussed and simulation results based on plain Monte Carlo

estimators for conditional expectations are presented.

1 Introduction

The evaluation of American style derivatives on a high dimensional underlying is an

important and challenging problem. Typically these derivatives cannot be priced by the

classical PDE methods, as the computational cost rapidly increases with the dimension

of the underlying. This problem is known as the ‘curse of dimensionality’. Only in

recent years several approaches have been proposed to overcome this problem. These

methods basically rely on Monte Carlo simulation and can be roughly divided into three

groups. The first group directly employs a recursive scheme for solving the stopping

problem, known as backward dynamic programming. Different techniques are applied

to approximate the nested conditional expectations. The stochastic mesh method by

Broadie et al. (2000) and the least square regression method of Longstaff and Schwartz
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(2001) are among the most popular approaches in this group. An alternative to backward

dynamic programming is to approximate the exercise boundary by simulation, see e.g.

Andersen (1999), Ibáñez and Zapatero (2004). The third group relies on a dual approach

developed in Rogers (2002), Haugh and Kogan (2004), and in a multiplicative setting

by Jamshidian (1997). For a numerical treatment of this approach, see Kolodko and

Schoenmakers (2004). By duality, tight price upper bounds may be constructed from

given approximative processes.

In this paper we survey a new policy iteration for discretized American options which

was recently introduced in Kolodko and Schoenmakers (2006) and Bender and Schoen-

makers (2006). The method is mending one of main drawbacks of backward dynamic

programming: Suppose exercise can take place at one out of k time instances. Then, in

order to obtain the value of the optimal stopping problem via backward dynamic program-

ming, one has to calculate nested conditional expectations of order k. No approximation

of the time 0 value is available prior to the evaluation of the kth nested conditional

expectations. This prevents the use of plain Monte Carlo simulations for approximating

the conditional expectations and requires more complicated approximation procedures for

these quantities. For instance, to employ the procedure of Longstaff and Schwartz (2001),

one has to choose the number of basis functions and the basis functions themselves, i.e.

the approximation procedure must be differently tailored to different derivatives. Con-

trary, our policy iteration yields approximations of the time 0 value of the value function

for every iteration step, which monotonically increase to the Snell envelope. This allows

to calculate some approximations of the Snell envelope by plain Monte Carlo simulations.

The algorithm converges in the same number of steps as backward dynamic programming

does. So theoretically, the algorithm is as good as backward dynamic programming.

After recalling the optimal stopping problem in section 2, we introduce our policy

iteration in section 3.1. Note, the policy iteration is different from Howard (1960) policy

iteration for backward dynamic programming and can be shown to yield better approx-

imations. Stability of the policy improvement is discussed in section 3.2. It turns out,

that the shortfall of the perturbed policy improvement under the theoretical policy im-

provement converges to zero. Surprisingly, the distance need not convergence, so that

the perturbed improvement can even perform better than the theoretical. Section 4 is

devoted to simulations. We evaluate the price of basket-put and maximum-call on five

assets, which has become a benchmark problem in recent years. The examples show



Policy iteration for american options: overview 349

that tight approximations of the option prices can be achieved with a plain Monte Carlo

simulation.

2 Optimal stopping in discrete time

It is well known that by the no arbitrage principle the pricing of American options is

equivalent to the optimal stopping problem of the discounted derivative under a pricing

measure. We now recall some facts about the optimal stopping problem in discrete time.

Suppose (Z(i): i = 0, 1, . . . , k) is a nonnegative stochastic process in discrete time on

a probability space (Ω,F , P ) adapted to some filtration (Fi : 0 ≤ i ≤ k) which satisfies

k∑
i=1

E|Z(i)| < ∞.

We may think of the process Z as a cashflow, which an investor may exercise once. The

investors’ problem is to maximize his expected gain by choosing the optimal time for

exercising. This problem is known as optimal stopping in discrete time.

