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Abstract

We focus on the coupling of two existing and calibrated single currency
Libor models into a joint Libor model that allows for pricing of multiple
currency based structured interest rate products. Our main contribution
is twofold: On the one hand we provide a method for synthesizing two
local currency based correlation structures into a correctly defined joint
correlation structure that describes the cross Libor correlations between
the two currencies in a realistic way. On the other hand we introduce an
(necessary) FX related factor X in order to describe the unified model
with respect to one particular numéraire measure. In addition we propose
to calibrate this factor to FX instruments in the case where X is modeled
via Heston type dynamics.

1 Introduction

Libor interest rate modeling, initially developed by [16], [6], and [12] almost
two decades ago, is still considered to be the universal tool for evaluation of
structured interest rate products. One of the main reasons is the great flexibility
in the choice of the Libor volatilities in the Libor framework. Starting from
deterministic volatility structures leading to the Libor market model, many
enhancements have been proposed in order to match implied volatility patterns
of liquid products such as caps and swaptions. In this respect we mention
(among other approaches) the Lévy Libor model by [8] (see for example [3]
and [17] for a numerical treatments and practical implementation), displaced
diffusion, CEV Libor models, log-normal mixture models, and even random
parameter Libor models (e.g. [5] and the references therein for an overview).
Another important line of research is the development of (one factor) stochastic
volatility models based on CIR type scalar volatilities by [1], [19], and their multi
factor extensions by [2] and more recently [14]. Further we mention SABR
related Libor models (e.g. [10]) that are based on a different types of scalar
volatilities. SABR based Libor models gained popularity because they allow for
pricing of European liquids by relatively simple approximation formulas based
on heat kernel expansion techniques.
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For pricing of structured interest rate products that involve different curren-
cies (quanto style products), Libor models that are jointly defined with respect
to these currencies are called for. Although there already appeared some ap-
proaches in the literature more recently (e.g. [4]), by now we have not seen
a generic approach to connect two existing generally specified and calibrated
single currency Libor models.

We here present a generic approach to melt two given Libor rate models
with respect to two different currencies (domestic and foreign) into a unified
Libor model. As a key issue we propose a tractable approach to synthesize the
Libor correlation structures given in their respective currencies into a joint cor-
relation structure from which the initial domestic and foreign correlations may
be retrieved, and moreover the cross correlations between domestic and foreign
Libors are modeled as a (re-scaled) suitably defined average of the domestic
and foreign correlations. This averaging procedure is based on coupling of a
particular square root of the domestic structure with another particular square
root of the foreign structure. The coupling is carried out in such a way that
joint matrix is a real correlation matrix in the sense that it is positive and has
diagonal entries that are all equal to one. In order to describe the unified model
with respect to a unified measure, for instance the terminal domestic bond or
the terminal foreign bond measure, an additional FX related factor X has to
be incorporated. We finally outline an FFT based procedure by [7] for pricing
liquidly traded FX options, in the case where X is driven by a Heston type
stochastic volatility process. This procedure may then be used in order to cali-
brate the dynamics of X. The method is fairly general in the sense that it can
be applied to virtually all Libor models driven by a Wiener environment.

2 Resume of Wiener based Libor modeling

For a fixed sequence of tenor dates 0 =: T0 < T1 < . . . < Tn, called a tenor
structure, we consider zero bond processes Bi, i = 1, . . . , n, where each Bi is
defined on the interval [0, Ti] and ends up with terminal face value Bi(Ti) = 1.
We now define a set of forward Libors on the tenor structure by

Li(t) :=
1

δi

(
Bi(t)

Bi+1(t)
− 1

)
, 0 ≤ t ≤ Ti, 1 ≤ i < n, (1)

where the δi := Ti+1 − Ti, i = 1, . . . , n − 1, denoting the periods between two
subsequent tenor dates, are called day-count fractions. Li is in fact the annual-
ized effective rate corresponding to a forward rate agreement (FRA) contracted
at time t, for the period [Ti, Ti+1]. Here we assume that according to this agree-
ment, the interest rate δiLi(Ti) par notional 1 has to be payed at Ti+1.

