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We propose a valuation method for exotic cance-
lable and callable structures in a multi-factor Libor
model which are path-dependent in the sense that
after canceling or calling, one cancels a sequence
of cash-flows or receives a sequence of cash-flows
in the future, respectively. The method, which
is based on a Monte Carlo procedure for stan-
dard Bermudans recently developed and further ex-
tended in Kolodko and Schoenmakers [8], Bender
and Schoenmakers [2], is compared to and also com-
bined with popular known approaches by Andersen
[1], Longstaff and Schwartz [9], and Piterbarg [10].

As a main example we consider the (cancelable)
snowball swap, a highly sensitive interest rate prod-
uct with growing popularity, in a full-blown Libor
market model. From the treatment of this example
it will be clear how to design Monte Carlo valu-
ation algorithms for related cancelable or callable
path-dependent products. For our example it turns
out that price lower bounds obtained by the regres-
sion approach using explanatory variables as in [10]
may be significantly off. Even an enhancement of
this approach by an Andersen like modification of
the corresponding exercise boundary does not lead
to an acceptable small gap between the lower price
and an upper bound price obtained via the dual
method by Rogers [12], Haugh and Kogan [5] (see
[7] for an alternative dual and [3] for upper bounds
via consumption processes). However, via improv-
ing the stopping rule entailed by this enhancement
using the iteration procedure in [8] we end up with
acceptable prices.

The proposed approach is quite generic, as in
principle it only requires a Monte Carlo simulation
mechanism for an underlying Markovian system,
for instance a Markovian system of SDEs. In par-
ticular, it can be used to improve upon popular
methods, such as [1], [9], and [10] to get satisfac-

torily accurate target results (in this respect the
method outperforms the standard policy iteration
described in [11], see [8] for details).

Straightforward application of the policy itera-
tion procedure based on [8] requires just like the
duality approach a nested Monte Carlo simulation
and is thus rather slow. Therefore we include a
method of variance reduction which has a flavor of
stratified sampling. Moreover, we underline that
the improved stopping rule which is important for
the buyer of the product for instance, can already
be obtained at the cost of a standard (not nested)
Monte Carlo simulation.

Recap of the Libor market model

The Libor market model is a popular and advanced
tool for modelling interest rates and pricing of in-
terest rate products. Let us first recall the Libor
market model with respect to a tenor structure
0 = T0 < T1 < . . . < Tn in the spot Libor mea-
sure P ∗. For 1 ≤ i < n, the forward Libor Li(t),
i.e. the annualized forward rate on a loan over pe-
riod [Ti, Ti+1] contracted at date t, which is to be
settled at Ti+1, is governed, for 0 ≤ t ≤ Ti, by the
SDE (e.g., see Jamshidian [6])

dLi =
i∑

j=κ(t)

δjLiLj γi · γj

1 + δjLj
dt + Li γi · dW ∗, (1)

where δi = Ti+1 − Ti are day count fractions,
t → γi(t) = (γi,1(t), . . . , γi,d(t)) are deterministic
volatility vector functions defined in [0, Ti] (called
factor loadings), and κ(t) := min{m : Tm ≥ t} de-
notes the next reset date at time t. In (1), (W ∗(t) |
0 ≤ t ≤ Tn−1) is a standard d-dimensional Wiener
process under the spot Libor measure P ∗ with d,
1 ≤ d < n, being the number of driving factors.
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This measure is induced by the numeraire

B∗(0) := 1

B∗(t) :=
Bκ(t)(t)
B1(0)

κ(t)−1∏

i=1

(1 + δiLi(Ti)) , t > 0,

with
∏0

i=1 := 1, and where Bi(t) is the value of
a zero coupon bond with face value $1 at time
t ≤ Ti. For further use we here also introduce
the filtration (Ft)t≥0 (history information process)
connected with the Libor process.

