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Abstract

The optimal stopping problem arising in the pricing of American options can be tackled by
the so called dual martingale approach. In this approach, a dual problem is formulated over the
space of adapted martingales. A feasible solution of the dual problem yields an upper bound for
the solution of the original primal problem. In practice, the optimization is performed over a
finite-dimensional subspace of martingales. A sample of paths of the underlying stochastic process
is produced by a Monte-Carlo simulation, and the expectation is replaced by the empirical mean.
As a rule the resulting optimization problem, which can be written as a linear program, yields a
martingale such that the variance of the obtained estimator can be large. In order to decrease this
variance, a penalizing term can be added to the objective function of the pathwise optimization
problem. In this paper, we provide a rigorous analysis of the optimization problems obtained by
adding different penalty functions. In particular, a convergence analysis implies that it is better to
minimize the empirical maximum instead of the empirical mean. Numerical simulations confirm
the variance reduction effect of the new approach.
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1 Introduction

In this paper we consider the following optimal stopping problem. Let Ft be a filtration, and let Zt,
t = 0, . . . , T be a discrete-time adapted process with bounded variance. We wish to maximize

Y ∗ = max
τ∈T

E[Zτ ], (1)

where T is the set of stopping times on {0, . . . , T}. Desai et al. [3] introduced a pathwise optimization
method for solving this kind of optimal stopping problems. It is based on the dual martingale approach,
which was developed in [6] and [4], see also [2] which in fact contained the dual approach in germ. The
dual problem to the original optimal stopping problem can be written as an optimization problem over
the space of martingales M with zero initial value. More precisely,

Y ∗ = inf
M

E max
t=0,...,T

(Zt −Mt) = max
t=0,...,T

(Zt −M∗t ) a.s. (2)

where M∗ is the martingale part of the Doob-Meyer decomposition of the Snell envelope of Zt, and
the optimal values of the primal and dual problem coincide.

As the optimal stopping problem, the dual problem is infinite-dimensional. In order to reduce it to
a finite-dimensional one, it was proposed in [3] to optimize over a finite-dimensional section of the space
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of martingales. In other words, a finite number of basis martingales is chosen and the optimization
is performed over all linear combinations of these basis functions, the coefficients playing the role of
the decision variables. Since the optimal martingale M∗ is as a rule not contained in the linear span
of the chosen basis functions, the procedure yields a suboptimal solution leading to an upper bound
of the optimal value of the original optimal stopping problem. Another practical problem in solving
dual problem (2) is the presence of the expectation operator. This can be circumvented by replacing
the expectation by the empirical mean over a sample of N paths [3]. As a consequence, we obtain the
optimization problem

inf
α

1

N

N∑
n=1

max
t=0,...,T

(Z
(n)
t −

K∑
k=1

αkM
k,(n)
t ). (3)

Here α = (α1, . . . , αK)T is the vector of decision variables, Z
(n)
t are the sample paths of the process

Zt, and M
k,(n)
t are the paths of the basis martingales. The index k = 1, . . . ,K denotes the index of

the basis martingale, and n = 1, . . . , N denotes the index of the path.
For an independent new simulation with Ñ samples the quantity

1

Ñ

Ñ∑
ñ=1

max
t=0,...,T

(
Z

(ñ)
t −

K∑
k=1

αkM
k,(ñ)
t

)
gives an upper biased estimate of (2).

As mentioned before, the martingale part M∗ of the Doob-Meyer decomposition of the Snell en-
velope of Zt yields an optimal solution to (2). While this solution may not be unique, it has the
distinguished property that the random variable Z(M∗) = maxt=0,...,T (Zt −M∗t ) has variance zero
(see [1]). Martingales having this property have been named surely optimal and have been charac-
terized in [10]. When seeking a solution to the dual problem (2), one is not only interested in a
martingale M that gives a tight upper bound on the optimal value of the optimal stopping problem,
but also in a martingale that is close to a surely optimal one, in the sense that the random variable
Z(M) = maxt=0,...,T (Zt −Mt) has a low variance. This second condition, however, is usually not met
by the optimal solutions of the approximated problem (3), as evidenced in [10].

To counter this problem, Belomestny proposed in [1] to add the empirical standard deviation as a
penalty term to the objective in (3), leading to the optimization problem

inf
α

 1

N

N∑
n=1

Z(n)(M(α)) + λ

√√√√ 1

N − 1

N∑
n=1

(
Z(n)(M(α))− 1

N

N∑
l=1

Z(l)(M(α))

)2
 , (4)

where M(α) =
∑K
j=1 αjM

j and

Z(n)(M(α)) = max
t=0,...,T

Z(n)
t −

K∑
j=1

αjM
j,(n)
t

 . (5)

Here λ ≥ 0 is a scalar determining the weight of the penalty term. However, while problem (3) can be
cast as a linear program, problem (4) may fail to be convex if λ is too large, and thus difficult to solve
to a global optimum.

The subject of this paper is to analyze the effect of the penalty term in augmented problems of
type (4). As a penalty we assume a general continuous convex homogeneous function F of degree 1 of
the vector Ẑ(M(α)) = (Ẑ(n)(M(α)))n=1,...,N , where

Ẑ(n)(M(α)) = Z(n)(M(α))− 1

N

N∑
l=1

Z(l)(M(α)). (6)

Note that the vector Ẑ(M(α)) resides in a subspace L ⊂ RN of codimension 1, and hence F is effectively
a function from RN−1 to R. We will, however, consider convex homogeneous functions F : RN → R
and have in mind that only the values of F on the (N − 1)-dimensional subspace L are relevant. As F
should penalize deviations of the vector Ẑ(M(α)) from zero, we shall assume that

F (x) > 0 ∀ x ∈ L \ {0}. (7)
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The problem considered in this paper is hence

inf
α

(
1

N

N∑
k=1

Z(k)(M(α)) + λF (Ẑ(M(α)))

)
. (8)

The choice F (x1, . . . , xN ) =
√

1
N−1

∑N
n=1 x

2
n leads, in particular, to problem (4).

We will construct a convex conic relaxation to this augmented problem and, for given λ > 0, provide
a sufficient condition on the function F such that this relaxation is exact, i.e., yields the same optimal
objective value as the original problem (8).

The aim of the next section is to show that there is a largest function F satisfying this condition,
namely the function given by RN 3 x 7→ λ−1 maxn=1,...,N xn. The augmented optimization problem
corresponding to this particular choice of F is given by

inf
α

max
n=1,...,N

Z(n)(M(α)) = inf
α

max
t=0,...,T ;n=1,...,N

Z(n)
t −

K∑
j=1

αjM
j,(n)
t

 (9)

and can also be cast as a linear program. In the subsequent section we analyze the convergence of (9)
to Y ∗ as N,K →∞.

2 Penalties in the optimal stopping problem

In this section we first investigate under which condition problem (8) can be equivalently rewritten as a
conic program. We reformulate this condition as an easily checkable condition on the penalty function
F and give several examples of functions F satisfying this condition. We then show that among all
such functions F there exists a maximal one, and this particular choice of F leads to the linear program
(9) formulated above.

We shall identify the vector space RN with its dual by means of the standard Euclidean scalar
product. Then the orthogonal projection operator Π onto the subspace L = {x ∈ RN | 〈1N , x〉 = 0}
equals its adjoint and is given by the matrix Π = I − 1

N 1N1TN . Note that the vector Ẑ defined in

(6) then becomes the projection Ẑ = ΠZ of Z. The function of Z which is to minimize in (8) can be
written as g(Z) = 1

N 〈1N , Z〉+ λF (ΠZ). We may then rewrite (8) equivalently as

inf
α
g(Z) : Z(n) = max

t=0,...,T

Z(n)
t −

K∑
j=1

αjM
j,(n)
t

 , n = 1, . . . , N, (10)

where Z(n), n = 1, . . . , N are the components of the vector Z.
In order to write this problem as a conic program, we shall need the epigraph K = {(a, c) ∈

R× RN | a ≥ g(c)} ⊂ RN+1 of the function g. Note that g is continuous, convex, and homogeneous of
degree 1, because F was supposed to be so. These properties imply that K is a closed convex cone.

