PRIMAL-DUAL REGRESSION APPROACH FOR MARKOV DECISION
PROCESSES WITH GENERAL STATE AND ACTION SPACES

DENIS BELOMESTNY! AND JOHN SCHOENMAKERS?

ABsTRACT. We develop a regression-based primal-dual martingale approach for solving discrete
time, finite horizon MDPs with state and action spaces that are general in the sense that they
may be finite or infinite (but regular enough) subsets of Euclidean space. As a result, our method
allows for the construction of tight upper and lower biased approximations of the value functions
and provides tight approximations to the optimal policy. In particular, we prove error bounds for
the estimated duality gap featuring polynomial dependence on the time horizon and sublinear
dependence of the stochastic part of the error on the cardinality/dimension of the state and
action spaces. From a computational point of view, the proposed method is efficient since, in
contrast to the usual duality-based methods for optimal control problems in the literature, the
Monte Carlo procedures involved here do not require nested simulations.

1. INTRODUCTION

Markov decision processes (MDPs) provide a general framework for modeling sequential decision-
making under uncertainty. A large number of practical problems from various areas such as eco-
nomics, finance, and machine learning can be viewed as MDPs. For a classical reference we refer
to [22], and for MDPs with application to finance, see [5]. The aim is usually to find an optimal
policy that maximizes the expected accumulated rewards (or minimizes the expected accumulated
costs). In principle, these Markov decision problems can be solved by a dynamic programming
approach; however, in practice, this approach suffers from the so-called “curse of dimensionality”
and the “curse of horizon” meaning that the complexity of the program increases exponentially in
the dimension of the problem (dimensions of the state and action spaces) and the horizon (at least
for problems without discounting). While the curse of dimensionality is known to be unavoidable
in the case of general continuous state/action spaces, the possibility of beating the curse of the
horizon remains an open issue, see [32] for recent results and discussions.

A natural performance metric is given by the value function V™ which is the expected total
reward of the agent following 7. Unfortunately, even a precise knowledge of V™ does not provide
reliable information on how far is the policy 7 from the optimal one. To address this issue
a popular quality measure is the regret of the algorithm which is the difference between the
total sum of rewards accumulated when following the optimal policy and the sum of rewards
obtained when following the current policy w. In the setting of finite state- and action space
MDPs, there is a variety of regret bounds for popular Reinforcement Learning (RL) algorithms
like Q-learning [20], optimistic value iteration |3], and many others. Unfortunately, regret bounds
beyond the discrete setup are much less common in the literature. Even more crucial drawback
of the regret-based comparison is that regret bounds are typically pessimistic and rely on the
unknown quantities of the underlying MDP’s such as maximal value of rewards or smoothness
of the action-value function functions . A simpler, but related, quantity is the suboptimality gap
(policy error) Ar(x) := V*(z) — V™(z). Since we do not know V*, the suboptimality gap can
not be calculated directly. There is a vast amount of literature devoted to theoretical guarantees
for Ar(z), see e.g. [2], [29], [21] and references therein. However, these bounds share the same
drawbacks as the regret bounds. Moreover, known bounds do not apply to the general policy «
and depend heavily on the particular algorithm which produced it. For instance, in Approximate
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Policy Iteration (API, [12]) all existing bounds for A;(z) depend on the one-step error induced by
the approximation of the action-value function. This one-step error is difficult to quantify since it
depends on the unknown smoothness properties of the action-value function. Similarly, in policy
gradient methods (see e.g. [28]), there is always an approximation error due to the choice of the
family of policies that can be hardly quantified.

Methods devoted to constructing (sub-)optimal policies for optimal control or optimal stopping
times in the case of standard or multiple optimal stopping, are usually termed primal. Such
methods typically result in a lower biased estimate of the corresponding MDP, i.e., a lower bound
in mean on the optimal expected reward.! The accuracy of a suboptimal policy obtained via
a primal method, is generally not known, however. Using an upper biased estimate, i.e. an
upper bound in mean, due to a dual approach makes it possible to decide whether or not the
suboptimal policy is “tight” in the sense that the gap between the upper and lower estimates
is “small”. Hence the lack of theoretical guarantees on a suboptimal policy can be addressed
by providing a dual bound, that is, an upper bound (or lower bound) on the optimal expected
reward (or cost).  The last decades have seen a high development of duality approaches for
optimal stopping and control problems, initiated by the works of [25] and [19] in the context
of pricing of American and Bermudan options. Essentially, in the dual approach one minimizes
a certain dual martingale representation corresponding to the problem under consideration, for
instance a single or multiple stopping problem, an MDP, or a more general control problem, over
a set of martingales or martingale type elements. In general terms, the dual version of an optimal
control problem Vi = sup, E[R (a)] for a reward R depending on adapted policies o may be
formulated as

Vi = inf E[ sup (R(a) — M (a))].

martingales M(a) g in control space
Thus, in the dual approach one seeks for optimal martingales rather than optimal policies. For
optimal stopping problems, [1] showed how to compute martingales using stopping rules via
nested Monte Carlo simulations. In [24], the dual representation for optimal stopping (hence
American options) was generalized to Markovian control problems. Somewhat later [14]| presented
a dual representation for quite general control problems in terms of the so-called information
relaxation and martingale penalties. On the other hand, the dual representation for optimal
stopping was generalized to multiple stopping in [26] and [11]. As a numerical approach to [24],
[10] applied regression methods to solve Markov decision problems that can be seen, in a sense,
as a generalization of [1]. However, it should be noted that in the convergence analysis of [10],
the primal value function estimates showed exponential dependence on the time horizon, and
the corresponding dual algorithm was based on nested simulations while its convergence was
not analyzed there. Generally speaking, to the best of our knowledge, all error bounds for the
primal/dual value function estimates available in the literature so far show exponential dependence
on the horizon at least in the case of finite horizon undiscounted optimal control problems, e.g.
see also [31].

In this paper, we propose a novel approach towards constructing valid dual upper bounds on
the optimal value function via simulations and pseudo regression in the case of finite horizon
MDPs with general (possibly continuous) state and action spaces. This approach includes the
construction of primal value functions via a backwardly structured pseudo regression procedure
based on a properly chosen reference distribution (measure). In contrast to standard regression,
where the conditional expectation E[Y|X] is estimated using a simulation of pairs (X,Y), in
pseudo-regression one simulates X according to a suitably chosen reference measure, and then
simulates Y given each realization of X. As a result, in the estimate for E[Y'|X] one may use the
explicitly known covariance matrix of X due to the reference measure, and so avoid the delicate
problem of inverting the empirical covariance matrix of X. In particular, pseudo regression is
carried out with respect to the state variable to approximate conditional expectations of the value
function (or its estimate). Let us note that in the context of optimal stopping, a similar primal
procedure was proposed in [6], though with accuracy estimates exploding with the number of
exercise dates or time horizon. As for the dual part of our algorithm, we avoid nested Monte

Iproblems of minimizing expected costs can be easily recast to our setting by changing signs.
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Carlo simulation that were used in many dual-type methods proposed in the literature so far,
see for instance the path-wise optimization approach for MDPs in [15] and [13] for an overview.
Instead, for constructing the dual martingale increments, we propose to combine a point-wise
pseudo regression approach for estimating the martingale parts of the primal estimates, involving
a linear system of elementary martingale functions, with a suitable interpolation method such that
the martingale property is preserved. Furthermore, we provide a rigorous convergence analysis
showing that the error of approximating the true value function via the estimated dual value
function (duality gap) depends at most polynomially on the time horizon. Moreover, we show
that the stochastic part of the error depends sublinearly on the state’s dimension (or cardinality
in the finite case) and action spaces. Let us also mention the work [33| for another approach
to avoid nested simulations when estimating the conditional expectations, hence the martingale
functions, inside the dual representation. However, [33] left the issue of bounding the duality gap
in terms of the error bounds on the primal value functions as an open problem. In this respect,
we have solved this problem within the context of the algorithm proposed in this paper.

The paper is organized as follows. The basic setup of the Markov Decision Process and the well-
known representations for its maximal expected reward is given in Section 2. Section 3 recalls the
dual representation for an MDP from the literature. The primal pseudo regression algorithm for
the value functions is described in Section 4, whereas the dual regression algorithm is presented
in Section 5. Section 6 and Section 7 are dedicated to the convergence analysis of the primal
and dual algorithm, respectively. In Section 8, we illustrate the primal-dual approach proposed
above in the context of a particular MDP framework with infinite state and action space, which is
popular in various practical applications. Appendix A introduces some auxiliary notions needed
to formulate an auxiliary result in Appendix B stemming from the theory of empirical processes.

2. SETUP AND BASIC PROPERTIES OF THE MARKOV DECISION PROCESS

We consider discrete time finite horizon Markov Decision Process (MDP), given by the tuple

M= (57 A, (Ph)hE]H}7 (Rh)he[H[v F, H)a
made up by the following items:
a measurable state space (S, S);
a measurable action space (A, .A);
an integer H which defines the horizon of the problem;
for each h €]H], with |H] := {1,...,H}? a time dependent transition function P, :
S x A — P(S) where P(S) is the space of probability measures on (S,S);
a time dependent reward function Ry, : SXA — R, where Ry, (z, a) is the immediate reward
associated with taking action a € A in state = € S at time step h € [H|;
e a terminal reward F': S — R.

