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Abstract

We propose a novel projection-based particle method for solving McKean-

Vlasov stochastic di�erential equations. Our approach is based on a

projection-type estimation of the marginal density of the solution in each

time step. The projection-based particle method leads in many situation

to a signi�cant reduction of numerical complexity compared to the widely

used kernel density estimation algorithms. We derive strong convergence

rates and rates of density estimation. The convergence analysis, partic-

ularly in the case of linearly growing coe�cients, turns out to be rather

challenging and requires some new type of averaging technique. This case

is exempli�ed by explicit solutions to a class of McKean-Vlasov equations

with a�ne drift. The performance of the proposed algorithm is illustrated

by several numerical examples.

Keywords: Mckean-Vlasov equations, particle systems, projection estima-
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1 Introduction

Nonlinear Markov processes are stochastic processes whose transition functions
may depend not only on the current state of the process but also on the current
distribution of the process. These processes were introduced by McKean [12]
to model plasma dynamics. Later nonlinear Markov processes were studied
by a number of authors; we mention here the books of Kolokoltsov [9] and
Sznitman [16]. These processes arise naturally in the study of the limit behavior
of a large number of weakly interacting Markov processes and have a wide
range of applications, including �nancial mathematics, population dynamics,
and neuroscience (see, e.g., [4] and the references therein).

Let [0, T ] be a �nite time interval and (Ω,F ,P) be a complete probability
space, where a standardm-dimensional Brownian motionW is de�ned. We con-
sider a class of McKean-Vlasov SDEs, i.e. stochastic di�erential equation (SDE)
whose drift and di�usion coe�cients may depend on the current distribution of
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the process of the form:{
Xt = ξ +

∫ t
0

∫
Rd a(Xs, y)µs(dy)ds+

∫ t
0

∫
Rd b(Xs, y)µs(dy)dWs

µt = Law(Xt), t ∈ [0, T ],
(1)

where X0 = ξ is an F0-measurable random variable in Rd, a : Rd × Rd → Rd
and b : Rd × Rd → Rd×m. If the functions a and b are smooth with uniformly
bounded derivatives and the random variable ξ has �nite moments of any order,
then (see [1]) there is a unique strong solution of (1) such that for all p > 1,

E

[
sup
s≤T
|Xs|p

]
≤ ∞. (2)

In the sequel we assume that there exists a unique strong solution of (1) such
that (2) holds and refer to [5] for more general su�cient conditions for this.

Assume that d = 1 and for any t ≥ 0, the measure µt(du) possesses a
bounded density µt(u). Then the family of these densities satis�es a nonlinear
Fokker-Planck equation of the form

∂µt(x)

∂t
= − ∂

∂x

((∫
a(x, y)µt(y) dy

)
µt(x)

)
+

1

2

∂2

∂x2

((∫
b(x, y)µt(y) dy

)2

µt(x)

)
, (3)

which can be seen as an analogue of a well-known linear Fokker-Planck equation
in the case of linear stochastic di�erential equations. In Section 4.1 we will show
that if the drift a is a�ne in x, and the di�usion coe�cient b is independent of
x, then the system (1), and hence (3), has an explicit solution. These solutions,
apart from being interesting in their own right, also provide explicit cases of an
explosive behavior.

The theory of the propagation of chaos developed in [16], states that (1) is
a limiting equation of the system of stochastic interacting particles (samples)
with the following dynamics

Xi,N
t = ξi +

∫ t

0

∫
Rd
a(Xi,N

s , y)µNs (dy) ds+

∫ t

0

∫
Rd
b(Xi,N

s , y)µNs (dy) dW i
s (4)

for i = 1, . . . , N, where µNt = 1
N

∑N
i=1 δXi,Nt

, ξi, i = 1, . . . , N, are i.i.d copies

of ξ, distributed according the law µ0, and W i, i = 1, ..., N, are independent
copies ofW. In fact it can be shown, under su�cient regularity conditions on the
coe�cients, that convergence in law for empirical measures on the path space
holds, i.e., µN = {µNt : t ∈ [0, T ]} → µ, N →∞, see [13].

Despite the numerous branches of research on stochastic particle systems,
results on numerical approximations of McKean-Vlasov-SDEs are very sparse.
The authors in [1] proposed to use the Euler scheme with time-step h = T/L,
that for l = 0, . . . , L− 1, yields

X̄i,N
tl+1

= X̄i,N
tl

+
1

N

N∑
j=1

a(X̄i,N
tl

, X̄j,N
tl

)h+
1

N

N∑
j=1

b(X̄i,N
tl

, X̄j,N
tl

) ∆l+1W
i (5)
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for i = 1, . . . , N, tl = hl, and ∆l+1W
i = W i

h(l+1) −W
i
hl (see also [2] for more

general MVSDEs and [8] for Gauss-quadrature based approach). Implementa-
tion of the above algorithm requires usually N2 ×L operations in every step of
the Euler scheme. By using the algorithm presented here one can signi�cantly
reduce the complexity of the particle simulation especially if the coe�cients of
the corresponding McKean-Vlasov SDE are smooth enough.

The contribution of this paper is twofold. On the one hand, we propose
a new approximation methodology based on a projection-type estimation of
the marginal densities of (1). This methodology often leads to numerically
more e�cient algorithms than the kernel-type approximation algorithms, as
they can pro�t from a global smoothness of coe�cients a,b and the corresponding
marginal densities. On the other hand, we present a comprehensive convergence
analysis of the proposed algorithms in the case of possibly linearly growing (in
x) coe�cients a and b. To the best of our knowledge, no stability analysis of
MVSDEs under this linear growth assumption was done before. In fact such
analysis is rather challenging and requires a special type of averaging technique.
And, last but not least, we study a general class of MVSDEs with a�ne drift
and derive their explicit solutions, to the best of our knowledge, for the �rst
time.

The paper is organized as follows. In Section 2 we present the idea of our
projected particle method. Section 3 is devoted to the convergence analysis
of the projected particle method. In particular, in Section 3.1 we derive the
convergence rates for the corresponding projected density estimate. Section 4
presents a thorough study of a�ne MVSDEs. Numerical examples for a�ne and
convolution-type MVSDEs are presented in Section 5. All proofs are collected
in Section 6.

2 Projected particle method

Let w : Rd → R+ be some weight function with w > 0, such that

a(x, ·), b(x, ·) ∈ L2(Rd, w) for any x ∈ Rd.

Let further (ϕk, k = 0, 1, 2, ..) be a total orthonormal system in L2(Rd, w).
The corresponding (generalized) Fourier coe�cients of the functions a(x, ·) and
b(x, ·) are given by

αk(x) :=

∫
a(x, u)ϕk(u)w(u) du ∈ Rd, (6)

βk(x) :=

∫
b(x, u)ϕk(u)w(u) du ∈ Rd×m

and the following series representation holds

a(x, ·) =

∞∑
k=0

αk(x)ϕk(·) and b(x, ·) =

∞∑
k=0

βk(x)ϕk(·), x ∈ Rd,

in L2(Rd, w). Further it is assumed that each function ϕk is bounded so that
the functions

γk(s) := E [ϕk(Xs)] (7)
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are well de�ned. Now let us �x some natural number K > 0 and consider a
projected particle approximation for (1)

Xi,K,N
t = ξi +

∫ t

0

K∑
k=0

γNk (s)αk(Xi,K,N
s ) ds+

∫ t

0

K∑
k=0

γNk (s)βk(Xi,K,N
s ) dW i

s (8)

for i = 1, . . . , N, where

γNk (s) :=
1

N

N∑
j=1

ϕk(Xj,K,N
s ) (9)

can be regarded as an approximation to (7). The projected system (8), with (9),
is heuristically motivated by assuming that for any s ≥ 0 the measure µs(du)
possesses a density µs(u) that, in view of

γk(s) =

∫
µs(u)ϕk(u)du

(cf. (7)), formally satis�es

µs(u) =

∞∑
k=0

γk(s)ϕk(u)w(u). (10)

Then, we (formally) have the expansion∫
a(x, u)µs(u)du =

∞∑
k=0

αk(x)γk(s),

and this motivates the drift term in (8). For the di�usion term in (8) an analogue
motivation applies. In order to solve (8) we may consider, for any �xed L > 0,
an Euler-type approximation,

X̄i,K,N
t = X̄i,K,N

η(t) +

K∑
k=0

γNk (η(t)) αk
(
X̄i,K,N
η(t)

)
(t− η(t)) (11)

+

K∑
k=0

γNk (η(t)) βk
(
X̄i,K,N
η(t)

)
(W i

t −Wη(t))

for i = 1, . . . , N, and h = T/L, where η(t) := lh for t ∈ [lh, (l + 1)h), l =

1, . . . , L. Note that in order to generate a discretized particle system (X̄i,K,N
hl ),

i = 1, . . . , N, l = 1, . . . , L, we need to perform (up to a constant depending on
the dimension) NLK operations. This should be compared to N2L operations
in (5). Thus if K is much smaller than N, we get a signi�cant cost reduction. Of
course, this complexity analysis implicitly assumes that the generalized Fourier
coe�cients αk(x) and βk(x) are known in closed form or can be cheaply com-
puted. For more details in this respect see Remark 1 below.