The conic program we consider is given by

inf
α,a,c

a : (a, c) ∈ K, cn ≥ Z(n)
t +

K∑
j=1

αjM
j,(n)
t , n = 1, . . . , N, t = 0, . . . , T, (11)

where a is an additional scalar auxiliary variable and c = (c1, . . . , cN )T is a vector-valued auxiliary
variable.

Problem (11) has a linear objective function and involves the conic constraint (a, c) ∈ K as well as
N · (T + 1) linear inequalities in quantities which are linear in the decision variables α, a, c. Therefore

problem (11) can indeed be written as a conic program over the closed convex cone K×RN(T+1)
+ . If K

is polyhedral, it can be written as a linear program.

Lemma 2.1 The optimal value of problem (11) is not greater than the optimal value of (10).
Proof. Let α ∈ RK be arbitrary, and set cn = Z(n)(M(α)), n = 1, . . . , N , as defined in (5), and
a = g(c). Then the pair (α, a, c) is a feasible point for problem (11). Moreover, (α, a, c) gives the same
value to the cost function in (11) as α gives to the cost function in (10). This proves our claim.
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Lemma 2.1 shows that conic program (11) is a relaxation of the original problem (10). In order for
this relaxation to be exact, i.e., for problems (10) and (11) to be equivalent, we need further assumptions
on the penalty function F , or equivalently, on the objective function g.

Lemma 2.2 Suppose the function g : RN → R is such that for every c ∈ RN there exists a subgradient
y ∈ ∂g(c) which is nonnegative element-wise. Then relaxation (11) is exact, i.e., it yields the same
optimal value as the original problem (10).
Proof. Assume the conditions of the lemma, and let (α, a, c) be an arbitrary feasible point for (11).
Set Z = (Z(1), . . . , Z(N)) with Z(n) = Z(n)(M(α)), n = 1, . . . , N .

The inequality constraints in (11) imply that c ≥ Z element-wise, and the conic constraint implies
that a ≥ g(c). Let y ≥ 0 be a subgradient of g at Z. Then a ≥ g(c) ≥ g(Z) + 〈y, c − Z〉 ≥ g(Z).
However, g(Z) is the value of the objective in (10) corresponding to α. It follows that the optimal
value in (11) is not smaller than the optimal value in (10).

Combination with Lemma 2.1 completes the proof.
The condition imposed on g, and hitherto on F , in Lemma 2.2 is in no way artificial. In Section B

in the Appendix we show that in the absence of this condition the penalized problem (8) is in general
non-convex, which is a computationally highly undesirable property.

As it stands, the condition in Lemma 2.2 is not easy to check for a given function F . We can,
however, equivalently rewrite it as the following condition on the polar F o1 of the 1-level subset F1 =
{c ∈ RN |F (c) ≤ 1} of F :

λΠv ≥ − 1

N
1N ∀ v ∈ F o1 . (12)

The proof of this equivalence is relegated to Section C in the Appendix.
Hence the condition in Lemma 2.2 becomes Πv ≥ − 1

λN 1N for all v ∈ F o1 . In other words, the
largest allowed value for λ is such that a shift of the projection Π[F o1 ] by the vector 1

λN 1N still moves
it into the nonnegative orthant.

We shall now consider different examples of penalty functions F . Set F̃1 = F1 ∩ L.
1. F (x) = maxn xn. The set F1 is given by {x |xn ≤ 1}. Its polar is given by F o1 = {y ≥

0 | 〈y,1N 〉 ≤ 1}. The polar F̃ o1 = Π[F o1 ] is then spanned by the projections Πen of the unit vectors,
namely the vector (− 1

N , . . . ,−
1
N ,

N−1
N ) and the vectors obtained by permutation of the elements from

it. The condition on λ becomes (− 1
N , . . . ,−

1
N ,

N−1
N )T ≥ − 1

λN 1N , which yields λ ≤ 1.
2. F (x) = maxn |xn|. The set F1 is the unit cube, its polar F o1 the unit hyper-octahedron. The

polar F̃ o1 is then spanned by the projections ±Πen, namely the vectors ±(− 1
N , . . . ,−

1
N ,

N−1
N ) and the

vectors obtained by permutation of the elements from it. The condition on λ becomes λ ≤ 1
N−1 .

3. F (x) =
∑
n |xn|. The set F1 is the unit hyper-octahedron, its polar the unit cube. The set

F̃ o1 is then spanned by the projections of the vertices of the cube. These projections are given by
(2 − 2n

N , . . . , 2 −
2n
N ,−

2n
N , . . . ,−

2n
N ) and their permutations, where the first number appears n times

and the second one N − n times, n = 0, . . . , N . The condition on λ becomes −2N + 2n ≤ 1
λ for all

n = 1, . . . , N , and 2n ≤ 1
λ for all n = 0, . . . , N − 1, yielding λ ≤ 1

2(N−1) .

4. F (x) = ||x||2. Then both F1 and F o1 are the unit ball, and F̃ o1 is the intersection of the unit ball
with L. The condition on λ is determined by the unit length vector in L with the smallest element,

which is ( 1√
N(N−1)

, . . . , 1√
N(N−1)

,−
√

N−1
N ). We hence get −

√
N−1
N ≥ − 1

λN , yielding λ ≤ 1√
N(N−1)

.

While problem (11) with F given by cases 1 – 3 is a linear program, it is a conic quadratic program
with one conic quadratic constraint when F is given by 4. In general, (11) is a linear program if and
only if K is a polyhedral cone.

Finally we shall show that among the penalty functions F which allow a weighting value of λ = 1,
the function F (x) = maxn xn is maximal.

Lemma 2.3 Suppose the function F satisfies condition (12) with λ = 1. Then for every x ∈ Rn such
that 〈1N , x〉 = 0 we have F (x) ≤ maxn xn.
Proof. Define the set C = {x ∈ RN | maxk xk ≤ 1} and the set C̃ = {x ∈ C | 〈1N , x〉 = 0}. From case
1 above we have that the polar C̃o is given by {y ≥ − 1

N | 〈y,1
N 〉 = 0}. By assumption we have that

1
N 1TN + Π[F o1 ] is contained in the intersection of the subspace {y | 〈y,1N 〉 = 1} with the nonnegative

orthant, i.e., in the convex hull of the unit vectors. Hence we have the inclusion Π[F o1 ] = F̃ o1 ⊂ C̃o. It
follows that C̃ ⊂ F̃1. From this the claim of the lemma easily follows.
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In this sequel we henceforth concentrate on the case where λ = 1 and F (x) = maxn=1,...,N xn. In
this case the equivalent problems (10) and (11) simplify to the easily solvable linear program (9), whose
properties will be the subject of the next sections.

3 Convergence analysis of the maximally penalized problem

In this section we analyse the convergence of the solutions of the sequence of optimisation problems
(9) if both the dimension K of the subspace of martingales and the number of paths N tend to infinity.
We establish bounds on the growth rate of N in dependence on K ensuring the convergence to the
solution of the original problem (2). Consider for a sequence of basis martingales Mk, k = 1, 2, ... with
Mk

0 = 0, the linear span

ΛK :=

{
M·(α) =

K∑
k=1

αkM
j
· : α1, ..., αK ∈ R

}

for any K ∈ N+, and then study the convex optimization problem

αK,N := arg inf
α:M(α)∈ΛK

max
n=1,...,N

Z(n)(M(α)). (13)

with Z(n)(M(α)) := maxt=0,...,T

(
Z

(n)
t −

∑K
k=1 αkM

k,(n)
t

)
. The following result is proved in the Ap-

pendix.

