
Multiple stochastic volatility extension of the
Libor market model and its implementation ∗

Denis Belomestny1, Stanley Mathew2, and John Schoenmakers1

February 19, 2009

Keywords: Libor modeling, stochastic volatility, CIR processes, calibration

AMS 2000 Subject Classification: 60G51, 62G20, 60H05, 60H10, 90A09, 91B28
JEL Classification Code: G12

Abstract

In this paper we propose an extension of the Libor market model with
a high-dimensional specially structured system of square root volatility
processes, and give a road map for its calibration. As such the model is
well suited for Monte Carlo simulation of derivative interest rate instru-
ments. As a key issue, we require that the local covariance structure of
the market model is preserved in the stochastic volatility extension. In
a case study we demonstrate that the extended Libor model allows for
stable calibration to the cap-strike matrix. The calibration algorithm is
FFT based, so fast and easy to implement.

1 Introduction
Since Brace, Gatarek, Musiela (1997), Jamshidian (1997), and Miltersen, Sand-
mann and Sondermann (1997), almost independently, initiated the development
of the Libor market interest rate model, research has grown immensely towards
improved models that fit market quotes of standard interest rate products such
as cap and swaption prices for different strikes and maturities. As a matter
of fact, while caps can be priced using a Black type formula and swaptions
via closed form approximations with high accuracy, an important drawback of
the market model is the impossibility of matching cap and swaption volatility
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smiles and skews observed in the markets. As a remedy, various alternatives to
the standard Libor market model have been proposed. They can be roughly
categorized into three streams: local volatility models, stochastic volatility
models, and jump-diffusion models. Especially jump-diffusion and stochastic
volatility models are popular due to their economically meaningful behavior,
and the greater flexibility they offer compared to local volatility models for in-
stance. For local volatility Libor models we refer to Brigo and Mercurio (2006).
Jump-diffusion models for assets go back to Merton (1976) and Eberlein (1998).
Jamshidian (2001) developed a general semimartingale framework for the Libor
process which covers the possibility of incorporating jumps as well as stochas-
tic volatility. Specific jump-diffusion Libor models are proposed, among oth-
ers, by Glasserman and Kou (2003) and Belomestny and Schoenmakers (2006).
Levy Libor models are studied by Eberlein and Özkan (2005). Incorporation of
stochastic volatility has been proposed by Andersen and Brotherton-Ratcliffe
(2001), Piterbarg (2004), Wu and Zhang (2006), Zhu (2007). Recently, a Libor
model with SABR stochastic volatility (Hagen et al. 2002) has attract some
attention (Mercurio and Morini (2007)).

In the present article we focus on a flexible particularly structured Heston
type stochastic volatility Libor model that, due to its very construction, can be
calibrated to the cap/strike matrix in a robust way. In this model we incorporate
a core idea from Belomestny and Schoenmakers (2006), who propose a jump-
diffusion Libor model as a perturbation of a given input Libor market model. As
a main issue, Belomestny and Schoenmakers (2006) furnish the jump-diffusion
extension in such a way that the (local) covariance structure of the extended
model coincides with the (local) covariance structure of the market model. The
approach of perturbing a given market model while preserving its covariance
structure, has turned out to be fruitfull and is carried over into the design of
the stochastic volatility Libor model presented in this paper. In fact, this idea is
supported by the following arguments (see also Belomestny and Schoenmakers
(2006)).

1. Cap(let) prices do not depend on the (local) correlation structure of for-
ward Libors in a Libor market model but, typically, do depend (weakly)
on it in a more general model. In contrast, swaption prices do depend
significantly on this correlation structure. The Libor correlation structure
may, for instance, be implied from a Libor market model calibration to
prices of ATM swaptions (e.g. Brigo and Mercurio (2006), Schoenmakers
(2005)). Therefore, we do not want to destroy this (input) correlation
structure by setting it free while calibrating the extended model to the
cap(let)-strike matrix.

2. The lack of smile behavior of a Libor market model is considered a conse-
quence of Gaussianity of the driving random sources (Wiener processes).
Therefore we want to perturb this Gaussian randomness to a non-Gaussian
one by incorporating a CIR volatility process, while maintaining the (lo-
cal) correlation structure of the Libor market model we started with.
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3. Preserving the correlation structure allows for robust calibration, since
it significantly reduces the number of parameters to be calibrated while
holding a realistic correlation structure.

Specifically, the perturbation part of the presented model will involve CIR (or
square-root) volatility processes, and so the construction will finally resemble a
Heston type Libor model (Heston (1993)). The CIR model originally derived in
a framework based on equilibrium assumptions by Cox, Ingersoll, Ross (1985),
is a special type affine process for which the characteristic function can be
determined in closed form. For computing the characteristic function of fairly
general affine processes with jump part we refer to recent work by Belomestny
et al. (2008).

The idea of utilizing a Heston type process has already been formulated in
Wu and Zhang (2006), and Zhu (2007). However, the present article differs from
these works in the following respects.

1. As opposed to a one-dimensional stochastic volatility process as in Wu &
Zhang, or a (possibly) vector valued one which inhibits only one source
of randomness as in Zhu (2007), we will study multi-dimensional CIR
vector volatility processes with each component being driven by its own
Brownian motion. This leads to a more realistic local correlation structure
and renders the model more flexible for calibration.

2. We suggest a multi-dimensional partial-Gaussian and partial-Heston type
model, where each forward Libor is driven by a linear combination of CIR
processes.

3. While in both papers the issue of calibration has not been addressed, we
give consideration to this problem using novel ideas mentioned above.

4. The new approach proposed in this paper may cure the limitations of
known single volatility approaches, and, we show that a multiple stochas-
tic volatility model must not be ‘too complicated’ as suggested in the
literature (Piterbarg (2005)).

Furthermore, approximative analytic pricing formulas for caplets and swaptions
are derived for this new Libor model which allow for fast calibration to these
products. Ultimately, complex structured Over The Counter products may be
priced by Monte Carlo using guidelines for simulating Heston type models as
given in Kahl and Jäckel (2006).