Remark 1 Many well known McKean-Vlasov type models used in physics and
engineering are constructed and formulated via certain Fourier type expansions
of the respective drift and/or di�usion coe�cients. For example, in the famous
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Kuramoto-Shinomoto-Sakaguchi model (see e.g. [4], eq. (5.214)) or in the cou-
pled Brownian phase oscillators (see [10]) the mean �eld potential is given by
its Fourier series, which entails a similar expansion for the coe�cient a(x, u)
(b(x, u) is constant). Let us also mention a classical work of [3], where a known
power series expansion for the coe�cients of a nonlinear Fokker-Planck equation
is assumed. From another point of view, since the basis (ϕk) with the correspond-
ing weight w can, in principle, be chosen freely, it is natural to assume they can
be chosen such that the coe�cients αk(x) and βk(x) can be computed in closed
form. In this respect, let us give some further examples. If for any x, a(x, ·) is
a linear combination of functions of the form:

q1(u1) · · · qd(ud)

where each qi : R→ R is a polynomial with coe�cients possibly depending on x,
then (ϕk) may be taken to be Hermite functions in Rd, i.e.

ϕα (u) = Hα1
(u1) · · ·Hαd(ud)e

−|u|2/2, α = (α1, . . . , αd).

The latter situation appears for instance in the popular interaction case with
a(x, u) = A(x− u), where the function A has a given representation

A(z) =
∑
α

cαz
α1
1 · . . . · z

αd
d , z ∈ Rd, α ∈ Nd0.

As another example, note that the Fourier coe�cients of any function of the
form

u→ uα1
1 · . . . · u

αd
d e−

|u−c|2
σ , c ∈ Rd, α ∈ Nd0, σ > 0,

with respect to the Hermite basis above can be expressed in closed form. One so
could also consider a(x, u), b(x, u) of the form

R∑
r=1

qr(x)uαre−|u−cr(x)|
2/σr(x),

with free to choose qr(x) ∈ R, cr(x) ∈ Rd, σr(x) ∈ R+, αr ∈ Nd0, R ∈ N.

3 Convergence analysis

In this section we �rst study the convergence of the approximated particle sys-
tem (8) to the solution of the original system (1). As a �rst obvious but impor-
tant observation, we note that the distribution of the triple

(
Xj,K,N
s , XK,N

s , Xj
s

)
with XK,N

s :=
(
X1,K,N
s , . . . , XN,K,N

s

)
does not depend on j, and therefore we

can write(
Xj,K,N , XK,N , Xj

) distr.
=

(
X ·,K,N , XK,N , X ·

)
for j = 1, ..., N. (12)

For ease of notation, henceforth we denote with |·| := |·|dim for a generic di-
mension dim the standard Euclidian norm in Rdim. Let us make the following
assumptions.
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(AF) The basis functions (ϕk) ful�l

|ϕk(z)− ϕk(z′)| ≤ Lk,ϕ |z − z′| , |ϕk(z)| ≤ Dk,ϕ, k = 0, 1, . . .

for all z, z′ ∈ Rd and some constants Lk,ϕ, Dk,ϕ > 0.

(AC) The functions αk(x), βk(x), k = 0, 1, 2, . . . satisfy

|αk(x)| ≤ Ak,α(1 + |x|) with (Ak,α)k=0,1,... ∈ l2,
∞∑
k=0

Dk,ϕAk,α ≤ DϕAα, and

∞∑
k=0

Lk,ϕAk,α ≤ LϕAα,

|βk(x)| ≤ Ak,β(1 + |x|) with (Ak,β)k=0,1,... ∈ l2,
∞∑
k=0

Dk,ϕAk,β ≤ DϕAβ , and

∞∑
k=0

Lk,ϕAk,β ≤ LϕAβ ,

for some constants Aα, Aβ , Dϕ, and Lϕ > 0, and further

sup
x,x′∈Rd, x6=x′

|αk(x)− αk(x′)|
|x− x′|

≤ Bk,α with

∞∑
k=0

Dk,ϕBk,α ≤ DϕBα,

sup
x,x′∈Rd, x6=x′

|βk(x)− βk(x′)|
|x− x′|

≤ Bk,β with

∞∑
k=0

Dk,ϕBk,β ≤ DϕBβ ,

for some Bα, Bβ > 0.

(AMp) For some p > 0 the initial distribution µ0 possesses a �nite absolute
moment of order p.

In the sequel, for any random variable ξ ∈ Rdim on (Ω,F ,P) we shall use
‖ξ‖p for the norm of |ξ| in Lp(Ω). The following bound on the strong error can
be proved.

Theorem 1 For p ≥ 2, it holds under assumptions (AC), (AF) and (AMp)
that ∥∥∥∥ sup

0≤r≤T

∣∣X ·,K,Nr −X ·r
∣∣∥∥∥∥
p

. N−1/2 +

∞∑
k=K+1

Ak,α ‖γk‖Lp[0,T ]

+

∞∑
k=K+1

Ak,β ‖γk‖Lp[0,T ], (13)

where . stands for an inequality with some (hidden) positive �nite constant
depending only on Aα, Aβ , Bα, Bβ,Dϕ, Lϕ, p, and T.

Remark 2 For 1 ≤ p′ ≤ 2, we simply have∥∥∥∥ sup
0≤r≤T

∣∣X ·,K,Nr −X ·r
∣∣∥∥∥∥
p′

≤
∥∥∥∥ sup
0≤r≤T

∣∣X ·,K,Nr −X ·r
∣∣∥∥∥∥
p

(14)

for any p ≥ 2.
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The next theorem, on the convergence of the Euler approximation (11) to
the projected system (8), can be proved along the same lines as the proof of
Theorem 1.

Theorem 2 For p ≥ 2, it holds under assumptions (AC), (AF) and (AMp)
that for any natural K,N∥∥∥∥ sup

0≤r≤T

∣∣X̄ ·,K,Nr −X ·,K,Nr

∣∣∥∥∥∥
p

.
√
h,

where . stands for an inequality with some (hidden) positive �nite constant
depending only on Aα, Aβ , Bα, Bβ , Dϕ, Lϕ, p and T.

Discussion The bound (13) is proved under rather general assumptions on
the coe�cients a(x, y) and b(x, y). In particular, we allow for linear growth of
these coe�cients in x. This makes the proof of the bound in Theorem 1 rather
challenging, since we need to avoid an explosion. In order to overcome this
problem, we employ a kind of averaging technique which, being combined with
the symmetry of the particle distribution and the existence of moments (see
Section 7.1), gives the desired bound. Note that for this we have to assume ex-
istence and uniqueness of a strong solution of the original MVSDE (1). Funaki
[5] proved existence and uniqueness under (essentially) global Lipschitz condi-
tion. However, one should be able to extend his results by exploiting a kind of
one sided Lipschitz condition like in [6] or [7].

The bound (13) consists of stochastic and approximation errors. While the
�rst error is of order 1/

√
N, the second one depends on K and the properties of

the coe�cients a(x, y) and b(x, y). If these coe�cients are smooth in the sense
that their generalized Fourier coe�cients (αk) and (βk) decay fast, then the
approximation error can be made small even for medium values of K.

Example 1 The (normalized) Hermite polynomial of order j is given, for j ≥
0, by

Hj(x) = cj(−1)jex
2 dj

dxj
(e−x

2

), cj =
(
2jj!
√
π
)−1/2

.

These polynomials satisfy:
∫
RHj(x)H`(x)e−x

2

dx = δj,` and, as a consequence,

ϕk(u) = Hk(u)e−u
2/2, k = 1, 2, . . . , (15)

is a total orthonormal system in L2

(
Rd
)
(i.e. here w = 1). Moreover, (ϕk)k≥0

ful�l the assumption (AF) with Dk,ϕ and Lk,ϕ being uniformly bounded in k,
see, e.g. [15], p. 242. Now let us suppose that a(x, ·), b(x, ·) ∈ L2(Rd) for any
x ∈ R, and discuss the assumptions (AC).