Theorem 3.1 Suppose that an almost surely optimal martingale M∗t from (2) is square integrable and
has a representation

M∗t :=

∞∑
k=1

α∗kM
k
t , t ∈ [0, T ]

in L2 satisfying

E

[∣∣∣∣∣
∞∑

k=K+1

α∗kM
k
T

∣∣∣∣∣
p]
≤ ηK−ρ, ∀ K > K0 (14)

for some p > 1, K0 > 0, η > 0, and ρ > 0. Let t∗ be a random variable satisfying

Y ∗ = (Zt∗ −M∗t∗), a.s.

Then it holds for any c > 0, ε > 0 that

P
({
‖α∗,K − αK,N‖ ≥ ε

}
∩ Ec,K,N

)
≤ ApNK−ρ/(cε)p, (15)

where α∗,K := (α∗1, ..., α
∗
K), Ap is a constant depending on p, and

Ec,K,N :=

{
max

n=1,...,N

K∑
k=1

δkM
k,(n)

t
(n)
∗
≥ c ‖δ‖ for all δ ∈ RK

}
.

One of the main issues is the estimation of the probability of the event Ec,K,N . Clearly we have

P{Ec,K,N} ≥ P

{
max

n=1,...,N
min

t=1,...,T

K∑
k=1

zkM
k,(n)
t ≥ c ‖z‖ for all z ∈ RK

}
. (16)

Note that the right-hand side depends only on the choice of the basis martingales Mk. In order to
estimate this probability, we introduce the random set

S =

{
z ∈ SK−1

∣∣∣∣∣ min
t=1,...,T

K∑
k=1

zkM
k
t ≥ c

}
,
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where SK−1 is the unit sphere in RK . The random set S is the intersection of T random spherical caps
S1, . . . , ST with opening angles ϕ1, . . . , ϕT given by cos ϕt2 = c

||Mt|| , or equivalently via

ϕt = 2 arccos
c

||Mt||
, t = 1, . . . , T,

centered on Mt

||Mt|| , respectively. Here Mt = (M1
t , . . . ,M

K
t ) denotes the vector formed of the basis

martingales at time instant t. The cap St is nonempty if and only if ||Mt|| ≥ c. Let now

S(n) =

{
z ∈ SK−1

∣∣∣∣∣ min
t=1,...,T

K∑
k=1

zkM
k,(n)
t ≥ c

}
, n = 1, . . . , N,

be N independent copies of S corresponding to the N independent realisations M
k,(n)
t of Mk

t . Then

the event on the right-hand side of (16) happens if and only if
⋃N
n=1 S

(n) = SK−1, i.e., if the random
subsets S(n) cover the whole unit sphere.

In order to estimate the probability of this event, we shall employ an idea from [7]. Fix δ > 0, and
introduce random spherical caps Sδt ⊂ St, centered on Mt

||Mt|| and with opening angle ϕt−2δ if ϕt ≥ 2δ,

and empty otherwise. In other words, Sδt is the subset of points of St which lie not closer than δ to
the boundary of St. Define the random subset

Sδ =
⋂

t=1,...,T

Sδt

of SK−1. Since Sδ ⊂ Sδ
′

for δ ≥ δ′, for every z ∈ SK−1 the probability P
{
z ∈ Sδ

}
is monotonously

decreasing in δ. We have the following result.

Theorem 3.2 Suppose that minz∈SK−1 P
{
z ∈

⋂
t=1,...,T S

δ
t

}
≥ π0 − π1δ for some π0 ∈ (0, 1) and

π1 > 0. Then

P

{
N⋃
n=1

S(n) = SK−1

}
≥ 1− 2

√
2K

π
(1− π0)N−K+1

(
ππ1Ne

2(K − 1)

)K−1

.

A proof of this theorem is given in the Appendix.

Remark 3.3 The asymptotics of the bound for N → ∞ is of the same order as in the exact results
for the isotropic sphere covering problem by random sets obtained in [11] and [12].

Combining with (16), we then get the following estimate for the probability of Ec,K,N .

Corollary 3.4 Under the assumptions of Theorem 3.2, we have the bound

P{Ec,K,N} ≥ 1− 2

√
2K

π
(1− π0)N−K+1

(
ππ1Ne

2(K − 1)

)K−1

. (17)

Remark 3.5 The bound (17) depends on the parameter c via the coefficients π0, π1. If the basis
martingales are chosen properly (see the next section for a discussion on this), then π0 is bounded
away from zero and π1 grows linearly with growing dimension K. Hence the r.h.s. of (17) tends to
1, if N is growing not slower than K1+α for some α > 0. In this case we get that the probability for
Ec,K,N not to occur is exponentially small in N.

We stress that in the case when the event Ec,K,N does not occur, the optimization problem (3) will be
unbounded. In other words, the complement of Ec,K,N will entail the failure of the solver to converge to
a solution. In this case the Monte-Carlo simulation has to be repeated. In what follows, we shall assume
that the event Ec,K,N has occurred. The results below are hence to be understood as conditioned on
Ec,K,N , in particular, from (15) it follows that,

P
{
‖α∗,K − αK,N‖ ≥ ε

}
≤ ApNK−ρ/(cε)p, (18)
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Assume we have simulated a new set of trajectories (independent of those used to construct αK,N )

(Z
(n)
· ,M

(n)
· ), n = 1, . . . , N1. Consider the estimate

YK,N,N1
:=

1

N1

N1∑
n=1

max
t=0,...,T

(
Z

(n)
t −

K∑
k=1

αK,Nk M
k,(n)
t

)
.

Using the Doob inequality, we get

E
[
|YK,N,N1 − Y ∗|2

]
≤ 8

N1

E
∣∣∣∣∣

K∑
k=1

(
αK,Nk − α∗k

)
Mk
T

∣∣∣∣∣
2

+

∣∣∣∣∣
∞∑

k=K+1

α∗kM
k
T

∣∣∣∣∣
2
 .

Hence the following proposition holds.

Proposition 3.6 Suppose that Mk
t is a sequence of continuous square integrable martingales with

E[M i
T M

k
T ] = δik for all i, k ∈ {1, . . . ,K}, and that (14), (18) are fulfilled with p > 2 and ρ > 1, then

E
[
|YK,N,N1 − Y ∗|2

]
≤ 8

N1

[
E
∥∥αK,N − α∗,K∥∥2

+

∞∑
k=K+1

(α∗k)
2

]

≤ 8

N1

[
p(ApNK

−ρ)2/p

(p− 2)c2
+ (ηK−ρ)2/p

]
.

Thus if N grows slower than Kρ, we have a strong variance reduction effect by using the maximal
penalty in (8) for N,K →∞.

3.1 Discussion of conditions

Suppose that Zt = Gt(Xt), where Gt : Rd → R is a Hölder function on [0, T ] × R and Xt is a
d-dimensional Markov process solving the following system of SDE’s:

dXt = µ(t,Xt) dt+ σ(t,Xt) dWt, X0 = x. (19)

The coefficient functions µ : [0, T ]×Rd → Rd and σ : [0, T ]×Rd → Rd×m are supposed to be Lipschitz
in space and 1/2-Hölder continuous in time, with m denoting the dimension of the Brownian motion
W = (W 1, . . . ,Wm)>. It is well-known that under the assumption that a martingale Mt is square
integrable and is adapted to the filtration generated by Wt, there is a square integrable (row vector
valued) process Ht = (H1

t , . . . ,H
m
t ) satisfying

Mt =

∫ t

0

HsdWs. (20)

It is not hard to see that in the Markovian setting and under some rather weak assumptions, the
optimal (almost sure) Doob martingale M∗ can be represented as

M∗t =

∫ t

0

u(s,Xs)dWs. (21)

for some vector function u(s, x) = (u1(s, x), . . . , um(s, x)) satisfying∫ T

0

E[|u(s,Xs)|2] ds <∞.

