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Abstract

In this article we consider affine generalizations of the Merton jump
diffusion model [8] and the respective pricing of European options. On
the one hand, the Brownian motion part in the Merton model may be
generalized to a log-Heston model, and on the other hand, the jump part
may be generalized to an affine process with possibly state dependent
jumps. While the characteristic function of the log-Heston component is
known in closed form, the characteristic function of the second component
may be unknown explicitly. For the latter component we propose an
approximation procedure based on the method introduced in [1]. We
conclude with some numerical examples.

1 Introduction

The Merton jump diffusion model [8] can be considered one of the first asset
models beyond Black-Scholes that may produce non-flat implied volatility sur-
faces. On the other hand, European options within this model can be priced
quasi-analytically by means of an infinite series of Black-Scholes type expres-
sions. From a mathematical point of view, the logarithm of the Merton model is
the sum of a compound Poisson process and an independent Brownian motion,
and as such can be seen as the sum of two independent degenerate affine pro-
cesses. The goal of this article is to enlarge the flexibility of the Merton model by
generalizing the Brownian motion to a continuous Heston model and replacing
the compound Poisson process by another, independent, affine model that may
incorporate both stochastic volatility and jumps. In financial modeling affine
processes have become very popular the last decades, both due to their flexibil-
ity and their analytical tractability. The theoretical analysis of affine processes
is developed in the seminal papers [5] and [4]. Once the characteristic functions
of the affine ingredients of our new generalized Merton model are known, we
may price European options by the meanwhile standard Carr-Madan Fourier
based method [2]. For a variety of affine models, such as the Heston model and
several stochastic volatility models with state independent jumps, the charac-
teristic function is explicitly known. However if, for instance, in an affine jump
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model the jump intensity depends on the present state, a closed form expression
for the characteristic function is not known to the best of our knowledge. Yet,
such models make sense in certain applications such as crisis modeling. For
example, one may wish to model an increased intensity of downward jumps in
regimes of increased volatility. In order to cope with such kind of processes
numerically, we recap and apply the general series expansion representation for
the characteristic function of an affine process developed in [1] and present some
numerical examples.

2 Merton jump diffusion models

Merton [8] introduced and studied stock price models of the form

St = S0e
rt+Yt ,

where Y is the sum of a Brownian motion with drift and an independent com-
pound Poisson process,

Yt = γt+ σWt + Jt, (1)

and r is a constant, continuously compounded risk-free rate. In (1) J may be
represented as

Jt =

Nt∑
l=1

Ul,

where U1, U2, ... are i.i.d. real valued random variables and Nt denotes a Poisson
process with parameter λ. The extended characteristic function of Yt is given
by,

Φt(z) = E
[
eizYt

]
= eizγtE

[
eizσWt

]
E
[
eizJt

]
= exp

[
izγt− z2σ2

2
t+ λt

∫ (
eizu − 1

)
µ(du)

]
, (2)

for a certain jump probability measure µ on B(R) due to the distribution of U1.
We henceforth assume that the model is given under a risk-neutral pric-

ing measure. Due to no-arbitrage arguments, we must have that Ste
−rt is a

martingale under this measure. This implies that

S0 = E
[
Ste
−rt] = S0E [exp (Yt)] = S0Φt(−i), hence Φt(−i) = 1. (3)

By (2) we then get

γ = −σ
2

2
− λ

∫
(eu − 1)µ(du). (4)

As an example, with λ = 0 (no jumps), γ = −σ
2

2 and we retrieve the risk neutral
Black-Scholes model. Merton particularly studied the case where U is normally
distributed and derived a representation for a call (or put) option in terms of
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an infinite series of Black-Scholes expressions. In this paper we are interested
in generalizations of (1) of the form

Yt = γt+ σWt +X1
t , (5)

or even,
Yt = γt+Ht +X1

t , (6)

where H is the first component of a log-Heston type model with H0 = 0, whereas
X1
t is the first component of some generally multidimensional affine (eventually

jump) process X, independent of W and H respectively, with X1
0 = 0. In par-

ticular, the characteristic function of X1 is possibly not known in closed form.
We note that γ later might be time-dependent, i.e., γ = γ(t).

At this stage, the separation between X1 and W (in (5)) and H (in (6)),
respectively, seems somewhat artificial. As we shall see in the subsequent sec-
tions, we will use an asymptotic approximation for the characteristic function of
X1, The exact characteristic function for W and H, respectively, improves the
overall accuracy of the approximation, especially regarding the tail behavior.