To formalize the stopping problem we define Si as the set of Fi stopping times taking

values in {i, . . . , k}. The stopping problem can now be stated as follows:

Find stopping times τ ∗(i) ∈ Si such that for 0 ≤ i ≤ k

EFi [Z(τ ∗(i))] = esssupτ∈Si
EFi [Z(τ)] . (1)

The process on the right hand side is called the Snell envelope of Z and we denote it by

Y ∗(i).

We collect some facts, which can be found in Neveu (1975) for example.

1. The Snell envelope Y ∗ of Z is the smallest supermartingale that dominates Z. It

can be constructed recursively by backward dynamic programming:

Y ∗(k) = Z(k)

Y ∗(i) = max{Z(i), EFi [Y ∗(i + 1)]}.

2. A family of optimal stopping times is given by

τ̃ ∗(i) = inf{i ≤ j ≤ k : Z(j) ≥ Y ∗(j)}.
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If several optimal stopping families exist, then the above family is the family of first

optimal stopping times. In that case

τ̂ ∗(i) = inf{i ≤ j ≤ k : Z(j) > Y ∗(j)}

is the family of last optimal stopping times.

3 The policy iteration

3.1 Definition of the improvement procedure

Suppose the buyer of the option chooses ad hoc a family of stopping times (τ(i) : 0 ≤ i ≤
k) taking values in the set {0, . . . , k}. We interpret τ(i) as the time, at which the buyer

will exercise his option, provided he has not exercised prior to time i. This interpretation

requires the following consistency condition:

Definition 3.1 A family of integer-valued stopping times (τ(i) : 0 ≤ i ≤ k) is said to be

consistent, if

i ≤ τ(i) ≤ k, τ(k) ≡ k,

τ(i) > i ⇒ τ(i) = τ(i + 1), 0 ≤ i < k.

Indeed, suppose τ(i) > i, i.e. according to our interpretation the investor has not exercised

the first right prior to time i+1. Then he has not exercised the first right prior to time i,

either. This means he will exercise the first right at times τ(i) and τ(i+1), which requires

τ(i) = τ(i + 1). A typical example of a consistent stopping family can be obtained by

comparison with the still-alive European options

τ(i) := inf

{
j : i ≤ j ≤ k, Z(j) ≥ max

j+1≤p≤k
EFj [Z(p)]

}
. (2)

Given some consistent stopping family τ we define a new stopping family by

τ̃(i) := inf

{
j : i ≤ j ≤ k, Z(j) ≥ max

j+1≤p≤k
EFj [Z(τ(p))]

}
. (3)

Note, the stopping family τ̃ is consistent. In particular τ̃(k) = k, since max ∅ = −∞. We

call τ̃ a one-step improvement of τ for the following reason: denote by Y (i; τ) the value

process corresponding to the stopping family τ , namely

Y (i; τ) = EFi [Z(τ(i))] .
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Then the one-step improvement yields a higher value than the given family,

Y (i; τ̃) ≥ Y (i; τ).

This will be proved in theorem 3.2 below. We note that, for example, the stopping family

based on the maximum of still alive Europeans in (2) is the one-step improvement of the

trivial stopping family τ(i) = i.

It is natural to iterate this policy improvement: suppose τ0 is some consistent stopping

family. Define, recursively,

τm = τ̃m−1

Ym(i) = Y (i; τm).

It can be shown that Ym(i) coincides with the time i value of the Snell envelope when

m ≥ k − i. This means the policy improvement algorithm is theoretically as good as

backward dynamic programming, but admits to calculate increasing approximations of

the Snell envelope at every iteration step.

Remark 3.1 Given a consistent stopping family τ , Y (0; τ) is always a lower bound of

Y ∗(0). From this lower bound an upper bound can be constructed by a duality method

developed by Rogers (2002) and Haugh and Kogan (2004). Define,

Yup(τ) = E

[
max
0≤j≤k

(Z(j)−M(j))

]
, (4)

where M(0) = 0 and, for 1 ≤ i ≤ k,

M(i) =
i∑

p=1

(
Y (p; τ)− EFp−1 [Y (p; τ)]

)
.