In such a situation, we can consider a class of adapted square-integrable martingales which can be
“parameterized” by the set L2,P ([0, T ] × Rd) of square-integrable m-dimensional vector functions ψ

on [0, T ] × Rd that satisfy ‖ψ‖22,P :=
∫ T

0
E[|ψ(s,Xs)|2] ds < ∞. Choose a family of finite-dimensional

linear models of functions, called sieves, with good approximation properties with respect to u. We
can consider, for example, linear sieves of the form:

ΨK := {β1φ1 + . . .+ βKφK : β1, . . . , βK ∈ R},
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where φ1, . . . , φK are some given vector basis functions from L2,P ([0, T ] × Rd). Then the basis mar-

tingales in (9) can be defined via Mk
t = Mt(φk) =

∫ t
0
φk(s,Xs)dWs, k = 1, . . . ,K. In this case the

condition (14) can transformed (by using Burkholder-Davis-Gundy’s inequalities) to the following one

E

∣∣∣∣∣
∫ T

0

(u(s,Xs)− α∗1φ1(s,Xs)− . . .− α∗KφK(s,Xs))
2 ds

∣∣∣∣∣
p/2
 ≤ ηK−ρ (22)

which measures the quality of “best projection” of u on the linear subspace ΨK .
We now provide an example of martingale basis allowing for an explicit estimates of the quantities

π0, π1. Let us assume that the process X is Markovian and is adapted to the filtration generated by
the Brownian motion Ws, s ∈ [0, T ]. Let us take basis martingales in the form

M l
t =

T∑
j=1

∫ t

0

1{tj−1≤s≤tj}φl(s,Xtj−1
) dWs (23)

for some increasing set of times 0 = t0 < t1 < . . . < tT . The form (23) can be viewed as an approxima-

tion for the integral
∫ t

0
φl(s,Xs)dWs. Note that the integrals

∆M l
j :=

∫ tj

tj−1

φl(s,Xtj−1
) dWs

are zero mean Gaussian conditional on Xtj−1
, with conditional covariance matrix

Γjll′(Xtj−1) :=

∫ tj

tj−1

φl(s,Xtj−1)φl′(s,Xtj−1) ds.

We have

M l
ti =

i∑
r=1

∆M l
r and ‖Mti‖ ≤

i∑
r=1

‖∆Mr‖ .

Hence the inequality

i∑
r=1

(
K∑
l=1

zl∆M
l
r − δ ‖∆Mr‖

)
≥ c for i = 1, ..., T,

implies
K∑
l=1

zlM
l
ti ≥ c + δ ‖Mti‖ for i = 1, ..., T,

which in turn implies

K∑
l=1

zlM
l
t ≥ c cos δ + δ ‖Mti‖ ≥ c cos δ +

√
‖Mti‖

2 − c2 sin δ = ||Mt|| cos(
ϕt
2
− δ) for i = 1, ..., T

and therefore z ∈ Sδ. Hence for any c > 0,

P
(
z ∈ Sδ

)
≥ P

(
i∑

r=1

(
K∑
l=1

zl∆M
l
r − δ ‖∆Mr‖

)
≥ c for i = 1, ..., T

)
≥

P

({
K∑
l=1

zl∆M
l
1 − δ ‖∆M1‖ ≥ c

}
T⋂
r=2

{
K∑
l=1

zl∆M
l
r − δ ‖∆Mr‖ ≥ 0

})
=

EPXtT−1

({
K∑
l=1

zl∆M
l
1 − δ ‖∆M1‖ ≥ c

}
T−1⋂
r=2

{
K∑
l=1

zl∆M
l
r − δ ‖∆Mr‖ ≥ 0

})

×PXtT−1

(
K∑
l=1

zl∆M
l
T − δ ‖∆MT ‖ ≥ 0

)
.
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Now note that the (regular) conditional probability PXtT−1

(∑K
l=1 zl∆M

l
T ≥ 0

)
= 1

2 almost surely,

since
∑K
l=1 zl∆M

l
T are Gaussian. Let ΓT (y) be a covariance matrix of the vector ∆MT = (∆M1

T , . . . ,∆M
K
T )

given XtT−1
= y. Denote by λmin(A), λmax(A) the minimal and maximal eigenvalue of a matrix A, re-

spectively. If the basis functions are such that the condition number

λmax(ΓT (y))/λmin(ΓT (y))

is bounded in y, there exists δ0 > 0 such that for all δ < δ0 we have

Py
(

K∑
l=1

zl∆M
l
T − δ ‖∆MT ‖ ≥ 0

)
≥ 1

4

uniformly in y. Iterating and arguing analogously backwards in time, we get for any c > 0 and small
enough δ > 0

P

(
T⋂
i=1

{
i∑

r=1

(
K∑
l=1

zl∆M
l
r − δ ‖∆Mr‖

)
≥ c

})
≥ 1

4T−1
P

(
K∑
l=1

zl∆M
l
1 − δ ‖∆M1‖ ≥ c

)
. (24)

The probability density of the Gaussian vector ∆M1 = (∆M1
1 , . . . ,∆M

K
1 ) can be bounded from below

by

p(x) =
1

(2π)K/2
√

det(Γ1(x0))
e−||x||

2/(2λmin(Γ1(x0))),

where Γ1(x0) is the covariance matrix of ∆M1 given X0 = x0. Note that for y1, y, γ > 0 and δ ∈ [0, 1)

the inequality y1 − δ
√
y2

1 + y ≥ γ is equivalent to the inequality y1 − γ
1−δ2 ≥

δ√
1−δ2

√
γ2

1−δ2 + y. The

function on the right-hand side of the latter is concave in y and hence majorized by its linear Taylor
polynomial at y = 0. It follows that this inequality is implied by the inequality y1 ≥ γ

1−δ + δ
2γ y. Setting

y1 =
∑K
l=1 zl∆M

l
1√

λmin(Γ1(x0))
, γ = c√

λmin(Γ1(x0))
, and y =

||∆M1||2−y21
λmin(Γ1(x0)) , we then have

P

(
K∑
l=1

zl∆M
l
1 − δ ‖∆M1‖ ≥ c

)
≥ λmin(Γ1(x0))K/2√

det(Γ1(x0))
×

P

(
ξ ≥ c√

λmin(Γ1(x0))(1− δ)
+

√
λmin(Γ1(x0))δ

2c
η

)

=
λmin(Γ1(x0))K/2√

det(Γ1(x0))
×N (− c√

λmin(Γ1(x0))

)
− δ

exp(− c2

2λmin(Γ1(x0)) )
√

2π

(
c√

λmin(Γ1(x0))
+

(K − 1)
√
λmin(Γ1(x0))

2c

)
+O(δ2)


where ξ and η are independent variables with distributions N (0, 1) and χ2

K−1, respectively. For small
enough δ we then may choose

π0 =
λmin(Γ1(x0))K/2

4T−1
√

det(Γ1(x0))
N

(
− c√

λmin(Γ1(x0))

)
,

π1 =
2λmin(Γ1(x0))K/2

4T−1
√

det(Γ1(x0))

exp(− c2

2λmin(Γ1(x0)) )
√

2π

(
c√

λmin(Γ1(x0))
+

(K − 1)
√
λmin(Γ1(x0))

2c

)
.

