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Abstract

In this work we derive an inversion formula for the Laplace transform of a density observed on a
curve in the complex domain, which generalizes the well known Post-Widder formula. We establish
convergence of our inversion method and derive the corresponding convergence rates for the case of
a Laplace transform of a smooth density. As an application we consider the problem of statistical
inference for variance-mean mixture models. We construct a nonparametric estimator for the mixing
density based on the generalized Post-Widder formula, derive bounds for its root mean square error
and give a brief numerical example.
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1 Introduction

Let p be a probability density on R+, then the integral

L(z) :=

∫ ∞
0

e−zxp(x) dx, Re z > 0, (1)

exists and is called the Laplace transform of p. The Laplace transform is a popular tool for solving
differential equations and convolution integral equations. Its inversion is of importance in many problems
from e.g. physics, engineering and finance (c.f. [2] and [6] for various examples).

In general, the complexity of the inversion problem for L depends on the information available about
the Laplace transform. If the Laplace transform is explicitly given on its half-plane of convergence, the
density p can be reconstructed using the so-called Bromvich contour integral (see, e.g. [7])

p(x) =
1

2πi

∫ c+i∞

c−i∞
ezxL(z) dz, x > 0.

In the real case, i.e. in the situation where the Laplace transform of p is known on the real axis only,
the inversion of L is a well-known ill-posed problem (see for example [4], [5] and references therein). One
popular solution for this case is given by the well known Post-Widder formula, which reads as follows (cf.
[7]):

p(x) = lim
N→∞

(−1)N

N !

(
N

x

)N+1

L(N)

(
N

x

)
.
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In some situations, the Laplace transform L can only be computed on some curve ` in C, which is different
from R+ or {Re(z) = c} for some c > 0. In this paper we generalize the Post-Widder formula to the case
of rather general curves ` and derive the convergence rates of the resulting estimator.

As an application of our results we consider the problem of estimating the mixing density in a variance-
mean mixture model (see e.g. [1] and [3]). After constructing the estimator, we derive bounds for its root
mean square error (RMSE) and demonstrate its performance in a short numerical example. An advantage
of using the generalized Post-Widder formula here is that the resulting estimator can be evaluated without
any numerical integration.

The paper is organized as follows. In Section 2 we introduce the generalized Post-Widder inversion
formula and discuss its convergence behavior. Section 3 is devoted to the statistical inference for variance-
mean mixtures together with some numerical results. Finally, the proofs of our results are given in Section
5 to 7.

2 Generalized Post-Widder Laplace inversion

In this section we will introduce a generalized Post-Widder inversion formula that extends the classical
result by Post and Widder [7] to the situation when the Laplace transform of a continuous density on
[0,∞] is given on a curve in the complex plane. Subsequently, we prove a convergence result and derive
the rates of convergence for the resulting inverse Laplace transform.

2.1 Inversion formula and its kernel representation

Let p be a continuous probability density on [0,∞) and let its Laplace transform L(z) be given on a
curve:

` := {z = y + ic(y) : y ∈ R+} , (2)

such that c is piecewise smooth with c(y) = o(y) as y →∞. In this setting the generalized Post-Widder
formula can be described as follows.

Definition 2.1 (Generalized Post-Widder formula). For any fixed x > 0, we introduce the generalized
Post-Widder formula by

pN (x) :=
(−1)N

N !

(
g

(
N

x

))N+1

L(N)

(
g

(
N

x

))
, (3)

where L(N) denotes the N th-derivative of the Laplace transform L and g(y) := y+ ic(y). For fixed x > 0,
we define the generalized Post-Widder kernel via

KN (t, x) :=

(
N + ixc

(
N
x

))N+1

N !
tNe−(N+ic(Nx )x)t, t > 0. (4)

Our first result deals with the convergence of pN to p as N → ∞. Such a convergence follows from
the properties of the generalized Post-Widder kernel KN and a representation formula for pN in terms
of KN and p. The latter representation is given by the following proposition.

Proposition 2.2. One has

pN (x) =

∫ ∞
0

p(tx)KN (t, x) dt.