In this paper we consider a framework where the zero-bonds (Bi)i=1,...,n

that define the Libors are adapted processes which are defined on a filtered
probability space (Ω, (Ft)0≤t≤T∞ , P ) with T∞ ≥ Tn being some finite time
horizon. Throughout it is assumed that the filtration (Ft) is generated by
some d-dimensional standard Brownian motion W (thus excluding jump type

2



models). Furthermore, we consider predictable (column) processes σi with state
Rd, that denote the volatility of the bonds Bi respectively, predictable (scalar)
drift processes µi denoting the drifts of the Bi, and a (scalar) market price of
risk process λ, all adapted to the driving Brownian motion W. That is, in the
objective measure the zero bond dynamics are of the form

dBi

Bi
= µidt+ σ⊤

i dW with µi = σ⊤
i λ. (2)

Under some further mild technical conditions (see [12] and [13] for details) there
now exists for each i, 1 ≤ i < n, an Rd-valued predictable volatility process Γi

such that the Libor dynamics are given by

dLi

Li
= −

n−1∑
j=i+1

δjLj

1 + δjLj
Γ⊤
i Γjdt+ Γ⊤

i dW(n), 0 ≤ t ≤ Ti, 1 ≤ i < n, (3)

where W(n) is an equivalent standard Brownian motion under the terminal
numéraire measure Pn induced by the terminal zero coupon bond Bn. That is,
for all j, Bj/Bn are Pn-martingales. (We do not dwell on issues of local versus
true martingales in this paper.) In particular it holds

Γi := δ−1
i L−1

i (1 + δiLi) (σi − σi+1)i , 1 ≤ i < n. (4)

For some general fixed i, 1 ≤ i < n we may consider instead the numéraire
measure Pi+1 induced by the bond Bj+1, and then for 1 ≤ j ≤ i we obtain from
(3) the dynamics

dLj

Lj
= Γ⊤

j

−
n−1∑

k=j+1

δkLk

1 + δkLk
Γkdt+ dW(n)


= −

i∑
k=j+1

δkLk

1 + δkLk
Γ⊤
j Γkdt+ Γ⊤

j

(
−

n−1∑
k=i+1

δkLk

1 + δkLk
Γkdt+ dW(n)

)

=: −
i∑

k=j+1

δkLk

1 + δkLk
Γ⊤
j Γkdt+ Γ⊤

j dW(i+1), 1 ≤ j ≤ i. (5)

Since due to (1) Li is a martingale under Pi+1, it automatically follows that
W(i+1) in (5) is a standard Brownian motion under the equivalent measure
Pi+1. Finally we note that in the case where the Γj are deterministic we have
the well documented Libor Market Model (LMM) (see for example [5] and [18]
and the references therein).

3 Multi currency extension of the Libor model

In this section we will melt two markets, the domestic and the foreign interest
rate market, into just one. That is, we are going to consider zero bonds and
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more general traded assets in this extended market and determine their unified
dynamics described by an SDE. Let (B1,...,Bn, B

∗
1 , ..., B

∗
n∗) be an arbitrage free

joint system of domestic zero bonds Bi and foreign zero bonds B∗
i expressed

in domestic currency, corresponding to a domestic and foreign tenor structure
0 =: T0 < T1 < . . . < Tn, and 0 =: T ∗

0 < T ∗
1 < . . . < T ∗

n∗ , respectively. Since it
only make sense to consider the domestic and foreign bond system on the same
joint time interval, we make the following structural assumption,

Tn = T ∗
n∗ = T∞,

that is, we allow both tenor structures to be different, but they both span the
same time period. In view of (2) we consider the coupled dynamics

dBi

Bi
= µidt+ σ⊤

i dW, 1 ≤ i ≤ n, (6)

dB∗
i

B∗
i

= µ∗
i dt+ σ∗⊤

i dW , 1 ≤ i ≤ n∗,

where now W is a D-dimensional standard Brownian motion with D being
sufficiently large. Connected with (6) we so introduce a general FX-Libor system
(L1, ..., Ln−1, L

∗
1, ..., L

∗
n∗−1, X) defined by

Li =
1

δi
(

Bi

Bi+1
− 1), L∗

i =
1

δ∗i
(
B∗

i

B∗
i+1

− 1), X =
B∗

n∗

Bn
(7)

with δ∗i := T ∗
i+1 − T ∗

i . Then with respect to Bn as numéraire we obtain under
Pn the joint dynamics

dLi

Li
= −

n−1∑
j=i+1

δjLj

1 + δjLj
Γ⊤
i Γjdt+ Γ⊤

i dW
(n), 1 ≤ i < n,

dL∗
i

L∗
i

= −Γ∗⊤
i ΓXdt−

n∗−1∑
j=i+1

δ∗jL
∗
j

1 + δ∗jL
∗
j

Γ∗⊤
i Γ∗

jdt+ Γ∗⊤
i dW(n), 1 ≤ i < n∗,

dX

X
= Γ⊤

XdW(n), (8)

where ΓX := σ∗
n∗ − σn, W

(n) is standard Brownian motion under Pn, and due
to (4)