The content of the paper is as follows. The multiple stochastic volatility
extension of a (given) Libor model is introduced in Section 2. In Section 3 we
outline a natural structuring of the model parameters, including the covariance
constraint and some time homogeneity considerations. Section 4 deals with the
Libor dynamics under different measures and prepares the tools for pricing and
calibration to caps (Section 5) and pricing of swaptions (Section 6). A real life
case study in Section 7 concludes.
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2 Stochastic volatility extension of the Libor mar-
ket model

2.1 The general Libor model
Consider a fixed sequence of tenor dates 0 =: T0 < T1 < . . . < Tn, called
a tenor structure, together with a sequence of so called day-count fractions
δi := Ti+1−Ti, i = 1, . . . , n−1. With respect to this tenor structure we consider
zero bond processes Bi, i = 1, . . . , n, where each Bi lives on the interval [0, Ti]
and ends up with its face value Bi(Ti) = 1. With respect to this bond system
we deduce a system of forward rates, called Libor rates, which are defined by

Li(t) :=
1
δi

(
Bi(t)

Bi+1(t)
− 1

)
, 0 ≤ t ≤ Ti, 1 ≤ i < n.

Note that Li is the annualized effective forward rate to be contracted at the
date t, for a loan over a forward period [Ti, Ti+1]. Based on this rate one has to
pay at Ti+1 an interest amount of $δiLi(Ti) on a $1 notional.

For a pre-specified volatility process γi ∈ Rm, adapted to the filtration gen-
erated by some standard Brownian motion W ∈ Rm, the dynamics of the cor-
responding Libor model have the form,

dLi

Li
= (...)dt + γ>i dW (1)

i = 1, ..., n−1. The drift term, adumbrated by the dots, is known under different
numeraire measures, such as the risk-neutral, spot, terminal and all measures
induced by individual bonds taken as numeraire. If the processes t → γi(t) in
(1) are deterministic, one speaks of a Libor market model.

2.2 Extending the Libor market model
In this work we study an extension of a generic Libor market model, which is
given via a deterministic volatility structure γ. In particular, with respect to an
extended Brownian filtration, we consider the following structure,

dLi

Li
= (...)dt +

√
1− r2

i γ>i dW + riβ
>
i dU, 1 ≤ i < n, (2)

dUk =
√

vkdW̃k 1 ≤ k ≤ d,

dvk = κk(θk − vk)dt + σk
√

vk

(
ρkdW̃k +

√
1− ρ2

kdW k

)
, (3)

where W̃ and W are mutually independent d-dimensional standard Brownian
motions, both independent of W . The coefficients βi ∈ Rd in (2) are chosen to be
deterministic vector functions. They will be specified later. The ri are constants
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that may be considered "allotment" or "proportion" factors, quantifying how
much of the original input market model should be in play. For ri = 0 for all
i, it is easily seen from (2) that the classical market model is retrieved. As
such, at nonzero values of the ri, the extended model may be regarded as a
perturbation of the former. Finally, from a modeling point of view system (2) is
obviously overparameterized in the following sense. By setting βik =: αkβ̃ik and
vk =: α−2

k ṽk, θk =: α−2
k θ̃k, σk =: α−1

k σ̃k, we retrieve exactly the same model.
From now on we therefore normalize by setting θk ≡ 1 without loss of generality.

It is helpful to think of the Libor model as a vector-valued stochastic process of
dimension n − 1 driven by m + 2d standard Brownian motions with dynamics
of the form

dLi

Li
= (...)dt + Γ>i dW, i = 1, ..., n− 1,

where

Γi =




√
1− r2

i γi1

·
·√

1− r2
i γim

riβi1
√

v1

·
·

riβid
√

vd




dW =




dW1

·
·

dWm

dW̃1

·
·

dW̃d




. (4)

In (4) the square-root processes vk are given by (3) (with θk ≡ 1).

In our approach we will work throughout under the terminal measure Pn. Fol-
lowing Jamshidian (1997, 2001), the Libor dynamics in this measure are given
by

dLi

Li
= −

n−1∑

j=i+1

δjLj

1 + δjLj

(
m+d∑

k=1

ΓjkΓik

)
dt + Γ>i dW(n). (5)

Often it turns out technically more convenient to work with the log-Libor dy-
namics. A straightforward application of Itô’s lemma to (5) yields,

d ln Li = −1
2
|Γi|2dt−

n−1∑

j=i+1

δjLj

1 + δjLj

(
m+d∑

k=1

ΓjkΓik

)
dt + Γ>i dW(n), 1 ≤ i < n.

(6)
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3 Structuring the stochastic volatility extension

3.1 Covariance preservation of the market model
Let us integrate the diffusion part of (6) and consider the resulting zero-mean
random variable by

ξi(t) :=
∫ t

0

Γ>i dW(n). (7)

For the covariance function of ξi(t) in the terminal measure we have

En(ξi(t)ξj(t)) =
√

1− r2
i

√
1− r2

j

∫ t

0

γ>i γjds + rirjEn

∫ t

0

β>i dU ·
∫ t

0

β>j dU

=
√

1− r2
i

√
1− r2

j

∫ t

0

γ>i γjds + rirj

d∑

k=1

En

∫ t

0

βikβjk d〈Uk〉

=
√

1− r2
i

√
1− r2

j

∫ t

0

γ>i γjds + rirj

d∑

k=1

∫ t

0

βikβjk Envk ds

=:
√

1− r2
i

√
1− r2

j

∫ t

0

γ>i γjds + rirj

∫ t

0

β>i Λ(t)βj ds (8)

where Λ(t) denotes a diagonal matrix in Rd×d whose elements are the expected
values λk = Envk ∈ R.