Remark 3.2 When τ ∗ is some optimal stopping family, the supermartingale property of

the Snell envelope yields,

max
i+1≤p≤k

EFi [Z(τ ∗(p))] = EFi [Y ∗(i + 1)] .

Thus, the one-step improvement of τ ∗ is the family of first optimal stopping times. This

shows, the latter family is the only fixed point of the one-step improvement.
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3.2 Stability

In practice, we cannot expect to know analytical expressions of the conditional expec-

tations on the right hand side of the exercise criterion in (3), but can only calculate

approximations. Therefore, a stability result is called for.

Given a consistent stopping family τ and a sequence of Fi-adapted processes ε(N)(i)

define

τ̃ (N)(i) := inf

{
j : i ≤ j ≤ k, Z(j) ≥ max

j+1≤p≤k
EFj [Z(τ(p))] + ε(N)(j)

}
.

The sequence ε(N) accounts for the errors when approximating the conditional expectation.

We suppose throughout this section that

lim
N→∞

ε(N)(i) = 0, P -a.s.

We will first show by some simple examples that we must neither expect

τ̃ (N)(i) → τ̃(i) in probability

nor

Y (0; τ̃ (N)) → Y (0; τ̃).

Example (i) Suppose ξN is a sequence of independent binary trials with P (ξN = 1) =

P (ξN = 0) = 1/2. We define the process (Z(i) : i = 0, 1) by Z(0) = Z(1) ≡ 1. The

σ-field F0 = F1 is the one generated by the sequence of trials. Moreover, the sequence

of perturbations is defined by ε(N)(0) = ξN/N and ε(N)(1) = 0. Then, starting with any

consistent stopping family τ , we get

τ̃ (N)(0) = ξN .

In particular, no subsequence of τ̃ (N)(0) converges in probability.

(ii) Let Ω = {ω0, ω1}, F the powerset of Ω and P ({ω1}) = 1/4 = 1−P ({ω0}). We define

the process (Z(i) : i = 0, 1, 2) by Z(0) = Z(2) = 2 and Z(1, ω0) = 1, Z(1, ω1) = 3.

Fi is the filtration generated by Z. We start with the stopping family τ(i) = i. As

E[Z(1)] = 3/2, we have

Z(0) = 2 ≥ max{3/2, 2} = max{E[Z(1)], E[Z(2)]} = Ŷ (0, τ).

Therefore,

τ̃(0) = 0
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and

Y (0; τ̃) = 2.

The perturbation sequence ε(N) is defined to be ε(N)(1) = ε(N)(2) ≡ 0 and ε(N)(0) = 1/N .

A straightforward calculation shows, for N ≥ 2,

τ̃ (N)(0, ω0) = 2, τ̃ (N)(0, ω1) = 1.

Thus,

Y (0; τ̃ (N)) = 9/4 > 2 = Y (0; τ̃),

which is the claimed violation of stability.

The example paints a rather sceptical picture of the stability of the one-step-improvement.

Indeed, the best we can now hope for, is

(ia) there is a sequence τ̄ (N) of stopping families such that

|τ̃ (N)(i)− τ̄ (N)(i)| → 0 P -a.s.

and, for all N , τ̄ (N) is at least as good as τ̃ , i.e.

Y (i; τ̄ (N)) ≥ Y (i; τ̃).

(iia) The shortfall of Y (i; τ̃ (N)) below Y (i; τ̃) converges to zero P -a.s.

Note, however, that the convergence of the shortfall as in (iia) is the relevant question,

not of the distance as in example (ii), page 352: the shortfall corresponds to a change for

the worse of τ̃ (N) compared to τ̃ . As we are interested in an improvement it suffices to

guarantee that such a change for the worse converges to zero. An additional improvement

of τ̃ (N) compared to τ̃ due to the error processes ε(N) may be seen as a welcome side effect.

In the remainder of this section we sketch the proof of (ia) and (iia).