The following result states that KN (t, x) converges to the delta function δ(t − 1) on (0,∞) for any
fixed x > 0.

Proposition 2.3. The following statements hold.
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(i) For r = 0, 1, 2, one has∫ ∞
0

trKN (t, x)dt =
(1 + r/N) · · · (1 + 1/N)

(1 + i(x/N)c(N/x))
r (5)

= 1 +
r

N
− i

r c(N/x)

N/x
+O

(
r

N
+
r c(N/x)

N/x

)2

, N →∞, x > 0. (6)

Hence, in particular we have ∫ ∞
0

KN (t, x)dt = 1 for all N ∈ N. (7)

(ii) Let x > 0 be fixed. For any δ ∈ (0, 1), there exists a natural number Nx
δ such that∫

{|t−1|≥δ, t≥0}
tr |KN (t, x)| dt ≤ CeN(ln(1+δ)−δ)/8, N > Nx

δ .

for r = 0, 1, 2, and some constant C not depending on x and δ.

2.2 Convergence analysis

By combining Proposition 2.2 and Proposition 2.3, the point wise convergence of pN to p follows for
N →∞ as stated in the following corollary.

Corollary 2.4. For any fixed x ≥ 0 and any continuous density p on [0,∞), we have

lim
N→∞

pN (x) = p(x). (8)

We may now sharpen the statement (8) under additional smoothness assumptions on the density p.
In the following propositions we give explicit convergence rates for pN as N →∞. It turns out that the
rates crucially depend on the growth behavior of the function c(y) as y → ∞. We henceforth assume
that

γ := lim sup
y→∞

[
c2(y)

y

]
<∞. (9)

The notation f(x,N) = Ox(r(x,N)) for fixed x ∈ R and N → ∞ means in the sequel the usual O-
notation where the actual order coefficient may depend on x. We start with a local Lipschitz condition
on p.

Proposition 2.5. Let p be a locally Lipschitz continuous density on [0,∞) with Laplace transform (1)
given on the curve (2). Then

pN (x) = p(x) +RN (x),

where
RN (x) = Ox(N−1/2)

for N →∞ and each x > 0.

When the density p is differentiable, the rates of Proposition 2.5 can be improved as the following
result shows.

Proposition 2.6. Let p be a differentiable density on [0,∞) with Laplace transform (1) given on the
curve (2). We then have for 0 ≤ γ <∞,

Re [pN (x)] = p(x) +RN (x),
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where
RN (x) = o(N−1/2)

for N →∞ and each x > 0. Further we have that

pN (x) = p(x) +Ox(N−1/2) for 0 < γ <∞, and

pN (x) = p(x) + o(N−1/2) for γ = 0.

We conclude this section by considering the Laplace inversion problem for a differentiable density p
with locally Lipschitz derivative. It turns out that we can achieve the error term RN of the order N−1

in this case.

Proposition 2.7. Let p be a smooth density on [0,∞) such that its derivative p′ is locally Lipschitz, and
its Laplace transform (1) is given on the curve (2). Then for 0 ≤ γ <∞,

Re [pN (x)] = p(x) +RN (x),

where
RN (x) = O(N−1)

for N →∞ and each x > 0. Moreover we have that

pN (x) = p(x) +Ox(N−1/2) for 0 < γ <∞, and

pN (x) = p(x) +Ox(N−1) for γ = 0.

In the next section we discuss some applications of the generalized Post-Widder formula (3).

3 Application to statistical inference for variance-mean mix-
tures

The problem of inverting a Laplace transform that is given on a curve ` in the complex domain appears
naturally in the context of statistical inference for variance-mean mixture models. In this section we apply
our generalized Post-Widder Laplace inversion formula to estimate the mixture density in a variance-mean
mixture model.

We start the construction of the estimator from the empirical characteristic function that can be
written as the Laplace transform of the mixture density evaluated on a certain curve in the complex
plain. By inverting this Laplace transform we obtain a nonparametric estimator for the mixing density
p. Then we derive bounds for the RMSE and conclude by a numerical example.