The square-root diffusions in (3) have a limiting stationary distribution. The
transition law of the general CIR process,

v(t) = v(u) +
∫ t

u

(
κ(θ − v(s))ds + σ

√
v(s)dW (s)

)
,

is known. In particular, we have the representation

v(t) =
σ2

(
1− e−κ(t−u)

)

4κ
χ2

α,c, t > u,

where χ2
α,c is a noncentral chi-square random variable with α degrees of freedom

and noncentrality c, where

α :=
4θκ

σ2
, c :=

4κe−κ(t−u)

σ2
(
1− e−κ(t−u)

)v(u).

For the expectation we have

E[v(t) | Fu] = (v(u)− θ)e−κ(t−u) + θ, t ≥ u, (9)

e.g. see Glasserman (2003) for details. So, it is natural to take the limit expec-
tation as the starting value of the process. Thus, we set in (3)

vk(0) = θk = 1, for k = 1, . . . , d,
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to obtain Evk(t) ≡ 1, hence Λ = I is constant.
Recall that γi ∈ Rm is the (given) deterministic volatility structure of the

input market model, for example obtained by some calibration procedure to
ATM caps and ATM swaptions. We want to preserve the forward (log-)Libor
covariance due to the structure γ in some sense and now introduce the covariance
constraint mentioned in the introduction. This restriction will be a modified
version of the covariance restriction in Belomestny and Schoenmakers (2006) in
fact. In the latter article one requires (in a jump-diffusion context)

En(ξi(t)ξj(t)) =
∫ t

0

γ>i γjds 1 ≤ i, j < n. (10)

In view of (8) and (10), we set ri ≡ r, to yield from (10),
∫ t

0

β>i βjds =
∫ t

0

γ>i γjds, 1 ≤ i, j < n, (11)

which is obviously satisfied by taking β ≡ γ, and in particular d = m. In order to
obtain closed-form expressions for characteristic functions of (log-)Libors later
on, we need β(t) to be piecewise constant in time, however. Therefore, as one
possibility, we suggest to take

βi(t) = γi(Tm(t)), with m(t) := inf{j : Tj ≥ t}, 0 ≤ t ≤ Ti, (12)

such that (11) holds in a good approximation, as the integral is approximated
by a Riemann sum in fact. If one strives for a more simple structure where β is
time-independent, we propose as a pragmatic choice, to take constant vectors
βi according to

βi = σBlack
i ei, where (13)

(
σBlack

i

)2
:=

1
Ti

∫ Ti

0

|γi(s)|2 ds,

e>i ej :=
γ>i γj

|γi||γj | (0) (14)

in order to match the covariance constraint (10) roughly. The requirement (13)
may be considered as a relaxation of (11). Note that even when m < n − 1,
matching of (11) may require d = n− 1. Depending on the readers preferences
however, one may choose any d, d < n − 1, and then fit (11) after dimension
reduction via principal component analysis of the respective right-hand-sides.

3.2 Time shift homogeneity
From an economical point of view it is appealing to have a time shift homoge-
neous Libor dynamics. That is, the conditional distribution of (Lk+p, Lk+p+1,
. . .) (Tk+p) given the Libor state at Tk (k, p > 0) is the same as the conditional
distribution of (Lp, Lp+1, . . .)(Tp) given the state at T0. For a Libor market
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model this requirement is fulfilled when the deterministic volatility structure γ
satisfies γi(t) = γ(Ti− t) =: g(Ti− t)e(Ti− t), where g = |γ| and e(s) is a (time
dependent) unit vector. In practice it is not easy to identify such a unit vector
function however. In an implementation it is much more convenient to work
with piecewise constant (or even constant) unit vectors, for example of the form
ei−m(t) with m(t) as in (12) for a set of constant unit vectors ei. On the other
hand, it is well known that strict time shift homogeneity in the standard mar-
ket model may lead to caplet fitting problems when market caplet volatilities
decrease too fast in some sense (for details on market model calibration see for
example Brigo and Mercurio (2006), and Schoenmakers (2005)). Altogether, it
is reasonable to strive for time shift homogeneity as far as possible, both from
a modeling and practical point of view. In this respect, it is recommendable to
depart from an input Libor market model with a (nearly) time shift homoge-
neous volatility structure γ. Interestingly, if β is then taken according to (12)
in order to preserve covariance, β will be nearly time shift homogeneous as well.
For the more simple choice, constant β according to (13), the extended Libor
model (6) will still be close to time homogeneous. Therefore, and for simplicity,
we deal in this paper only with the case of time-independent β, which satisfies
(13).

4 Dynamics under various measures

4.1 Dynamics under forward measures
So far the Libor dynamics have been considered under the terminal measure.
In order to price caplets later on, however, we will need to represent the above
process under various forward measures. Let us denote the (time independent)
solution of (13) by γ ∈ R(n−1)×d. Consequently spelling out (5) under the mea-
sure Pn with ri ≡ r yields

dLi

Li
= −

n−1∑

j=i+1

δjLj

1 + δjLj

[
(1− r2)γ>i γj + r2

d∑

k=1

γikγjkvk

]
dt

+
√

1− r2γ>i dW (n) + r

d∑

k=1

√
vkγikdW̃

(n)
k (15)

with corresponding volatility processes

dvk = κk(1− vk)dt + σk
√

vk

(
ρkdW̃

(n)
k +

√
1− ρ2

kdW
(n)

k

)
. (16)
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By rearranging terms we may write,

dLi

Li
=

√
1− r2γ>i


dW (n) −

√
1− r2

n−1∑

j=i+1

δjLj

1 + δjLj
γjdt




+ r

d∑

k=1

γik

√
vk


dW̃

(n)
k − r

n−1∑

j=i+1

δjLj

1 + δjLj
γjk

√
vkdt




=:
√

1− r2γ>i dW (i+1) + r

d∑

k=1

γik

√
vkdW̃

(i+1)
k . (17)

Since Li is a martingale under Pi+1, we have that both W (i+1) and W̃ (i+1)

in (17) are standard Brownian motions under Pi+1. In terms of these new
Brownian motions the volatility dynamics are

dvk = κk(1− vk)dt + rσkρk

n−1∑

j=i+1

δjLj

1 + δjLj
γjkvkdt

+ ρkσk
√

vkdW̃
(i+1)
k +

√
1− ρ2

kσk
√

vkdW
(n,i+1)

k . (18)

As shown in the Appendix, the process W
(n,i+1)

in (18) is a standard Brownian
motion under both measures Pi+1 and Pn.