3 Recap of affine processes and approximate char-
acteristic functions

We consider an affine process X in the state space X ⊂ Rd, d ∈ N+, with
generator given by

Af(x) =
1

2

d∑
i,j=1

aij(x)
∂2f

∂xi∂xj
+

d∑
i=1

bi(x)
∂f

∂xi
(7)

+

∫
Rd

[
f(x+ z)− f(x)− z> ∂f

∂x

]
v(x, dz),

where aij and bi are suitably defined affine functions in x on Rd, and

v(x, dz) =: v0(dz) + x>v1(dz)

with v0 and v1i , i = 1, . . . , d, being suitably defined locally finite measures
on B(Rd\ {0}) with finite first moment. Alternatively, the dynamics of X are
described by the Itô-Lévy SDE:

dXt = b(Xt)dt+ σ(Xt)dW (t) +

∫
Rd
zÑ(Xt−, dt, dz), X0 = x, (8)

where W is a Wiener process in Rm and the function σ : Rd → Rd×Rm satisfies

m∑
k=1

σik(x)σjk(x) = aij(x).
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Further, in (8)

Ñ(x, dt, dz) := Ñ(x, dt, dz, ω) := N(x, dt, dz, ω)− v(x, dz)dt,

is a compensated Poisson point process on R+ × Rd, such that

P [N(x, (0, t], B) = k] = exp(−tv(x,B))
tkvk(x,B)

k!
, k = 0, 1, 2, ...

for bounded B ∈ B(Rd\ {0}). It is assumed that the coefficients in (8) (and so
in (7)) satisfy sufficient conditions such that (8) has a unique weak solution X,
and that X is an affine process with generator (7). For details regarding these
assumptions, in particular the admissibility conditions that are to be fulfilled,
we refer to [1], [4], see also [5].

The characteristic function of X0;x
t , with initial value X0;x

0 = x ∈ Rd, is
denoted by,

p̂(t, x, u) := E
[
eiu
>X0;x

t

]
, x ∈ X, u ∈ Rd, t ≥ 0. (9)

For a variety of affine processes the characteristic function is explicitly known.
However, in general the characteristic function of an affine process involves the
solution of a multi-dimensional generalized Riccati equation that may not be
solved explicitly. In particular, for affine jump processes with state dependent
jump part a closed form expression for the characteristic function generally
does not exist. In this section we recall the approach by Belomestny, Kampen,
and Schoenmakers [1], who developed in general a series expansion for the log-
characteristic function in terms of the ingredients of the generator of the affine
process under consideration. By truncating this expansion one may obtain an
approximation of the characteristic function that may subsequently be used for
approximate option pricing.

Henceforth, x ∈ X is fixed. It is assumed that the characteristic function (9)
satisfies:

Assumption HE: There exists a non-increasing function R : (0,∞) 3 r →
R(r) ∈ (0,∞], such that for any u ∈ Rd, the function [0,∞) 3 s→ p̂(s, x, u) ∈ C
has a holomorphic extension to the region

Gu := {z ∈ C : |z| < R (‖u‖)} ∪ {z ∈ C : Re z ≥ 0 and |Im z| < R (‖u‖)}

(cf. Prop. 3.7, 3.8, and Th. 4.1 and Corr. 4.2-4.4 in [1]).
Under Assumption HE, Th. 3.4 in [1] is particularly fulfilled for each u.

Moreover, by taking in [1], Th. 3.4-(ii),

ηu = η(‖u‖) :=
π

2R (‖u‖)
, (10)

we arrive at the log-series representation [1]-(5.12) for the characteristic function
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(w.r.t. the principal branch of the logarithm),

ln p̂(t, x, u) = ln

∑
r≥0

hr,0(u; ηu)(1− e−ηut)r
+ iu>x (11)

+ x>
∑
r≥1 hr(u; ηu) (1− e−ηut)r∑
r≥0 hr,0(u; ηu)(1− e−ηut)r

, u ∈ Rd, t ≥ 0,

where the coefficients hr,0(u; ηu) ∈ C and hr(u; ηu) = [hr,e1(u; ηu), ..., hr,ed(u; ηu)] ∈
Cd with ei := (δij)j=1,...,d , can be computed algebraically from the coefficients

of the affine generator A in a way that is described below, see equation (15).
Alternatively, in [1] a direct expansion of the form

p̂(t, x, u) = eiu
>x
∞∑
r=0

qr(x, u; ηu)(1− e−ηut)r, u ∈ Rd, t ≥ 0, (12)

is derived with
qr(x, u; ηu) =

∑
|γ|≤r

hr,γ(u; ηu)xγ ,

and the hr,γ are computed by the recursion (15) as described below.