Theorem 3.1 The one-step improvement is stable in the sense of (ia) and (iia).

Remark 3.3 It clearly suffices to prove (ia). Indeed,(
Y (i; τ̃ (N))− Y (i; τ̃)

)
− ≤

(
Y (i; τ̃ (N))− Y (i; τ̄ (N))

)
− +

(
Y (i; τ̄ (N))− Y (i; τ̃)

)
− .

By (ia) the second term vanishes and the first converges to zero due to dominated conver-

gence.
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In order to construct an appropriate family τ̄ (N) we first derive a criterion for a consistent

stopping family τ̄ to be at least as good as τ̃ . To this end define,

τ̂(i) := inf

{
j : i ≤ j ≤ k, Z(j) > max

j+1≤p≤k
EFj [Z(τ(p))]

}
.

Obviously,

τ̂(i) ≥ τ̃(i).

Theorem 3.2 Suppose τ , τ̄ are consistent stopping families and

τ̃(i) ≤ τ̄(i) ≤ τ̂(i). (5)

Then,

Y (i; τ̄) ≥ Y (i; τ̃) ≥ max

{
Z(i), max

p≥i
EFi [Z(τ(p))]

}
≥ Y (i; τ).

Proof. The last inequality is trivial, since Y (i; τ) = EFi [Z(τ(i))]. To prove the other

inequalities we begin with a preliminary consideration. Define

Ỹ (i; τ) = max
p≥i

EFi [Z(τ(p))]

Ŷ (i; τ) = max
p≥i+1

EFi [Z(τ(p))] .

Then,

Ỹ (i; τ) = 1{τ(i)>i}Ŷ (i; τ) + 1{τ(i)=i} max
{

Ŷ (i; τ), Z(i)
}

, (6)

since, by the consistency of τ ,

EFi [Z(τ(i))] = EFi
[
1{τ(i)=i}Z(i)

]
+ EFi

[
1{τ(i)>i}Z(τ(i + 1))

]
= 1{τ(i)=i}Z(i) + 1{τ(i)>i}E

Fi [Z(τ(i + 1))] .

Step 1:

Y (i; τ̄) ≥ max

{
Z(i), max

p≥i
EFi [Z(τ(p))]

}
(7)

by backward induction over i. The induction base is obvious, since τ(k) = τ̄(k) = k.

Suppose now 0 ≤ i ≤ k − 1, and that the assertion is already proved for i + 1. Note,

{τ̄(i) = i} ⊂ {τ̃(i) = i} by (5). Hence, we obtain on the set {τ̄(i) = i},

Y (i; τ̄) = Z(i) ≥ Ỹ (i; τ).
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However, on {τ̄(i) > i} the induction hypothesis yields,

Y (i; τ̄) = EFi [Z(τ̄(i + 1))] = EFi [Y (i + 1; τ̄)] ≥ EFi

[
Ỹ (i + 1; τ)

]
= EFi

[
max

i+1≤p≤k
EFi+1 [Z(τ(p))]

]
≥ max

i+1≤p≤k
EFi [Z(τ(p))]

= Ŷ (i, τ).

Property (5) implies {τ̄(i) > i} ⊂ {τ̂(i) > i}. Thus, on {τ̄(i) > i},

Ŷ (i, τ) ≥ Z(i)

and, by (6),

Ŷ (i, τ) = Ỹ (i, τ) on {τ̄(i) > i}.

This completes the proof of step 1. The second inequality now follows from (7) with the

particular choice τ̄ = τ̃ .

Step 2: It remains to show that

Y (i; τ̄) ≥ Y (i; τ̃).

For i = k even equality holds. Suppose 0 ≤ i ≤ k − 1 and the inequality is proved for

i + 1. Then, on {τ̄(i) > i} ∩ {τ̃(i) > i},

Y (i, τ̄) = EFi [Y (i + 1, τ̄)] ≥ EFi [Y (i + 1, τ̃)] = Y (i, τ̃)

by induction hypothesis. On {τ̄(i) > i} ∩ {τ̃(i) = i}

Y (i, τ̄) ≥ Z(i) = Y (i, τ̃)

by step 1. Finally, the set {τ̄(i) = i} ∩ {τ̃(i) > i} is evanescent by (5).