By freezing the Libors at their initial values in (18), we obtain approximative
CIR dynamics

dvk ≈ κ
(i+1)
k

(
θ
(i+1)
k − vk

)
dt + σk

√
vk

(
ρkdW̃

(i+1)
k +

√
1− ρ2

kdW
(i+1)

k

)
(19)

with reversion speed parameter

κ
(i+1)
k := κk − rσkρk

n−1∑

j=i+1

δjLj(0)
1 + δjLj(0)

γjk, (20)

and mean reversion level

θ
(i+1)
k :=

κk

κ
(i+1)
k

. (21)

The approximative dynamics (19) for the volatility process will be used for
calibration in Section 5.

4.2 Dynamics under swap measures
An interest rate swap is a contract to exchange a series of floating interest
payments in return for a series of fixed rate payments. Consider a series of
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payment dates between Tp+1 and Tq, q > p. The fixed leg of the swap pays
δjK at each time Tj+1, j = p, . . . , q − 1, where δj = Tj+1 − Tj . In return, the
floating leg pays δjLj(Tj) at time Tj+1, where Lj(Tj) is the rate fixed at time
Tj for payment at Tj+1. Consequently the time t value of the interest rate swap
is

q−1∑

j=p

δjBj+1(t)(Lj(t)−K).

The swap rate Sp,q(t) is the value of the fixed rate K, such that the present
value of the contract is zero, hence after some rearranging

Sp,q(t) =

∑q−1
j=p δjBj+1(t)Lj(t)∑q−1

j=p δjBj+1(t)
=

Bp(t)−Bq(t)∑q−1
j=p δjBj+1(t)

. (22)

So Sp,q is a martingale under the probability measure Pp,q, induced by the
annuity numeraire Bp,q =

∑q−1
j=p δjBj+1(t). Therefore we may write

dSp,q(t) = σp,q(t)Sp,q(t)dW(p,q)(t), (23)

where dW(p,q)(t) is standard Brownian motion under Pp,q. From (22) we see
that the swap rate can be expressed as a weighted sum of the constituent forward
rates,

Sp,q(t) =
q−1∑

j=p

wj(t)Lj(t)

with
wj(t) =

δjBj+1(t)
Bp,q

.

An application of Ito’s Lemma yields

dSp,q(t) =
q−1∑

j=p

∂Sp,q(t)
∂Lj(t)

dLj(t) +
q−1∑

j=p

q−1∑

i=p

∂2Sp,q

∂Lj(t)∂Li(t)
dLj(t)dLi(t)

=
q−1∑

j=p

∂Sp,q(t)
∂Lj(t)

Lj(t)Γ>j
[
dW(n) + (. . .)dt

]
. (24)

Equating (23) and (24), gives

dSp,q(t) = Sp,q(t)




q−1∑

j=p

νj(t)Γ>j


 dW(p,q)(t)

with W(p,q) = (W (p,q), W̃ (p,q)) and

νj(t) :=
∂Sp,q(t)
∂Lj(t)

Lj(t)
Sp,q(t)

.
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The change of measure from W(n) to W(p,q) can be found in Schoenmakers
(2005). In particular,

dW (p,q) = dW (n) −
√

1− r2

q−1∑

i=p

wi

n−1∑

j=i+1

δjLj

1 + δjLj
γjdt

and

dW̃
(p,q)
k = dW̃

(n)
k − r

q−1∑

i=p

wi

n−1∑

j=i+1

δjLj

1 + δjLj
γjk

√
vkdt.

In terms of these new Brownian motions the volatility processes read

dvk = κk(1− vk)dt + rσkρk

q−1∑

i=p

wi(t)
n−1∑

j=i+1

δjLj

1 + δjLj
γjkvkdt

+ ρkσk
√

vkdW̃
(p,q)
k +

√
1− ρ2

kσk
√

vkdW
(p,q,n)

k . (25)

As shown in the Appendix, the process W
(p,q,n)

in (25) is standard Brownian
motion under both measures Pp,q and Pn. Assuming now that ∂Sp,q(t)

∂Lj(t)
and Lj(t)

Sp,q(t)

are approximately constant in time, we freeze the weights at their initial time
t = 0. Then the swap rate dynamic is approximately given by

dSp,q(t) ≈ Sp,q(t)




q−1∑

j=p

νj(0)Γ>j


 dW(p,q)(t). (26)

Similarly, freezing the Libors in the drift term of (25) leads to an approximated
volatility process vk given by

dvk ≈ κ
(p,q)
k

(
θ
(p,q)
k − vk

)
dt + σk

√
vk

(
ρkdW̃

(p,q)
k +

√
1− ρ2

kdW
(p,q,n)

k

)
(27)

with reversion speed parameter

κ
(p,q)
k := κk − rσkρk

q−1∑

i=p

wi(0)
n−1∑

j=i+1

δjLj(0)
1 + δjLj(0)

γjk, (28)

and mean reversion level

θ
(p,q)
k :=

κk

κ
(p,q)
k

. (29)

5 Pricing and calibration

5.1 Pricing caplets
A caplet for the period [Tj , Tj+1] with strike K is an option that pays (Lj(Tj)−
K)+δj at time Tj+1, where 1 ≤ j < n. It is well-known that under the forward
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measure Pj+1 the j-th caplet price at time zero is given by

Cj(K) = δjBj+1(0)Ej+1(Lj(Tj)−K)+.

Consequently under Pj+1 the j-th caplet price is determined by the dynamics of
Lj only. The FFT-method of Carr and Madan (1999) can be straightforwardly
adapted to the caplet pricing problem as done in Belomestny and Schoenmakers
(2006). We here recap the main results.