Path dependent cancelable and callable
products

Consider a subset of tenor dates T1 < · · · < Tk,
hence {T1, . . . , Tk} ⊂ {T0, . . . , Tn}, and adapted
cash-flows Ci defined at Ti for i = 1, . . . , k. Let
us consider a path dependent contract which in-
volves the right to cancel a sequence of (possibly
negative) cash-flows C1, . . . , Cτ , at a date τ to be
decided by the option holder. The cash-flows of this
contract are equivalent to an aggregated cash-flow
B∗(Tτ )Zτ := B∗(Tτ )

∑τ
j=1 Zj at the cancellation

date, with Zi := Ci/B∗(Ti) being discounted cash-
flows with respect to B∗. Indeed, it is equivalent
to invest each cash-flow Ci, i ≤ τ, in the numeraire
B∗, yielding an amount Ci/B∗(Ti) = Zi which is
worth B∗(Tτ )Zi at date τ . By general arguments
(see Duffie [4]) it follows that the value of the can-
celable product at time zero is given by

V cancel
0 := sup

τ∈{1,...,k}
E0Zτ = sup

τ∈{1,...,k}
E0

τ∑

j=1

Zj ,

(2)
where the supremum is taken over all stopping in-
dices with values in the set {1, . . . , k}. Note that
τ = k may be interpreted as “not canceled”.

Naturally, in contrast to cancelable products we
may consider callable ones.

V call
0 := sup

τ∈{1,...,k}
E0

k∑

j=τ+1

Zj

= E0
k∑

j=1

Zj + sup
τ∈{1,...,k}

E0
τ∑

j=1

(−Zj)

is the price of a callable product which generates
cash-flows Cτ+1, . . . , Ck, when called at date τ .

Hence a callable product can be seen as the sum of a
non-callable and a cancelable one (and vice versa).
However, the virtual cash-flow in the callable rep-
resentation is in the form of a conditional expecta-
tion, hence not explicit at hand. So, it is advan-
tageous to write a callable product as sum of non-
callable and a cancelable. We therefore concentrate
on cancelable products throughout the paper.

Iterating path-dependent cancelables

The path dependent cancelable product introduced
above can be seen as a standard Bermudan product
with respect to a (virtual) cash-flow Zi. Therefore it
can be evaluated by the iterative method developed
in [8], which is studied further concerning numeri-
cal stability and extended to multiple stopping in
[2]. Although here the cash-flow Zi can be nega-
tive, it is easy to see that this does not provide any
additional difficulties.

Let us briefly recall the iterative method. Sup-
pose we are given some (generally suboptimal) ex-
ercise policy τi, i = 1, . . . , k for a Bermudan prod-
uct with cash-flow process Z; τi is the stopping rule
according to which the option should be exercised,
provided the option has not been exercised before
Ti. We assume that the exercise policy τ has the
following properties,

i ≤ τi ≤ k, τk = k,

τi > i ⇒ τi = τi+1, 0 ≤ i < k. (3)

This policy provides a lower bound process Yi for
the discounted Bermudan prices Y ∗

i , also called
Snell envelope,

Y ∗
i ≥ Yi := EiZτi , i = 1, . . . , k,

where Ei denotes conditional expectation with re-
spect to FTi . We next construct a new exercise
policy (0 ≤ i ≤ k),

τ̂i := inf{j ≥ i : Zj ≥ max
p: j≤p≤k

EjZτp} (4)

which clearly satisfies (3) also, and consider the new
lower bound process

Ŷi := EiZbτi
, i = 1, . . . , k,

which is generally an improvement of Y,

Yi ≤ Ŷi ≤ Y ∗
i , i = 1, . . . , k.
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Naturally, we may iterate the above procedure,
i.e. improve τ̂ in the same way and so forth. It
is shown that after iterating this procedure k − 1
times, the Snell envelope is attained independently
of the choice of the starting stopping family.