3.1 Variance-mean mixture models

A normal variance-mean mixture model is defined as

q(x) :=

∫ ∞
0

1

σ
√
s
φ

(
x− sµ
σ
√
s

)
p(s) ds,

where µ ∈ R, σ ∈ R+, φ is the density of a standard normal distribution and p is a mixing density
on R+. Variance-mean mixture models play an important role in both theory and practice of statistics.
In particular, such mixtures appear as limit distributions in asymptotic theory for dependent random
variables and they are useful for modeling data stemming from heavy-tailed and skewed distributions,
see, e.g. [1] and [3].

As can be easily seen, the variance-mean mixture distribution q coincides with the distribution of the
random variable σ

√
ξ X + µ ξ, where X is standard normal and ξ is a nonnegative random variable with

the density p, which is independent of X. The class of variance-mean mixture models is rather large. For
example, the class of the normal variance mixture distributions (µ = 0) can be described as follows: q is
the density of a normal variance mixture if and only if F [q](

√
u) is a completely monotone function in u.
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3.2 Estimating the mixing density

Here we consider the problem of statistical inference for the mixing density p based on a sampleX1, . . . , Xn

from the distribution q. The Fourier transform of the density q is given by

Φ(u) := F [q](u) =

∫ ∞
0

e−sψ(u)p(s) ds = L[p](ψ(u)) (10)

with ψ(u) := −iuµ+ u2σ2/2 and from our data we can directly estimate the Fourier transform of q, e.g.
by means of the so-called empirical Fourier transform:

Φn(u) :=
1

n

n∑
k=1

eiuXk . (11)

Then we end up with the problem of reconstructing the density p from its empirical Laplace transform
observed on the curve

` := {z = Reψ(u) + i Imψ(u) : u ∈ R+} ,

where we have Re[ψ(u)] = u2σ2/2 and Im[ψ(u)] = −uµ. Note that

` = {z = y + c(y) : y ∈ R+} with c(y) = −µ
√

2y/σ.

If σ 6= 0 than the function c is smooth and satisfies c(y) = o(y) as y →∞. Moreover,

γ = lim sup
y→∞

[
c2(y)

y

]
= 2µ2/σ2. (12)

Hence if p is a differentiable density on [0,∞) such that p′ is locally Lipschitz, we can apply Proposition 2.7
to get the following asymptotic bound:

pN (x)− p(x) =

{
Ox(1/N), µ = 0,

Ox(1/
√
N), µ 6= 0,

(13)

for pN defined in (3) with g(y) = y − iµ
√

2y/σ. Due to (10), we have L(z) = Φ(ξ(z)), where ξ is the

inverse of ψ on `. Without loss of generality we may assume that σ = 1, then ξ(z) =
√

2z − µ2 + iµ using
the principal branch of the square root. So, for l ≥ 1 we have that

ξ(l)(z) = (−1)
l−1 (2 (l − 1))!

2l−1 (l − 1)!

(
2z − µ2

) 1
2−l ,

and by Faà di Bruno’s formula it follows that for z ∈ `,

L(N)(z) =
∑

k1,...,kN≥0,
k1+2k2+...+NkN=N
k1+k2+...+kN=k

N !

k1! . . . kN !(1!)k1 . . . (N !)kN
Φ(k)(ξ(z))

N∏
l=1

(
ξ(l)(z)

)kl

=

N∑
k=1

Φ(k)(ξ(z)) (−1)
N−k (

2z − µ2
) 1

2k−N FN,k. (14)
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The coefficients FN,k can be expressed as follows:

FN,k :=
∑

k1,...,kN≥0,
k1+2k2+...+NkN=N
k1+k2+...+kN=k

N !

k1! . . . kN !

N∏
l=1

(
(2 (l − 1))!

2l−1 (l − 1)!l!

)kl

=
∑

k1,...,kN≥0,
k1+2k2+...+(N−k+1)kN−k+1=N

k1+k2+...+kN−k+1=k,

N !

k1! · · · kN−k+1!

N−k+1∏
l=1

 (2(l−1))!
2l−1(l−1)!

l!

kl

= BN,k

(
1, ...,

(2 (N − k))!

2N−k (N − k)!