Let 6 := (Q, F, (]:t)te[H},P) be a filtered probability space. For a fixed policy 7w = (7o, ..., mg—-1)
with 7 : S — P(A), we consider an adapted controlled process (Stht)t:o
So €S, Ay ~ 7T0(So), and

St+1NPt+1('|St,At), AtNﬂ't(St), tIO,...,H—l.
Assumption 1. In the sequel, we shall assume that the controlled chain (S;, A;) comes from a
system of the so-called random iterative functions:

Sy = KCe(Si—1, As—1,6t) ~ Pi(+| Se—1, As—1), t €]H],

where K : SXAxXE — S is a measurable map with E being a measurable space, and (g¢,t €] H]) is
an adapted i.i.d. sequence of E-valued random variables on & with distribution Pg. Furthermore,
gt is assumed to be independent of F;_; for ¢t €] H].

g on G satisfying

The expected reward of this MDP due to the chosen policy 7 is given by
H-1
Vi (2) :==Engx | > Ri(Si,A) + F(Su)|, z€S
t=0

2We further write [H] := {0,1,..., H} etc.
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where E , stands for expectation induced by the policy 7 and transition kernels P, t € [H],
conditional on the event Sy = x. The goal of the Markov decision problem is to determine the
maximal expected reward:

H-1

Z Rt(St, At) + F(SH)

(2.1) Vi :=supEr 4,
T t=0

= sup Vg™ ().

Let us introduce for a generic time h € [H], the value function due to the policy r,

H-1
Vii(z) = Er e Z Ri(St, Ar) + F(Su)| Sh = 90] , TES.
t=h
Furthermore, let
(2.2) Vi¥(z) :=sup V" (z)

be the optimal value function at h € [H]. It is well known that under weak conditions, there
exists an optimal policy solving (2.2) which depends on S; in a deterministic way. In this case, we
shall write #* = (7} (S;)) for some mappings 77 : S — A. One has the following result, see [22].

Theorem 1. Let x € S be fized. It holds V5(x) = F(x), and
(2.3) Vif(z) = 51612 (Ru(z,a) + Es,  ~Ppis (o) (Vi1 (Sht1)]), h=H—1,...,0.

Furthermore, if Ry is continuous and the action space is compact, the supremum in (2.3) is
attained at some deterministic optimal action o* = 7} (x).

Let us further introduce recursively Q% (z,a) = F(z) and

QZ(xv CL) = Rh(l’, a) + ESh_;,_lNPh_,_l(-\x,a) Sua QZJrl(Sh-‘rlv a‘/) , h=H-1,...,0.
a'e

Then Qj(x,a) is called the optimal state-action function (Q-function) and one thus has
Vi (@) = sup Qj (. a),  7j(z) € argmax Qj(x,a), for h & [H].
acA ac

Finally, note that the optimal value function V* satisfies due to Theorem 1,
Vil(x) =ThVi(x), helH]
where Ty V () := supye o (Ru(z,a) + P, V(x)) with PV (x) == Eg,  <p,(fea) [V (Sha1)] -

3. DUAL REPRESENTATION

Loosely speaking, the aim of the dual approach is, instead of maximizing over policies as in the
primal approach (2.1), to minimize a particular dual stochastic representation over a family of the
so-called martingale penalties. Due to its very nature, the dual approach allows for computing
upper bounds on the value function, in contrast to lower bounds due to a suboptimal policy
obtained by the primal method. A popular interpretation of the dual representation presented
below is that one considers the expected maximal reward in a perfect foresight penalized with a
possibly “optimal” control-dependent martingale. As such, the penalization of the reward by the
martingale corrects for ideal foresight.

Let us denote by a<; the deterministic vector of actions a«; = (ag,...,at—1) € Al, similarly
a<¢ etc., and denote by Sy = (Si(a<t))ieqo,....my the process defined by

(3.1) So =z, Sit1=Str1(a<er1) = Ke(Se(a<t), as,e041) ~ Pip1(|Se(a<e), at),

t=0,...,H — 1. Let us also denote by = the class of H-tuples & = (&(-,-), t €|H]) consisting of
A® x F, measurable real valued random variables

AtXQ > (a<t7w> — é.t(a<t7 Egt) = €t(a<t7€§t(w))7
satisfying
(3.2) E[ft(a<t,6§t)‘ft71] =0, forallas € At, te {1,...,H}.
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The next duality theorem, essentially due to [24], may be seen as a generalization of the dual
representation theorem for optimal stopping, developed independently in [25] and [19], to Markov
decision processes. For a more general dual representations in terms of information relaxation, see
[14]. Let us further mention dual representations in the context of multiple stopping developed
in [26], [8], and applications to flexible caps studied in [4].

Theorem 2. The following statements hold.
(i) For any & € E and any x € S, we have V' (z; &) > Vi (z) with

H-1
(3.3) Vo (z:€) =K, [ sup (Z (Re(Se(a<t), ar) = Eey1(a<isn)) + F(SH(G<H))>]

aZ()EAH t=0

where under the expectation the dependence on e<g = e<p(w) is suppressed for notational sim-
plicity. Hence VP (z; &) is an upper (upper-biased) bound for Vi (x).
(it) If we set & = (&, t € [H]) € E with

(3.4) &i(acirn) == Vi (Sir1(ace1)) — Ex, [V (Sesi(acisn))]

= Vi1 (Ser1(ace1) = B wp([Suace),ar) [V (Ste)]

by (3.1), fort =0,...,H — 1, then, almost surely,

H-1
(3.5) Vi(z) = sup (Z (Re(St(a<e), t)—§;+1(a<t+1))+F(SH(a<H))>.
t=0

(Z>06AH

Remark 3.

e In Theorem 2 and further below, supremum should be interpreted as essential supremum
in case it concerns the supremum over an uncountable family of random variables.

e The random variables (&) are called martingale increments or martingale functions due
to the property (3.2). They are the building blocks for the controlled “dual martingale

penalty” Ziﬁl Eir1(acisr).

In principle, Theorem 2 may be inferred from |24, Theorem 3] or [14, Theorem 2.1|. Nonetheless,
also for the convenience of the reader, we here give a concise proof in terms of the present notation
and terminology.

Proof. (i) Since for any £ € Z and policy 7 in (2.1) one has that

Er o [§4+1(A<t)] = EnoEr [&1(A<t)[ ] = 0,
for t = h, ..., H — 1, it follows that
H—
Vi (2) = = SUp By Z (Re(St(A<t), Ar) — &41(A<t)) + F(Su(A<n))|

=0

from which (3.3) follows immediately.
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(ii) Due to (3.4) we may write for any asq € A,

Z Ri(St (a<t),a) — &1 (a<t)) + F(Su(a<n))
=0

-1

Ri(St (a<t) ,az) — Vi41(Sir1(a<t))
t

I
T

+
mw
Ho
Il
o

ES;+1~Pt+1(~|st(a<t>,at) (Vi1 (Sii)] + F(Su(a<m))
0

o~
Il

e

|
(]

Ry(Si (act)sae) + By by (fSi(aci)ar) Vi1 (Sien)] — W(St(a<t)))

+ F(Su(a<n)) = Vi (Su(a<n)) + Vi (So(a<o))
< Vi (So(a<o)) = Vg (2),
where the latter inequality follows from the Bellman principle, see Theorem 1. The statement

(3.5) now follows by taking the supremum over a>o € A on the left-hand-side, then taking the
expectation, next applying (3.3), and finally using the sandwich property. O

-
Il

!
/-\/CI\)O

In the primal approach, one typically constructs a sequence of approximate (continuation)
value functions. In practice, however, assessing the quality of these estimated value functions for
a problem at hand is difficult. The same is true for the lower biased estimate simulated using the
approximated policy. The very benefit of the dual approach is that one may construct an upper-
biased estimate based on the policy constructed by the primal method. Then the gap between
the upper and lower bounds can be used to assess the quality of the primal policy.

4. PRIMAL REGRESSION ALGORITHM FOR THE VALUE FUNCTION

In Section 5, we will describe regression based martingale methods for computing dual up-
per bounds based on Theorem 2. However, these methods require as an input a sequence of
(approximate) value functions Vj,, h € [H]. Below we describe a regression-based algorithm for
approximating the value functions V;*, h € [H], backwardly in time. In fact, in contrast to usual
regression, the proposed algorithm is based on a kind of “pseudo” or “quasi” regression procedure
due to N drawings from a measure py,(dz) at each time h € [H[, where uy, is the so-called reference
measure. Furthermore, we consider a vector of basis functions

Y= 0nok) s wiS— R, k=1, K,

such that the matrix
(4.1) S = Shk = Exep, |V (X)VE(X)

is analytically known and invertible. This basically means that the choice of basis functions is
adapted to the choice of the reference measure. For example, if uj is Gaussian one can chose basis
functions to be polynomials or trigonometric polynomials. ® The algorithm reads then as follows.
At h = H we set Vy n(z) = Vi (x) = F(x). Suppose that for some h € [H], the approximations
Vinv of Vi, h +1 <t < H, are already obtained. We next simulate, in view of Assumption 1,
independent random variables th ~ [p, 52+1 ~Pg,i=1,..., N, and set

Y = Knr (X[ a,8h10) ~ Popa (X7 ), a€A.