Γi = (δiLi)
−1

(1 + δiLi) (σi − σi+1)i , 1 ≤ i < n,

Γ∗
i = (δ∗i L

∗
i )

−1
(1 + δ∗i L

∗
i )
(
σ∗
i − σ∗

i+1

)
, 1 ≤ i < n∗.
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Similarly, with respect to B∗
n∗ as numéraire we get

dLi

Li
= Γ⊤

i ΓXndt−
n−1∑

j=i+1

δjLj

1 + δjLj
Γ⊤
i Γjdt+ Γ⊤

i dW
(n∗), 1 ≤ i < n,

dL∗
i

L∗
i

= −
n∗−1∑
j=i+1

δ∗jL
∗
j

1 + δ∗jL
∗
j

Γ∗⊤
i Γ∗

jdt+ Γ∗⊤
i dW(n∗), 1 ≤ i < n∗,

dX

X
= ∥ΓX∥2 dt+ Γ⊤

XdW(n∗), (9)

where W(n∗) is a D-dimensional standard Brownian motion under the measure
Pn∗ , corresponding to B∗

n∗ that satisfies

dW(n∗) = dW(n) − ΓXdt. (10)

The connecting relation (10) is easily verified in the following way. Since X−1

is a martingale under Pn∗ , we derive by Ito’s formula and using (8),

dX−1

X−1
= X

(
− 1

X2
dX +

1

X3
d⟨X,X⟩

)
= −Γ⊤

XdW(n) + ∥ΓX∥2 dt

= −Γ⊤
X

(
dW(n) − ΓXdt

)
= −Γ⊤

XdW(n∗),

from which (10) follows.
Due to the above approach, the domestic zero bonds Bi are in general cor-

related with the foreign zero bonds B∗
i (in domestic currency). We think that

this is a natural way of modeling and, indeed, leaving this possibility out of con-
sideration would give rise to a very controversial discussion among practitioners.
However, as a consequence, the volatility structures of both the domestic and
foreign Libors in (8) (respectively (9)) need to be determined, and moreover
also the volatility process ΓX .

4 Connecting a local general model with a for-
eign extended market model

Let us assume that we are given a local Libor model (3) where the local volatility
processes are of the form

Γi(t) = ∥Γi∥ (t)ei(t), ei ∈ Rd, 1 ≤ i < n, (11)

where the ei are unit vectors that at most deterministically depend on t, and the
∥Γi∥ (t) are given scalar volatility processes adapted to a d-dimensional Brow-
nian motion W. W.l.o.g. we assume that the correlation structure introduced
by

Rij :=
[
(ei)

⊤
ej

]
(t), 1 ≤ i, j < n,
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has constant rank d. In addition we assume that we are also given a foreign
Libor model where the foreign volatility processes are of the more special form

Γ∗
i (t) = gi(t, L

∗)e∗i (t), e∗i ∈ Rd∗
, 1 ≤ i < n∗, (12)

where e∗i are unit vectors deterministically depending on t, and gi(t, ·) are non-
negative deterministic (scalar) volatility functions. Hence the foreign Libors
follow a so called extended market model in the foreign terminal bond measure
Pn∗ . For suitably chosen gi, (12) might represent for example a CEV model,
some displaced diffusion model, or a standard market model. It is well known
that the distribution of such a model, that is the distribution of

(
L∗
j

)
1≤j<n∗ in

the Pn∗ measure, is completely determined by these volatility functions gi and
the correlation structure R∗ determined by

R∗
ij =

[
(e∗i )

⊤
e∗j

]
(t) 1 ≤ i, j < n∗. (13)

W.l.o.g. we assume that R∗ has constant rank d∗. Our goal is now to construct
a new joint model (8) such that the distribution of (Lj)1≤j<n and

(
L∗
j

)
1≤j<n∗

coincide with the respective initial ones in their respective measures.
Let us define C ∈ R(n−1)×d by Cik = ei,k 1 ≤ i < n, 1 ≤ k ≤ d, hence CC⊤ =