)
,

where BN,k stand for the partial Bell polynomials. In view of (11) and (14), we now introduce

L(N)
n (z) :=

N∑
k=1

Φ(k)
n (ξ(z)) (−1)

N−k (
2z − µ2

) 1
2k−N FN,k

as an unbiased estimator for L(N)(z) at every z ∈ `. We so arrive at an empirical estimate for the mixing
density p:

pn,N (x) :=
(−1)N

N !
(g(N/x))

N+1 L(N)
n (g(N/x))

=
(−1)N

N !
(g(N/x))

N+1 1

n

n∑
j=1

eiξ(g(N/x))Xj

×
N∑
k=1

(iXj)
k (−1)

N−k (
2g(N/x)− µ2

) 1
2k−N FN,k, (15)

which obviously satisfies E [pn,N (x)] = pN (x). The coefficients FN,k can be computed by evaluating the
partial Bell polynomials BN,k; these are available in most computational algebra packages. Hence, we
obtain an explicit estimator for p that circumvents the use of numerical integration procedures as needed
in other Laplace inversion techniques.

3.3 Convergence of the estimator

Let us now analyze the variance of pn,N .

Theorem 3.1. For some constant C > 1, depending on x > 0, one has

Var [pn,N (x)] .
CN

n

N∑
k=1

N−kβ2k, (16)

where β2k := E
[
|X1|2k

]
.

Based on the estimate (16), we can derive upper bounds of the root mean square error (RMSE) for
the density estimator pn,N .

Theorem 3.2. Fix some x > 0 and suppose that RN (x) = pN (x)− p(x) = Ox(N−ρ). We then have the
following bounds for the RMSE of pn,N .
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(i) If β2k ≤ Akkk for some A > 0 and all natural k > 1, then

RMSE(pn,N ) = Ox

(
1

lnρ n

)
,

provided

N =
lnn

ln(AC)
− 2ρ

ln(AC)
ln lnn, (17)

where the constant C comes from the bound (16).

(ii) In the case β2k ≤ Akkbk, k ∈ N for some b > 1, it holds that

RMSE(pn,N ) .
lnρ lnn

lnρ n
,

which is achieved by choosing

N =
(2ρ+ lnn)

(b− 1) ln ((2ρ+ lnn) / (b− 1))
− 2ρ

b− 1
. (18)

Remark 3.3. Because of the inequality Var [pn,N (x)] ≥ Var [Re[pn,N (x)]] , the results of Theorem 3.2
remain valid with pn,N replaced by Re[pn,N ].

3.4 Numerical example

Let the mixing density p be the exponential density, i.e. p(x) = exp(−x), then

E
[
|X1|2k

]
=

2k√
π

Γ(1 + k)Γ(k + 1/2) ≤ Akk2k

for some A > 0. Combining Proposition 2.7 with Theorem 3.2, we obtain

RMSE(Re[pn,N ]) .
ln ln(n)

ln(n)
, n→∞.

In Figure 1 one can see the result of numerical estimation of the underlying exponential density p(x) =
exp(−x) based on different numbers of terms N in (15) and different sample sizes n. As can be observed,
the estimation error increases as x→ +0. This effect can be explained by noting that |g(N/x)| → ∞ as
x→ +0 and so the variance increases for small x (see the proof of Theorem 3.1).

4 Acknowledgment

The first author was supported by the Russian Academic Excellence Project “5-100”. The second author
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5 Proofs

In this section we gather the proofs of our results from Section 2.
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0.4

0.6

Figure 1: Approximations pn,N (real parts) for sample sizes n = 10000 (above), n = 50000 (below) and
different values of N of the true exponential density p(x) = exp(−x) in the normal mean variance mixture
model with parameters µ = 0.1 and σ = 1.
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5.1 Proof of Proposition 2.2

We start by proving the integral representation of pN in terms of p and the generalized Post-Widder
kernel KN . We have by definition

L(z) =

∫ ∞
0

e−uzp(u)du, Re z > 0.

Differentiating N -times results in

L(N)(z) =

∫ ∞
0

(−u)Ne−uzp(u)du,

yielding finally

pN (x) =
(−1)N

N !