We underline that we can use the same drawings of the random variables X" and e, 41 to sample
Y@ for different a. That is, we only need to recalculate the mapping KCpy1.
Next approximate V;* via

(4.2) Vin(z) = Th N Vg n(x) = SUE(Rh(x ,a) + Ph+1 NVht1n (),
ac

3By taking v depending on h one may even achieve that X is the identity for each h.
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where

(4.3) P NV(x) =T;

Lo [BraY i) (%) := max(—Lp 1, min(Lni1, By v (2)))

with Eh_l’_]_ being a positive constant depending on h, which will be defined later, and
| N
(4.4) BNa =3 M UL, Ul =205 (X)), Z8=V(Y), i=1,...,N.
i=1
Note that B, := E [Bn,a) = E [V (Y{*)S ™1y, (XI)] solves the minimization problem
inf E (V(Y“) — BT (Xh))2 .
BeRK 1 KA1
Thus, the quantity ﬁ,‘f 1 ¥Vht1,n(7) aims to approximate the conditional expectation

= Egop, i (faa) [Varn(S)], a€A

The use of clipping at level EhH is done to avoid large values of 5;@’)’}((35)- Note that the
approximate state-action function

Qh,N(l’7 a’) = Rh(xﬂ a’) + ﬁf?—&—l,NVh-i-l,N(x)?
due to (4.3) and (4.4), determines a greedy policy solving (4.2),

an(x) € argsup Qn N (7, a),
a€A

so that Vi, n(z) = Qnn(z,an(x)). After H steps of the above procedure we obtain the estimates
VHEN, - .,V(),N.4 The greedy policies ap(-), h = H — 1,...,0, may be utilized for computing a
lower biased estimate for Vi (zo),

Ntest H-1
low R (n) (n) (m) H
(45) V) = g 2 3 RS S + (S i
St = Kt (i), S8 =,
using an independent sequence Eﬁn), te[H[,n=1,..., Nist- In fact, the main advantage of the

dual approach is that it allows one to assess the quality of the lower estimate (4.5) by constructing
an upper biased estimate based on Vj, v, h € [H], see the next section.

Note that the above regression algorithm and its convergence analysis in Section 6 are similar
in spirit to the least-squares regression algorithms for optimal stopping problems and BSDEs, see
[27], [16], [18] and [17]. In the latter work, the authors proposed a novel method of stratification.
This method involves efficient storage of simulations and minimizes memory requirements. In
our pseudo-regression algorithm, we avoid the inversion of the empirical covariance matrix, thus
significantly reducing the computational cost.

5. DUAL REGRESSION ALGORITHM

In this section, we outline how to construct an upper biased estimate based on Theorem 2 from
a given sequence of approximations V;, t € [H] obtained, for example, as described in Section 4.

Theorem 2-(ii) implies that we can restrict our attention to processes & = (&);c(g] Where the
t + 1 component of £ is of the form

(5.1) §i1(a<e) = m(Ser1(a<e); Si(a<t), ar)
for a deterministic real valued function m(-; x, a) satisfying
(52) [ty Pia(ayle.a) =0,

4Actually, for computing Vo (zo) we may replace the above procedure by a standard Monte Carlo simulation
when going from Vi to Vj.
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for all (x,a) € SxA. Note that the condition (5.2) is time dependent. We shall denote by M;11 44
the set of “martingale” functions m on S that satisfy (5.2) for time ¢ 4 1, a state x, and a control
a. In this section, we develop an algorithm approximating £* via regression of Vi1 on a properly
chosen finite dimensional subspace of My ;4. The idea of approximating £ via regression can be
explained as follows. Equation (3.4) and (5.1) imply that, for a particular ¢ € [H[, the component
&1 (a<t) of the random vector £ is given by &, | (a<t) = mj(Siy1(a<t); Si(a<t), ar), where, for
each (z,a) € S x A, mj,(-;x,a) solves the optimization problem

. 2
(5.3)  arginf Es; pgea) | (Vi (Sia) = m(Siai@,0)] =

meMt+1,z,a
oninl Varg ey (Vi) — (i)
t+1,z,a
By generating a sample Y;"*, ... Y from Py (-|z,a) we readily obtain a computable approxi-

mation of my, ,(-;x,a), that is, the solution of (5.3), by

N
(5.4) arginf {]if Z (Vigr (Y29) — m(sza))Q}

’
meMt+l,z,a =1

where M;_ ., is some “large enough” finite-dimensional subset of M1 4 .

Let us now discuss possible constructions of the martingale functions m satisfying (5.2). As-
sume that S C R? and that the conditional distribution P;,1(:|x,a) possesses a smooth density
pi+1(-|z, @) with respect to the Lebesgue measure on R?. Furthermore, assume that py,1(-|z, a)
does not vanish on any compact set in R?, and that p;.1(y|z,a) — 0 for |y| — co. Now consider,
for any fixed (z,a), functions of the form (Stein control functionals)

Mii1,6(+5 2, a) := (Viog(py1(-]z, a)), ¢) + div(e)

with ¢ : S — R? being a smooth and bounded mapping with bounded derivatives. It is then not
difficult to check that

/Sthrl(y,w? a)(z)l(y)a?ﬁ 1Og(pt+1(y’x’ a)) dy = - /Spt-i-l(yxv a)ayid)i(y) dy, i = 17 s ,d,

and hence my 1 4 satisfies (5.2) for all (z,a) € S x A. This means that in (5.4), we can take

t+1za = 1Mtr1,6 (57,a) © ¢ € @} where ® is the linear space of mappings R¢ — R?, which
are smooth, bounded, and have bounded derivatives. Since ¢ — my11 4(-; 2, a) is linear in ¢ we
moreover have that M, , , is a linear space of real valued functions. So the problem (5.4) can
be casted into a standard linear regression problem after choosing a system of basis functions
(Mi41,4, (32, a))pen due to some basis (pr)ren in ®. Needles to say that the problem (5.4) can
only be solved on some finite grid, (z;, a;);=1,...1, € S XA say, yielding solutions ¢y (-) := ¢(; xx, a)
and the corresponding martingale functions myy1,4, (*;x,ax). In order to obtain a martingale
function my41 = myy1 (+; 2, a) for a generic pair (z,a), we may apply some suitable interpolation
procedure. Loosely speaking, if (x,a) is an interpolation between (xy,ax) and (g, ar) we may
interpolate ¢(-;x,a) between ¢, and ¢y correspondingly, and set myy1 = my14 (5 2,a). For
details regarding suitable interpolation procedures, we refer to Section 7.

Let now, for each t € [H[, and (x,a) € S x A, the martingale function m;41(-;x,a) be an
approximate solution of (5.4). Then we can construct an upper bound (upper biased estimate)
for Vi (xo), via a standard Monte Carlo estimate of the expectation
(5.5)

V(Jup (7) = Erz

H-1
sup (Z (Re(St(axt), ar) — mega (S (a<e); Sela), ar)) + F(SH)>] :

azoeAH t=0

Another way of constructing € € E is based on Assumption 1. Let us assume that (¢, k € Np)
is a system in L?(E, Pg) satisfying

/wk(g) dPe =0, keN,
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By then letting

(5.6) N1,k (T, @) = N1,k (T, 0, €041) = Z ck (T, @)Y (Ert1)
k=1
for some natural K > 0 and “nice” functions ¢ : S X A = R, k=1,..., K, we have that

&1,k (a<t) == M1, (St(a<t), ar)

is Fyi1-measurable, and, since [y () dPg(e) = 0 for k € N, it holds that E [&41 x (a<¢)| Fi] = 0.
Hence, we have that £x = (&+41,x(a<¢),t € [H[) € Z. In this case, we can consider the least-
squares problem

2

(5.7) ( inf )E <Vt+1 Z%%) chwk (et41) > ;27" =K, a,6041),
ClysCK

for estimating the coefficients in (5.6). Let us further denote ¥g i := E.op, [¢K(5)1/JIT<(5)] with

Wi (e) :=[h1(e),...,vx(e)]". The minimization problem (5.7) is then explicitly solved by

(5.8) ek (,a) i= SERE [Viar (27 ()]

In the sequel we assume that Xg x is known and invertible. This assumption is not particularly

restrictive, as we choose the basis ¥ ourselves. In order to compute (5.8), we can construct a new

sample Uy, (z,a) = WH(Z%G)EE}Kq/)K(Em) with &, ~ P, Zm" = Keya1(z,a,em), m=1,..., M,

and estimate its mean Cx(z,a) by the empirical mean

M:

(5.9) cxm(z,a) =lcim(x,a),. .., cxm(z,a)
m=1
We so obtain as martingale functions in (5.6),
(5.10) Mot 16,0 (2, 0, €041) 2= €y (2, @) e (€441) ZCkM (2, a)vr(ers1)-

k=1
Also note that the problem (5.7) may only numerically be solved on a grid, and a suitable interpo-
lation procedure is required to obtain (5.10) for generic (z,a) € S x A (for details see Section 7).
Finally, an upper biased estimate for V (x), hence an upper bound in mean, can be obtained via
an independent standard Monte Carlo estimate of the expectation

(5.11)  Vy®(z) =Eny

H-1
sup (Z (Ri(Se(ax>t), ar) — ne1,x,m (Se(ae), ar)) + F(SH>>] .

axo€AT \ 1=

In Section 7 we will give a detailed convergence analysis of the dual estimator (5.11). Tt is
anticipated that a similar analysis can be carried out for the dual estimator (5.5), but this analysis
is omitted due to space restrictions.