Lemma 1 Suppose that for any x ∈ R, the functions (in u)

ã(x, u) :=
a(x, u)√
1 + x2

, b̃(x, u) :=
b(x, u)√
1 + x2

admit derivatives in u up to order s > 2 such that the functions (in u)

u`∂mu ã(x, u), u`∂mu b̃(x, u), 0 ≤ l +m ≤ s
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are bounded and belong to L1(R) (uniformly in x) together with their �rst deriva-
tives in x. Then the assumption (AC) is satis�ed and∥∥∥∥ sup

0≤r≤T

∣∣X ·,K,Nr −X ·r
∣∣∥∥∥∥
p

. K1−s/2 +N−1/2, (16)

as K,N →∞.

Proof. We have

αk(x) =
√

1 + x2
∫
ã(x, u)Hk(u) e−u

2/2 du =
√

1 + x2 α̃k(x),

βk(x) =
√

1 + x2
∫
b̃(x, u)Hk(u) e−u

2/2 du =
√

1 + x2 β̃k(x).

The identity

(2k + 2)1/2Hk(x) = H
′
k+1(z)

and the integration-by-parts formula imply

α̃k(x) =
ã(x, u)e−u

2/2Hk+1(u)

(2k + 2)1/2

∣∣∣∣∣
∞

−∞

− 1

(2k + 2)1/2

∫ ∞
−∞

[
∂ã(x, u)

∂u
− uã(x, u)

]
Hk+1(u)e−u

2/2 du.

Note that |Hk(u)| e−u2/2 ≤ 1 uniformly in u and k (see, e.g. [15], p. 242.)
Hence if ã(x, u) is bounded and∫ ∣∣∣∣∂ã(x, u)

∂u
− uã(x, u)

∣∣∣∣ du
is bounded uniformly in x, then α̃k(x) = O

(
k−1/2

)
uniformly in x. The second

integration-by-parts shows that α̃k(x) = O
(
k−1

)
, provided the functions

u2 · ã(x, u),
∂2ã(x, u)

∂u2
, u · ∂ã(x, u)

∂u

are integrable on R with their L1(R) norms uniformly bounded in x. Integrating
by parts further, we derive the desired statement.

Remark 3 As a rule, one chooses N and K such that the errors in (16) are
balanced, that is N1/(s−2) ∼ K, yielding a proportional reduction of computa-
tional cost of order N · K/N2 ∼ N−(s−3)/(s−2). Alternatively we can compare
the complexity, that is the computational cost for achieving a prescribed accu-
racy ε, for of the Euler schemes (5) and (11). It is not di�cult to see that, after
incorporating the path-wise time discretization error, the standard Euler scheme
(5) has complexity of order ε−6, while the projected one (11) has complexity of
order ε−(4s−6)/(s−2) which is signi�cantly smaller when s > 3. Moreover, in [1]
conditions are formulated, guaranteeing that all measures µt, t ≥ 0, possess in-
�nitely smooth exponentially decaying densities. In this case we can additionally
pro�t from the decay of the generalized Fourier coe�cients (γk) such that the
convergence rates in (13) give rise to a proportional reduction of computational
cost approaching N−1, corresponding to a complexity of order ε−4 (modulo some
logarithmic term) for the method (11).
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3.1 Density estimation

Let us now discuss the estimation of the densities µt, t ≥ 0. Let us assume that
the formal relationship (10) holds in the sense that

µs
w

=

∞∑
k=0

γk(s)ϕk

in L2

(
Rd, w

)
, i.e. µ2

s/w ∈ L1

(
Rd
)
. Fix some t > 0, Ktest ∈ N and set

µ̂Ktest,K,N
t (x) :=

Ktest∑
k=1

γNk (t)ϕk(x)w(x)

with γNk (t) := 1
N

∑N
i=1 ϕk(Xi,K,N

t ), k = 1, . . . ,Ktest. We obviously have

E

∫
|µ̂Ktest,K,N
t (x)− µt(x)|2w−1(x) dx =

Ktest∑
k=1

E
[
|γNk (t)− γk(t)|2

]
+

∞∑
k=Ktest+1

|γk(t)|2,

where (due to (AF))

E
[
|γNk (t)− γk(t)|2

]
= E


∣∣∣∣∣∣ 1

N

N∑
j=1

ϕk(Xj,K,N
t )− E [ϕk(X ·t)]

∣∣∣∣∣∣
2


≤ 2E


∣∣∣∣∣∣ 1

N

N∑
j=1

(
ϕk(Xj,K,N

t )− ϕk(Xj
t )
)∣∣∣∣∣∣

2


+ 2E


∣∣∣∣∣∣ 1

N

N∑
j=1

(
ϕk(Xj

t )− E
[
ϕk(Xj

t )
])∣∣∣∣∣∣

2


≤ 2L2
k,ϕE

[∣∣∣X ·,K,Nt −X ·t
∣∣∣2]+

2

N
Var [ϕk(Xt)] ,

since the Xj are independent. Theorem 1 now implies(
E

∫
|µ̂Ktest,K,N
t (x)− µt(x)|2 w−1(x) dx

)1/2

.

(
1

N

Ktest∑
k=1

(L2
k,ϕ +D2

k,ϕ)

)1/2

+

(
Ktest∑
k=1

L2
k,ϕ

)1/2( ∞∑
k=K+1

(Ak,α +Ak,β) ‖γk‖Lp[0,T ]

)

+

( ∞∑
k=Ktest+1

|γk(t)|2
)1/2

. (17)

The last term always converges to zero as Ktest →∞, since µt/w ∈ L2(Rd, w).
The �rst term can be controlled for any �xed Ktest by taking N large enough.
Finally, for any �xed Ktest, the second term can be made small by taking K
large enough and using the condition (AC).
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4 Speci�c models

4.1 Generalized Shimizu-Yamada Models

Inspired by the work of Shimizu and Yamada [14], [17] and [11], we consider
one-dimensional McKean-Vlasov equations of the form (1) with

a(x, u) := a0(u) + a1(u)x, b(x, u) := b(u).

This class of models allows for a linear dependence of drift on the distribution of
X through E

[
a0(Xt)

]
and E

[
a1(Xt)

]
. Let us de�ne for polynomially bounded

and measurable functions aj and b the generalized Gauss transforms,

Haj (p, q) :=
1√
2πq

∫
aj(u)e−

(p−u)2
2q du, j = 0, 1,

Hb(p, q) :=
1√
2πq

∫
b(u)e−

(p−u)2
2q du, p ∈ R, q > 0.

Let moreover aj and b be such that the partial derivatives,

∂pHaj (p, q), ∂qHaj (p, q) j = 0, 1, and ∂pHb(p, q), ∂qHb(p, q),

extend continuously to any (p, q) ∈ R× R≥0. (18)

It is not di�cult to see that (18) holds if aj and b are entire functions for which
the coe�cients of their power series around u = 0 decay fast enough to zero
(which is trivially satis�ed for any polynomial). A complete characterization of
aj and b such that (18) holds, is connected with analytic vectors for semigroups
related to the heat kernel and considered beyond the scope of this paper however.

Theorem 3 Let aj and b satisfy (18). (i) Then the following system of ODEs

G′t = H2
b (At, Gt) + 2Ha1 (At, Gt)Gt (19)

A′t = Ha0 (At, Gt) +Ha1 (At, Gt)At, (A0, G0) = (x0, 0) ,

has for 0 ≤ t < t∞ ≤ ∞, i.e. up to some possibly �nite exploding time t∞, a
unique solution (At, Gt) ∈ R× R≥0. (ii) The McKean-Vlasov SDE

dXt = (E
[
a0(Xt)

]
+Xt E

[
a1(Xt)

]
) dt+ E [b(Xt)] dWt, X0 = x0 (20)

is then equivalent to

dXt = (Ha0 (At, Gt) +Ha1 (At, Gt)Xt) dt+Hb (At, Gt) dWt, X0 = x0, (21)

and has explicit solution,

Xt = x0e
∫ t
0
Ha1 (As,Gs)ds +

∫ t

0

Ha0 (As, Gs) e
∫ t
s
Ha1 (Ar,Gr)drds (22)

+

∫ t

0

Hb (As, Gs) e
∫ t
s
Ha1 (Ar,Gr)drdWs, 0 ≤ t < t∞ ≤ ∞.

Note: the Wiener integral in (22) can be interpreted by an ordinary integral
after partial integration, due to the smoothness of the (deterministic) integrand.
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4.2 A�ne structures

Let us consider a�ne functions

a0(u) = a00 + a01u,

a1(u) = a10 + a11u,

b(u) = b0 + b1u.