(
N

x
+ ic

(
N

x

))N+1 ∫ ∞
0

(−u)Ne−u(
N
x +ic(Nx )) p(u) du

=
1

N !

(
N

x
+ ic

(
N

x

))N+1 ∫ ∞
0

(xt)Ne−t(N+ixc(Nx ))p(xt)x dt

=

∫ ∞
0

1

N !

(
N + ixc

(
N

x

))N+1

tNe−t(N+ic(Nx )x)p(xt) dt

=

∫ ∞
0

p(tx)KN (t, x) dt.

5.2 Proof of Proposition 2.3

(i): For r = 0, 1, 2, ... we have∫ ∞
0

trKN (t, x)dt =

∫ ∞
0

1

N !

(
N + ixc

(
N

x

))N+1

tN+re−t(N+ixc(Nx ))dt

=
1

N !

(
N + ixc

(
N

x

))−r ∫ (N+ixc(Nx ))·∞

0

zN+re−zdz.

Note that on the set
{
z : arc(z) = Reiθ, −π/2 < θ < π/2

}
one has

∣∣zN+re−z
∣∣ = RN+re−R cos θ → 0 for

R→∞. Thus, by the Cauchy integral theorem,∫ (N+ixc(Nx ))·∞

0

zN+re−zdz =

∫ ∞
0

tN+re−tdt = (N + r)! ,

from which (5) follows. Thus (5) holds for any integer integer r ≥ 0. The asymptotic expression (6) for
r = 1 and r = 2 can be seen from taking the logarithm of (5):

ln
(1 + r/N) · · · (1 + 1/N)

(1 + i(x/N)c(N/x))
r =

r∑
l=1

ln (1 + l/N)− r ln (1 + i(x/N)c(N/x))

=
r

N
− i

rc(N/x)

N/x
+O

(
1

N
+
c(N/x)

N/x

)2

.

(ii): By Stirling’s formula,

KN (t, x) =

(
1 + i

(
x
N

)
c
(
N
x

))N+1
NN+1

√
2πN · NN

eN

tNe−Nte−i(xt)c(
N
x )(1 +O(1/N))

=

(
1 + ic

(
N

x

)
x

N

)N+1
√
N

2π
tNe−NteNe−i(xt)c(

N
x )(1 +O(1/N)),
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and hence

lnKN (t, x) = −i(xt)c

(
N

x

)
+ (N + 1) ln

(
1 + i · x

N
· c
(
N

x

))
+

1

2
ln
N

2π
+N ln t−Nt+N +O(1/N)

= (N + 1)

∞∑
j=1

(−1)j−1

j

(
ic

(
N

x

)
x

N

)j
+

1

2
ln
N

2π

+N ln t−Nt+N − i(xt)c

(
N

x

)
+O(1/N)

=
1

2
ln
N

2π
+O

(
Nc

(
N

x

)
x

N

)2

+O(1/N)

+N ln t−Nt+N + ic

(
N

x

)
x (1− t) + ic

(
N

x

)
. (19)

In particular, for t 6= 1 we have

|KN (t, x)| = exp

1

2
ln
N

2π
+O(1/N) +N

ln t− t+ 1︸ ︷︷ ︸
<0

+O

(
c

(
N

x

)
x

N

)2

︸ ︷︷ ︸
→0




→ 0 as N →∞. (20)

Let us fix x > 0 and δ > 0 arbitrarily. W.l.o.g. we may assume that δ < 1. Because c(Nx ) xN → 0 for
N →∞, there exist a number Nx

δ such that for any N > Nx
δ and any t > 0 with |t− 1| ≥ δ,

ln t− t+ 1 +O

(
c

(
N

x

)
x

N

)2

<
1

2
(ln t− t+ 1) ,

i.e.

|KN (t, x)| ≤ exp

[
1

2
ln
N

2π
+O(1/N) +

1

2
N (ln t− t+ 1)

]
,

and so for r = 0, 1, 2, N > Nx
δ ,∫

{|t−1|≥δ, t≥0}
tr |KN (t, x)| dt ≤ C1

√
N

2π

∫
{|t−1|≥δ, t≥0}

tr
(
te−t+1

)N/2
dt. (21)