Based on each of these lower bound processes one
may construct upper bounds by the dual approach
of [12] and [5]. This sequence of upper bounds ter-
minates at the Bermudan price after finitely many
steps as well.

For the path-dependent cancelable, introduced in
the previous section, the improved policy (4) reads
(0 ≤ i ≤ k),

τ̂i = inf{j ≥ i : 0 ≥ max
p:j+1≤p≤k

Ej

τp∑

q=j+1

Zq}. (5)

In most cases, both the cash-flow Zi and the event
{τi = i} are determined by the state of an un-
derlying Markovian process (for example the Libor
process (1)) at date i. In such a situation the condi-
tional expectations involved in the iterative proce-
dure can be estimated by Monte Carlo simulation,
which thus leads to a Monte Carlo algorithm in a
natural way. We refer to [8] for a detailed descrip-
tion of the general algorithm and to [13], Section
5.4.3, for a linear implementation of one improve-
ment step. The numerical stability of these proce-
dures is proved in [2].

To reduce the computational cost we recommend
the following variance reduction for practical imple-
mentation. It is based upon the intuition that, for
a good input stopping family τi, EjZτi+1 is a fair
(lower) approximation of EjZτ̂i+1 . Writing, by the
consistency property (3),

Zτ̂0 − EZτ̂0 =
τ̂0∑

i=0

Ei+1Zτ̂i − EiZτ̂i ,

we hence expect that,

Zτ̂0 −
k∑

i=0

1{τ̂0>i−1}
(
Ei+1Zτi − EiZτi

)
(6)

has a much lower variance than Zτ̂0 . The con-
ditional expectations in (6) can be calculated for
any outer path via plain Monte-Carlo with the al-
ready simulated inner paths, i.e. without addi-
tional simulation cost. Since the simulated version
of 1{τ̂0>i−1} does only depend on the inner paths

simulated at times j = 0, . . . , i − 1 and the simu-
lated version of Ei+1Zτi

− EiZτi
depends only on

the inner paths simulated at times j = i, i + 1,
one can easily see that the expectation of the simu-
lated version of

∑k
i=0 1{τ̂0>i−1}

(
Ei+1Zτi

−EiZτi

)
is zero. Therefore we average over the simulated
versions of (6) instead of the simulated versions of
Zτ̂0 to estimate EZτ̂0 more efficiently in our numer-
ical experiments. In our experiments we typically
achieve a variance reduction of factor 20-60 this
way (depending on the initial stopping family).

Generic construction of a good input stop-
ping family

An important issue is the choice of the input stop-
ping family τ. By choosing the trivial family τi ≡ i
we are faced with the evaluation of the conditional
expectations EjZq for q > j in (5). When these are
available in closed form we may compute (estimate)
Ŷi := EiZτ̂i via (standard) Monte Carlo simulation.
After improving τ̂ in turn via (5) again, we obtain a
next improved stopping family ̂̂τ via Monte Carlo
simulation along each simulated Libor trajectory.

We so arrive at a next improved estimation ̂̂
Y i via

a nested Monte Carlo simulation.
Not in all situations closed form solutions (or

close approximations) for the Europeans EjZq,
q > j, are known. For such cases it is usually
better not to start (5) with the trivial stopping
family above. For our applications we will consider
three kinds of input families, respectively, due
to an Andersen [1] like method, Piterbarg’s [10]
version of the Longstaff-Schwartz [9] regression
method, and a backward optimization of the exer-
cise boundary resulting from the latter approach.

Andersen-like method

As a starting policy one could take

τA
i := inf{j ≥ i : Hj ≥ Zj}, (7)

where the deterministic sequence H is pre-
computed via a standard optimization procedure
as studied in [1] for Bermudan swaptions (see
also [13]). The family τ̂ obtained via (5) is then
an improved exercise policy in the sense that Ŷi,
which requires nested Monte Carlo simulation, is
generally closer to Y ∗. We note that for interest
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rate contracts the cash-flow Zj+1 is typically
already known at Tj (e.g. for the snowball). In
such situation we replace Zj by Zj+1 in (7).