Then for c ≡ a0, c ≡ a1, and c ≡ b, respectively, we have

Hc(p, q) =
1√
2πq

∫
c(u)e−

(p−u)2
2q du

=
1√
2πq

∫
c0e
− (p−u)2

2q du+
1√
2πq

∫
c1ue

− (p−u)2
2q du

= c0 + c1p

with c(u) = c0 + c1u. In particular, the Hc(p, q) do not depend on q, and so (19)
simpli�es to

A′t = a00 +
(
a01 + a10

)
At + a11A

2
t , A0 = x0. (23)

We �rst consider the case a11 = 0, then (23) reads A′t = a00 +
(
a01 + a10

)
At with

solution

At =

(
x0 +

a00
a01 + a10

)
e(a

0
1+a

1
0)t − a00

a01 + a10
if a01 + a10 6= 0, and (24)

At = x0 + a00t if a01 + a10 = 0.

For the case a11 6= 0 the solution (checked by Mathematica) is as follows. If

D :=
(
a01 + a10

)2 − 4a00a
1
1 < 0, a11 6= 0,

At = −
(
a01 + a10

)
2a11

+

√
−D

2a11
tan

[
1

2

√
−Dt+ arctan

[
a01 + a10 + 2a11x0√

−D

]]
. (25)

If D > 0, a11 6= 0,

At =
1

2

(√
D − a01 − a10

)
/a11+

x0 − 1
2

(√
D − a01 − a10

)
/a11

1 + 1
2

(√
D + a01 + a10 + 2a11x0

)(
e −
√
Dt − 1

)
/
√
D
.

(26)
If D = 0, a11 6= 0,

At = −a
0
1 + a10
2a11

+
1

a11

a01 + a10 + 2a11x0
2− (a01 + a10 + 2a11x0) t

. (27)

As a result, the McKean-Vlasov SDE

dXt = (a00 + a01At +
(
a10 + a11At

)
Xt)dt+ (b0 + b1At) dWt

has the following (unique) solution

Xt = x0e
∫ t
0 (a10+a

1
1As)ds +

∫ t

0

(
a00 + a01As

)
e
∫ t
s (a10+a

1
1Ar)drds

+

∫ t

0

(b0 + b1As) e
∫ t
s (a10+a

1
1Ar)drdWs, (28)

where At is given by (24), (25), (26), or (27).

11



Example 2 By taking in Section 4.2

a(x, u) = a01u+ a10x, b(x, u) = b0, a01 + a10 < 0,

we get essentially the Shimizu-Yamada model. From (24) we then have

At = x0e
(a01+a

1
0)t,

and from (28) we then get the explicit solution

Xt = x0e
(a01+a

1
0)t +

∫ t

0

b0e
a10(t−s)dWs

which is Gaussian with mean x0e
(a01+a

1
0)t and variance b20

e2a
1
0t−1
2a10

, and which is

consistent with the terminology in ([4], Section 3.10), where a01 + a10 = −γ and
a10 = −γ − κ.

Example 3 By taking in Section 4.2

a(x, u) =
(
a10 + a11u

)
x, b(x, u) = b0,

we straightforwardly get from (26),

At =
x0e

a10t

1− a11
a10
x0
(
e a

1
0t − 1

) , (29)

and

Xt = x0e
∫ t
0 (a10+a

1
1As)ds +

∫ t

0

b0e
∫ t
s (a10+a

1
1Ar)drdWs, (30)

respectively. Plugging (29) into (30) then yields

Xt =
x0e

a10t

1− a11
a10
x0
(
e a

1
0t − 1

) +
b0e

a10t

1− a11
a10
x0
(
e a

1
0t − 1

)Γt

with Gaussian Γt =
∫ t
0

(
1− a11

a10
x0

(
e a

1
0s − 1

))
e −a

1
0sdWs. In particular, if a10 =

0 we get

At =
x0

1− a11x0t
,

and

Xt =
x0

1− a11x0t
+ b0

∫ t

0

1− a11x0s
1− a11x0t

dWs.

Remark 4 From Example 3 it is clear that if a11 6= 0, the a�ne McKean-Vlasov
solution may explode in �nite time. This is not surprising since in this case the
derivative ∂ua(x, u) is unbounded and so the main results in [1] do not apply. On
the other hand, it is easy to check that for the case a11 6= 0, the a�ne solutions
in Section 4.2 are non-exploding whenever,

D ≥ 0 and
√
D ≥ a01 + a10 + 2a11x0.

That is, in the case D ≥ 0, a11 6= 0, it is always possible to choose x0 such that
the solution does or does not explode.

12



4.3 Kuramoto-Shinomoto-Sakaguchi type models

In the Kuramoto-Shinomoto-Sakaguchi model the nonlinear one-dimensional
Fokker-Planck equation (3) is considered in the domain (t, x) ∈ (0,∞)×(0, 2π) ,
where b = 1, a(x, y) = a(x− y) = − d

dxUMF (x− y) with

UMF (z) = −
∞∑
n=1

cn cos(nz)

and the process starts in u at time zero, for some �xed u ∈ (0, 2π) , see for
details [4] (Sect. 5.3.2). Thus a is a 2π-periodic function related to a 2π-periodic
potential. Let us consider the corresponding McKean-Vlasov SDE{

Xt = u+
∫ t
0

∫
R a(Xs − y)µs(dy)ds+Wt

µt = Law(Xt), t ∈ [0, T ],
(31)

and de�ne the integer valued function k(x) := max {j ∈ Z : 2πj ≤ x} . Obvi-
ously, the process

Yt := Xt − 2πk(Xt) (32)

has state space [0, 2π) . Let ρt(x;u) = ρt(x) be the density of Yt, which is
concentrated on (0, 2π) . Note that for any 2π-periodic function f we have by
(32) that∫ 2π

0

f(x)ρt(x)dx = E [f(Yt)] = E [f(Xt)] =

∫ ∞
−∞

f(x)µt(x)dx,

and for any test function g with support in (0, 2π) it holds that,∫ 2π

0

g(x)ρt(x)dx = E [g(Yt)] = E [g(Xt − 2πk(Xt))]

=
∑
j∈Z

∫ 2π(j+1)

2πj

g(x− 2πj)µt(x)dx

=

∫ 2π

0

g(z)
∑
j∈Z

µt(z + 2πj)dz,

that is
ρt(z) =

∑
j∈Z

µt(z + 2πj) (33)

for z ∈ (0, 2π). Thus, in particular,∫
R
a(x− y)µt(y)dy =

∫ 2π

0

a(x− y)ρt(y)dy. (34)

an (31) is equivalent to

Xt = u+

∫ t

0

∫ 2π

0

a(Xs − y)ρs(y)dyds+Wt

ρt = Law(Yt), t ∈ [0, T ],

13



(see (32)). Note that by using (33) and (34) it straightforwardly follows that
ρt(x) = ρt(x;u) satis�es (3) in the above context. Instead of taking the scalar
product in L2

(
Rd, w

)
, we now consider the scalar product in L2 ([0, 2π)) ,

i.e. w ≡ 1, and take for (ϕk) the standard (total) orthonormal trigonomet-

ric basis consisting of the 2π-periodic functions (2π)
−1/2

, π−1/2 cos (my) and
π−1/2 sin (my) , m = 1, 2, . . . suitably ordered. Thus, by de�ning

γk(t) =

∫ 2π

0

ρt(y)ϕk (y) dy, αk (x) =

∫ 2π

0

a(x− y)ϕk (y) dy,

one has

ρt(y) =

∞∑
k=0

γk(t)ϕk (y) and

∫
R
a(x− y)µt(y)dy =

∞∑
k=0

αk (x) γk(t),

due to (34). That is (8) reads,

Xi,K,N
t = u+

∫ t

0

K∑
k=0

γNk (s)αk(Xi,K,N
s ) ds+ W i

t

with γNk as in (9). Next we may follow (11) for the corresponding Euler scheme.
Finally, the estimator for the density ρt reads

ρ̂Ktest,K,N
t (y) :=

Ktest∑
k=1

γNk (t)ϕk(y) (35)

(cf. the estimator for µt in Section 3.1).

5 Numerical test cases

5.1 A�ne MVSDE models

Let us now test the numerical performance of the projected particle approach
for the processes discussed in Section 4.1. Consider the situation where

a0(u) = (1 + uM ) exp(−u2/2), a1(u) = ρ exp(−u2/2), b(x, u) ≡ σ

for some M > 0, ρ ≥ 0 and σ > 0. Then, by using the Hermite functions (15)
with w ≡ 1 and the well-known identity

uM =
1

2M

bM2 c∑
m=0

M !

m!(M − 2m)!
HM−2m(u),

we derive straightforwardly,

αk(x) =

∫
(1 + uM ) exp(−u2)Hk(u) du+ ρx ·

∫
exp(−u2)Hk(u) du

=

{
0 if k > M or k is uneven
π1/4

2M−k/2
M !