6. CONVERGENCE ANALYSIS OF THE PRIMAL ALGORITHM

In this section, we carry out the convergence analysis of the primal algorithm designed in
Section 4, under some mild assumptions.

Assumption 2. Assume that (1) holds. In this case Pf f(x) = E.up[f(Kp(,a,¢€))], (z,a) € SXA.
Also assume that the kernels Kp, are Lipschitz continuous:

(6.1) \Kn(z,a,e) — Kp(a',d',¢)| < L p((x,a), (2',d")), (z,a),(2',a’) €S xA, ¢€E,

for some constant Lx not depending on h. In (6.1), the metric p = psxa on S x A is considered
to be of the form

psxal(z,a), (‘T/v a/)) = H (ps(xv x/)> pa(a, CL/))
where ps and pa are suitable metrics on S and A, respectively, and ||(+, )| is a fixed but arbitrary
norm on R2. In order to avoid an overkill of notation, we will henceforth drop the subscripts S,
A, and S x A, whenever it is clear from the arguments which metric is considered.



10 D. BELOMESTNY AND J. SCHOENMAKERS

Assumption 3. Assume that sup(, o)esxa{|Bn(z,a)| V [F(2)[} < Rmax and

sup ’Rh(x7 CL) - Rh(l'/, Q)‘ < LRP('%'7 1'/)
a€A

for some constants Ryax and Ly not depending on h € [H]|.
We now set

(6.2) Lp:=(H—=h+1)Rua, helH], VI

max

.= Lo = (H 4 1) Riax.
Assumption 4. Assume that |Z; b~ (2)| < Ak for all z € S, h € [H[, and
(@) = Vi (@) < Loiepla, o)
for a constant L, g > 0, where |- | denotes the Euclidian norm and |- | stands for the /o norm.

Note that due to (4.2) and (6.2), one has that |V}, n| < Ly, h € [H], and that under Assump-
tions 2, 3, and 4 one has

|Th, N Vi n(2) = Th N Vi, n (@) < Lgp(z,a’) + sup |]3;§L+1,NVh+1,N($) - ]Sffﬂ,NVthl,N(x/)\
ac
< Lgp(z,2') + SUP BN .allVr () — v (2)]
< LRP(%x ZSUP‘Z th K’YK( Xo)llvk () _'YK(*T/)’
n 1“

< [LR+ maXAK\/>L’Y K] ( )
Let us denote Ly i := Lp+ V. Ak L, x VK. The above estimates imply that Vin € Lip(Lvk),

max

and so the function f(z,a,¢) := V) n(Kp(x,a,€)) satisfies
(6'3) }f(l'a a, 5) - f(l‘,, alv 5)’ < LV,KL/CP((:E’ CL), ($l, a,))'
The next assumption concerns the measures pg, ..., y—1.

Assumption 5. Let us consider for any 0 < h <1 < H, the Radon-Nikodym derivative

P Pm Y(dx'|z)
%M(x/\x, ) = htl’ n(da
~1);

) )
where we define for a generic policy ® = (7, ..., T
Pt (da'|z) == Ph+1(da: |z, ().
Assume that
1/2
(6.4) MU = sup (/ pp(dx) /9% 2|z, w)uy (dx’ )) < 0.
0<h<I<H,m

By the very construction of Vj, y from Vj, 11 n, h € [H], as outlined in Section 4, Vj, y may
be seen as random (Lipschitz continuous) function. In particular, for each x € S, Vj ny(2) is
measurable with respect to the g-algebra

(6.5) Dy =o{YMN L YHTENY with YN = (X ehin), - (XNen )

where the pairs (Xl-h,szﬂ) ~ pp @ Pg are i.id. for h € [H[, i = 1,..., N, and Monte Carlo

simulated under the measure P = Py := ®hH:_01 (pn ® PE)®N. The following theorem provides an
upper bound for the difference between V}, y and V).

Theorem 4. Suppose that Ex~, [|7x(X)|?] < Qi,K for all h € [H[. Then for h € [H],

Vi () = Van Ol 2 (unop)

. /K
< gymax ((H — h)oy kA (Ly g LicIn(A) + Ly g LxD(A) + Vmax)\/; + RKJ) )
l=h
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where < denotes < up to an absolute constant, Ip(A) is the metric entropy of A, D(A) is the
diameter of A as defined in Appendiz A, and

971/2
Rin:= sup Ex.u, [sup (B;:C')/K(X) - P}‘fHVhJFLC(X)) } ,  where
CERK XA a€A
Vig(a) = sup(Ra(e,a) + T, [CTvi(@)) Jor0 < h<H, V(o) = Fla), ond
ae
: T a 2
Bac = arginf Ex.,, (ﬂ Yr(X) — Ph+1Vh+17C(X)) .
BERK

Discussion.

e The quantity R 4 is related to the error of approximating the conditional expectation
Py Vhi1,¢ via a linear combination of the basis functions v1,...,7kx in a worst case
scenario, that is, for the most unfavorable choice of . Note that this way of measuring
the approximation error differs from one typically used in the convergence analysis of the
least-squares approaches, e.g., [32]. Usually, one assesses the approximation error based
on the smoothness of the actual conditional expectation P11V} ;. Let us suppose, for
illustration, that A is finite and take some h < H — 1. One then has

1/2

2
Rrn < g sup  Exp, [(5;C7K(X) — Pf?+1vh+1,c(X)> ] (6.6)
acA SERKXIA

where @LT,CFYK is the L?(pp,) projection of Pf Vi41,¢ on span(vyy) with the corresponding
projection error

571/2
Ercal0.) = Exep | (Lm0 - eV c0) | (6.7

Under mild conditions on Py ;, (6.7) converges to zero uniformly in ¢, at a rate depending
on the choice of 4. For example, if the system 71, o, . .. is an orthonormal base in L?(j,)
then max,ea supeerixa Ex,n(a, €) S KB, 3 >0, provided that the series

D R B [ (X) Pit Vi ¢ (X))
k=1

is uniformly bounded in ¢ € RE*A and a € A. Hence, then R < |A|[K—% — 0 for
K — oo. Note that (6.6) is a worst case estimate, which may be very rough in general.

e Suppose that Py, | =: P4 does not depend on a € A, and that 71,72, ... are bounded
eigenfunctions (corresponding to nonnegative eigenvalues) of Pj,.1. Let further F(z) =
BTy (z) for some B € RE and Ry(z,a) = Ri4(x)Ray(a) with Ry (z) = ¢/ v (z) > 0,
then for Eh—i—l large enough, Rg j = 0 (in this case we may take (, independent of a in
the definition of V},11¢) and only the stochastic part of the error remains:

* max * K
Vi = Vanllz2uer) S HR™ 0y, x Axc (Lvik LicIp(A) + Lv,k LKD(A) + Vi [ - (6.8)

e Let us consider the stochastic error (6.8) in more details for an example where A = [0, 1]%
for some da € N. One then has D(A) = \/da and Ip(A) < v/da. In this example the bound
(6.8) depends sub-linearly in da. If in addition all basis functions (7;) are uniformly
bounded and the infinity matrix norm (i.e. the maximum absolute row sum) of ¥ x is
uniformly bounded from below for all K € N and h € [H], then oy x S KY2 Ag <1,
Lyvk S L%KHK1/2, V¥ S H, and the bound in Theorem 4 transforms to

max ~v

H — h) HR™X\/dn L., o K3/2 Aol
Vi = Vil < It g Sy (69
l=h
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where < means inequality up to a constant not depending on H, N, K and A. Another
relevant situation is the case of finite A. Here Ip(A) = /log |A| and D(A) = 1. Hence (6.9)

changes to
H-1
. (H — h)HR™>* /log |A| L, K3/?
IV = Van L2 (uep) S ’ + RN T R (6.10)
\/N l=h

Let us point out to a logarithmic dependence of (6.10) on |A|.