Suppose, for the time being, the sequence τ̃ (N)(i) converges P -a.s. to some stopping

time τ̄(i). Clearly, τ̄ is, as a limit of consistent stopping families, itself a consistent

stopping family. It can be shown by backward induction over i, that τ̄ satisfies (5).

Indeed, the basic idea is as follows. Assume τ̄(i) = i. Then, for N ≥ N0(ω) sufficiently

large

τ̃ (N)(i) = i,

i.e.

Z(i) ≥ max
i+1≤p≤k

EFj [Z(τ(p))] + ε(N)(i).
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We can now send N to infinity and obtain

Z(i) ≥ max
i+1≤p≤k

EFj [Z(τ(p))] ,

i.e.

τ̃(i) = i.

Thus, on {τ̄(i) = i},
τ̃(i) ≤ τ̄(i) ≤ τ̂(i).

A similar argument, making use of the induction hypothesis, yields the inequalities on

{τ̄(i) > i}.
We can now define τ̄ (N) = τ̄ and (ia) is satisfied.

Unfortunately, example (page 352) shows that we may not expect τ̃ (N)(i) to converge

in general. Nonetheless, the previous considerations point to the right path. For ω such

that τ̃ (M)(i; ω) converges, we define τ̄ (N)(i; ω) as this limit for all N . Otherwise, we define

τ̄ (N)(i; ω) = i, if and only if a subsequence of τ̃ (M)(i; ω) converges to i and τ̃ (N)(i; ω) = i.

The intuition is, that in the latter case we are free to choose the limit of any subsequence

in order to obtain (5). So we choose τ̄ (N)(i; ω) as close as possible to τ̃ (N)(i; ω).

This reasoning can be formalized as follows. Define,

τ̄ (N)(k) = k

and

τ̄ (N)(i) = i ⇐⇒ (τ̃ (M)(i) > i for only finitely many M)

∨ (τ̃ (M)(i) = i for infinitely many M and τ̃ (N)(i) = i)

τ̄ (N)(i) 6= i =⇒ τ̄ (N)(i) = τ̄ (N)(i + 1).

We have:

Lemma 3.3 τ̄ (N) satisfies (ia).

The details of the proof can be found in Bender and Schoenmakers (2006), theorems 4.2

and 4.3. Stability of the algorithm, not only of one improvement step is also proven in

this paper.

Remark 3.4 Since τ̄ (N)(i) ≤ τ̂(i), we obtain,

lim sup
N→∞

τ̃ (N)(i) ≤ τ̂(i).
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On the other hand, the supermartingale property of the Snell envelope yields

τ̂(i) ≤ τ̂ ∗(i) = inf
{
j : i ≤ j ≤ k, Z(j) > EFj [Y ∗(j + 1)]

}
.

As τ̂ ∗ is the family of ‘last optimal stopping times’, we may conclude that the sub-

optimality of τ̃ (N) (for large N) basically stems from exercising to early.

4 Numerical examples

We now illustrate our algorithm with two examples: Bermudan basket-put and maximum-

call options on 5 assets. We assume, that each asset is governed under the risk-neutral

measure by the following SDE:

dSi(t) = (r − δ)Si(t)dt + σSi(t)dWi(t), 1 ≤ i ≤ 5,

where (W1(t), . . . ,W5(t)) is a standard 5-dimensional Brownian motion. Suppose that an

option can be exercised at k + 1 dates T0, . . . , Tk, uniformly distributed between T0 = 0

and Tk = 3(yr). The discounted price of the option is given by (1) with

Z(i) = e−rTi(K − S1(Ti) + · · ·+ S5(Ti)

5
)+ for the basket-put option and

Z(i) = e−rTi(max{S1(Ti), . . . , S5(Ti)} −K)+ for the maximum-call option.