Note that for |t− 1| ≥ δ we have te−t+1 = eln t−t+1 ≤ e ln t−t+1
2 +

ln(1+δ)−δ
2 , hence for r = 0, 1, 2, N > Nx

δ ,∫
{|t−1|≥δ, t≥0}

tr
(
te−t+1

)N/2 ≤ eN(ln(1+δ)−δ)/4
∫
{|t−1|≥δ, t≥0}

treN(ln t−t+1)/4dt

≤ eN(ln(1+δ)−δ)/4
∫
{|t−1|≥δ, t≥0}

tre(ln t−t+1)/4dt

≤ eN(ln(1+δ)−δ)/4
∫ ∞
0

tr+1e(−t+1)/4dt ≤ C2e
N(ln(1+δ)−δ)/4,

where ln (1 + δ)− δ < 0 and C2 > 0. It next follows from (21) that for some constant C > 0∫
{|t−1|≥δ, t≥0}

tr |KN (t, x)| dt ≤ CeN(ln(1+δ)−δ)/8 → 0 (22)

for N →∞, N > Nx
δ .
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5.3 Proof of Proposition 2.5

In order to derive the convergence rates in (8), we use the following lemma.

Lemma 5.1. For r = 1, 2, ..∫ ∞
0

|t− 1|r |KN (t, x)| dt ≤ C6(r+1)/2 Γ ((r + 1) /2)

Nr/2
exp

[
O

(
c2
(
N

x

)
x2

N

)]
.

Proof. Let us fix x > 0. For δ > 0 with 0 < δ < 1 we have by (20),∫ 1+δ

1

|t− 1|r |KN (t, x)| dt ≤ C
√
N

2π
exp

[
N ×O

(
c

(
N

x

)
x

N

)2
]

×
∫ 1+δ

1

(t− 1)
r

exp [N (ln t− t+ 1)] dt, (23)

where∫ 1+δ

1

(t− 1)
r

exp [N (ln t− t+ 1)] dt

=

∫ δ

0

ur exp [N (ln (1 + u)− u)] du

=
6(r+1)/2

2

Γ ((r + 1) /2)

N (r+1)/2
.

Hence by (23) and Theorem 2.3-(ii)∫ ∞
1

|t− 1|r |KN (t, x)| dt ≤ C1
6(r+1)/2

2

Γ ((r + 1) /2)

Nr/2
exp

[
O

(
c2
(
N

x

)
x2

N

)]
.

Similarly, ∫ 1

1−δ
|t− 1|r |KN (t, x)| dt = C

√
N

2π
exp

[
O

(
c2
(
N

x

)
x2

N

)]
×
∫ 1

1−δ
(1− t)r exp [N (ln t− t+ 1)] dt,

where ∫ 1

1−δ
(1− t)r dt exp [N (ln t− t+ 1)]

=

∫ δ

0

urdu exp [N (ln (1− u) + u)] ≤
∫ δ

0

urdt exp
[
−Nu2/6

]
.

By applying Theorem 2.3-(ii) once again the statement of the lemma is proved.

Let us now fix x > 0. By the Lipschitz assumption on p we thus have for fixed 0 < δ < 1,

|pN (x)− p(x)| ≤
∫
|p(tx)− p(x)| |KN (t, x)| dt

≤ Kx |x|
∫
|t−1|<δ

|t− 1| |KN (t, x)| dt+K1e
N(ln(1+δ)−δ)/8

≤ K1
x |x|N−1/2 exp

[
O

(
c2(

N

x
)
x2

N

)]
≤ K2

x |x|N−1/2

due to assumption (9).

11



5.4 Proof of Proposition 2.6

Let us fix x > 0. By differentiability of p we may find for any ε > 0 a δε with 0 < δε < 1 such that

p(tx) =: p(x) + (t− 1) (xp′(x) + Ext ) ,

with |Ext | < ε for all t > 0 with |t− 1| < δε. Due to Proposition 2.2 we then have

pN (x)− p(x) =

∫ ∞
0

(p(tx)− p(x))KN (t, x)dt =

∫
|t−1|≥δ

(p(tx)− p(x))KN (t, x)dt

+xp′(x)

∫
|t−1|<δ

(t− 1)KN (t, x)dt+

∫
|t−1|<δ

(t− 1)Ext KN (t, x)dt =: (∗)1 + (∗)2 + (∗)3.