(M−k2 )!
√
k!

if 0 ≤ k ≤M, s.t. M − k is even

+ (1 + ρx) ·

{
π1/4 if k = 0,

0 if k > 0.
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On the other hand, by some algebra we get

Ha0(p, q) =
1√
2πq

∫
(1 + uM )e−u

2/2e−
(p−u)2

2q du =
1√

1 + q
e−

p2

2(1+q)

+
1√

2π(1 + q)
e−

p2

2(1+q)

∫ (√
q

1 + q
y +

p

1 + q

)M
e−y

2/2dy,

and

Ha1(p, q) =
ρ√

1 + q
e−

p2

2(1+q) .

The explicit solution of the MVSDE

dXt =
(
E
[
(1 +XM

t ) exp(−X2
t /2)

]
+ ρXtE

[
exp(−X2

t /2)
])
dt+ σdWt (36)

is given by (19) and (22). Hence the density of Xt is normal with mean

x0e
∫ t
0
Ha1 (As,Gs)ds +

∫ t

0

Ha0 (As, Gs) e
∫ t
s
Ha1 (Ar,Gr)dr ds

and variance

σ2

∫ t

0

e2
∫ t
s
Ha1 (Ar,Gr)dr ds.

In our numerical example we take M = 2, ρ = −1, σ = 1 and x0 = 0.
Our aim is to approximate the normal density of X1 by using our projected
particle method based on Hermite basis. To this end, we �rst simulate N
paths of the process X̄i,K,N , de�ned in (11) with a time step h = 0.02. Since
M = 2, the case K = 2 corresponds to a perfect approximation of the in-
tegral

∫
Rd a(x, y)µt(y) dy =

∑2
k=0 αk(x)γk(t). Next using the obtained sample

X̄1,K,N
1 , . . . , X̄N,K,N

1 , we construct projection estimates for the density of X1

by using Hermite basis functions of order Ktest ∈ {1, 2, . . . , 10}. The mean
(0.727) and the variance (0.487) of the true normal density are approximated
by solving the ODE system (19) using Euler method with time step 0.0001.

The Figure 1 shows the box plots of L2-distance between µ1 and µ̂Ktest,K,N
t for

K ∈ {1, 2} based on 50 di�erent replications of the process X̄i,K,N . As can be
seen, the choice of Ktest is crucial and depends on K and N . It also should
be stressed that the truncation error dominates the statistical one already for
medium sample sizes. An optimal balance between K, N and Ktest can be
found by analyzing the right hand side of (17) under various assumptions on
the coe�cients (Ak,α), (Ak,β) and (γk).

5.2 Convolution-type MVSDE models

Consider the MVSDE of the form:

dXt = EX′ [Q(Xt −X ′t)] dt+ σ dWt, t ∈ [0, 1], X0 ∼ N (0, 1),

i.e. of the form (1) with a(x, y) = Q(x−y), b(x, y) = σ and µ0(x) = (1/
√

2π)e−x
2/2.

Let us again use the Hermite basis to approximate the density of Xt for any

15
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Figure 1: Box plots of L2-distances between the true normal density of X1 with
mean 0.727 and variance 0.487 in the model (36) and its estimates obtained by
using N ∈ {100, 500} paths, Hermite basis functions up to order K ∈ {1, 2}
to approximate coe�cients αk and Hermite basis functions up to order Ktest ∈
{1, 2, . . . , 10} for projection based density estimation.
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t ∈ [0, 1]. In the case Q(x) = e−x
2/2, we explicitly derive via repeated integration

by parts∫
R
e−(x−y)

2/2−x2/2Hn(x) dx =
e−y

2/4

2

∫
e−(z−y)

2/4Hn(z/2) dz

=
√
π
e−y

2/4

2

(
1

2

)n−1
(2y)n.

As a result

αn(y) =

∫
e−(x−y)

2/2−x2/2Hn(x) dx = π1/4

(
1

2

)n/2
yn√
n!
e−y

2/4,

whereHn stands for the normalized Hermite polynomial of order n.We take σ =
0.1. Using the Euler scheme (5) with time step h = 1/L = 0.01, we �rst simulate
N = 500 paths of the time discretized process X̄ ·,N . Next, by means of the closed
form expressions for αn, we generate N paths of the projected approximating
process X̄ ·,K,N , K ∈ {1, . . . , 20} (see (11)), using the same Wiener increments
as for X̄ ·,N , so that the approximations X̄ ·,N and X̄ ·,K,N are coupled. Finally,
we compute the strong approximation error

EN,K =

√√√√ 1

N

N∑
i=1

(
X̄i,K,N

1 − X̄i,N
1

)2
of the projective system relative to the system (5) and record times needed

to compute approximations X̄ ·,N1 and X̄ ·,K,N1 , respectively. Figure 2 shows the
(natural) logarithm of EN,K versus the logarithm of the corresponding (relative)
computational time gain de�ned as (comp. time due to (5) − comp. time due
to (11))/comp. time due to (5), for values K ∈ {1, . . . , 20}. As can be seen, the
relation between logarithmic strong error and logarithmic computational time
gain can be well approximated by a linear function. On the right-hand side of
Figure 2 we depict the projection estimate for the density of X1 corresponding
to K = 20. Note that we compare two particle systems (projected and non
projected ones) for a �xed N and are mainly interested in the dependence of
their strong distance on K. In fact, the choice of N doesn't have much in�uence
on EN,K , provided N is large enough.

6 Proofs

6.1 Proof of Theorem 1

Let us introduce

aK,N (x, y) :=
1

N

N∑
j=1

K∑
k=1

αk(x)ϕk(yj) =
1

N

N∑
j=1

K∑
k=1

ϕk(yj)

∫
a(x, u)ϕk(u)w(u)du,

bK,N (x, y) :=
1

N

N∑
j=1

K∑
k=1

βk(x)ϕk(yj) =
1

N

N∑
j=1

K∑
k=1

ϕk(yj)

∫
b(x, u)ϕk(u)w(u)du,
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Figure 2: Left: Strong error E500,K between the solution of projected (see
(11)) and non-projected (see (5)) time-discretized particle systems versus the
di�erence (gain) in computational time. Right: Estimated density of X1 using
21 basis functions.

and

as(x) :=

∫
Rd
a(x, u)µs(du)ds,

bs(x) :=

∫
Rd
b(x, u)µs(du)ds

for any x ∈ Rd, y ∈ Rd×N . We so have that

∆i
t := Xi,K,N

t −Xi
t =

∫ t

0

(
aK,N (Xi,K,N

s , XK,N
s ) − as(X

i
s)
)
ds

+

∫ t

0

(
bK,N (Xi,K,N

s , XK,N
s ) − bs(X

i
s)
)
dW i

s ,

where W i, i = 1, ..., N, are i.i.d. copies of the m-dimensional Wiener process
W. Hence,

∣∣∆i
t

∣∣p ≤ 2p−1tp−1
∫ t

0

∣∣aK,N (Xi,K,N
s , XK,N

s ) − as(X
i
s)
∣∣p ds (37)

+ 2p−1dp−1
d∑
q=1

∣∣∣∣∫ t

0

(
bqK,N (Xi,K,N

s , XK,N
s ) − bqs(X

i
s)
)
dW i

s

∣∣∣∣p ,
where

bqK,N :=
(
bq,1K,N , ..., b

q,m
K,N

)
, q = 1, ..., d, (38)

denote the rows of the Rd×m valued bK,N , and so we have with

∆p
t :=

1

N

N∑
i=1

sup
s∈[0,t]

∣∣∆i
s

∣∣p
18



the bound

∆p
t ≤ 2p−1tp−1

1

N

N∑
i=1

∫ t

0

∣∣aK,N (Xi,K,N
s , XK,N

s ) − as(X
i
s)
∣∣p ds

+ 2p−1dp−1
d∑
q=1

1

N

N∑
i=1

sup
s∈[0,t]

∣∣∣∣∫ s

0

(
bqK,N (Xi,K,N

s , XK,N
s ) − bqs(X

i
s)
)
dW i

s

∣∣∣∣p
=: 2p−1tp−1 Term1 + 2p−1dp−1Term2. (39)