For our simulation, we take the following parameter values,

r = 0.05, σ = 0.2, S1(0) = . . . = S5(0) = S0, K = 100,

δ = 0 for basket-put option, δ = 0.1 for maximum-call option.

We consider options ‘out-of-the-money’, ‘at-the-money’ and ‘in-the-money’ at t = 0. For

an initial stopping family (τ(i) : 0 ≤ i ≤ k), we construct the lower bound Y (0; τ), an

improved lower bound Y (0; τ̃) with τ̃ given by (3), and the dual upper bound Yup(0; τ)

given by (4). A natural ‘intuitively good’ initial exercise rule is to exercise, when the

cashflow is larger than the maximal value of all still-alive European options:

τ(i) = inf{j ≥ i : Z(j) ≥ max
p≥j+1

EFjZ(p)},

which is in fact a one-step improvement of the trivial exercise policy τ(i) ≡ i. For our

examples, however, a closed-form expression for still-alive Europeans EFjZ(p), p > j
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does not exist. Fortunately, a good closed-form approximation is available for the basket-

put option. For the maximum-call option we improve upon the exercise rule, suggested

by Andersen (1999), Strategy 1. We will show that in all examples our method gives

Bermudan prices with a relative accuracy better than 1%.

4.1 Bermudan basket-put

In this example we approximate still-alive European options by a moment-matching pro-

cedure. Let us define f(Tj) := (S1(Tj) + · · ·+ S5(Tj))/5 for 0 ≤ j ≤ k and take j, p with

j ≤ p ≤ k. First, we approximate f(Tp) by

fj(Tp) := f(Tj) exp

(
(rj −

1

2
σ2

j )(Tp − Tj) + σj(W (Tp)−W (Tj))

)
,

where the parameters rj and σj are taken in such a way that the first two moments of

f(Tp) and fj(Tp) are equal conditional Fj:

rj = r,

σj =
1

Tp − Tj

ln


5∑

m,n=1

Sm(Tj)Sn(Tj) exp(1m=nσ
2(Tp − Tj))

(
5∑

m=1

Sm(Tj))2

 ,

see, e.g., Brigo et al. (2004), Lord (2005). Then, we approximate EFjZ(p) by EFj [e−rTp(K−
fj(Tp))

+] using the Black-Scholes formula,

EFj [e−rTp(K − fj(Tp))
+] = e−rTjBS(f(Tj), r, σj, K, Tp − Tj),

and define the initial stopping family

τ(i) := {j ≤ i : Z(j) ≥ e−rTj max
j+1≤p≤k

BS(f(Tj), r, σj, K, Tp − Tj)}, 0 ≤ i ≤ k.

Note that the initial stopping family (τ(i) : 0 ≤ i ≤ k) leads already to a reasonable

lower approximation Y (0; τ) of the Bermudan price (less then 5% relative). The gap

between the improved lower bound Y (0; τ̃) and dual upper bound Yup(0; τ) does not

exceeds 1% relative. See table 1, where we used 107 Monte Carlo trajectories for Y (0; τ)

and 2000 trajectories (with 1000 nested trajectories) for Yup(0; τ). To simulate Y (0; τ̃) we

use 105 outer and 500 inner trajectories. An obvious variance reduction is obtained by

simulating Yup(0; τ)− Y (0; τ) and Y (0; τ̃)− Y (0; τ) rather than Yup(0; τ) and Y (0; τ̃).
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k S0 Y (0; τ) (SD) Y (0; τ̃) (SD) Yup(0; τ) (SD)

90 10.000(0.000) 10.000(0.000) 10.000(0.002)

3 100 2.156(0.001) 2.158(0.002) 2.162(0.001)

110 0.537(0.001) 0.537(0.001) 0.538(0.001)

90 10.000(0.000) 10.000(0.000) 10.000(0.002)

6 100 2.361(0.001) 2.395(0.004) 2.406(0.003)