Since p is bounded we have by Theorem (2.3)-(ii) that

(∗)1 ≤ D1e
N(ln(1+δε)−δε)/8 (24)

for some D1 > 0 and N > Nx
δε

(cf. the proof of Theorem 2.3)-(ii). By Theorem (2.3) we have∫
|t−1|<δε

(t− 1)KN (t, x)dt =

∫ ∞
0

(t− 1)KN (t, x)dt−
∫
|t−1|≥δε, t≥0

(t− 1)KN (t, x)dt

=
1

N
− i

c(N/x)

N/x
+O

(
1

N
+
c(N/x)

N/x

)2

+ fN,δε (25)

with |fN,δε | ≤ D2e
N(ln(1+δε)−δε)/8 for N > Nx

δε
. Next, by Lemma 5.1 and assumption (9) we have

|(∗)3| ≤ ε
∫
|t−1|<δ

|(t− 1| |KN (t, x)| dt ≤ D3
ε

N1/2
exp

[
O

(
c2(

N

x
)
x2

N

)]
(26)

≤ D4
ε

N1/2
.

From (24)–(26) we gather that

pN (x) = p(x) + xp′(x)

(
1

N
− i

c(N/x)

N/x

)
+Ox(

1

N
+
c(N/x)

N/x
)2 + o(N−1/2). (27)

Now, since

c(N/x)

N/x
= O

(
N−1/2

)
, if 0 < γ <∞, and

c(N/x)

N/x
= o(N−1/2) if γ = 0, (28)

the statements follow by taking the real part of (27).

5.5 Proof of Proposition 2.7

Let us fix x > 0. By the Lipschitz assumption on p′ we may find a δ with 0 < δ < 1 such that

p(tx) =: p(x) + (t− 1)xp′(x) +
1

2
(t− 1)2Rxt ,

with |Rxt | < Rx for some constant Rx > 0 and for all t > 0 with |t− 1| < δ. Due to Proposition 2.2 we
thus have

pN (x)− p(x) =

∫ ∞
0

(p(tx)− p(x))KN (t, x)dt =

∫
|t−1|≥δ

(p(tx)− p(x))KN (t, x)dt

+

∫
|t−1|<δ

(
(t− 1)xp′(x) +

1

2
(t− 1)2Rxt

)
KN (t, x)dt =: (∗)1 + (∗)2. (29)
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Since p is bounded we have by Theorem 2.3-(ii) again that (∗)1 ≤ D1e
N(ln(1+δ)−δ)/8 for some D1 > 0 and

N > Nx
δ (cf. the proof of Theorem (2.3)-(ii)). Now let us consider (∗)2. From Theorem 2.3 it follows as

in the proof of Proposition 2.6 that∫
|t−1|<δ

(t− 1)KN (t, x)dt =
1

N
− i

c(N/x)

N/x
+O

(
1

N
+
c(N/x)

N/x

)2

+ fN,δ (30)

with |fN,δ| ≤ D2e
N(ln(1+δ)−δ)/8, and by Lemma 5.1 we have that∣∣∣∣∣

∫
|t−1|<δ

(t− 1)2RxtKN (t, x)dt

∣∣∣∣∣ ≤ Rx
∫ ∞
0

|t− 1|2 |KN (t, x)| dt

≤ D3

N
exp

[
O

(
c2(

N

x
)
x2

N

)]
. (31)

We thus get by (29), (30), (31), and assumption (9),

pN (x) = p(x) + xp′(x)

(
1

N
− i

c(N/x)

N/x

)
+Ox

(
1

N
+
c(N/x)

N/x

)2

+O(N−1),

from which the statements follow by taking the real part and taking (28) into account.