In terms of the log-moneyness variable

v := ln
K

Lj(0)
(30)

the j-th caplet price can be expressed as

Cj(v) := Cj(evLj(0)) = δjBj+1(0)Lj(0)Ej+1

(
eXj(Tj) − ev

)+

,

where Xj(t) = ln Lj(t)− ln Lj(0). One then defines the auxiliary function

Oj(v) := δ−1
j B−1

j+1(0)L−1
j (0)Cj(v)− (1− ev)+ (31)

and can show the following proposition.

Proposition 1 For the Fourier transform of the function Oj defined above and
ϕj+1(·; t) denoting the characteristic function of the process Xj(t) under Pj+1

we have
F {Oj} (z) =

∫ ∞

−∞
Oj(v)eivzdv =

1− ϕj+1(z − i; Tj)
z(z − i)

. (32)

The proof can be found in Belomestny and Reiß (2006). Next, combining
(30), (31), and (32) yields

Cj(K) = δjBj+1(0) (Lj(0)−K)+ (33)

+
δjBj+1(0)Lj(0)

2π

∫ ∞

−∞

1− ϕj+1(z − i;Tj)
z(z − i)

e
−iz ln K

Lj(0) dz.

5.2 Calibration road map
We now outline a calibration procedure for the Libor structure (2), under the
following additional assumptions.

(i) The input market Libor volatility structure γ ∈ R(n−1)×m is assumed to
be of full rank, that is m = n − 1. (Strictly speaking it would be enough
to require the right-hand-side of (11) to be of full rank.)

(ii) The terminal log-Libor increment d ln Ln−1 is influenced by a single stochas-
tic volatility shock dUn−1, the one but last, hence d ln Ln−2, by only dUn−1

and dUn−2, and so forth. Put differently, we assume β ∈ R(n−1)×d to be
a squared upper triangular matrix of rank n− 1, hence d = n− 1.
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(iii) The ri are taken to be constant, that is ri ≡ r, and the matrix β is
determined as the time independent upper triangular solution γ of the
covariance condition (13).

(iv) Recall that vk(0) ≡ θk ≡ 1, 1 ≤ k < n.

For the Libor dynamics structured in the above way we thus have

d ln Li(t) = −1
2

[
(1− r2) |γi|2 + r2

n−1∑

k=i

γ2
ikvk

]
dt

+
√

1− r2γ>i dW (i+1)

+ r

n−1∑

k=i

γik

√
vkdW̃

(i+1)
k , 1 ≤ i < n, (34)

where for i = n− 1 the dynamics of vn−1 is given by (16), and for i < n− 1 the
dynamics of vk, i ≤ k < n, is approximately given by (19).

We will calibrate the structure to prices of caplets according to the following
roadmap.

1. First step i = n − 1. Calibrate r and the parameter set (κn−1 , θn−1 =
1 , σn−1 , ρn−1 ) to the Tn−1 column of the cap-strike matrix via (33) using
the explicitly known characteristic function ϕn of ln[Ln−1(Tn−1)/Ln−1(0)]
(see Appendix (8.0.1)).

2. For i = n− 2 down to 1 carry out the next iteration step:

3. The k-th step i = n−k. Transform the yet known parameter set (κj , σj , ρj)
i < j < n , via (20) and (21) into the corresponding set
(κ(i+1)

j , σ
(i+1)
j , ρ

(i+1)
j , θ

(i+1)
j ), i < j < n. By the upper triangular struc-

ture of the square matrix γ we obviously have κ
(i+1)
i = κi, hence by

(21) θ
(i+1)
i = 1. Then calibrate the at this stage unknown parameter set

(κi, σi, ρi ) to the Ti column of the cap-strike matrix via (33) using the
explicitly known characteristic function ϕi+1 of ln[Li(Ti)/Li(0)] under the
approximation (17)-(19) (see Appendix (8.0.1)).

The above calibration algorithm includes at each step, as usual, the minimiza-
tion of some objective function. As such function we take the weighted sum
of squares of the corresponding differences between observed market prices and
prices induced by the model. The weights are taken to be proportional to Black-
Scholes vegas. As initial values for the local optimization routine at time step
i + 1 the values of estimated parameters at time step i are used.
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6 Pricing swaptions
A European swaption over a period [Tp, Tq] gives the right to enter at Tp into
an interest rate swap with strike rate K. The swaption value at time t ≤ Tp is
given by

Swpnp,q(t) = Bp,q(t)EFt
p,q(Sp,q(Tp)−K)+.

Since the approximative model (26)-(27) for Sp,q has an affine structure with
constant coefficients one can write down the characteristic function of Sp,q ana-
lytically under Pp,q and follow the lines of the previous section to calibrate the
model.

Remark 2 Due to the covariance restrictions (11)-(13), one can expect that
the model prices of ATM swaptions are not far from market prices because our
model employs a covariance structure of LMM calibrated to the market prices
of ATM swaptions.

7 Calibration to real data: a first case study
In this section we calibrate the model (17)-(19) to two caplet-strike volatility
matrices available at the market on 19.06.2008 and 26.06.08 respectively, which
are partially shown in Tables 1,2. A corresponding implied volatility surface is
shown in Figure 2, where smiles are clearly observable. Due to the structure of
the given data sets we consider a Libor model based on semi-annual tenors, i.e.
δj ≡ 0.5, with n = 41 (20 years).

In a pre-calibration a standard market model is calibrated to ATM caps
and ATM swaptions using Schoenmakers (2005). However, we emphasize that
the method by which this input market model is obtained is not essential nor
considered a discussion point for this paper. For the pre-calibration we have
used a volatility structure of the form

γi(t) = cig(Ti − t)ei+1−m(t), 0 < t ≤ Ti, 1 ≤ i < n,

where g is a simple parametric function, ei are unit vectors, and m(t) is defined
in (12). The pre-calibration routine returns ei ∈ Rn−1 such that (ei,k) is upper
triangular and

e>i ej = ρij = exp
[
−|j − i|

m− 1
(− ln ρ∞ (35)

−η
i2 + j2 + ij −mi−mj − 3i− 3j + 3m + 2

(m− 2)(m− 3)

)]
,

i, j = 1, . . . ,m := n− 1, 0 ≤ η ≤ − ln ρ∞.