110 0.571(0.001) 0.578(0.002) 0.578(0.001)

90 10.000(0.000) 10.000(0.000) 10.001(0.002)

9 100 2.387(0.001) 2.471(0.005) 2.490(0.006)

110 0.579(0.001) 0.594(0.002) 0.596(0.002)

Table 1: Bermudan basket-put on 5 assets

4.2 Bermudan maximum-call

In contrast to the previous example, no good approximations are known for the still-alive

maximum-call Europeans. For this example we take as initial stopping family strategy I

of the Andersen method (see Andersen (1999)):

τ(i) = inf{j ≥ i : Z(j) ≥ Hj}.

The sequence of constants Hj is pre-computed using 5 ·105 simulations. Note that the gap

between Andersen’s lower bound Y (0; τ) and its dual upper bound Yup(0; τ) varies from

2% to 4%, see columns 3 and 5 in table 2 (we use 5·106 Monte Carlo trajectories for Y (0; τ)

and 500 Monte Carlo trajectories (with 1000 inner simulations for Yup(0; τ) − Y (0; τ)).

Further, we construct the improvement Y (0; τ̃) of Andersen’s lower bound using 104 outer

and 1000 inner simulations. The results are compared with the 90% confidence interval

of Broadie and Glasserman (2004) computed by the stochastic mesh method, see table 2.

We see that in almost all cases, Y (0; τ̃) and Yup(0; τ) is within the 90% confidence interval,

and that the gap between them does not exceed 1%.

Remark 4.1 The cross-sectional least square algorithm by Longstaff and Schwartz (2001)

yields results consistent with B-G: The lower bound reported in Longstaff and Schwartz

(2001) for d = 9 and 19 basis functions are 16.657, 26.182, and 36.812, respectively.

Slightly lower values are reported in Andersen and Broadie (2004) with 13 basis functions.
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90% Confidence

k S0 Y (0; τ) (SD) Y (0; τ̃) (SD) Yup(0; τ) (SD) interval by BG

90 15.702(0.008) 16.026(0.033) 15.986(0.021) [15.995, 16.016]

3 100 24.716(0.009) 25.244(0.044) 25.333(0.031) [25.267, 25.302]

110 34.856(0.011) 35.695(0.056) 35.745(0.037) [35.679, 35.710]

90 16.064(0.007) 16.394(0.080) 16.462(0.054) [16.438, 16.505]

6 100 25.171(0.009) 25.751(0.107) 25.978(0.066) [25.889, 25.948]

110 35.399(0.010) 36.329(0.131) 36.523(0.079) [36.466, 36.527]

90 16.202(0.007) 16.681(0.079) 16.734(0.063) [16.602, 16.710]

9 100 25.343(0.009) 26.118(0.110) 26.333(0.083) [26.101, 26.211]

110 35.605(0.010) 36.652(0.134) 37.028(0.100) [36.719, 36.842]

Table 2: Bermudan maximum-call on 5 assets

Concluding remarks

The iterative Monte Carlo procedures for pricing callable structures reviewed in this paper

are quite generic as in principle it only requires a Monte Carlo simulation mechanism for

an underlying Markovian system, for instance a Markovian system of SDEs. Moreover,

by incorporating information obtained from another suboptimal method, for example

Andersen’s method (see Andersen (1999)) or the method of Longstaff and Schwartz (2001),

we may improve upon this method to obtain our target results more efficiently.

The iterative procedures can be easily adapted to a large class of path-dependent

exotic instruments where a call generates a sequence of cash-flows in the future. For

these products one may construct ‘virtual cash-flows’ which are basically present values

of future cash-flows specified in the contract. An important example is the (cancellable)

snowball swap, an exotic interest rate product with growing popularity. In Bender et al.

(September 2006) this product is treated in the context of a full-blown Libor market

model (structured as in Schoenmakers (2005)). From this treatment it will be clear how

to design Monte Carlo algorithms for related callable path-dependent Libor products.
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