R. Next, let F ∈ R(n∗−1)×d, and for some suitable p ≥ 0 to be determined,
G ∈ R(n∗−1)×p with p = rank(G) (with R(n∗−1)×0 := ∅, i.e. an empty matrix),
such that F and G solve the following matrix equation,

FF⊤ +GG⊤ = R∗. (14)

We then have

Σ :=

(
C ∅
F G

)(
C ∅
F G

)⊤

=

(
C ∅
F G

)(
C⊤ F⊤

∅ G⊤

)
=

(
R CF⊤

FC⊤ R∗

)
and it holds

dLi

Li
= −

n−1∑
j=i+1

δjLj

1 + δjLj
Γ⊤
i Γjdt+ Γ⊤

i dW
(n), 1 ≤ i < n, (15)

dL∗
i

L∗
i

= −
n∗−1∑
j=i+1

δ∗jL
∗
j

1 + δ∗jL
∗
j

Γ∗⊤
i Γ∗

jdt+ Γ∗⊤
i dW(n∗), 1 ≤ i < n∗,

with respect to an extended Brownian motion W(n) := (W(n), W̃(n)) ∈ RD and

W(n∗) := (W(n∗), W̃(n∗)) ∈ RD, under the measures Pn and Pn∗ , respectively,
with D = d+ p and

Γi = ∥Γi∥ ei, 1 ≤ i < n, and Γ∗
i = gie

∗
i , 1 ≤ i < n∗, (16)
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where

ei,k := ei,k, 1 ≤ k ≤ d, ei,d+k = 0, 1 ≤ k ≤ p, 1 ≤ i < n,

e∗i,k := Fik, 1 ≤ k ≤ d, e∗i,d+k = Gik, 1 ≤ k ≤ p, 1 ≤ i < n∗. (17)

There are two edge solutions: i) F = 0 implying that GG⊤ = R∗ (so p = d∗

hence D = d+ d∗) and

Σ =

(
R ∅
∅ R∗

)
,

i.e. L and L∗ are independent, ii) G = ∅ (p = 0) implying that FF⊤ = R∗ (so
D = d ≥ d∗),

Σ =

(
R CF⊤

FC⊤ R∗

)
, (18)

and both the local and the foreign model are driven by W(n) ∈ Rd in fact.

A simple pragmatic solution

By taking p = d∗ in the case d ≥ d∗ and letting F1 and G1 be matrices as
specified above with F1F

⊤
1 = R∗ and G1G

⊤
1 = R∗, we have that for any |ϱ| ≤ 1,

Fϱ = ϱF1 and Gϱ =
√

1− ϱ2G1 solve the matrix equation (14). Let us specialize
to the case d = d∗ = p : A matrix G with GG⊤ = R∗ is determined up to a
orthogonal transformation. Indeed, let G1 ∈ R(́n∗−1)×p be the unique lower
triangular (Cholesky) root of R∗ with G1,ii > 0, and G1G

⊤
1 = R∗, then any G

with G = G1Q for orthogonal Q ∈ Rṕ×p, satisfies GG⊤ = R∗. Now let further
C1 be the unique lower triangular (Cholesky) root of R, hence C1C

⊤
1 = R, then

determine QC ∈ Rṕ×p such that C = C1QC , and take F1 = G1QC . For the joint
FX Libor model we then take for F and G in (17),

Fϱ = ϱG1QC and Gϱ =
√
1− ϱ2G1, (19)

respectively, and the volatilities in (16) accordingly. For the cross currency
Libor correlation matrix we then obtain in (18)

CF⊤
ϱ = ϱCQ⊤

CG
⊤
1 = ϱC1G

⊤
1 , |ϱ| ≤ 1,

hence

Σϱ :=

(
R ϱC1G

⊤
1

ϱG1C
⊤
1 R∗

)
(20)

being a valid correlation matrix for any |ϱ| ≤ 1. In the particular case where
R = R∗ (hence n = n∗) we thus obtain by this construction CF⊤

ϱ = ϱR. In
the general case where R ̸= R∗ and possibly n ̸= n∗ (but d = d∗ = p) we may
consider the matrix C1G

⊤
1 as some kind of average between R and R∗. In the

next section we will outline the calibration of ϱ to FX rate vanilla options.
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5 Calibration to FX market

Let us consider X := B∗
n∗/Bn. Note that (cf. [9]),

Bn(t) = Bη(t)(t)
n−1∏

j=η(t)

1

1 + δjLj(t)

for 0 ≤ t ≤ Tn = T∞. and η(t) := min{m : Tm ≥ t}. Thus, by (15),

dBn

Bn
= (...)dt+ d lnBn

= (...)dt+
dBη(t)

Bη(t)
−

n−1∑
j=η(t)

δjLj

1 + δjLj
Γ⊤
j dW

(·)

=: (...)dt+ σ⊤
η(t)dW

(·) −
n−1∑

j=η(t)

δjLj

1 + δjLj
Γ⊤
j dW

(·).