e Let us remark on Assumption 5 and discuss the quantity S8™2%. Consider S = R? and
assume that the transition kernels are absolutely continuous with respect to the Lebesgue
measure on R?, that is,

P}ir_};l . m Ydy|x) = pz}il - -p?lil(y|x) dy
Further assume that
sup  ppty.p M (ylz) < Ceulv== for some C,ay > 0, (6.11)
0<h<I<H,w

and consider some absolutely continuous reference measures pp(dz) = pp(x) dz, h € [HJ.
For the bound (6.4), we then have

max h T _ 2
(9ame)? — / / M2) (prn P () ? dady
0<h<l<H7r

2
< (C? max // e~ 20Ul g du.
0<h<I<H m x —|— u

The latter expression can be easily bounded by choosing pp, to be Gaussian with an
appropriate variance structure depending on h. For example, set

d
R AP

=,/——— e R+l hel|H 6.12
:U“h('r) W(h—i- 1) € € [ [’ ( )
then the straightforward calculations yield
d
l+1 Hr
mmaXSC\/ ma (L+ ) <C r . (6.13)
0<h<l<H OUF A /2 | — _

If ozl_il is polynomial in H, then the bound of Theorem 4 also grows polynomially in H as
opposed to most bounds available in the literature. Also note that this bound is obtained
under rather general assumptions on the sets S and A. In particular, we don’t assume that
either S or A is finite. Note that 011_11 is polynomial in H, if pf(y|z) > 016_02”'9_“"‘2 for
all @ € A and some constants Cy,Csy,r > 0.

7. CONVERGENCE ANALYSIS OF THE DUAL ALGORITHM

7.1. Convergence of martingale functions. For the dual representation (5.11) we construct
an H-tuple of martingale functions 1 := (41, k.M (x, a), t € [H]), as outlined in Section 5, from
a given pre-computed H-tuple of approximate value functions (Vi4 v, t € [H]) based on sampled
data DIV (see (6.5)), and a system of K, basis functions YK, See Section 4.

Let us consider a fixed time ¢ € [H[ and suppress time subscripts where notationally conve-
nient. We fix two possibly random grids Sy, := {x1,...,21} and A :={a1,...,ar} on S and A,
respectively, and obtain values of the coefficient functions ¢ as on Sp x Az, due to M simulations,
see (5.9). Next, we construct

Ner1,5,M (2, 0) = N1, x,m (2, a,€) = C1T<,M(5B7G)1/)(€) =: ch,M(%a)%(@,

for (z,a) € Sy, x Ap. To approximate 1.1 x,m (2, a) for (z,a) € Sp, x A, we suggest to use an
appropriate interpolation procedure described below, which is particularly useful for our situation
where the function to be interpolated is only Lipschitz continuous (due to the presence of the
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maximum). The optimal central interpolant for a function f € Lip,(£) on S x A with respect to
some metric p on S x A is defined as

I[f)(z,a) == (H" (z,a) + H{"(z,q))/2,

where
low _ PN /AN
o) = | max | (70d) - £pl(a.a), (&)
HyP(z,a) = min  (f(2/,d") + Lp((z,a), (2, a")).

(z',a’)ESL XAL

Note that H"(z,a) < f(z,a) < Hy (z,a), H}PW,H}IP € Lip,(£) and hence I[f] € Lip,(£). An
efficient algorithm to compute the values of the interpolant I[f] without knowing £ in advance
can be found in [7]. The so constructed interpolant achieves the bound

(7.1) 1f = Iflllec < LpL(S,A)

=L sup ) /min P((SU,a),(x’,a’))_
(z,0)ESxA (¥/,a")ESLXAL

The quantity pr(S,A) is usually called covering radius (also known as the mesh norm or fill radius)
of Sy, x Ap, with respect to S x A. We set

(7.2) Net1,56,M (25 @) = e, k,m (2, @, €) ZCkM z,a)p(e) with  Cpar = I[cw,ml.
k=1

The coefficients ¢y ps(x, a) in (7.2) are considered as random, which are measurable with respect to
t+1vgt+1 with ng = 0{%“,...,?]\}1} , where &6t ~ Pg.m =1,..., M, t € [H[, denote the
i.i.d. random drawings used in (5.9). Let us denote the simulation measure (for both primal and
dual) with P = Py s = PN®P§’HM (while slightly abusing notation) with Py = (up ® PE)®HN.
Furthermore, denote by cx(x,a) = [c1(x,a),...,cx(x,a)]T the unique solution of the mini-
mization problem

ClyeesCK

2
(7.3) inf E.opg <V;+1(ICH_1 x,a,¢) chwk )

for any (z,a) € S x A, and define n;41 i (7,a) = cj(z,a)pg(e). As such, 1 k(2,a) is the
projection of the optimal martingale function 7}, (2, a) on span(¢1,...,¥k).

Assumption 6. Assume that |Sgt4p(e)|oe < Ag for all € € E, and that E.op, [[¢x(e)?] <
2
&y, K

The following theorem provides a bound on the difference between the projection 141,k (2, a)
and its estimate (7.2).

Theorem 5. Under Assumptions 2, 8, 4, and 6 it holds that

EPE®P sSup ‘nH—LK(waav ) - ﬁt-}-l,K,M(l‘,a, )|2 5
(z,a)eSXA
o K(Lvik, LIp(S x A) + Lvk,, LD(S x A) + Vi) *AR i
Oy K M
dPet1(|w, a) 2
+ KAZ 02 sup —_— Vi, —V;
EREVR oessall dua ()l Ve = Virtwliegusion)

+ KQ?[;,KL%/,KPTLQ AR KPL(S A),

where S denotes < up to a natural constant, the constants Ly, Lic, and the measure p; 41 are

pr?
inferred from the primal procedure in Section 6.
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Let us now consider the approximation error

with

2
512(,1‘, = EENﬁE sup ’ntJrl,K (l‘? a) - 77;+1 (.75, a’)‘
(z,a)ESXA

i (@,a) = Vi (K (z,0,)) — E [V (K (2,0,9))] - (w,0) €Sx A, te[H[

Suppose that one has pointwise

o0

77t*+1(='75,a) = Zcz,t+1(x’a)wk(5t+l)v (LB, CL) € S X A) te [H[
k=1

If [|g|loo < of for all k € N, then

Eis
If

(7.4)

o0

= E sup Z a1, @)Y (er)

(z,0)ESXA k=K1

2 . 2
< sup ( > ICZ,m(ﬂJ,a)Iw;?) :

(z,a)ESXA k=K+1

[ee]
sup S kPck, (@ a)ldf < C < oo
(z,a)ESXA 1

for some 3, > 0, then

(7.5)

Efy < CPK 0,

Discussion.
e Let us discuss the quantity pr(S,A). Let S = [0,1]%, A = [0, 1]% for some ds, da € N and

let the points Sz, (Ar) be uniformly distributed on S (A). Moreover set, p((x,a), (z’,a")) =
|z — 2’| + |a — d/|. Then, similarly to [23] it can be shown that

log L\ /% log L\ /%
Bl (s x A 5 v/as (ZEE) 4 v (2R T (76)

where < stands for inequality up to a constant not depending on L. Using the Markov
inequality, we can derive a high probability bound for pr,(S,A). Note that if S and A are
finite we need not to interpolate and pr, = 0.

Assume that all basis functions (¢%) are uniformly bounded and that the infinity matrix

norm (i.e. the maximum absolute row sum) of the matrix ¥g x is uniformly bounded
from below for all K € N. In this case, oy x < K2, Agx S 1, Ly, S Loy, HE.
Suppose also that the quantities sup, 4)esxa H %W are uniformly bounded for all

oo

t > 0. Then using the bound (6.9) and the bound of Theorem 5, we arrive at

1/2
~ 2
EPE®P sup ‘772(4»1('%.7@7 ) —77t+1,K,M($7a;')‘ ] SJ Dt+1(H7 K7 KpryL)+

(z,a)eSXA

HEKy’Ly k.. (v/da + /ds) L=t VDHKKY*Rmx [, g \/da
VM VN

where Dy y1(H, K, Ky, L) denotes the deterministic part of the error reflecting the approx-
imation properties of the systems ~y Kpe? Y and the interpolation error due to finite L
(see the above discussions for some quantitative estimates). Under the above assumptions,
including (7.4), one obtains from (7.5), Theorem 4, and Theorem 5,

(7.7)

H-1
Dy (H, K, K, L) S K% + HKKY? Loy g, pr(S,A) + KR™™ Y~ Ryc, 1,
I=t+1
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where < means inequality up to a constant not depending on H, N, K, K, and L. This
bound is again polynomial in H, provided that S8™** depends polynomially on H (see the
discussion after Theorem 4).