Assumption (AC) implies

|aK,N (x, y)− aK,N (x′, y′)| =

∣∣∣∣∣∣ 1

N

N∑
j=1

K∑
k=1

(
αk(x)ϕk(yj)− αk(x′)ϕk(y′j)

)∣∣∣∣∣∣
≤ 1

N

N∑
j=1

K∑
k=1

|αk(x)− αk(x′)|
∣∣ϕk(y′j)

∣∣
+

1

N

N∑
j=1

K∑
k=1

|αk(x)|
∣∣ϕk(yj)− ϕk(y′j)

∣∣
≤ |x− x′|DϕBα +

LϕAα
N

(1 + |x|)
N∑
j=1

∣∣yj − y′j∣∣ .
(40)

Hence

|aK,N (x, y)− aK,N (x′, y′)|p ≤ 2p−1 |x− x′|pDp
ϕB

p
α

+ 2p−1LpϕA
p
α(1 + |x|)p 1

N

N∑
j=1

∣∣yj − y′j∣∣p .
So it holds that∣∣aK,N (Xi

s, Xs)− aK,N (Xi,K,N
s , XK,N

s )
∣∣p ≤ 2p−1Dp

ϕB
p
α|∆i

s|p

+ 2p−1LpϕA
p
α(1 +

∣∣Xi
s

∣∣)p 1

N

N∑
j=1

|∆j
s|p,

and then it follows that, with regard to Term1,

E [Term1] ≤ 22p−2Dp
ϕB

p
α

∫ t

0

E
[
∆p
s

]
ds

+ 22p−2LpϕA
p
α

∫ t

0

E

[
∆p
s ·

1

N

N∑
i=1

(1 +
∣∣Xi

s

∣∣)p] ds
+ 2p−1

1

N

N∑
i=1

∫ t

0

E
[∣∣aK,N (Xi

s, Xs) − as(X
i
s)
∣∣p] ds. (41)

Let us now consider the middle term. Set

ζs,N :=
1

N

N∑
i=1

(1 +
∣∣Xi

s

∣∣)p − 1

N

N∑
i=1

E
[
(1 +

∣∣Xi
s

∣∣)p]
19



so that

E

[
∆p
s ·

1

N

N∑
i=1

(1 +
∣∣Xi

s

∣∣)p] =
1

N

N∑
i=1

E
[
(1 +

∣∣Xi
s

∣∣)p] · E [∆p
s

]
+ E

[
ζs,N ·∆p

s

]
. (42)

For arbitrary but �xed θ > 0, it holds that

E
[
ζs,N ·∆p

s

]
= E

[
ζs,N ·∆p

s 1{ζs,N≤θ}

]
+ E

[
ζs,N ·∆p

s 1{ζs,N>θ}

]
, (43)

where on the one hand

E
[
ζs,N ·∆p

s 1{ζs,N≤θ}

]
≤ θE

[
∆p
s

]
(44)

and on the other

E
[
ζs,N ·∆p

s 1{ζs,N>θ}

]
≤
√

E
[
ζ2s,N1{ζs,N>θ}

]√
E

[(
∆p
s

)2]
. (45)

Due to (2) we have that for any η > 0, there exists Cθ,η > 0 such that

E
[
ζ2s,N1{ζs,N>θ}

]
=

1

N
E

[(√
Nζs,N

)2
1{√Nζs,N>θ

√
N}

]
≤

C2
θ,η

Nη+1
, 0 ≤ s ≤ T,

for N large enough and

E

[(
∆p
s

)2]
≤ E

 1

N

N∑
j=1

sup
r∈[0,T ]

∣∣∆j
r

∣∣2p = E

[
sup

r∈[0,T ]

|∆·r|
2p

]

= E

[
sup

r∈[0,T ]

∣∣X ·,K,Nr −X ·r
∣∣2p]

≤ 22p−1E

[
sup

r∈[0,T ]

∣∣X ·,K,Nr

∣∣2p]+ 22p−1E

[
sup

r∈[0,T ]

|X ·r|
2p

]
≤ D1 +D2 =: D2, (46)

where due to Theorem 4, Appendix 7,

22p−1E

[
sup

r∈[0,T ]

∣∣X ·,K,Nr

∣∣2p] ≤ D1 <∞ uniform in N and K,

and

D2 := 22p−1E

[
sup

r∈[0,T ]

|X ·r|
2p

]
<∞

due to (2). Thus, by combining (42)�(46), one has

E

[
∆p
s ·

1

N

N∑
i=1

(1 +
∣∣Xi

s

∣∣)p] ≤ F p1 · E [∆p
s

]
+

F2

Np/2+1/2
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with F1 := θ1/p + sup0≤s≤T ‖1 + |Xs|‖p and F2 := Cθ,pD, where we have taken
η = p. Set now

H(s) := E
[
∆p
s

]
,

then the estimate (41) (cf. (39)) reads

1

N

N∑
i=1

∫ t

0

E
[∣∣aK,N (Xi,K,N

s , XK,N
s ) − as(X

i
s)
∣∣p] ds

≤
(
22p−2Dp

ϕB
p
α + 22p−2LpϕA

p
αF

p
1

) ∫ t

0

H(s)ds+ 22p−2LpϕA
p
α

F2

Np/2+1/2
t

+2p−1
1

N

N∑
i=1

∫ t

0

E
[∣∣aK,N (Xi

s, Xs) − as(X
i
s)
∣∣p] ds. (47)

Regarding the term Term2 we call upon the Burkholder-Davis-Gundy's inequal-
ity which states that for any p ≥ 1,∥∥∥∥∥ sup

s∈[0,t]

∣∣∣∣∫ s

0

(
bqK,N (Xi,K,N

s , XK,N
s ) − bqs(X

i
s)
)
dW i

s

∣∣∣∣
∥∥∥∥∥
p

≤ Cp

(
E

[(∫ t

0

∣∣∣(bqK,N (Xi,K,N
s , XK,N

s ) − bqs(X
i
s)
)∣∣∣2 ds)p/2])1/p

.

This implies that for p ≥ 2,

E sup
s∈[0,t]

∣∣∣∣∫ s

0

(
bqK,N (Xi,K,N

s , XK,N
s ) − bqs(X

i
s)
)
dW i

s

∣∣∣∣p (48)

≤ CppE

[(∫ t

0

∣∣∣(bqK,N (Xi,K,N
s , XK,N

s ) − bqs(X
i
s)
)∣∣∣2 ds)p/2]

≤ Cpp tp/2−1E

[∫ t

0

∣∣∣(bqK,N (Xi,K,N
s , XK,N

s ) − bqs(X
i
s)
)∣∣∣p ds]

≤ Cpp tp/2−1E

[∫ t

0

∣∣(bK,N (Xi,K,N
s , XK,N

s ) − bs(X
i
s)
)∣∣p ds] .

Now, completely analogue to the derivation of (47), we get

1

N

N∑
i=1

∫ t

0

E
[∣∣bK,N (Xi,K,N

s , XK,N
s ) − bs(X

i
s)
∣∣p] ds

≤
(

22p−2Dp
ϕB

p
β + 22p−2LpϕA

p
βF1

)∫ t

0

H(s)ds+ 22p−2LpϕA
p
β

F2

Np/2+1/2
t

+2p−1
1

N

N∑
i=1

∫ t

0

E
[∣∣bK,N (Xi

s, Xs) − bs(X
i
s)
∣∣p] ds. (49)
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Now by taking expectations on both sides of (39) and gathering all together, we
arrive at

H(t) ≤
(
Dp
ϕB

p
αT

p−1 + LpϕA
p
αF

p
1 T

p−1

+CppD
p
ϕB

p
βd

pT p/2−1 + CppL
p
ϕA

p
βd

pT p/2−1F p1

)
23p−3

∫ t

0

H(s)ds

+23p−3
(
LpϕA

p
αT

p + dpCppL
p
ϕA

p
βT

p/2
) F2

Np/2+1/2
(50)

+22p−2T p−1
1

N

N∑
i=1

∫ t

0

E
[∣∣aK,N (Xi

s, Xs) − as(X
i
s)
∣∣p] ds

+22p−2dpCppT
p/2−1 1

N

N∑
i=1

∫ t

0

E
[∣∣bK,N (Xi

s, Xs) − bs(X
i
s)
∣∣p] ds.