In the same way, for t ≤ T ∗
n∗ = T∞,

B∗
n∗(t) = B∗

η∗(t)(t)
n∗−1∏

j=η∗(t)

1

1 + δ∗jL
∗
j (t)

with η∗(t) := min{m : T ∗
m ≥ t} and so

dB∗
n∗(t)

B∗
n∗(t)

= (...)dt+ d lnB∗
n∗

= (...)dt+ σ∗⊤
η∗(t)dW

(·) −
n∗−1∑

j=η∗(t)

δ∗jL
∗
j

1 + δ∗jL
∗
j

Γ∗⊤
j dW(·).

Note that B∗
n∗(t) is the foreign terminal bond expressed in domestic currency.

We so may set for t ≤ T∞, B∗
n∗(t) =: ζ(t)B̃n∗(t), where B̃n∗(t) is a foreign bond

expressed in the foreign currency and ζ(t) is the FX spot rate. In particular we
have B∗

n∗(Tn∗) = ζ(Tn∗) = ζ(Tn) = ζ(T∞), and

ζ(t) =
B∗

n∗(t)

B̃n∗(t)
=

B∗
η∗(t)(t)

B̃η∗(t)(t)
.

We thus have

dX

X
= (...)dt+

(
σ∗⊤
η∗(t) − σ⊤

η(t)

)
dW(·)

+

 n−1∑
j=η(t)

δjLj

1 + δjLj
Γ⊤
j −

n∗−1∑
j=η∗(t)

δ∗jL
∗
j

1 + δ∗jL
∗
j

Γ∗⊤
j

 dW(·)

=: (...)dt+ Γ⊤
XdW(·) = Γ⊤

XdW(n)
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with

ΓX = σ∗
η∗(t) − ση(t) +

n−1∑
j=η(t)

δjLj

1 + δjLj
Γj −

n∗−1∑
j=η∗(t)

δ∗jL
∗
j

1 + δ∗jL
∗
j

Γ∗
j . (21)

Let us further assume that

dζ

ζ
= (· · ·)dt+

(
σfx
)⊤

dW(·).

Since B∗
η∗(t)(t) = ζ(t)B̃η∗(t)(t) we then have σ∗

η∗(t) = σfx + σ̃η∗(t) with σ̃j being
the volatility of the foreign zero bond maturing at T ∗

j . From this we observe

that ΓX is completely determined by specification of σfx and the difference
σ̃η∗(t)−ση(t). Conversely, specifying ΓX implicitly determines σfx+σ̃η∗(t)−ση(t)

via (21).

Remark 1 Moreover, in practice one may neglect the volatility of Bη(t)(t) and

B̃η∗(t)(t), respectively, being the volatilities of zero bonds less than one period
before maturity. We then have in approximation

σ∗
η∗(t) − ση(t) ≈ σfx(t) (22)

in (21).

More generally, for i ≤ n∗ and j ≤ n we may consider the process Xi,j :=
B∗

i (t)/Bj(t), 0 ≤ t ≤ T ∗
i ∧ Tj (hence X ≡ Xn∗,n), and for its volatility Xi,j we

derive in a similar way,

ΓXi,j = σ∗
η∗(t) − ση(t) +

j−1∑
k=η(t)

δkLk

1 + δkLk
Γk −

i−1∑
k=η∗(t)

δ∗kL
∗
k

1 + δ∗kL
∗
k

Γ∗
k

= ΓX +

n∗−1∑
k=i

δ∗kL
∗
k

1 + δ∗kL
∗
k

Γ∗
k −

n−1∑
k=j

δkLk

1 + δkLk
Γk, t ≤ T ∗

i−1 ∧ Tj−1. (23)

So any ΓXi,j is determined by ΓX via (23).
Let us now consider an option to buy one unit of foreign currency for K

units of domestic currency at time T ∗
i , i ≤ n∗, and assume that T ∗

i = Ti′ for a
certain i′. Clearly, the net payoff of this option is

(ζ(T ∗
i )−K)