7.2. Convergence of upper bounds. Suppose that the estimates 7 = (41(z,a), t € [H|) of
the optimal martingale tuple n* = (9} (z,a), t €|H]) are constructed based on the sampled data
DNvGMv .. .vGM such that Theorem 5 holds. Consider forg = (Mer1(Se(acy), ay), acy € AL t €
[H]) € E, Sp = z, the upper bias

H-1
VP (2:€) = Vi (2) = z[ sup (Z (Re(Si(a<t), )—ﬁt+1(5t<a<t),at))+F(SH)>
=0

a>0€AH

1
[ sup (Z Ri(Si(a<y), ar) — nt*H(St(a<t),at)) +F(SH)>]
t=0

a>0€AH

H-1
<E;| sup t+1(8t(a<t at) Z Ni+1(St(a<t), ar)
aZ[)EAH t=0 t=0
H-1 r
< E. sup ’Ut*+1($,a) —T~h+1($,a)|
—0 | (z,a)€SXA
H-1 T 1/2
~ 2
<D Eo| sup  |nfa(x,a) = T, a) :
—0 | (z,a)ESXA

where [, denotes the “all-in” expectation, i.e. including the randomness of the pre-simulation,
and, the independently simulated trajectories ¢t — Si(a<¢). Furthermore, similarly,

Var

H-1
sup (Z (Re(St(axt), ar) = es1(Se(a<e), ar)) + F(SH)>

axo€AR \ 1o

P e (D150" (Ril(St(a<t), a1) = i (Stla<t),a) + F(Si) )

= Var
—sup,yean (05" (Ru(Silacr) ar) = i (Silaze), ) + F(Si))

H-1 2
<E; Z sup ‘nt*+1(337 a) — Ny (z, a)‘
t—0 (®,a)ESXA

Hence for the standard deviation we get by the triangle inequality,

Dev

H—-1
sup (Z (Re(St(a<t), at) — Ne+1(St(a<t), az)) + F(SH)>]

axo€AR \ 1o
H-1

<> E,
t=0

Thus, for the Monte Carlo estimate of Vbup(x;g),

1/2
~ 2
sup ‘nz(—t—l(xv a’) - 77t+1($» a)’ ] :
(z,a)ESXA

7.8
( ) _ 1 Ntest H-1
Viohiae (38) = 55— D sup (Z (RS (@ce), @) = Tt (S (a<e), 00)) + F(SY >>>

n—1 a>0€AH \ 1 =o

with
(n) _ (n) (n) (n) _
Sy (a<t) = ’Ct(St,l(a<t—1), at—1, € ), te€|H], SO =7,
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where for each t €]H], 5§n), n =1,..., Nyt are i.i.d. drawings from the distribution Pg, we
obtain

up P * 2 1/2 up P up /L #V(2 1/2 up/, & *
Ep Vg% @8 = G @PF] T < Ba VR (@38) = Vi@ )] T + V5 (:8) - Vi (a)
1

H-1 1/2
~ 2
< ]Ea: sup ‘77;+1 (.%’, a’) - 77t+1($7 CL)‘
Niest =0 (z,a)€ESXA
H-1
+ Ey sup ‘77?+1 (xv CL) - ﬁt+1(x’ CL)’
—0 (z,a)ESXA

1 H-1 1/2
< + 1> E. sup  |n7q(z,a) — a1(x,a 2 :
< V Niest Z [(La)GSXA } H—l( ) t+1( )‘
(

By using the bound of Theorem 5 or in more specific form (7.7)), we derive the corresponding

bound E, [| Nteqt( € — Vi (z )]2} . Note that this bound remains polynomial in H under
rather general assumptions. Let us also remark that we can use the same interpolation points

to construct ﬁtH(St(n) (a<t),at) for all n = 1,..., N and all a<;. Let us make several concluding
remarks.

e The obtained bound remains polynomial in H under rather general assumptions.

e The bound holds for general spaces S and A featuring dependence on their complexity
only through the quantities Ip(S x A) and D(S x A). Note that these quantities remain
finite for the case of S and A being compact subsets of Euclidean space.

e The above bound clearly shows the presence of a deterministic part consisting of two terms
R and £k, (approximation/interpolation errors) and a stochastic part containing two
terms of the order 1/v/M and 1/v/N, respectively. The stochastic component of the error
depends sublinearly on the dimension of the underlying Euclidean space. Moreover, in the
case of finite spaces, one has a sublinear dependence on their cardinality.

e Concerning numerical complexity of computing cj a7, note that we can use the same coef-

n)

ficients ¢y as at the same interpolation points to construct 741 (an) (a<t),at,5§+1) for all

n=1,...,N, all as;, and all &%), see (7.2).

8. ILLUSTRATIVE AND REPRESENTATIVE EXAMPLE

In this section, we illustrate the primal-dual approach proposed above in the context of Linear
Convex Control, a particular MDP framework with infinite state and action space, which is
popular in various practical applications (for more details on applications, see [15], Section 6.2).
The setup is as follows.

e State space (S,8) = (R%, B (R%));

e Action space (A, A) = ([—@max, Gmax]™; B ([—@max, Gmax]™) s Gmax > 0;

e For matrices Dy, Gy € R4 U, e R¥™*™ ¢ =0,..., H—1, the controlled process dynamics
are given by

(8.1) St+1 = ICtJr]_(St, ag, 8t+1) = GtSt + Utat + Dt5t+1,
where (e411);_q__z_; are i.i.d. standard Gaussian random vectors in R%;

e For all t € [0, H[, Ri(z,a) is concave in (z,a) and F(z) is concave in z.

8.1. Choice of basis functions. Let us consider appropriate choices of basis functions such
that the matrices in (4.1) and (5.8) for the primal algorithm and the dual algorithm, respectively,
simplify to the diagonal ones.

Basis functions for the dual algorithm. Since the density of each r.v. .41 is given by

1 Bk d
pa(z) = amiz P\~ ) = 1:[l¢1(2z‘),
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it is natural to consider the system

Hy, (2
(8.2) { H l’" ZGNg,zeRd},

where {H;,l € Ny} is the set of the so-called probabilistic Hermite polynomials on R defined as

Hy(u) = (-1)eT—e 7, leNy, ueck.

It is well-known that (8.2), constitutes a complete orthonormal system in L2 (Rd, qﬁd(z)dz) , and

2

follows from Gram-Schmidt orthogonalization of the sequence 1, z, x .. In particular,

d
Hli(
/hl(z)¢d(z)dZ:1:[1/1- li! dZZ H(SOl —5 0,.,0),(11,0-,1q) *
Let @ : Ng — N¢ be an arbitrary bijection with 6(0) = (0,...,0). We then may consider in

(5.6)-(5.7) the system

(83) zbk(z) = hg(k,)(z), k= 1, 2, ey
and obtain EE,K =1I;in (59)

Basis functions for the primal algorithm. It is easy to see that the transition density
corresponding to (8.1) is given by

(8.4) peri(ylz,a) = |Di| ™ ¢ (D' (y — Goz — Usa)) -

Assume that we have determined C' and ay such that (6.11) is satisfied for (8.4) (more details
below). Then choose py, as in (6.12), and

QCMH
Vi (2) = ho(r) (Z\/ h+1> , k=0,1,2,...

with hg() defined according to (8.3). Then we have under the choice (6.12),

/%(Z)%(Z)”(z) dz = /’Yk(z)%(z) (W(;:il))d/ze Rl g,

o h"’l h+1 1 7|y‘2/2
_/% (y 2OZH>% (y\/ 2aH> (%)dﬂe dy

2
/h@(k he(l) ) ( )d/2 _|y| /Qdy — 5k;7l, k,l Z 0

Choice of oy Let us here assume for illustration that the matrices in (8.1) are all equal to I = I,
that is,
pe+1(ylz,a) = pa(y —z —a).
Let us determine C' and ay such that (6.11) holds. Denote for t € N,
—x—a):=t"%? <y—x—a> with = ¢g.
b (y ) bd i Pd1 = Pd

Then it is easy to show by induction that for any [ > ¢ + 1,

Pl T () =
/pt+1(2t+1|1’, at)pere(ztr2| 241, aerr) <o miWlzi—1, 1) dzgyr . dzo =
. 2
) 1 Y=o =D 01
= Pg - —x— E a; = —ex -
Ol ) T en —t))d2 P 20— 1)

j=t+1
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Let us set 0y j(ar<.<1) := Zi‘:tﬂ aj—1. Since |aj| < amax, one has |0 j(ai<.<)| < (I —t) Amax. Next
note that

ly — 2 = Ori(are.<)l* = lly — 2| = [0i(arc<)|® = (1= 0)7 |y — 2 = (1= 8)/6)*(L = 1)’ apax

for any § € (0,1). By taking § = (I —t)/(1 + (I — t)) we arrive at

‘y —T— Ht,l(at§'<l)’2 > (l —t+ 1)72 ‘y - x‘Q - a?nax'

Hence

1 ea‘%nax 2 2
at . . al— < de |.Z’ y‘ /H2 — —|w—y\ /H
Pitiom o) <e octeln (2n(l — )42~ (2m)i2° ’
yielding the estimate (see (6.13))
Runax < e (H3/2)4/2,

For general matrices Dy, G, and Uy one can carry out a similar analysis to derive an upper bound
on Rmax-