We next proceed with explicit estimates for the last two terms above. Let us
write

aK,N (Xi
s, Xs)−as(Xi

s) =

K∑
k=1

αk(Xi
s)

N∑
j=1

1

N

(
ϕk(Xj

s )− γk(s)
)
−

∞∑
k=K+1

αk(Xi
s)γk(s),

then we have by the Minkowski inequality,

∥∥aK,N (Xi
s, Xs)− as(X

i
s)
∥∥
p
≤

K∑
k=1

∥∥∥∥∥∥αk(Xi
s)

1

N

N∑
j=1

ξjk

∥∥∥∥∥∥
p

+

∞∑
k=K+1

∥∥αk(Xi
s)γk(s)

∥∥
p
,

where ξjk := ϕk(Xj
s )− γk(s), j = 1, . . . , N, have mean zero. Let us now observe

that

E

∣∣∣∣∣∣
N∑
j=1

ξjk

∣∣∣∣∣∣
p∣∣∣∣∣∣Xi

 = E

∣∣∣∣∣∣ξik +

N∑
j 6=i

ξjk

∣∣∣∣∣∣
p∣∣∣∣∣∣Xi


≤ 2p−1E

∣∣ξik∣∣p +

∣∣∣∣∣∣
N∑
j 6=i

ξjk

∣∣∣∣∣∣
p∣∣∣∣∣∣Xi


≤ 22p−1Dp

k,ϕ + 2p−1E

∣∣∣∣∣∣
N∑
j 6=i

ξjk

∣∣∣∣∣∣
p

using (7). For p ≥ 2, it follows from the Rosenthal's inequality that,

E

∣∣∣∣∣∣
N∑
j 6=i

ξjk

∣∣∣∣∣∣
p ≤ C(1)

p


 N∑
j 6=i

E
∣∣∣ξjk∣∣∣2

p/2

+

N∑
j 6=i

E
∣∣∣ξjk∣∣∣p


for a constant C

(1)
p only depending on p, and, in fact, for p = 2 we have simply,

E

∣∣∣∣∣∣
N∑
j 6=i

ξjk

∣∣∣∣∣∣
p =

N∑
j 6=i

E
∣∣∣ξjk∣∣∣2 .
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Thus, for p ≥ 2,

E

∣∣∣∣∣∣ 1

N

N∑
j=1

ξjk

∣∣∣∣∣∣
p∣∣∣∣∣∣Xi

s

 ≤ 22p−1Dp
k,ϕ

Np
+

2p−1C
(1)
p

Np


 N∑
j 6=i

E
∣∣∣ξjk∣∣∣2

p/2

+

N∑
j 6=i

E
∣∣∣ξjk∣∣∣p


≤

22p−1Dp
k,ϕ

Np
+

22p−1C
(1)
p Dp

k,ϕ

Np/2
+

22p−1C
(1)
p Dp

k,ϕ

Np−1

≤

(
C

(2)
p

)p
Dp
k,ϕ

Np/2
for N > Np and some constants C(2)

p > 0, Np > 0.

So for any p ≥ 2,∥∥∥∥∥∥αk(Xi
s)

1

N

N∑
j=1

ξjk

∥∥∥∥∥∥
p

p

≤ Apk,αE

(1 +
∣∣Xi

s

∣∣)p E

∣∣∣∣∣∣ 1

N

N∑
j=1

ξjk

∣∣∣∣∣∣
p∣∣∣∣∣∣Xi

s


≤ Apk,αD

p
k,ϕ

(
C

(2)
p

)p
Np/2

E [(1 + |Xs|)p] ,

hence∥∥∥∥∥∥αk(Xi
s)

1

N

N∑
j=1

ξjk

∥∥∥∥∥∥
p

≤ C(2)
p Ak,αDk,ϕF3N

−1/2 with F3 := sup
0≤s≤T

‖1 + |Xs|‖p ,

and further

∞∑
k=K+1

∥∥αk(Xi
s)γk(s)

∥∥
p
≤ F3

∞∑
k=K+1

Ak,α |γk(s)| .

We thus obtain,

∥∥aK,N (Xi
s, Xs)− as(X

i
s)
∥∥
p
≤ C(2)

p AαDϕF3N
−1/2 + F3

∞∑
k=K+1

Ak,α |γk(s)| ,

that is,

E
[∣∣aK,N (Xi

s, Xs)− as(X
i
s)
∣∣p] ≤ 2p−1

(
C(2)
p

)p
ApαD

p
ϕF

p
3N
−p/2

+ 2p−1F p3

( ∞∑
k=K+1

Ak,α |γk(s)|

)p
. (51)

Analogously we get

E
[∣∣bK,N (Xi

s, Xs)− bs(X
i
s)
∣∣p] ≤ 2p−1

(
C(2)
p

)p
ApβD

p
ϕF

p
3N
−p/2

+ 2p−1F p3

( ∞∑
k=K+1

Ak,β |γk(s)|

)p
. (52)

Now, combining the estimates (51) and (52) with (50), yields for 0 ≤ t ≤ T,
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H(t) ≤
(
Cp,ϕ,XT

p−1 +Dp,ϕ,Xd
pT p/2−1

)∫ t

0

H(s)ds

+
(
Ep,ϕ,XT

p + Fp,ϕ,Xd
pT p/2 +O(N−1/2)

)
N−p/2

+Gp,ϕ,XT
p−1

∫ T

0

( ∞∑
k=K+1

Ak,α |γk(s)|

)p
ds

+Hp,ϕ,Xd
pT p/2−1

∫ T

0

( ∞∑
k=K+1

Ak,β |γk(s)|

)p
ds

with abbreviations

Cp,ϕ,X = 23p−3Dp
ϕB

p
α + 23p−3LpϕA

p
αF

p
1

Dp,ϕ,X = 23p−3CppD
p
ϕB

p
β + 23p−3CppL

p
ϕA

p
βF

p
1

Ep,ϕ,X = 23p−3
(
C(2)
p

)p
ApαD

p
ϕF

p
3

Fp,ϕ,X = 23p−3Cpp

(
C(2)
p

)p
ApβD

p
ϕF

p
3

Gp,ϕ,X = 23p−3F p3

Hp,ϕ,X = 23p−3CppF
p
3 .

Finally, the statement of the theorem follows from Gronwall's lemma by raising

the resulting inequality to the power 1/p, then using that (
∑q
i=1 |ai|p)

1/p ≤∑q
i=1 |ai| for arbitrary ai ∈ R, p, q ∈ N, a Minkowski type inequality, and the

observation that

E
[
∆p
T

]
=

1

N

N∑
i=1

E

[
sup

s∈[0,T ]

∣∣∆i
s

∣∣p] = E

[
sup

s∈[0,T ]

|∆·s|
p

]
.

6.2 Proof of Theorem 3

(i): Under the assumption (18) the functions Haj and Hb are locally Lipschitz
in R× R≥0 and, obviously, their extensions (p, q) → Haj (p, |q|), Hb(p, |q|) are
locally Lipschitz in R× R. Thus, by standard ODE theory, there exists a unique
solution to the system

G′t = H2
b (At, |Gt|) + 2Ha1 (At, |Gt|)Gt

A′t = Ha0 (At, |Gt|) +Ha1 (At, |Gt|)At, (A0, G0) = (x0, 0) , 0 ≤ t < t∞ ≤ ∞,

for some possibly �nite explosion time t∞. Then it can be straightforwardly
checked that this (unique) solution can be represented as

Gt =

∫ t

0

H2
b (As, |Gs|) e2

∫ t
s
Ha1 (Ar,|Gr|)drds (53)

At = e
∫ t
0
Ha1 (As,|Gs|)dsx0 +

∫ t

0

Ha0 (As, |Gs|) e
∫ t
s
Ha1 (Ar,|Gr|)drds, 0 ≤ t < t∞,

whence in particular Gt ≥ 0 for 0 ≤ t < t∞. This proves (i).
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(ii): By straightforward di�erentiating with respect to t, it follows that (22)
is a solution to (21). Let us abbreviate in (22)

a0t ≡ Ha0 (At, Gt) , a1t ≡ Ha1 (At, Gt) , bt ≡ Hb (At, Gt) , 0 ≤ t < t∞.

The characteristic function of Xt in (22) then takes the form

ϕt(v) = exp

[
iv

∫ t

0

a0se
∫ t
s
a1
rdrds− 1

2
v2
∫ t

0

b2se
2
∫ t
s
a1
rdrds+ ive

∫ t
0
a1
sdsx0

]
. (54)

Since

e−
(p−u)2

2q

√
2πq

=
1

2π

∫
e−ivu exp

[
ivp− v2q/2

]
dv,

we have for j = 0, 1,

Haj (p, q) =
1

2π

∫
aj(u)du

∫
exp

[
ivp− v2q/2

]
e−ivudv.