If the basis functions φl(s,X) are chosen such that the ratio λmin(Γ1(x0))K/2√
det(Γ1(x0))

as well as the minimal

eigenvalue λmin(Γ1(x0)) stay bounded from zero with growing K, then π0 stays bounded away from
zero and π1 grows linearly with K (cf. Remark 3.5).

9



4 Simulation example

Consider the example given in [10, Section 8]. We have T = 2, Z0 = 0, Z2 = 1, and Z1 = ξ is a random
variable which is uniformly distributed on the interval [0, 2]. The optimal stopping time τ∗ is given by

τ∗ =

{
1, ξ ≥ 1,
2, ξ < 1.

and the optimal value of problems (1) and (2) by Y ∗ = Emax(ξ, 1) = 5
4 .

The martingale M in problem (2) can be assumed of the general form M0 = 0, M1 = M2 = h(ξ),
where h : [0, 2]→ R is a function satisfying Eξh(ξ) = 0. It follows that

max
t=0,1,2

(Zt −Mt) = max(h(ξ), ξ, 1)− h(ξ)

and hence Emaxt=0,1,2(Zt −Mt) = Emax(h(ξ), ξ, 1) ≥ Emax(ξ, 1) = 5
4 . Any martingale given by a

function h satisfying h(ξ) ≤ max(ξ, 1) almost surely is hence an optimal solution for problem (2). Such
an optimal solution then yields maxt=0,1,2(Zt −Mt) = max(ξ, 1)− h(ξ) almost surely.

However, not every such martingale is surely optimal in the sense defined in [10]. A surely optimal
martingale is defined by a function h(ξ) satisfying maxt=0,1,2(Zt −Mt) = max(ξ, 1)− h(ξ) = 5

4 almost
surely, which gives h(ξ) = max(ξ, 1)− 5

4 almost surely. Define the function h∗(ξ) = max(ξ, 1)− 5
4 and

denote the martingale defined by this function by M∗.
We shall now try to find the function h∗ by Monte-Carlo methods. We search over a finite-

dimensional subspace LK of functions h(ξ), which will depend on an even integer parameter K. Namely,
LK consists of functions of the form

h(ξ) =

K/2∑
k=1

ck cos(kξπ) + sk sin(kξπ),

where ck, sk, k = 1, . . . ,K/2 are real coefficients. The dimension of the subspace LK equals K. Note
that h∗(ξ) is not contained in LK for any K. We rather have

h∗(ξ) =

∞∑
k=1

c∗k cos(kξπ) + s∗k sin(kξπ)

with s∗k = − 1
kπ , c∗k = 0 for even k, and c∗k = 2

k2π2 for odd k.
Note further that for fixed K we have P(Ec,K,N ) > 0 for c > 0 small enough and N large enough,

and that for fixed c > 0 small enough we have limN→∞ P(Ec,K,N ) = 1.
We solve the two optimization problems (3) and (9) for K = 2, 4, . . . , 20 and with the number of

samples N being 50,100, and 200, respectively. For the martingale M̂ which gives the optimal solution
of problems (3) and (9), respectively, we compute the expected value and the variance of the expression
maxt=0,1,2(Zt−M̂t). Note that both this expected value and the variance are random variables, because

they depend on the random realization of the paths (Z
(n)
t ,M

j,(n)
t ). For each pair (K,N), we perform

100 independent runs. On Fig. 1 we plot the distribution function of the logarithms of these quantities.

It is clear from Fig. 1 that the variance of maxt=0,1,2(Zt− M̂t) drops dramatically if problem (9) is

solved in place of problem (3). However, it can also be seen that the expectation Emaxt=0,1,2(Zt−M̂t)
improves. The conclusion is that the presence of the penalty term in (9) not only decreases the variance,
but also leads to a robustification against the uncertainty introduced by the sampling procedure.
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A Convex analysis

In this section we introduce some notions from convex analysis and conic optimization. The dual of
the real vector space Rn will be denoted by Rn, and the scalar product between y ∈ Rn and x ∈ Rn
will be denoted by 〈y, x〉. Let 1n,1n = (1, . . . , 1)T be the all-ones vector in Rn and in the dual space
Rn, respectively.
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A.1 Conic programs

Conic programming is a generalization of linear programming where the ordinary inequality constraints
are replaced by a more general notion of inequality defined by a convex cone.

A conic program over a closed convex cone K ⊂ Rn is an optimization problem of the form

inf
x∈K
〈c, x〉 : Ax = b, (25)

where c ∈ Rn is a vector defining the linear cost function of the problem, A is an m × n matrix, and
b ∈ Rm. Here A, b define the linear constraints of the problem.

The availability of algorithms for solving a conic program depends on the nature of the cone K.
For example, if K is the positive orthant Rn+, then (25) is a linear program which can be easily solved.
Efficient solution algorithms are also available if K is a second order cone, in which case the program
is called conic quadratic program.

A.2 Exposed and extreme points

In this subsection we introduce the notions of exposed and extreme points of a closed convex set and
consider the relations between them.

Definition A.1 [9, p.162] Let C ⊂ Rn be a closed convex set. A point x ∈ C is called extreme point
if there does not exist an open line segment L ⊂ C such that x ∈ L.

Lemma A.2 [9, Corollary 18.5.1] A closed bounded convex set is the convex hull of its extreme points.

Definition A.3 [9, pp.162–163] Let C ⊂ Rn be a closed convex set. A point x ∈ C is called an
exposed point if there exists a supporting affine hyperplane H ⊂ Rn to C such that H ∩ C = {x}.

Lemma A.4 [9, Theorem 18.6] Let C ⊂ Rn be a closed convex set. Then the set of exposed points of
C is dense in the set of extreme points of C.

Corollary A.5 Let C ⊂ Rn be a bounded closed convex set and E its set of exposed points. Then C
is the convex hull of the closure of E.
Proof. The corollary follows immediately from the two lemmas above.

A.3 Convex functions and subgradients

In this subsection we introduce the notion of a subgradient.

Definition A.6 [9, pp.214–215] Let D ⊂ Rn be a convex set and f : D → R a convex function. A
subgradient of f at x ∈ D is a dual vector y ∈ Rn such that f(z) ≥ f(x) + 〈y, z − x〉 for all z ∈ D.
The set of all subgradients at x ∈ D is called subdifferential at x ∈ D and denoted by ∂f(x).

The subdifferential is a closed convex set [9, p.215]. If f is differentiable at x, then the gradient
f ′(x) is the only subgradient [9, p.216].

Lemma A.7 [5, p.261] Let D ⊂ Rn be a convex domain, F : D → R a convex function, and h : D → R
a convex C1 function. For x ∈ D and λ ≥ 0 we then have ∂(λF + h)(x) = λ∂F (x) + h′(x).

Lemma A.8 [9, Theorem 23.9] Let D ⊂ Rm be a convex domain, and H : Rm → Rn an affine
map given by H(x) = A(x) + b, with A, b the linear part of H and the shift, respectively. Let further
F : H[D] → R be a convex function. Then for x ∈ D we have ∂(F ◦H)(x) = A∗[∂F (Ax + b)], where
A∗ is the adjoint map of A.
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A.4 Convex sets and polars

In this subsection we introduce the notion of a polar and study its properties.

Definition A.9 [9, p.125] Let C ⊂ Rn be a closed convex set containing the origin of Rn. The set
Co = {y ∈ Rn | 〈y, x〉 ≤ 1 ∀ x ∈ C} is called the polar of the set C.