8.2. Computing the dual upper bound. The dual upper bound (5.11) is approximated by
the upper biased estimate (7.8). In (7.8) one is faced with the path-wise computation of the
quantities

H-1
(85)  sup (Z Ri(S{" (a<0), a0) = meaaear (S (a<e), s, ef1h)) + F(S[ (a<n))),
a>0€AH t=
for n = 1,...,N*' based on a sequence 5§i)1>t =0,....,H —1,n = 1,...,N*' of newly
generated random variables, independent of the functions (7:4+1,x,a) in (5.10). For a fixed n and
(partially suppressed) sequence (e1,...,ex), (8.5) may be cast into the form
H-1
(8.6) argsup <Z (Re(zt, ar) — ne1,x,m (T, azy €441)) + F(l’H)>
L1, —
a;oEAg t=0
(8.7) subject to z111 = K (24, at,ee41), t € [0, H[, xo = So,
assuming the evolution dynamics (1). Note that in order to handle the optimization problem (8.5)
more conveniently, we introduced in (8.6) a tuple of “slack variables” (z1,...,zxH).
For our present example we have that (8.7) is given by (8.1) and A = [—amax, Gmax)" - Hence

the control space is convex and the constraints are linear. Thus, if the given reward functions
R; and F are concave in (x,a), (8.6)-(8.7) yields a concave maximization problem, provided
that m:41 x a(z,a) is convex in (z,a). One then may apply many established methods, such as
stochastic gradient methods for instance. Of course, in general convexity of the optimal functions
N 1M OF their approximations is not guaranteed. However, in many practical situations it
is possible to construct convex martingale increments that nonetheless provide relatively tight
upper bounds, while thus keeping the optimization problem numerically tractable. Let us next
demonstrate that one may construct martingale increments that are even affine in (x, a) (see also
[15], Section 6.2).

Pragmatic martingales that are affine in (x,a). Based on the lower biased approximations

Vit1, t =0,..., H — 1, obtained by our primal method, we consider a suitable quadratic approx-
imation of the form:
(8.8) Vier (@) = VO +2 VY + 2TV,

(2)

where w.l.o.g. V,} is symmetric. For instance, in order to find coefficients in (8.8) one can solve
the least squares problem

2
argmin E [/ (V(U) +2 VD 4 2TVv@e — v (m)>

Ht+1T dr| .
V() v (1) vi(2) ( )
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Due to (8.8), one can define a proxy for (5.8) via (we take Xg g = I),
(8.9) Sk(w,0) =E [ () 7| (D TV + 2D V) (Gra + Uia)) +E [T DIV Dietpe ()]

by a little algebra and using E [¢j ()] = Ox. Hence, (8.9) is affine in (z,a) and known in closed
form. Next, (5.10) yields an approximation for n:1 i am,

77§+1,K,M($aaa5t+1) = 21/’IT( (et+1) Eenr [¢K (€) ET} DtTVt(ﬂ(th‘ + Uia)
R (241) Benp [t ()| DTV
¥k (e41) Benp [T DI VE Distpe (2]

Since the second and third term are independent of (x,a), (8.6)-(8.7) are equivalent with

H-1
argsup | F(zy) + Z Ri(zy,a0) — 20k (€441) Berp [’lwa () 5T} D;Vt(ﬂ(G’tfvt + Utat))
T1,..,TH =0
|a20|§amax

(8.10) subject to Ti41 = Gtwt + Utat + Dt5t+1; t e [0, H[, o = S().

Generic martingale construction. It should be stressed that the pragmatic approach leading
to the concave maximization problem (8.10) may be insufficient due to a non vanishing duality
gap in the general case. To illustrate the approach proposed in this sequel, let us assume that
F(z)/(1+|z|) and R¢(z,a)/(1 4+ |z|), are uniformly bounded in t € [0, H], € RY, and a € R™,
and fix some radius rmax > 0 large enough. We then generate interpolation points in the set

[*Tmam Tmax}d X [*amam amax]ma

and apply the interpolation procedure of [7] constrained to this region while setting

nt+17K7M($7aa er41) =0, x¢ [_TmaXvaax}d'

It is possible to show along similar lines as in [9] that due to this spatial truncation an extra bias
of order O(ecldHCQe_CB’"rznax/H) for some c123 > 0 appears.
Given that a Monte Carlo sample €1, ...,eq from the distribution of € is available, the cost of

computing the value

T

-1

(8.11) (Re(ze, at) — ney1,k,m (2, az, €041)) + F(zy)
t

Il
=)

in (8.6) for particular sequences 1, ...,xpg and ag, ...,ag_1,is of order O(H (1 4+ K log L)), if one
uses the interpolation algorithm of [7]. Note that, compared to the sub-simulation based upper
bound algorithm in [15] for example, our method is typically more efficient as the latter approach
would require H Ny, operations for each trial sequences x1,...,xg and ag,...,ag_1 if Ngp sub-
simulations are used. In the context of optimal stopping, [1] used about 10000 sub-simulations
for a Bermudan max-call while typically K log L < 10000.

Solving the inner optimization problem. The inner optimization problem (8.6) can be
treated as a deterministic backward dynamic program and combined with Beliakov [7] interpola-
tion. Let us introduce for 0 <7 < H,

H-1
Oi(z;) = argsup (Z (Re(e, ar) — N1, x,m (Tt ary €441)) + F($H)> :

xi+17---7xH t=q
aZiEAHfl

At i = H, we initialize Oy (zg) = F(zg), and for 0 < i < H, we may write

O;(x;) = argsup (Ri(xs,a) — nig1,x,m(%i, a,€i41) + Oip1(xig1))
T4, a€A

subject to x;+1 = K (zi,a,611) .
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Let @;ﬁl be the upper Beliakov interpolation of an approximation @fﬂ‘i of ©;11 on a spatial grid

Sr. We then compute for z; € Sz,

@frid(ﬂﬁi) = argsup (Ri(zi,a) — niv1, 5,0 (%6, a,€541) + OFF  (Ti41))
Tiy1, a€EA

subject to x;11 = K (z;,a,€i41) ,

and take for ©;® the upper Beliakov interpolation of @f”d. The choice of the upper Beliakov
interpolation rather than the mid Beliakov interpolation ensures that the estimator © remains
upper biased. We thus end up with ©y° as the solution of the pathwise (for a fixed sequence
(e1,...,eq)) inner optimization problem.

Remark 6. Let us finally note once again that the number Niegt of test simulations in (7.8), hence

the sequences (sgn), e ,sgb)), n=1,..., Niest, can usually be relatively small when the martingale

increments 7,11,k M are accurate enough.

9. PROOFS

9.1. Proof of Theorem 4. One-step analysis: Suppose that after h steps of the algorithm the
estimates Vg v, . .., Vhi1 v of the value functions Vi, ..., V), respectively, are constructed using

sampled data Dy, such that [|[Vine < L, < VZ,, as forallt =h+1,...,H. Denote for
a € A,

((B) :=E [(Z2* = BTy (X))? | DRy | with
2% ~ Vi n(Y ), YO8 ~ P (X, a), X ~ .
The unique minimizer of £*(/3) is given by the D,JZV ', ;-measurable vector
Ba =E [Z°C7 'y (X) | D1 ] = Exepn, [Pl Vit v (X)E g (X) | DR -

For the estimation of the D}Y-measurable vector By, in (4.4), see (4.2), (4.3), and Assumption 2,
it then holds that

2
E,,ep [sup <(5]—\rf,a - 52)’71(()()) | Df]LVJrl]
a€A

< Fp [sug Brva— Bl | DM Exp, [7ic (O]
ae

K
< ZEP |:SuIA) (ﬁN,a,k - Ba,k)2 | DI]7,V+1 ]EXN,uh U’YK(X)P} )
k=1 ac

where according to Proposition 7, (component wise applied to the vector function f(x,a,c) =
Vie1 N(Kng1(x, a,€)) X7ty g (z) with p = 2, see (6.3)) one has for k = 1,..., K,

] « (LvikLiIp(A) + Ly, Lk D(A) + Vo) 2%

(9.1) Ep [SUP (BN.ak — Bak)® | Dy N

a€cA

Due to the very structure of Vi1 n (see (4.2)), we further have

(9.2) Expu, [SUE(/BJ’Y(X) — Pl VN (X)) [ DY 4| < R%(,hv
ac
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and then with (9.1) and (9.2) we have the estimate
N 1/2
93) Eppep [sg(Pzﬂ,Nvm,N(X) P Vi (X))? | Difﬂ} <
1/2
E,.,ep [Sgg(ﬂ]—\;,a’YK(X) - P;L1+1Vh+1,N<X))2 | Di\[ﬂ} <
1/2
E,,op [sggwﬁmm BT (X)) | D,%YH]
1/2
Exop, {sggwl e (X) = Pl Vi (X)) | Diﬂl}

K
< Q%KAK(LV’KL]CID(A) + LV’KL]CD(A) + Vnﬁax) N + RK,h-

Since the right-hand-side of (9.3) is deterministic, the conditioning on D}]:TH may be dropped and
we obtain

B 1/2
(94) Eyop [sugwsﬂ,whﬂ,mm - PﬁHVhH,N(X))?] <
ae

K
< 0y, Ax (Lvik LicIp(A) + Ly, LD(A) + Vi) | 7 + Rich-
Multi step analysis: Let us denote for h € [H],

(9-5) hov (@) = Py Vin (@) = Pl Vien (@) and - Ag(e) : —SEE\A;Z n(@)l.