Longstaff-Schwartz a-lá Piterbarg

We here formulate a version of the Longstaff-
Schwartz algorithm designed for the cancelable
path dependent product.

Let (βq)q≥1 be a system of base functions on
the state space. Suppose we have a sample L(m),

m = 1, . . . ,M, of Libor trajectories. Set τ
(m)
k :≡ k,

and C
(m)
k :≡ −1, m = 1, . . . , M. For j < k we

recursively construct τ
(m)
j , C

(m)
j , m = 1, . . . , M,

from τ
(m)
j+1 , C

(m)
j+1, m = 1, . . . , M as follows. Via a

standard least squares minimization we compute a
system of regression coefficients (ĉjq)q≥1,

(ĉjq)q≥1 :=

argmin
(cq),q≥1

M∑
m=1




∑

q≥1

cqβq(L(m)(Tj))−
τ
(m)
j+1∑

p=j+1

Z(m)
p




2

,

and set

C
(m)
j :=

∑

q≥1

ĉjqβq(L(m)(Tj)), m = 1, . . . ,M.

We then define for m = 1, . . . , M,

τ
(m)
j = j if C

(m)
j < 0, else τ

(m)
j = τ

(m)
j+1 .

Thus working backwards, we end up with an (ap-
proximate) continuation rest-value process

Cj :=
∑

q≥1

ĉjqβq(L(Tj)), j = 1 ≤ j < k, Ck = −1.

By this we may obtain a lower biased approxi-
mation of the Bermudan price by an independent
Monte Carlo re-simulation and using the stopping
rule

τLS
i = inf{j ≥ i : Cj ≤ 0}. (8)

For the typically high dimensional Libor process
the choice of base functions and their number is
in general a problematic issue. In order to keep
the above regression method robust [10] suggests to
consider base functions which are only defined on a
small set of explanatory variables, though accept-
ing a priori a bias in this way. As a generic choice

he proposes the spot Libor Lj(Tj) and the swap
rate over the period [Tj , Tk]. In our experiments we
will see that we may so obtain relatively close lower
bounds for the cancelable snowball swap, but, par-
ticularly in more factor cases these are not close
enough.

Backward optimization of a given exercise boundary

Similar to the optimization procedure for (7)
we may improve the exercise criterion obtained by
the regression method once again to

τLS,A
i = inf{j ≥ i : Cj + αj ≤ 0}, (9)

by backward optimization of the deterministic se-
quence α.

Our experiments show that the input stopping
family (8) is generally insufficient in the sense that
the gap due to the improved lower bound τ̂LS and
the dual upper bound corresponding to τLS is still
too large. In all our cases, however, the gap due
to τ̂LS,A and the dual corresponding to τLS,A is
acceptably small (though the lower bound due to
τLS,A may be not sufficiently close). Therefore, we
recommend (9) as a generically ’good’ input stop-
ping family.

Specification and valuation of the cancelable
snowball swap

Starting (5) with one of the generic stopping fami-
lies constructed above, a wide range of Libor exotics
can be priced. As an example, let us consider a
snowball swap contract on a $1 nominal loan. Ac-
cording to this contract one receives floating Li-
bor and has to pay so called Snowball coupons
which follow the following term sheet. One pays
on a semi-annual base a constant rate I over the
first year and in the forthcoming years (Previous
Coupon+A-Libor)+, where A is specified in the
contract. A cancelable snowball swap is a snow-
ball swap which may be canceled after first year.
We here consider this cancelable snowball product
in a (semi-annual) Libor model (1). The snowball
coupons Ki, settled at Ti+1 (i = 0, . . . , n − 1), are
thus specified by

Ki := I, i = 0, 1,

Ki := (Ki−1 + Ai − Li(Ti))+ i = 2, . . . , n− 1.
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We consider a contract where A increases on an
annual base according to A2 := S, Ai+1 = Ai if i is
even, and Ai+1 = Ai + s if i is odd, where S and
s are given in the contract. The value V0 of the
cancelable snowball swap at t = T0 = 0 is given by
(2) with

Zq :=
Lq−1(Tq−1)δq−1 −Kq−1δq−1

B∗(Tq)
, q = 1, . . . , n.