+
= (B∗

i (T
∗
i )−K)

+
=

(
B∗

i (Ti′)

Bi′(Ti′)
−K

)+

= (Xi,i′(Ti′)−K)
+
,

and the option value in domestic currency at time t = 0 is given by

Ci(K) := Bn(0)En
(ζ(T ∗

i )−K)+

Bn(T ∗
i )

= Bi′(0)Ei′ (Xi,i′(Ti′)−K)
+
.
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For i = n∗, i′ = n, we thus obtain by T ∗
n∗ = Tn = T∞,

Cn∗(K) := Bn(0)En
(ζ(T ∗

n∗)−K)+

Bn(Tn)

= Bn(0)En (X(T∞)−K)
+
. (24)

We thus conclude that any standard FX option maturing on a joint tenor date
T ∗
i = Ti′ as described above may be priced, once the volatility process ΓX is

specified, via the formula

Ci(K) = Bi′(0)Ei′ exp

[
−1

2

∫ Ti′

0

∥∥ΓXi,j

∥∥2 dt+ ∫ Ti′

0

Γ⊤
Xi,j

dW(i′)

]
, (25)

where ΓXi,j follows from (23). Needless to say that a particular evaluation
procedure for (25) largely depends on the specific structure of the respective
volatility specifications for Γ, Γ∗, and ΓX .

Example 2 In the special case of a (multi-factor) domestic and foreign Libor
Market Model, that is Γ and Γ∗ are deterministic vector functions, the ΓXi,j

may be obtained from ΓX by standardly freezing the Libors in (23). If moreover
ΓX is taken to be deterministic as well, we may then compute all prices (25) by
the Black 76 formula.

Remark 3 We further observe, for instance, that when ΓX has a Heston type
structure, like ΓX =: βX

√
V eX for some deterministic βX , unit vector eX ,

and square-root volatility process V, then due to (23) ΓXi,j is essentially not of
Heston type for i < n∗. In this respect we should note that the approach in [4],
where simultaneously all the FXi = ΓXi,i have a Heston type volatility structure
seems to be inconsistent with this observation.

Remark 4 In the case where both the domestic and foreign model is a one-
factor Libor Market Model, i.e. both Γ and Γ∗ are deterministic scalar volatili-
ties connected to a one dimensional Brownian motion, we are in a setting related
to the one in [4] in a sense.

We continue with a further mild structural assumption on the process ΓX ,
namely that it is of the form

ΓX = ∥ΓX∥

n−1∑
j=1

ρXej +

n∗−1∑
j=1

ρ∗Xe∗j

 =: ∥ΓX∥ eX , (26)

under the normalization condition

∥eX∥2 =

∥∥∥∥∥∥
n−1∑
j=1

ρXej +
n∗−1∑
j=1

ρ∗Xe∗j

∥∥∥∥∥∥
2

=

ρ2X

n−1∑
j,j′=1

Rjj′ + 2ϱρXρ∗X

n−1∑
j=1

n∗−1∑
j′=1

[
C1G

⊤
1

]
jj′

+ (ρ∗X)
2
n∗−1∑
j=1

n∗−1∑
j′=1

R∗
jj′ = 1, (27)
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where ρX and ρ∗X are considered to be some kind of uniform partial correla-
tion of the FX market with the domestic and foreign Libor rates, respectively.
Further, in (26) ∥ΓX∥ is in general a scalar stochastic process that is still to be
specified. In (8) we now have by (26) and (19),

Γ∗⊤
i ΓX = ∥ΓX∥

n−1∑
j=1

ρXΓ∗⊤
i ej +

n∗−1∑
j=1

ρ∗XΓ∗⊤
i e∗j


∥ΓX∥

ϱρX ∥Γ∗
i ∥

n−1∑
j=1

[
C1G

⊤
1

]
ji
+ ρ∗X ∥Γ∗

i ∥
n∗−1∑
j=1

R∗
ij

 . (28)

In particular the correlations of X with the domestic and foreign Libors are
given by

CorrX,Li =
n−1∑
j=1

ρXej · ei +
n∗−1∑
j=1

ρ∗Xe∗j · ei (29)

= ρX

n−1∑
j=1

Rij + ϱρ∗X

n∗−1∑
j=1

[
C1G

⊤
1

]
ij

=: ρXPi + ϱρ∗XQi, 1 ≤ i < n, and

CorrX,L∗
i
=

n−1∑
j=1

ρXej · e∗i +
n∗−1∑
j=1

ρ∗Xe∗j · e∗i (30)