Note that
Pﬁlpl?il(dxﬂm - /P}ﬂfl(d:c |z) ;%(dv’ﬂ"!x’).
We then have

Vi () = Vi) = sup { Ru(e,a) + By Vi ()} = sup {Rh(x a) + Py N Vipin(x )}
ac ac

= Rl (@) + [ Vit @) Prs (@'}, 77 (2)

— sup {Rh(ﬂf a) + Ph+1 NVt (2 )}
a€A

< [ (V= Vi) @) Proade' o, i)

o+ sup { Ra(w,) + Py Vin (2) ) = sup { Bi(w, @) + By y Vi v (@)}

acA a€A
(9.6) < PP (Vi — Vieww) (@) + An(2)
and analogously,
(9.7) Vir(@) = Vin (2) 2 Bty Vifia = Varan] (@) — An(@).
By iterating (9.6) and (9.7) upwards, and using that Vg n = V};, we obtain, respectively,
—h—
Vi (z) = VN (z Z hikk HAptk](7) + Ap(x), and
—h—1
Vi) = V(@) = = > Py P Y [ A () — Ap(x).

k=1
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We thus have pointwise,

H—h—-1
Vit(@) = Viw(@)| < S Pri Py A (2)
Hfhil
+ P;LrilN . P;;’;;kil’N [Ah+k](a:) + Ah(l')
k=1
which implies
H—h—1

Vi — thNHLQ(Mh@P) < QS?TP Z Hpﬂl Pifizkflmh““]HL?(uh@P) + ”Ah”L2(uh®P) :

Hence we have due to Assumption 5,
H-1

Vi — Vh,NHL2(uh®p) < 2R Z ||AIHL2(M®P)
l=h

(note that R™#* > 1), and then, by the definitions (9.5) and the estimate (9.4), the statement of
the theorem follows.

9.2. Proof of Theorem 5. For the unique minimizer of (7.3) one has that

(9.8) cx(w,a) == Sgh B [V (K (2,0,9))pc(0)]
Likewise, the unique minimizer of the problem
lernl%f E.pe [(WH,N(’QH(%CL&)) - CTTPK(@)) ’Dt+1]
C
is given by
¢k (z,a) == Sg i Benpe [Vis N(Kip1(z,0,€) 9 (e)| D4 ] -

Now let ¢k ar(x, a) be the Monte Carlo estimate of €k (z,a) as constructed in Section 5, see (5.8)
and (5.9). We then have

2

(9.9) Epeep || sup  (crm —€x) ' (2, a)p(e)| DN,
(z,a)ESXA
2
<Ep| suwp |(ewa —ex) (@,0)] DNy | Bovpe [l ()]
(z,a)ESXA

where according to Proposition 7 (applied componentwise with p = 2 to the vector function
f(z,a,e) = Vt+1,N(ICt+1($)(175))EE71K'¢K(5)7 see (6.3))

(9.10) Ep

sup |(exur — €x)(z,a)|” |Dﬁ1]
(z,a)ESXA

K(LV,KprLICID(S X A) + LV,KprLICD(S X A) + V*

272
< max) AE,K
—_ M .

Since for any pair (z,a) € S X A,

2
(ex = &) (@, @) = [Benpe [ (Via (Kt (2,0, €)) = Vigr x(Kea (. 0,2)) S ke () DY ||

2
< [ Vi (e,0,) - Vi (Kena(a D[ aPele) [ [Sehownlo)] aPec)
AP ( |$ a)
dpsg1(-)

< KAEK sup
(z,a)ESXA

2
/ ’Vt+1 — Virr, N ()| pegr (dy),
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we have
2
—_ \T N
_ ; D
(x,a)Ilelgz(XAL<CK CK) (x a)d)K(‘S) ’ t+1]

< i Nex =)@ o) B [l ()]

(9.11) Eeup, [

dPi1(-|7, a)
dpey1(+)

<Ko gAg  sup

Vi = Vigan 3o :
(z,a)ESxA " LA lue)

‘ o

Next due to (6.3), we derive for any k € [K],

|Ck,M(x’ a) - Ck,M(x/’ a/)|
M
Vi, N (K1 (2, 0,80)) = Vi v (Kega (2, @/, E0) 128 k¥ i (Em) oo
m=1
S LV,KprL/CAE,Kp((xa a)a (‘rla a/)>

T we further have

and so with [ [CK,M] = (I [CI,M] goee ,I [CK,M])

Epeop [ SUp M1, i,00 (2, @) — g1k 01 (2, a) |Dﬁ1]
(z,a)ESXA

2
= Ep.op [ sup )(CK,M —Tlexm])’ (x7a)¢K(5t+1)’ |Dﬁ1]
(z,a)€ESXA

< Q?p,KEP
(z,a)ESxA

sup |(exr — I fex]) () IDiL]

K

< Qi,}( Z Ep
k=1

(9.12) < Koj e LV ke, LEAE K PL(S, A),
using (7.1). Finally note that

sup  (cxar — 1 [erm])? (2, 0) DY
(z,a)ESxA

M1, x — Tt xm = (€ — CK) i+ (Cx — crnr) Wi + Nes1 koM — Ter 1, KM
and then the result follows by the triangle inequality, gathering (9.9)-(9.12), and finally taking
the unconditional expectation Ep.gp.
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APPENDIX A. SOME AUXILIARY NOTIONS

The Orlicz 2-norm of a real valued random variable n with respect to the function p(z) = v’ -1,
x € R, is defined by ||n]lp2 := inf{t > 0 : E [exp (n*/t?)] < 2}. We say that 7 is sub-Gaussian if
1n]lp,2 < co. In particular, this implies that for some constants C,c > 0,

P(ln| > t) < 2exp ( ) and E[|n[P]Y? < C/plnllpe forall p>1.

ct?
7%
Consider a real valued random process (X¢)te7 on a metric parameter space (7,d). We say that
the process has sub-Gaussian increments if there exists K > 0 such that
|1 Xt — Xsllp2 < Kd(t,s), Vt,seT.

Let (Y, p) be a metric space and X C Y. For € > 0, we denote by N (X, p, e) the covering number
of the set X with respect to the metric p, that is, the smallest cardinality of a set (or net) of
e-balls in the metric p that covers X. Then log N (X, p, €) is called the metric entropy of X and

D(X)
Ip(X) := / \/1og N (X, p, u) du
0

with D(X) := diam(X) := max, ;/ex p(x, 2'), is called the Dudley integral. For example, if |X| < oo
and p(x,2") = 1{pzen we get Ip(X) = y/log]|X]|.
APPENDIX B. ESTIMATION OF MEAN UNIFORMLY IN PARAMETER
The following proposition holds.

Proposition 7. Let f be a function on X X = such that

with some constant L > 0. Furthermore assume that || f|lcoc < F < 0o for some F > 0. Let &,,
n=1,...,N, be i.i.d. sample from a distribution on =. Then we have
N p
1 LIp + (LD + F)\/p
]El/p Sup |+~ f J;agn _Ef xvgn S )
Lex N 2 (&) ~ES0:60) =

where < may be interpreted as < up to a natural constant.

Proof. Denote
1 N
Z(x) := N nz:; (f(z,&n) — My(x))

with My (z) = E[f(x,&)], that is, Z(x) is a centered random process on the metric space (X, p).
Below we show that the process Z(x) has sub-Gaussian increments. In order to show it, let us
introduce

Zn = f(2,&) — My(x) — fa', &) + Mf(x/)-
Under our assumptions we get
HZTLHIbQ S/ Lp($,$l),

that is, Z, is subgaussian for any n = 1,..., N. Since
N
Z(z) - Z(z') = N2> 7,
n=1

is a sum of independent sub-Gaussian r.v, we may apply [30, Proposition 2.6.1 and Eq. (2.16)])
to obtain that Z(z) has sub-Gaussian increments with parameter K < L. Fix some zp € X. By
the triangular inequality,

sup|Z(z)| < sup |Z(z) — Z(2')| + |Z(z0)|-
zeX z,x’ X
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By the Dudley integral inequality, e.g. |30, Theorem 8.1.6], for any 6 € (0,1),

sup |Z(z) — Z(2')| < L[Ip 4+ D/log(2/6)]

z,x’ €X

holds with probability at least 1 — §. Again, under our assumptions, Z(z¢) is a sum of i.i.d.
bounded centered random variables with 1s-norm bounded by F. Hence, applying Hoeffding’s
inequality, e.g. [30, Theorem 2.6.2.], for any § € (0, 1),
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