The set Co is also closed, convex, and contains the origin [9, p.125]. It is bounded if and only if the
origin of Rn is contained in the interior of C [9, Corollary 14.5.1]. Moreover, the polar of Co is again
C [9, Theorem 14.5]. If C,C ′ are two closed convex sets containing the origin and satisfying C ⊂ C ′,
then their polars satisfy (C ′)o ⊂ Co [9, p.125].

Let now L ⊂ Rn be a linear subspace, and let L⊥ ⊂ Rn be the orthogonal subspace. Then the dual
space L∗ of L can be identified with the quotient Rn/L⊥. Let Π : Rn → Rn/L⊥ be the corresponding
projection. Let C ⊂ Rn be a closed convex set containing the origin. Then the intersection C ∩L ⊂ L
is a closed convex set in L, containing the origin of L. The next result gives a convenient description
of the polar of C ∩ L as a subset of L in terms of the polar Co.

Lemma A.10 Assume the notations of the previous paragraph. Then the polar (C ∩ L)o is given by
the closure of the projection Π[Co].
Proof. Let y ∈ Co be an arbitrary point in the polar of C and Π(y) = y + L⊥ its projection on the
quotient Rn/L⊥. Then we have 〈y, x〉 ≤ 1 for all x ∈ C. In particular, we have 〈y, x〉 ≤ 1 for all
x ∈ C ∩L. Hence Π(y) ∈ (C ∩L)o. It follows that Π[Co] ⊂ (C ∩L)o. However, (C ∩L)o is closed, and
hence the closure of Π[Co] is also a subset of (C ∩ L)o.

Let now y ∈ Rn such that Π(y) = y + L⊥ is not contained in the closure of Π[Co]. Then there
exists a hyperplane H ⊂ Rn/L⊥ which separates Π(y) from Π[Co], and such that Π(y) 6∈ H. Then the
hyperplane Π−1[H] ⊂ Rn separates y from Co, and y 6∈ Π−1[H]. Note also that y 6= 0. It follows that
there exists a vector z ∈ L such that 〈y, z〉 > 1 and 〈w, z〉 ≤ 1 for all w ∈ Co. Hence z ∈ C ∩ L. But
then y + L⊥ 6∈ (C ∩ L)o. This proves the converse inclusion and completes the proof.

B Convexity of the penalized problem

The following consideration shows that if the condition in Lemma 2.2 is not satisfied, then problem (8)
may not be convex at all.

Let α∗ ∈ RK be an arbitrary vector, and define the vector c∗ by c∗k = Z(k)(M(α∗)). Assume that
g is differentiable and g′ is not nonnegative at c∗, i.e., there exists an index l such that ∇lg(c∗) < 0.

Suppose further that the maximum maxt(Z
(l)
t −

∑K
r=1 α

∗
rM

r,(l)
t ) is attained at more than one index

t, e.g., at the indices i, j, and suppose that there exists a direction δ ∈ RK such that
∑K
r=1 δrM

r,(k)
t

is zero for pairs (k, t) other than (l, i) and (l, j) such that Z
(k)
t −

∑K
r=1 α

∗
rM

r,(k)
t = Z(k)(M(α∗)), and∑K

r=1 δrM
r,(l)
i 6=

∑K
r=1 δrM

r,(l)
j . Then problem (8) is not convex.

Indeed, for real ε define αε = α∗ + εδ and a vector c(ε) by ck(ε) = Z(k)(M(αε)). Let without loss

of generality
∑K
r=1 δrM

r,(l)
i <

∑K
r=1 δrM

r,(l)
j . For ε > 0 small enough we then have ck(±ε) = c∗k for all

k 6= l, cl(ε) = c∗l −ε
∑K
r=1 δrM

r,(l)
i , and cl(−ε) = c∗l +ε

∑K
r=1 δrM

r,(l)
j . The cost function of problem (8)

is given by g(c(ε)) for α = αε. We have d
dε
g(c(ε))+g(c(−ε))

2 |ε=0 = ∇lg(c∗)
∑K
r=1 δrM

r,(l)
j −

∑K
r=1 δrM

r,(l)
i

2 < 0,
and the cost function is not convex.

If K is not too small, then the above conditions are in general verified for some value of α. Hence
it is reasonable to demand the condition given in Lemma 2.2.

C Justification of condition (12)

We need to prove the equivalence of the following two conditions.

(i) For every x ∈ Rn there exists a subgradient y ∈ ∂g(x) whose elements are all nonnegative.

(ii) The set 1
n1n + λΠ∗[F o1 ] is contained in the nonnegative orthant.
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We shall prove the two directions of the equivalence relation separately.

(ii) ⇒ (i). First we consider condition (i) for the case Πx = 0. We shall show that the dual vector
y = 1

n1n ≥ 0 is a subgradient of g at x. We have F (Πx) = 0 and hence g(x) = 1
n 〈1n, x〉. For every

z ∈ Rn we have F (Πz) ≥ 0 by assumption (7) on F and hence g(z) ≥ 1
n 〈1n, z〉 = g(x) + 〈 1

n1n, z − x〉.
This proves 1

n1n ∈ ∂g(x).

Now let x ∈ Rn be such that L 3 Πx 6= 0. Then F (Πx) > 0, and we can define x̃ = Πx
F (Πx) ∈ L.

By definition, we have F (x̃) = 1. It follows that x̃ is on the boundary of the set F1. Hence there
exists an element w ∈ F o1 such that 〈w̃, x〉 = 1, and hence 〈w,Πx〉 = F (Πx). By assumption we have
y = 1

n1n + λΠ∗w ≥ 0. We shall show that y ∈ ∂g(x).
Indeed, let z ∈ Rn. Then we have g(z)− g(x)− 〈y, z − x〉 = λ(F (Πz)− F (Πx)− 〈Π∗w, z − x〉) =

λ(F (Πz) − 〈w,Πz〉). If Πz = 0, then F (Πz) − 〈w,Πz〉 = 0. Let us assume that Πz 6= 0. Then
F (Πz) > 0, and we may define z̃ = Πz

F (Πz) . We get F (z̃) = 1, and z̃ ∈ F1. It follows that 〈w, z̃〉 ≤ 1,

because w ∈ F o1 . But then 〈w,Πz〉 ≤ F (Πz), which proves g(z)−g(x)−〈y, z−x〉 ≥ 0. Hence y ∈ ∂g(x),
which yields (i).

(i) ⇒ (ii). First we shall prove an auxiliary result.

Lemma C.1 Let F̃1 = F1 ∩ L. Then the polar F̃ o1 of F̃1 in L is given by the projection Π∗[F o1 ].
Proof. By Lemma A.10 the polar F̃ o1 is given by the closure of Π∗[F o1 ]. It remains to show that Π∗[F o1 ]
is closed. We have F (0) = 0, and hence F1 contains a ball around the origin with positive radius r. It
follows that the polar F o1 is contained in a ball with radius r−1, and is hence compact. But projections
of compact sets are compact, and in particular closed.

We now come to the implication (i)⇒ (ii). Assume (i) and consider first an exposed point w ∈ F̃ o1 .
Our aim is to show that 1

n1n + λw ≥ 0. By definition, there exists x ∈ F̃1 such that 〈w, x〉 = 1,

〈v, x〉 ≤ 1 for all v ∈ F̃ o1 , and {v ∈ F̃ o1 | 〈v, x〉 = 1} = {w}. Note that x 6= 0, hence F (x) > 0, and
x̃ = x

F (x) ∈ F̃1. Therefore 〈w, x̃〉 ≤ 1 and 1 = 〈w, x〉 ≤ F (x). It follows that F (x) = 1.