Note that Z1, .., Zn is an adapted (even predictable)
sequence of cash-flows.

We now present different methods for com-
puting V0. To this end we consider the Markov
process (B∗(Tj), L(Tj),Kj) and evaluate V0 via a
Monte Carlo algorithm for the iteration procedure
(5) using different starting policies described above.

Numerical results

We carry out simulation experiments for a
10yr Snowball with

I = 7%, S = 3%, s = 0.25%,

and 19 semi-annual exercise possibilities starting
at 1yr. In the Libor model (1) we take δi ≡ 0.5,
flat 3.5% initial Libor curve and constant volatility
loadings

γi(t) ≡ 0.2ei,

where ei are d-dimensional unit vectors decompos-
ing an input correlation matrix of rank d. We
take as basis an endogenously full-rank correlation
structure of the form

ρij = exp
[ |j − i|

n− 2
ln ρ∞

]
, 1 ≤ i, j ≤ n− 1. (10)

with n > 2 and ρ∞ = 0.3 (for more general cor-
relation structures we refer to [13]). Then, for a
particular choice of d we deduce from ρ in (10) a
rank-d correlation matrix ρd with decomposition
ρd

ij = ei · ej , 1 ≤ i, j < n, by principal component
analysis.

We now investigate the stopping families τA, τLS

and τLS,A. For these stopping families, we con-
struct lower bounds, their corresponding dual up-
per bounds, and the via (5) improved lower bounds.

From Table 1 we conclude that the stopping fam-
ily τA leads to a very crude approximation of the
Bermudan price, even for a 1-factor model. The im-
proved stopping family τ̂A provides a much better

lower bound. However, the gap between Ŷ A
0 and

the dual upper bound Y A
up,0 is still rather large, it

varies from 2% to 20% (relative to the upper bound
prices). Here we use 2·107 Monte Carlo trajectories
for Y A

0 and 6 · 104 Monte Carlo trajectories (with
500 inner simulations) for Y A

up,0 − Y A
0 to keep the

standard deviation within 0.5% relative. Further,
we compute Ŷ A

0 using the variance reduction tech-
nique (6) by 105 outer and 500 inner simulations to
keep the standard deviation within 1% relative.

We now consider price estimations via τLS ob-
tained by Piterbarg’s version of the Longstaff-
Schwartz method. As basis functions we use
quadratic polynomials in the explanatory variables
Li(Ti), the swap rate over [Ti, T20], and the coupon
Ki which is needed for Markovianity of the under-
lying process. In Table 2 we see that, compared to
τA, the stopping family τLS provides better lower
bounds and dual upper bounds (except for the 1-
factor case). However, the gaps between Y LS

0 and
Y LS

up,0 are still large, they may even exceed 30%
relative (in the 19-factor model). Again, the im-
proved stopping family τ̂LS leads to much better
lower bounds. For this table we used 107 Monte
Carlo trajectories for Y LS

0 and 2.5 · 104 Monte
Carlo trajectories (with 500 inner simulations) for
Y LS

up,0 − Y LS
0 to keep the standard deviation within

0.5% relative. The improved lower bound Ŷ LS
0

is computed using variance reduction method (6)
with 5 · 104 outer Monte Carlo trajectories and 500
inner simulations, to keep the standard deviation
within 1% relative.