6 Proof of Proposition 3.1

For a generic constant C > 1, depending on x and changing in this proof from line to line, we may write

Var [pn,N (x)] .
CN

n

N2N+2

N2N
E

∣∣∣∣∣
N∑
k=1

(iX1)k (−1)
N−k (

2g(N/x)− µ2
) 1

2k−N FN,k

∣∣∣∣∣
2


.
CN

n
E

∣∣∣∣∣
N∑
k=1

(iX1)k (−1)
N−k (

2g(N/x)− µ2
) 1

2k−N FN,k

∣∣∣∣∣
2


.
CN

n

N∑
k=1

E
[
|X1|2k

∣∣2g(N/x)− µ2
∣∣k−2N F 2

N,k

]
.
CN

n

N∑
k=1

Nk−2NF 2
N,kE

[
|X1|2k

]
.

It is not difficult to see that for l = 1, ..., N − k + 1,

(2 (l − 1))!

2l−1 (l − 1)!
≤ Cll! ,

and so from the definition of the Bell polynomials it follows that

FN,k ≤ CkBN,k (1!, ..., (N − k + 1)!)

= Ck
(

N
k

)(
N − 1
k − 1

)
(N − k)!

≤ CNNN−k.
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7 Proof of Proposition 3.2

(i): Without loss of generality we may assume that A > 1. Since for k ≤ N, N−k ≤ k−k, we get from
(16),

Var [pn,N (x)] ≤ CN

n

N∑
k=1

Ak ≤ A

A− 1

(AC)N

n
. (32)

By substituting N according to (17) into (32) we obtain

Var [pn,N (x)] ≤ A

A− 1

(AC)N

n
=

A

A− 1
ln−2ρ n,

while for the squared bias we have

R2
N (x) = Ox(N−2ρ) = Ox

(
1

ln2ρ n

)
,

hence (i) follows.
(ii): In this case (16) yields

Var [pn,N (x)] ≤ CN

n

N∑
k=1

Akk(b−1)k ≤ CN1
n
N (b−1)N (33)

for another constant C1 > 1. From (18) it follows straightforwardly that

lnN (b−1)N+2ρ =
2ρ+ lnn

ln ((2ρ+ lnn) / (b− 1))
ln

(
(2ρ+ lnn)

(b− 1) ln ((2ρ+ lnn) / (b− 1))
− 2ρ

b− 1

)
=

2ρ+ lnn

ln ((2ρ+ lnn) / (b− 1))

× ln

[
(2ρ+ lnn) / (b− 1)

ln ((2ρ+ lnn) / (b− 1))

(
1− 2ρ

ln ((2ρ+ lnn) / (b− 1))

2ρ+ lnn

)]

=
2ρ+ lnn

ln ((2ρ+ lnn) / (b− 1))
ln

(2ρ+ lnn) / (b− 1)

ln ((2ρ+ lnn) / (b− 1))
− 2ρ+O

(
ln lnn

lnn

)
= lnn− (2ρ+ lnn)

ln ln ((2ρ+ lnn) / (b− 1))

ln ((2ρ+ lnn) / (b− 1))
+O

(
ln lnn

lnn

)
.

On the other hand, from (18),

lnCN1 ≤
(2ρ+ lnn) lnC1

(b− 1) ln ((2ρ+ lnn) / (b− 1))
.

So, for n→∞,

ln
(
CN1 N

(b−1)N+2ρ
)
≤ lnn+O

(
ln lnn

lnn

)
− (2ρ+ lnn)

ln ln ((2ρ+ lnn) / (b− 1))

ln ((2ρ+ lnn) / (b− 1))︸ ︷︷ ︸
→+∞

×

1− lnC1

(b− 1) ln ln ((2ρ+ lnn) / (b− 1))︸ ︷︷ ︸
→0

 ,
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hence
CN1 N

(b−1)N+2ρ ≤ 2n.

We thus obtain by (33),

Var(pn,N (x)) ≤ 2N−2ρ .
ln2ρ lnn

ln2ρ n
,

while

R2
N (x) = Ox(N−2ρ) = Ox

(
ln2ρ lnn

ln2ρ n

)
,

which gives (ii).
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