Let y ≥ 0 be a subgradient of g at x. By Lemmas A.7 and A.8 there exists v ∈ ∂F (x) such that
y = 1

n1n + λΠ∗v. By definition, for all z we have F (z) − F (x) − 〈v, z − x〉 ≥ 0. Inserting z = αx
for α ≥ 0, we obtain (α − 1)F (x) ≥ (α − 1)〈v, x〉. Since α − 1 assumes positive as well as negative
values for α ≥ 0, it follows that 1 = F (x) = 〈v, x〉 = 〈v,Πx〉 = 〈Π∗v, x〉. Thus we get for all z that
F (z)− 〈v, z〉 ≥ 0. In particular, for z ∈ F̃1 we have 1 ≥ F (z) ≥ 〈v, z〉 = 〈Π∗v, z〉, and Π∗v ∈ F̃ o1 . From
〈Π∗v, x〉 = 1 it follows that Π∗v = w, and y = 1

n1n + λw ≥ 0.

Thus 1
n1n + λw ≥ 0 for all exposed points w ∈ F̃ o1 . By Corollary A.5 we get that 1

n1n + λw ≥ 0

for all w ∈ F̃ o1 = Π∗[F o1 ]. This shows (ii).

D Proof of Theorem 3.1

We first need the following Lemma.

Lemma D.1 Let K,N ∈ N+ and β ∈ RK be fixed. For a fixed set of N Monte Carlo realizations, let

t
(n)
β , n = 1, ..., N, be such that

max
t=0,...,T

(
Z

(n)
t −

K∑
k=1

βkM
k,(n)
t

)
= Z

(n)

t
(n)
β

−
K∑
k=1

βkM
k,(n)

t
(n)
β

.

If

max
n=1,...,N

K∑
k=1

δkM
k,(n)

t
(n)
β

≥ 0 for all δ ∈ RK (26)
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then it holds that

min
n=1,...,N

(
Z

(n)

t
(n)
β

−
K∑
k=1

βkM
k,(n)

t
(n)
β

)

≤ inf
α

max
n=1,...,N

max
t=0,...,T

(
Z

(n)
t −

K∑
k=1

αkM
k,(n)
t

)

≤ max
n=1,...,N

max
t=0,...,T

(
Z

(n)
t −

K∑
k=1

βkM
k,(n)
t

)
.

Proof. With α = β − δ for δ ∈ RK we have on the one hand

inf
α

max
n=1,...,N

max
t=0,...,T

(
Z

(n)
t −

K∑
k=1

αkM
k,(n)
t

)

= inf
δ

max
n=1,...,N

max
t=0,...,T

(
Z

(n)
t −

K∑
k=1

βkM
k,(n)
t +

K∑
k=1

δkM
k,(n)
t

)

≤ max
n=1,...,N

max
t=0,...,T

(
Z

(n)
t −

K∑
k=1

βkM
k,(n)
t

)
,

and on the other hand

inf
α

max
n=1,...,N

max
t=0,...,T

(
Z

(n)
t −

K∑
k=1

αkM
k,(n)
t

)

≥ inf
δ

max
n=1,...,N

(
Z

(n)

t
(n)
β

−
K∑
k=1

βkM
k,(n)

t
(n)
β

+

K∑
k=1

δkM
k,(n)

t
(n)
β

)

≥ inf
δ

(
max

n=1,...,N

(
min

n′=1,...,N

(
Z

(n′)

t
(n′)
β

−
K∑
k=1

βkM
k,(n′)

t
(n′)
β

)
+

K∑
k=1

δkM
k,(n)

t
(n)
β

))

= inf
δ

(
min

n′=1,...,N

(
Z

(n′)

t
(n′)
β

−
K∑
k=1

βkM
k,(n′)

t
(n′)
β

)
+ max
n=1,...,N

K∑
k=1

δkM
k,(n)

t
(n)
β

)

≥ min
n=1,...,N

(
Z

(n)

t
(n)
β

−
K∑
k=1

βkM
k,(n)

t
(n)
β

)
,

by using (26).

Corollary D.2 Suppose that for a fixed K ∈ N+ there exists an α∗ ∈ RK such that

M∗ :=

K∑
k=1

α∗kM
k
t (27)

is surely optimal in the sense of [10]. That is

Y ∗ = max
t=0,...,T

(
Zt −

K∑
k=1

α∗kM
k
t

)
almost surely,

and so we have

Y ∗ = max
t=0,...,T

(
Z

(n)
t −

K∑
k=1

α∗kM
k,(n)
t

)
, n = 1, ..., N.

Let t
(n)
∗ , n = 1, ..., N, be such that

Y ∗ = max
t=0,...,T

(
Z

(n)
t −

K∑
k=1

α∗kM
k,(n)
t

)
= Z

(n)

t
(n)
∗
−

K∑
k=1

α∗kM
k,(n)

t
(n)
∗

15



for each n. By virtue of Lemma D.1 we then obtain for β = α∗

Y ∗ = inf
α

max
n=1,...,N

max
t=0,...,T

(
Z

(n)
t −

K∑
k=1

αkM
k,(n)
t

)
,

provided that (26) holds for β = α∗.

Proposition D.3 Let us assume M∗ as in (27) in Corollary D.2 and that

max
n=1,...,N

K∑
k=1

δkM
k,(n)

t
(n)
∗
≥ c ‖δ‖ for all δ ∈ RK and some c > 0, (28)

that is, a stronger version of (26) holds. If now

α◦ = arg inf
α

max
n=1,...,N

max
t=0,....,T

(
Z

(n)
t −

K∑
k=1

αkM
k,(n)
t

)
,

then it follows that α◦ = α∗.

Proof. Let us define

F (α) = max
n=1,...,N

max
t=0,...,T

(
Z

(n)
t −

K∑
k=1

αkM
k,(n)
t

)
.

So by Corollary D.2, F (α◦) = F (α∗) = Y ∗, and for any δ ∈ RK we have

F (α∗ − δ) = max
n=1,...,N

max
t=0,...,T

(
Z

(n)
t −

K∑
k=1

α∗kM
k,(n)
t +

K∑
k=1

δkM
k,(n)
t

)

≥ max
n=1,...,N

(
Z

(n)

t
(n)
∗
−

K∑
k=1

α∗kM
k,(n)

t
(n)
∗

+

K∑
k=1

δkM
k,(n)

t
(n)
∗

)

= Y ∗ + max
n=1,...,N

K∑
k=1

δkM
k,(n)

t
(n)
∗
≥ c ‖δ‖ ,

hence α∗ is a strict local minimum of F. Since F is convex, α∗ is also a unique strict global minimum.
Thus, it must hold that α◦ = α∗.

We next suppose that an almost surely optimal martingale M∗ satisfies

M∗ :=

∞∑
k=1

α∗kM
k
t

where the convergence is understood almost surely (and if it is needed to be in an Lp sense for some
p ≥ 1). Let us introduce two convex functions

GK,N (α) = max
n=1,...,N

max
t=0,...,T

(
Z

(n)
t −

K∑
k=1

αkM
k,(n)
t −

∞∑
k=K+1

α∗kM
k,(n)
t

)

and

FK,N (α) = max
n=1,...,N

max
t=0,...,T

(
Z

(n)
t −

K∑
k=1

αkM
k,(n)
t

)
.