= ϱρX

n−1∑
j=1

[
C1G

⊤
1

]
ji
+ ρ∗X

n∗−1∑
j=1

R∗
ij

=: ϱρXQ∗
i + ρ∗XP ∗

i , 1 ≤ i < n∗,

respectively. Since all processes X, Li, and L∗
i are observable at the market and

the constants Pi, Qi, and P ∗
i , Q

∗
i , in (29) and (30) are in principle known from

the respective calibrations of the domestic and foreign Libor system, it seems
natural to estimate the correlations in (29) and (30) from historical data. This
may be done by minimizing the total square distance

n∑
i=1

(
ϱρXQ∗

i + ρ∗XP ∗
i − ĈorrX,Li

)2
+

n∗∑
i=1

(
ϱρXQ∗

i + ρ∗XP ∗
i − ĈorrX,L∗

i

)2
→ min

ϱ,ρX ,ρ∗
X

with ĈorrX,Li and ĈorrX,L∗
i
being the respectively estimated correlations, under

the normalization restriction

ρ2X

n−1∑
i=1

Pi + 2ϱρXρ∗X

n−1∑
i=1

Qi + (ρ∗X)
2
n−1∑
i=1

P ∗
i = 1

(note that
∑n−1

i=1 Qi =
∑n∗−1

i=1 Q∗
i and cf. (27)). Note that after determination

of ΓX , the dynamics of the FX rate ζ are implicitly determined by (21) and
(22), and are in particular driven by the total Brownian motion W.
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After identifying eX in (26) in the above way, the norm process ∥ΓX∥ has to
be modeled appropriately, such that calibration to a suitably large set of plain
vanilla FX options is feasible. The most simple way is to assume that ∥ΓX∥ is
deterministic (cf. Example 2). However the typically observed skew patterns
in implied volatilities of vanilla FX options may not be captured in this way.
Therefore more sophisticated choices are called for. Below we will sketch the
procedure in the context of a Heston type model for X and a fairly generally
structured domestic and foreign Libor model as described in Section 4.

Let us assume that
dX

X
= βX

√
V e⊤XdW(n), (31)

where V follows the square-root dynamics

dV = κX(θX − V )dt+ σX

√
V

(
ρXe⊤XdW(n) +

√
1− ρ2XdWX

)
. (32)

In (31) and (32) the parameters βX , κX , θX , σX , and ρX are assumed to be
constants, and WX is an additional independent standard Brownian motion
to inforce decorrelation between X and V. (Formally one might extend the
vector W with an extra Brownian component and extend correspondingly all
the unit vectors ei, e

∗
i , eX , with an extra zero component.) Subsequently we

may calibrate the system (31)-(32) to a family of vanilla FX options (24) with
different strikes and common maturity Tn = T ∗

n∗ = T∞. This may be done
in a standard way by using a relatively fast Fourier based pricing procedure.
Although this pricing procedure is more or less standard, we still present it here
for the convenience of the reader (cf. also [14]).

Let us write (24) as

C(K) := Cn∗(K) = Bn(0)En

(
X(0)eln

X(T∞)
X(0) −K

)+
. (33)

We may then apply the Fourier pricing method of Carr-Madan (spelled out later
on) to the triple

φ(z ; v), X(0), K,

where the characteristic function

φ(z ; v) := En

[
eiz ln

X(T∞)
X(0)

∣∣∣V (0) = v
]

(34)

may be obtained as follows. Consider the logarithm of (31),

d lnX = −1

2
β2
XV dt+ βX

√
V e⊤XdW(n), (35)

along with the square-root dynamics (32). Let us then abbreviate Y 0,y,v(t) :=
lnX(t) with Y 0,y,v(0) = lnX(0) =: y, and V 0,y,v(t) := V (t) with V 0,y,v(0) =
V (0) =: v. Then by (35), the generator of the vector process (Y, V ) is given by

A := Ay,v := −1

2
β2
Xvdt

∂

∂y
+ κX (θX − v)

∂

∂v

+
1

2
vβ2

X

∂2

∂y2
+ vβXσXρX

∂2

∂y∂v
+

1

2
σ2
Xv

∂2

∂v2
.