It then follows that

Haj (e
∫ t
0
a1
sdsx0 +

∫ t

0

a0se
∫ t
s
a1
rdrds,

∫ t

0

(
b0s
)2
e2
∫ t
s
a1
rdrds)

=
1

2π

∫
aj(u)du

∫
ϕt(v)e−ivudv

=

∫
aj(u)µt(u)du = E

[
aj(Xt)

]
, j = 0, 1, (55)

with µt being the density of Xt, and similarly,

Hb(e
∫ t
0
a1
sdsx0 +

∫ t

0

a0se
∫ t
s
a1
rdrds,

∫ t

0

(
b0s
)2
e2
∫ t
s
a1
rdrds) = E [b(Xt)] . (56)

On the other hand, in view of (53) and the fact that G ≥ 0, one has∫ t

0

(
b0s
)2
e2
∫ t
s
a1
rdrds = Gt (57)

e
∫ t
0
a1
sdsx0 +

∫ t

0

a0se
∫ t
s
a1
rdrds = At,

that is, by (55), (56), and (57), we obtain (20) from (21).

7 Appendix

7.1 Existence of moments

Theorem 4 Fix some p ≥ 2 and suppose that E[|X0|p] < ∞. Then it holds
under assumptions (AC) and (AF),∥∥∥∥∥ sup

s∈[0,T ]

∣∣X ·,K,Ns

∣∣∥∥∥∥∥
p

<∞,

uniformly in K and N.
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Proof. Fix some i ∈ {1, . . . , N} and for every R > 0 introduce the stopping
time

τi,R = inf
{
t ∈ [0, T ] :

∣∣∣Xi,K,N
t −Xi

0

∣∣∣ > R
}
.

We obviously have

sup
t∈[0,T ]

∣∣∣Xi,K,N
t∧τi,R

∣∣∣ ≤ R+
∣∣Xi

0

∣∣
so that the non-decreasing function fR(t) :=

∥∥∥sups∈[0,t]

∣∣∣Xi,K,N
s∧τi,R

∣∣∣∥∥∥
p
, t ∈ [0, T ],

is bounded by R+
∥∥Xi

0

∥∥
p
. On the other hand

sup
s∈[0,t]

∣∣∣Xi,K,N
s∧τi,R

∣∣∣ ≤ ∣∣Xi
0

∣∣+

∫ t∧τi,R

0

∣∣aK,N (Xi,K,N
r , XK,N

r )
∣∣ dr

+ sup
s∈[0,t]

∣∣∣∣∫ s∧τi,R

0

bK,N (Xi,K,N
r , XK,N

r ) dW i
r

∣∣∣∣
≤
∣∣Xi

0

∣∣+

∫ t∧τi,R

0

∣∣aK,N (Xi,K,N
r , XK,N

r )
∣∣ dr

+

d∑
q=1

sup
s∈[0,t]

∣∣∣∣∫ s∧τi,R

0

bqK,N (Xi,K,N
r , XK,N

r ) dW i
r

∣∣∣∣
(cf. (38)). It then follows from the Minkowski and BDG inequality that

fR(t) ≤ ‖X0‖p +

∫ t

0

∥∥1{s≤τi,R}aK,N (Xi,K,N
s , XK,N

s )
∥∥
p
ds

+ dCBDGp

∥∥∥∥∥∥
√∫ t∧τi,R

0

∣∣∣bK,N (Xi,K,N
s , XK,N

s )
∣∣∣2 ds

∥∥∥∥∥∥
p

≤ ‖X0‖p +AαDϕ

∫ t

0

∥∥∥(1 +
∣∣∣Xi,K,N

s∧τi,R

∣∣∣)∥∥∥
p
ds

+AβDϕdC
BDG
p

∥∥∥∥∥∥
√∫ t

0

∣∣∣(1 +
∣∣∣Xi,K,N

s∧τi,R

∣∣∣)∣∣∣2 ds
∥∥∥∥∥∥
p

≤ ‖X0‖p +AαDϕ

∫ t

0

(
1 +

∥∥∥∣∣∣Xi,K,N
s∧τi,R

∣∣∣∥∥∥
p

)
ds

+AβDϕdC
BDG
p

√t+

(∫ t

0

∥∥∥∥∣∣∣Xi,K,N
s∧τi,R

∣∣∣2∥∥∥∥
p/2

ds

)1/2


again by the Minkowski inequality (p ≥ 2). Consequently, the function fR
satis�es

fR(t) ≤ ‖X0‖p+AαDϕ

∫ t

0

(1 + fR(s)) ds+AβDϕdC
BDG
p

(
√
t+

(∫ t

0

f2R(s) ds

)1/2
)
,
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that is,

fR(t) ≤ ‖X0‖p +AαDϕt+AβDϕdC
BDG
p

√
t

+AαDϕ

∫ t

0

fR(s) ds+AβDϕdC
BDG
p

(∫ t

0

f2R(s) ds

)1/2

.

By Lemma 2 (see Appendix) it follows that∥∥∥∥∥ sup
s∈[0,T ]

∣∣∣Xi,K,N
s∧τi,R

∣∣∣∥∥∥∥∥
p

≤ 2e

(
2AαDϕ+A

2
βD

2
ϕd

2(CBDGp )
2
)
T× (58)

(
‖X0‖p +AαDϕT +AβDϕdC

BDG
p

√
T
)
.

Now note that the stopping times τi,R are non-decreasing in R, and thus
converges non-decreasingly to τi,∞ say, with τi,∞ ∈ [0, T ] ∪ {∞}. Thus,

R→ sup
s∈[0,T ]

∣∣∣Xi,K,N
s∧τi,R

∣∣∣
is nondecreasing with

lim
R↑∞

sup
s∈[0,T ]

∣∣∣Xi,K,N
s∧τi,R

∣∣∣ =

{
sups∈[0,T ]

∣∣Xi,K,N
s

∣∣ on {τi,∞ =∞}
∞ on {τi,∞ ≤ T}

. (59)

Indeed, on the set {τi,∞ ≤ T} we have for any R > 0,
∣∣∣Xi,K,N

τi,R −Xi
0

∣∣∣ ≥ R with

τi,R ≤ T, so that

sup
s∈[0,T ]

∣∣∣Xi,K,N
s∧τi,R

∣∣∣ ≥ ∣∣∣Xi,K,N
τi,R

∣∣∣ ≥ ∣∣∣Xi,K,N
τi,R

∣∣∣ ≥ R− ∣∣Xi
0

∣∣ .
The Fatou lemma (59) implies (with 0 :=∞ · 0),∥∥∥∥∥ lim

R↑∞
1{τi,∞≤T} sup

s∈[0,T ]

∣∣∣Xi,K,N
s∧τi,R

∣∣∣∥∥∥∥∥
p

=∞ · P ({τi,∞ ≤ T})

≤ lim inf
R

∥∥∥∥∥1{τi,∞≤T} sup
s∈[0,T ]

∣∣∣Xi,K,N
s∧τi,R

∣∣∣∥∥∥∥∥
p

≤ lim inf
R

∥∥∥∥∥ sup
s∈[0,T ]

∣∣∣Xi,K,N
s∧τi,R

∣∣∣∥∥∥∥∥
p

<∞,

because of (58). So P ({τi,∞ ≤ T}) = 0, i.e. τi,∞ =∞ almost surely. Again by
the Fatou lemma, (59) then implies∥∥∥∥∥ sup

s∈[0,T ]

∣∣Xi,K,N
s

∣∣∥∥∥∥∥
p

≤ lim inf
R

∥∥∥∥∥ sup
s∈[0,T ]

∣∣∣Xi,K,N
s∧τi,R

∣∣∣∥∥∥∥∥
p

<∞,

uniformly in K and N, because of (58) again.
The following lemma is consequence of Gronwall's theorem.
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Lemma 2 Let f : [0, T ] → R+ and ψ : [0, T ] → R+ be two non-negative non-
decreasing functions satisfying

f(t) ≤ A
∫ t

0

f(s) ds+B

(∫ t

0

f2(s) ds

)1/2

+ ψ(t), t ∈ [0, T ], (60)

where A,B are two positive real constants. Then

f(t) ≤ 2e(2A+B2)t ψ(t), t ∈ [0, T ].

Proof. It follows from the elementary inequality
√
xy ≤ 1

2 (x/B +By) , x, y ≥
0,B > 0, that(∫ t

0

f2(s) ds

)1/2

≤
(
f(t)

∫ t

0

f(s) ds

)1/2

≤ f(t)

2B
+
B

2

∫ t

0

f(s) ds.

Plugging this into (60) yields

f(t) ≤ (2A+B2)

∫ t

0

f(s) ds+ 2ψ(t).

Now the standard Gronwall inequality yields the desired result.
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