The function g is parameterized as

g(s) = g∞ + (1− g∞ + as)e−bs. (36)
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For the Libor market model the loading factors ci are readily computed from

(σATM
Ti

)2Ti = c2
i

∫ Ti

0

g2(s) ds, i = 1, . . . , n− 1. (37)

The initial Libor curve, is directly obtained from present values given at the
respective calibration dates and (partially) given in Table 3.

Calibrating the market model

The market model calibration is based on an objective function which involves
the squared distance between a set of market and model swaption volatilities,
and a term which penalizes the deviation

∑
i(ci − ci+1)2 from being constant,

where the cis are computed from (37) (see also Section 3.2 for a motivation).
For the respective dates Table 4 shows the parameters for the scalar volatility
function (36) and correlation matrix (35) based on a calibration of the market
model to 93 swaption quotes. These scalar volatility functions and correlation
structures are taken as inputs for the stochastic volatility model while the con-
stants ci will be calibrated newly for flexibility. The results of the calibration of
the multiple stochastic volatility model to the cap-strike matrix at the respective
calibration dates are given in Tables 5, 6. We note that the stochastic volatility
calibration is done with respected option prices (rather than volatilities as usual
when calibrating a market model).

Comments on the calibration

It turned that for these data sets the stochastic volatility parameter r needed to
be taken rather close to one, r ≡ 0.9. A qualitative impression of the calibration
can be obtained from Figure 1. From the last down to the sixed tenor the
relative average price calibration fit is about 5% for both data sets. For the
short term tenors (up to the fifth) the calibration errors growth up to about
13-25% unfortunately, and are therefore not reported. We found out however
that the main reason for this bad fit for small maturities is the erratic behavior
of the yield curve over this period at the calibration dates (see Table 3). For
instance after replacing the actual yield curve with a smoothed one we also got
a good fit for small maturities.

The overall relative root-mean-square fit we have reached shows to be 0.5%-
5%, when the caplet maturity ranges from 0.5 to 20.

Concluding remark
We have proposed an economically motivated multiple stochastic volatility ex-
tension of a given (pre-calibrated) Libor market model which is suited for Monte
Carlo simulation of exotic interest rate products. Also it is shown that this
extension allows for fast (approximative) cap and swaption pricing with smiles
which enables efficient calibration to these products. A road map for calibration
to the cap-strike matrix is given and illustrated by a case study. The considered
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Figure 1: Caplet volas from the calibrated model (solid lines) and market caplets
volas σK

T (dashed lines) for different caplet periods.

data sets in this study were taken at rather turbulent times, to reveal some
stress issues of the model calibration. We just note that by considering more
smooth data sets (smooth yield curves in particular), it is observed that the cal-
ibration performs overall satisfactory. Finally, we underline that in this paper
the main focus is on the structure of the presented stochastic volatility model
and its implementation. An in-depth analysis of the model calibration and its
performance, for instance analysis of more case studies, and calibration to other
products such as CMS-spreads, is the subject of subsequent work (Belomestny,
Kolodko, Schoenmakers (2008)).

8 Appendix
8.0.1 The Conditional Characteristic Function

For j = 1, ..., n−1, we need to determine the characteristic function of ln Lj(T )−
ln Lj(0) under the relevant measure Pj+1. For each component k = 1, ..., n− 1
the Heston CIR-process has the general form
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dvk = κ
(j+1)
k (θ(j+1)

k − vk)dt + σkρk
√

vkdW̃
(j+1)
k + σk

√
(1− ρ2

k)
√

vkdW
(j+1)

k ,

In this case and a forward Libor dynamic given by (34) , with general v ∈ Rn−1 ,
the solution is of the form

ϕj+1(z ; T, l, v) = Ej+1

[
e
iz ln

Lj(T )
Lj(0)

∣∣∣∣ vk(0) = vk, k = 1, ..., n− 1
]

= ϕj+1,0 (z ; T )
n−1∏

k=j

ϕj+1,k (z; T, vk) (38)

where

ϕj+1,0(z ; T ) = exp
(
−1

2
(1− r2)η2

j (T )
(
z2 + iz

))
, η2

j (T ) =
∫ T

0

|γj |2 dt,

and for each fixed k, ϕj+1,k (z ;T, vk) := p̂j+1,k (z ;T, yk, vk)yk=0 , where p̂j+1,k

satisfies the parabolic equation

∂p̂j+1,k

∂T
= κ

(j+1)
k (θ(j+1)

k − vk)
∂p̂j+1,k

∂vk
− 1

2
r2γ2

jkvk
∂p̂j+1,k

∂yk
+

1
2
σ2

kvk
∂2p̂j+1,k

∂v2
k

+
1
2
r2γ2

jkvk
∂2p̂j+1,k

∂yk
2

+ σkρkrγjkvk
∂2p̂j+1,k

∂yk∂vk

with the boundary condition

p̂j+1,k(z ; 0, yk, vk) = eizyk ,

as can be easily verified by the Feynman-Kac formula. It is well known that the
above equation can be solved explicitly by the ansatz

p̂j+1,k(z ; T, yk, vk) = exp (Aj,k(z; T ) + vkBj,k(z; T ) + izyk) ,

which yields a Riccati equation in Aj,k and Bj,k with solution

Aj,k(z; T ) =
κ

(j+1)
k θ

(j+1)
k

σ2
k

{
(aj,k − dj,k)T − 2 ln

[
e−dj,kT − gj,k

1− gj,k

]}

Bj,k(z; T ) =
(aj,k + dj,k)(1− edj,kT )

σ2
k(1− gj,kedj,kT )

, (39)

where

aj,k = κ
(j+1)
k − irρkσkγjkz

dj,k =
√

a2
j,k + r2γ2

jkσ2
k(z2 + iz)

gj,k =
aj,k + dj,k

aj,k − dj,k
.
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We thus obtain

ϕj+1,k (z ; T, vk) = exp (Aj,k(z; T ) + vkBj,k(z; T )) .