12



Let p̂ (z, z′ ; t, y, v) satisfy the Cauchy problem

∂p̂

∂t
= Ap̂, p̂(z, z′ ; 0, y, v) = ei(zy+z′v). (36)

Then
p̂ (z, z′ ; t, y, v) = Eei(zY

0,y,v(t)+z′V 0,x,v(t)).

We are only interested in the solution for z′ = 0. Let us therefore consider the
ansatz

p̂ (z ; t, y, v) = exp (A(z; t) +B0(z; t)y +B(z; t)v)

with
A(z; 0) = 0, B0(z; 0) = iz, B(z; 0) = 0. (37)

Substitution this ansatz into (36) yields,(
∂A

∂t
+

∂B0

∂t
x+

∂B

∂t
v

)
= −1

2
vβ2

XB0 + κX (θX − v)B

+
1

2
vβ2

XB2
0 + vβXσXρXB0B +

1

2
σ2
XvB2,

and we so obtain the Riccati system

∂A

∂t
= κXθXB

∂B0

∂t
= 0

∂B

∂t
= −1

2
β2
XB0 − κXB +

1

2
β2
XB2

0 + βXσXρXB0B +
1

2
σ2
XB2.

In view of (37) we then get

∂A

∂t
= κXθXB

∂B

∂t
= −1

2
β2
X

(
iz + z2

)
− (κX − izβXσXρX)B +

1

2
σ2
XB2.

As a well known fact (see [11]) this system can be explicitly solved, but there
are different representations for its solution depending on the chosen branch of
the complex logarithm. We here use Lord and Kahl’s representation due to the
principal branch, see [15]1, to get

B(z; t) =
a+ d

σ2
X

1− edt

1− gedt

and

A(z; t) =
κXθX
σ2
X

{
(a− d) t− 2 ln

[
e−dt − g

1− g

]}
,

1Roger Lord confirmed a typo in the published version in a personal communication and
therefore referred to the preprint version.
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where

a = κX − izβXσXρX

d =
√
a2 + (iz + z2)β2

Xσ2
X

g =
a+ d

a− d
.

Taking all together we have with t = T∞ for (34),

φ(z ; v) = e−iz lnX(0)p̂ (z ;T∞, lnX(0), v) = exp
(
Ã(z;T∞) +B(z;T∞)v

)
(38)

with

B(z;T∞) =
a+ d

σ2
X

1− edT∞

1− gedT∞
, and

Ã(z; t) :=
κXθX
σ2
X

{
(a− d)T∞ − 2 ln

[
e−dT∞ − g

1− g

]}
.

Carr & Madan inversion formula

Due to Carr and Madan [7], the FX vanilla option price may be obtained by
the following inversion formula,

C(K) = Bn(0)(X(0)−K)++

Bn(0)X(0)

2π

∫ ∞

−∞

1− φ(z − i;V (0))

z(z − i)
e−iz ln K

X(0) dz, (39)

where φ is given by (38). The integrand in (39) decays with rate z−2 if |z| → ∞,
which is relatively slow from a numerical point of view. Therefore it is better to
modify the inversion formula in the following way. Let φB be the characteristic
function (34) due to some Black model,

X(T∞) = X(0)e−
1
2 (σ

B)
2
T∞+σB√

T∞ς , ς ∈ N(0, 1)

in the measure Pn, for a particular suitably chosen volatility σB . We then have
(cf. Black’s 76 formula)

En (X(T∞)−K)
+
= B(X(0), T∞, σB ,K),

where

B(X,T, σ,K) := XN (d+)−KN (d−) , with

d± :=
ln X

K ± 1
2σ

2T

σ
√
T

, and

φB(z ; v) = φB(z) = Ene
iz
(
− 1

2 (σ
B)

2
T∞+σB√

T∞ς
)

= e−
1
2 (σ

B)
2
T∞(z2+iz).
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By application of Carr and Madan’s formula to the Black model we get,

CB(K) := Bn(0)B(X(0), T∞, σB ,K) = Bn(0)(X(0)−K)+ (40)

+
Bn(0)X(0)

2π

∫ ∞

−∞

1− φB(z − i)

z(z − i)
e−iz ln K

X(0) dz,

and then by subtracting (40) from (39) we obtain,

C(K) = CB(K)+ (41)

Bn(0)X(0)

2π

∫ ∞

−∞

φB(z − i; ·)− φ(z − i;V (0))

z(z − i)
e−iz ln K

X(0) dz.

Inversion formula (41) is usually much more efficient due to the typically much
faster decaying integrand in comparison with (39).
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