It then holds that

sup
α
|FK,N (α)−GK,N (α)| ≤ max

n=1,...,N
max

t=0,...,T

∣∣∣∣∣
∞∑

k=K+1

α∗kM
k,(n)
t

∣∣∣∣∣ .
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Indeed, for fixed α, n∗ and tn
∗

∗ such that

FK,N (α) = Z
(n∗)

tn∗∗
−

K∑
k=1

αkM
k,(n∗)

tn∗∗

we have on the one hand

FK,N (α)−GK,N (α)

≤ Z(n∗)

tn∗∗
−

K∑
k=1

αkM
k,(n∗)

tn∗∗
−

(
Z

(n∗)

tn∗∗
−

K∑
k=1

αkM
k,(n∗)

tn∗∗
−

∞∑
k=K+1

α∗kM
k,(n∗)

tn∗∗

)

=

∞∑
k=K+1

α∗kM
k,(n∗)

tn∗∗
≤ max
n=1,...,N

max
t=0,...,T

∣∣∣∣∣
∞∑

k=K+1

α∗kM
k,(n)
t

∣∣∣∣∣ ,
and on the other hand, with n◦ and tn

◦

◦ such that

GK,N (α) = Z
(n◦)

tn◦◦
−

K∑
k=1

αkM
k,(n◦)

tn◦◦
−

∞∑
k=K+1

α∗kM
k,(n◦)

tn◦◦

GK,N (α)− FK,N (α)

≤ Z(n◦)

tn◦◦
−

K∑
k=1

αkM
k,(n◦)

tn◦◦
−

∞∑
k=K+1

α∗kM
k,(n◦)

tn◦◦
−

(
Z

(n◦)

tn◦◦
−

K∑
k=1

αkM
k,(n◦)

tn◦◦

)

= −
∞∑

k=K+1

α∗kM
k,(n◦)

tK,n
◦

◦
≤ max
n=1,...,N

max
t=0,...,T

∣∣∣∣∣
∞∑

k=K+1

α∗kM
k,(n)
t

∣∣∣∣∣ .
Now let t

(n)
∗ , n = 1, ..., N, be defined such that for α∗ := (α∗1, . . . , α

∗
K),

GK,N (α∗) = Z
(n)

t
(n)
∗
−

K∑
k=1

α∗kM
k,(n)

t
(n)
∗
−

∞∑
k=K+1

α∗kM
k,(n)

t
(n)
∗

= Y ∗

for each n, and assume that

max
n=1,...,N

K∑
k=1

δkM
k,(n)

t
(n)
∗
≥ c ‖δ‖ for all δ ∈ RK and some c > 0. (29)

By applying Proposition D.3 to the cash-flow

Zt −
∞∑

k=K+1

α∗kM
k
t

it thus follows that
arg inf
α∈RK

GK,N (α) = (α∗1, . . . , α
∗
K)

on Ec,K,N . Then, using the Markov and Doob inequalities, we get

P
(

sup
α
|FK,N (α)−GK,N (α)| ≥ ε

)
≤ P

(
max
n

max
t=0,...,T

∣∣∣∣∣
∞∑

k=K+1

α∗kM
k,(n)
t

∣∣∣∣∣ ≥ ε
)

= 1− P

(
max
n

max
t=0,...,T

∣∣∣∣∣
∞∑

k=K+1

α∗kM
k,(n)
t

∣∣∣∣∣ < ε

)

= 1−

(
P

(
max

t=0,...,T

∣∣∣∣∣
∞∑

k=K+1

α∗kM
k,(n)
t

∣∣∣∣∣ < ε

))N
≤ 1− (1−Ap η ε−pK−ρ)N ≤ Ap ηNε−pK−ρ (30)

17



for K > K0 and some constant Ap depending on p. Now consider K and N to be fixed and let

αFinf := (αFinf,1, ..., α
F
inf,K) := arg inf

α∈RK
FK,N (α).

Due to

GK,N (αFinf) = GK,N
(
α∗ −

(
α∗ − αFinf

))
= max
n=1,...,N

max
t=0,...,T

(
Z

(n)
t −

K∑
k=1

α∗kM
k,(n)
t −

∞∑
k=K+1

α∗kM
k,(n)
t +

K∑
k=1

(
α∗k − αFinf,k

)
M

k,(n)
t

)

≥ max
n=1,...,N

(
Z

(n)

t
(n)
∗
−

K∑
k=1

α∗kM
k,(n)

t
(n)
∗
−

∞∑
k=K+1

α∗kM
k,(n)

t
(n)
∗

+

K∑
k=1

(
α∗k − αFinf,k

)
M

k,(n)

t
(n)
∗

)

= Y ∗ + max
n=1,...,N

K∑
k=1

(
α∗k − αFinf,k

)
M

k,(n)

t
(n)
∗

≥ Y ∗ + c
∥∥α∗ − αFinf

∥∥ ,
by virtue of (29), it holds that∥∥α∗ − αFinf

∥∥ ≤ 1

c

(
GK,N (αFinf)−GK,N (α∗)

)
≤ 1

c

∣∣GK,N (αFinf)− FK,N (αFinf)
∣∣+

1

c

(
FK,N (αFinf)− FK,N (α∗)

)
+

1

c
|FK,N (α∗)−GK,N (α∗)|

≤ 2

c
sup
α
|FK,N (α)−GK,N (α)| .

So we have

P
({
‖α∗,K − αFinf‖ ≥ ε

}
∩ Ec,K,N

)
≤ P

(
2

c
sup
α
|FK,N (α)−GK,N (α)| ≥ ε

)
≤ Ap η2pN(cε)−pK−ρ

by (30).

E Proof of Theorem 3.2

The proof goes along the lines in [7], where a similar result was proven for the covering of the sphere
by random spherical caps.

Let z ∈ SK−1 be a point such that z 6∈
⋃N
k=1 S

(n). Then the spherical cap B(z, 2δ) centered on z

and with opening angle 2δ is contained in the complement of the union
⋃N
k=1 S

δ,(n), where Sδ,(n) is the

realization of the random subset Sδ =
⋂
t=1,...,T S

δ
t corresponding to the realization M

k,(n)
t .

In particular, the fraction uδ of points of the sphere SK−1 which is not covered by the union⋃N
k=1 S

δ,(n) is not smaller than

|B(z, 2δ)|
|SK−1|

=

2π(K−1)/2

Γ((K−1)/2)

∫ δ
0

(sinϕ)K−2dϕ

2πK/2

Γ(K/2)

=
Γ(K/2)

∫ δ
0

(sinϕ)K−2dϕ
√
πΓ((K − 1)/2)

.

Hence

Euδ ≥ P

{
N⋃
n=1

S(n) 6= SK−1

}
·

Γ(K/2)
∫ δ

0
(sinϕ)K−2dϕ

√
πΓ((K − 1)/2)

. (31)

The expectation of uδ can now be computed as in [7]. By the independence of the Sδ,(n) we have
that

P

{
z 6∈

N⋃
n=1

Sδ,(n)

}
= (1− P

{
z ∈ Sδ

}
)N

18



and by Robbins’ theorem [8]

Euδ =

∫
SK−1

(1− P
{
z ∈ Sδ

}
)Ndµ(z) ≤ (1− min

z∈SK−1
P
{
z ∈ Sδ

}
)N

with µ the canonical measure on the sphere summing to 1.
We therefore obtain by the assumption of Theorem 3.2 that

P

{
N⋃
n=1

S(n) 6= SK−1

}
≤ (1− π0 + π1δ)

N
√
πΓ((K − 1)/2)

Γ(K/2)
∫ δ

0
(sinϕ)K−2dϕ

≤ πK−3/2
√
K(1− π0 + π1δ)

N

2K−5/2δK−1
.

Here we have used that
Γ(K−1

2 )

Γ(K2 )
≤
√

2K
K−1 , and

∫ δ
0

(sinϕ)K−2dϕ ≥ ( 2
π )K−2 δK−1

K−1 for δ ≤ π
2 . With δ =

(1−π0)(K−1)
π1(N−K+1) we then get

P

{
N⋃
k=1

SXk 6= SK−1

}
≤ 2

√
2K

π
(1− π0)N−K+1

(
ππ1Ne

2(K − 1)

)K−1

,

where we used ( N
N−K+1 )N−K+1 ≤ eK−1.

This completes the proof of Theorem 3.2.
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