In (39) we have chosen the formulation of Lord and Kahl (2005) which has the
convenient property that we can take in (39) for the complex logarithm always
the principle branch. Note that the first lower index j + 1 in the characteris-
tic function refers to the measure, whereas the first index j at the introduced
coefficients refers to relevant forward Libor. The second index refers to the
component.
It is again the choice of γ that enables the product in (38) to be startet at j.
This crucial feature will show to be beneficial in the calibration part. When
j = n − 1, for example, only the last log-Libor will contribute a non-trivial
factor to the characteristic function. For all others we have

ϕn,k ≡ 1 , k = 1, ..., n− 2 .

8.0.2 CIR

Consider a CIR model of the form,

dv(t) = κ(θ − v(t))dt + σ
√

v(t)dW (t), κ, θ, σ > 0.

Given v(u), v(t) with t > u is distributed with density

νχ2
d(νx, ξ)

where χ2
d(x, ξ) is the density of a noncentral chi-square random variable with d

degrees of freedom and noncentrality parameter ξ and

ν =
4κ

σ2(1− e−κ(t−u))

ξ =
4κe−κ(t−u)

σ2(1− e−κ(t−u))
v(u)

d =
4θκ

σ2
.

The conditional mean of v(t) is given by

E(v(t)|v(u)) = ν−1(ξ + d) = (v(u)− θ)e−κ(t−u) + θ

and the conditional second moment is

E(v2(t)|v(u)) =
(2(d + 2ξ) + (ξ + d)2)

ν2

=
(

1 +
2
d

)
[E(v(t)|v(u))]2 − 2

d
e−2κ(t−u)v2(u).
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8.0.3 Measure Invariance

Why is dW
(n,i+1)

k invariant under the various measures?

See Jamshidian for the compensator, which is given by

µi+1

W
(n)
k

= 〈W (n)

k , ln M〉.

with
M = Πn−1

j=i+1(1 + δjLj).

That is, we have

〈W (n)

k , ln M〉 = dW
(n)

k d ln M = dW
(n)

k d




n−1∑

j=i+1

ln (1 + δjLj)




=
n−1∑

j=i+1

dW
(n)

k d ln(1 + δjLj)

=
n−1∑

j=i+1

δjLj

1 + δjLj
dW

(n)

k d ln Lj

A closer look at (15) reveils that all terms are negligible, since of higher order
than dt, or zero due to independence of W and W or W̃ , respectively. We thus
have

〈W (n)

k , ln M〉 = 0

or in other words, as indicated by dW
(n,i+1)

k :

dW
(n)

k = dW
(i+1)

k .

Analogously we obtain by exchanging W k with W̃k that

〈W̃ (n)
k , ln M〉 = dW̃

(n)
k d ln M

=
n−1∑

j=i+1

δjLj

1 + δjLj
dW̃

(n)
k d ln Lj

=
n−1∑

j=i+1

rδjLj

1 + δjLj
βjk

√
vk

t dt.
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T/K 2.00 3.00 4.00 5.00 6.00 8.00

1 0.325 0.244 0.19 0.165 0.174 0.22

1.5 0.372 0.295 0.237 0.196 0.198 0.223

2 0.374 0.299 0.246 0.208 0.205 0.224

3 0.347 0.283 0.241 0.213 0.205 0.212

4 0.325 0.266 0.228 0.204 0.196 0.201

5 0.307 0.252 0.217 0.196 0.189 0.192

6 0.294 0.241 0.208 0.189 0.182 0.184

7 0.283 0.232 0.201 0.183 0.176 0.176

8 0.274 0.225 0.194 0.177 0.17 0.169

9 0.267 0.219 0.189 0.172 0.164 0.162

10 0.262 0.215 0.184 0.167 0.159 0.156

12 0.251 0.206 0.177 0.16 0.151 0.147

15 0.238 0.195 0.167 0.151 0.142 0.137

20 0.226 0.184 0.157 0.141 0.133 0.13

Table 1: Subset out of 195 caplet volatilities σK
T (in %) for different strikes and

different tenor dates (in years), 19.06.2008.
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T/K 2.00 3.00 4.00 5.00 6.00 8.00

1 0.305 0.23 0.18 0.158 0.167 0.209

1.5 0.353 0.281 0.228 0.19 0.195 0.223

2 0.355 0.285 0.236 0.201 0.202 0.225

3 0.34 0.274 0.231 0.206 0.203 0.22

4 0.327 0.261 0.221 0.199 0.197 0.213

5 0.313 0.25 0.212 0.192 0.19 0.204

6 0.297 0.239 0.204 0.186 0.182 0.191

7 0.283 0.23 0.198 0.18 0.175 0.18

8 0.273 0.223 0.192 0.174 0.168 0.17

9 0.265 0.217 0.187 0.169 0.162 0.162

10 0.259 0.212 0.182 0.165 0.157 0.156

12 0.248 0.203 0.175 0.158 0.149 0.145

15 0.235 0.193 0.166 0.149 0.139 0.134

20 0.223 0.183 0.156 0.14 0.13 0.126

Table 2: Subset out of 195 caplet volatilities σK
T (in %) for different strikes and

different tenor dates (in years), 26.06.2008.
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Figure 2: Caplet implied volatility surface σK
T .
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Ti Li(0) 19.06.08 Li(0) 26.06.08 Ti Li(0) 19.06.08 Li(0) 26.06.08