The optimization (9) of the Longstaff-Schwartz
exercise boundary provides better lower bounds
(6%-20% relative to Y LS

0 ), see Table 3, but, the
gaps between Y LS,A

0 and Y LS,A
up,0 are still rather

large. The improved stopping family τLS,A, how-
ever, leads to acceptable estimations of product
prices: the gaps between Ŷ LS,A

0 and Y LS,A
up,0 do

not exceed 4% relative, and are overall less than
4 base points in absolute sense. We use 107 Monte
Carlo trajectories for Y LS,A

0 and 104 outer Monte
Carlo trajectories with 500 inner simulations for
Y A

up,0−Y A
0 , in order to keep the standard deviation

within 0.5% relative. Further, we construct Ŷ A
0 us-

ing variance reduction (6) by 5 · 104 outer and 500
inner simulations to keep the standard deviation
within 1% relative.

Figure 1 shows the exercise frequency of the ex-
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ample product at different exercise dates for dif-
ferent policies in a full factor model d = 19. This
picture gives an impression of the sensitivity (in
a sense) of this product; we see that the snowball
swap is mostly canceled quite early or very late. Al-
though the exercise profile does not differ dramat-
ically for the different stopping times, the compa-
rably few scenarios, in which the τLS , respectively
τLS,A exercise rule cancels much too late, has a
significant influence on the price.

In Figure 2 we compare a conservative estima-
tion of the duality gap (Y LS,A

up,0 +2(SD))− (Ŷ LS,A
0 −

2(SD)) with (Y LS,A
up,0 + 2(SD)) − (Y LS,A

0 − 2(SD))
as a function of the number of simulated outer tra-
jectories in the full factor case (d = 19). We see
that with only 5000 trajectories, hence with much
less computation time, we still have a major im-
provement upon the gap due to policy (9). On our
Pentium-III computer 5000 outer simulations with
500 inner simulations took 15 minutes.

We now conclude with the slogan:

Iterate the stopping strategy obtained via an
Andersen like enhanced Piterbarg version of
Longstaff–Schwartz, and compute its dual due to
Rogers, Haugh and Kogan.
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Figure 1: Simulated exercise frequencies of τLS ,
τLS,A, and τ̂LS,A

d Y A
0 (SD) bY A

0 (SD) Y A
up,0 (SD)

1 206.89(0.29) 215.66(0.44) 219.76(0.31)
2 122.79(0.26) 152.37(0.76) 169.44(0.52)
5 76.067(0.25) 116.19(0.84) 140.28(0.65)

10 64.32(0.24) 106.32(0.88) 129.60(0.65)
19 57.91(0.24) 97.81(0.87) 124.07(0.66)

Table 1: Price estimations via τA

d Y LS
0 (SD) bY LS

0 (SD) Y LS
up,0 (SD)

1 202.35(0.41) 214.94(0.68) 221.63(0.47)
2 130.32(0.38) 152.81(0.76) 167.93(0.56)
5 94.35(0.36) 117.70(0.74) 135.77(0.58)

10 83.93(0.36) 109.46(0.75) 125.05(0.57)
19 77.54(0.36) 103.28(0.74) 119.78(0.58)

Table 2: Price estimations via τLS

d Y LS,A
0 (SD) bY LS,A

0 (SD) Y LS,A
up,0 (SD)

1 215.00(0.40) 216.78(0.70) 218.12(0.42)
2 150.26(0.37) 156.79(0.74) 159.02(0.45)
5 111.62(0.35) 123.22(0.87) 126.63(0.51)

10 100.27(0.34) 112.97(0.86) 116.23(0.54)
19 93.52(0.34) 106.47(0.84) 110.22(0.55)

Table 3: Backward optimization of the Longstaff-
Schwartz exercise boundary
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Figure 2: Estimated duality gap (Y LS,A
up,0 +2(SD))−

(Ŷ LS,A
0 −2(SD)) as a function of the number of sim-

ulated outer path compared with (Y LS,A
up,0 +2(SD))−

(Y LS,A
0 − 2(SD))
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