0.5 0.0582 0.0587 10.5 0.0500 0.0516

1 0.0665 0.0669 11 0.0500 0.0520

1.5 0.0514 0.0500 11.5 0.0502 0.0522

2 0.0390 0.0368 12 0.0504 0.0523

2.5 0.0476 0.0461 12.5 0.0503 0.0520

3 0.0557 0.0561 13 0.0502 0.0520

3.5 0.0517 0.0520 13.5 0.0502 0.0521

4 0.0472 0.0471 14 0.0501 0.0521

4.5 0.0475 0.0477 14.5 0.0500 0.0518

5 0.0481 0.0488 15 0.0498 0.0517

5.5 0.0474 0.0485 15.5 0.0496 0.0517

6 0.0466 0.0484 16 0.0494 0.0515

6.5 0.0473 0.0488 16.5 0.0491 0.0510

7 0.0477 0.0493 17 0.0489 0.0508

7.5 0.0480 0.0497 17.5 0.0488 0.0509

8 0.0484 0.0500 18 0.0487 0.0508

8.5 0.0489 0.0504 18.5 0.0485 0.0503

9 0.0493 0.0508 19 0.0482 0.0498

9.5 0.0497 0.0511 19.5 0.0479 0.0495

10 0.0499 0.0514 20 0.0476 0.0493

Table 3: Initial Libor curves

19.06.08 26.06.08

η 0.007 0.010

ρ∞ 0.101 0.100

a 5.001 5.000

b 2.000 2.001

g∞ 2.578 2.213

Table 4: LMM parameters for correlation structure and volatility function from
calibration to ATM caplets.
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Libor i ρi κi ci σi

rel. price

err. (%)

40 -0.8 1.697 1.444 3.133 5.5

39 -0.8 1.671 1.444 2.908 5.8

38 -0.8 1.691 1.444 2.861 5.7

37 -0.8 1.691 1.444 2.82 6.1

36 -0.8 1.691 1.444 2.774 5.4

35 -0.8 1.635 1.444 2.56 5.8

34 -0.8 1.683 1.444 2.495 5.8

33 -0.8 1.697 1.444 2.456 5.4

32 -0.8 1.697 1.444 2.415 6

31 -0.8 1.697 1.444 2.378 5.3

30 -0.8 1.697 1.444 2.193 5.6

29 -0.8 1.681 1.444 2.15 5.4

28 -0.8 1.694 1.444 2.245 5.4

27 -0.8 1.694 1.444 2.185 5.3

26 -0.8 1.694 1.444 2.118 5.3

25 -0.8 1.694 1.444 2.056 5

24 -0.8 1.694 1.444 1.994 5

23 -0.8 1.694 1.444 1.908 5.1

22 -0.8 1.655 1.444 1.828 4.8

21 -0.8 1.668 1.444 1.648 5

20 -0.8 1.691 1.444 1.572 5.2

19 -0.8 1.691 1.444 1.567 4.7

18 -0.8 1.656 1.444 1.477 4.9

17 -0.8 1.691 1.444 1.398 5.1

16 -0.8 1.43 1.444 1.375 5.1

15 -0.8 1.699 1.444 1.297 5.2

14 -0.8 1.677 1.444 1.22 4.8

13 -0.8 1.511 1.444 1.202 6.3

12 -0.8 1.656 1.444 1.125 6.2

11 -0.8 1.648 1.444 1.091 6.6

10 -0.8 1.593 1.444 1.014 7

9 -0.8 1.696 1.444 0.937 7.1

8 -0.8 1.301 1.444 0.923 8.8

7 -0.8 1.576 1.444 0.91 5.5

6 -0.8 2.245 5.87 0.956 6

5 -0.8 2.905 5.87 0.869 12.4

Table 5: Stoch. Vol. Libor model calibration to the cap-strike matrix, r ≡ 0.9,
date 19.06.08.
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Libor i ρi κi ci σi

rel. price

err. (%)

40 -0.8 2.002 2.008 2.029 5.5

39 -0.8 1.971 2.008 2.001 5.4

38 -0.8 1.93 2.008 1.86 5.5

37 -0.8 1.999 2.008 2.032 5.3

36 -0.8 1.999 2.008 1.91 5.2

35 -0.8 1.999 2.008 1.881 4.9

34 -0.8 1.962 2.008 1.82 5

33 -0.8 1.943 2.008 1.8 4.6

32 -0.8 1.964 2.008 1.71 4.9

31 -0.8 1.951 2.008 1.668 4.6

30 -0.8 1.997 2.008 1.594 4.6

29 -0.8 1.981 2.008 1.558 4.5

28 -0.8 1.906 2.008 1.53 4.3

27 -0.8 1.874 2.008 1.487 4.2

26 -0.8 2.004 2.008 1.434 4.1

25 -0.8 1.991 2.008 1.394 4

24 -0.8 1.935 2.008 1.36 4

23 -0.8 2.004 2.008 1.325 3.8

22 -0.8 2.004 2.008 1.262 3.8

21 -0.8 1.878 2.008 1.233 3.4

20 -0.8 2.004 2.008 1.203 3.5

19 -0.8 1.983 2.008 1.145 3.8

18 -0.8 1.997 2.008 1.087 4

17 -0.8 1.997 2.008 1.039 4.1

16 -0.8 1.997 2.008 1.039 4.2

15 -0.8 1.915 2.008 0.949 3.9

14 -0.8 4.002 8.042 0.949 5.4

13 -0.8 3.873 8.042 0.899 5.9

12 -0.8 3.826 8.042 0.897 6.7

11 -0.8 3.695 8.042 0.839 6.3

10 -0.8 3.3 8.042 0.732 7.9

9 -0.8 3.549 8.042 0.737 7.5

8 -0.8 3.549 8.042 0.68 9.8

7 -0.8 3.952 11.125 0.753 7.9

6 -0.8 3.704 13.065 0.737 5.2

5 -0.8 4.914 16.902 0.705 14

Table 6: Stoch. Vol. Libor model calibration to the cap-strike matrix, r ≡ 0.9,
26.06.08.
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