Remark 1 Because of Assumption HE, if Th. 3.4-(i) applies for some u, it
applies for any u′ with ‖u′‖ ≤ ‖u‖ . As a consequence, one may take in (11)
any ηu = η(‖u′′‖) with ‖u′′‖ ≥ ‖u‖ .

In order to outline the construction of the expansion (11), let us denote

fu(x) := eiu
>x, z ∈ Rd. (13)

Then for each multi-index β ∈ Nd0 we may compute algebraically

bβ(x, u) := i−|β|∂uβ
Afu(x)

fu(x)
=: b0β(u) +

∑
κ, |κ|=1

b1β,κ(u)xκ (14)

(in multi-index notation), provided that for the jump part in the generator (7),

1

fu(x)

∫
Rd

(
fu(x+ z)− fu(x)− z> ∂fu

∂x

)
v(x, dz)

=

∫
Rd

(
eiu
>z − 1− iu>z

)
v0(dz) + x>

∫
Rd

(
eiu
>z − 1− iu>z

)
v1(dz)

is explicitly known. That is, the cumulant generating functions of v0 and v1i ,
i = 1, ..., d, are explicitly known. We note that the expression Afu(x)/fu(x) in
(14) is termed the symbol of the operator A. As such the bβ in (14) are, modulo
some integer power of the imaginary unit, derivatives of the symbol of A.
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Let us next consider a fixed u ∈ Rd and ηu > 0. Then for each multi-index
γ and integer r ≥ 0 we are going to construct hr,γ = hr,γ(u; ηu) as follows. For
|γ| > r we set hr,γ ≡ 0 and for 0 ≤ r ≤ |γ| , the hr,γ are determined by the
following recursion. As initialization we take h0,0 ≡ 1, and for 0 ≤ r < |γ| we
have (cf. [1]-(4.6)),

(r + 1)hr+1,γ =
∑

|β|≤r−|γ|

η−1u

(
γ + β

β

)
hr,γ+βb

0
β (15)

+
∑

|κ|=1, κ≤γ

∑
|β|≤r+1−|γ|

η−1u

(
γ − κ+ β

β

)
hr,γ−κ+βb

1
β,κ + rhr,γ ,

where |γ| ≤ r + 1, and empty sums are defined to be zero. We next set

hr(u; ηu) := [hr,ei(u; ηu)]i=1,...,d .

In view of Th. 4.1 in [1] suitable choices of ηu are

ηu & 1 + ‖u‖2 in case of pure affine diffusions,

ηu & eζ‖u‖, ζ > 0, for affine jump processes with thinly tailed large jumps.

In practice the best choice of ηu can be determined in view of the particular
problem under consideration. Generally, on the one hand, ηu should be large
enough to guarantee convergence of the series (11), but not too large in order
to keep fast speed of convergence.

As a natural approximation to (11) and (12) we consider for K = 1, 2, ...,

ln p̂K(t, x, u) = ln

(
K∑
r=0

hr,0(u; ηu)(1− e−ηut)r
)

+ iu>x (16)

+x>
∑K
r=1 hr(u; ηu) (1− e−ηut)r∑K
r=0 hr,0(u; ηu)(1− e−ηut)r

, u ∈ Rd, t ≥ 0,

and the ground‘’ expansion based approximation

p̂(t, x, u) = eiu
>x

K∑
r=0

qr(x, u; ηu)(1− e−ηut)r, u ∈ Rd, t ≥ 0, (17)

respectively.

Remark 2 In connection with approximations (16) and (17) it seems natural
to estimate R using Cauchy’s criterion, and ηu according to (10). That is, we
could take

ηu ≈
π

2

K

√
|AKfu(x)|

K!
,
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where the sequence gr(x, u) := Arfu(x)/fu(x) can be obtained from the recursion

gr+1,γ =
∑

|β|≤r−|γ|

(
γ + β

β

)
gr,γ+βb

0
β (18)

+
∑

|κ|=1, κ≤γ

∑
|β|≤r+1−|γ|

(
γ − κ+ β

β

)
gr,γ−κ+βb

1
β,κ,

with g0,0 = 1 (cf [1]-(4.6)).

4 Generalized Merton models

We now consider generalized Merton models of the form (5) and (6). For the
characteristic function of (5) we have,

Φt(z) = eizγtEeizσWtEeizX
0;(0,x2,...,xd);1

t

= exp

[
izγt− z2σ2

2
t

]
p̂(t,

(
0, x2, ..., xd

)
, (z, 0, ..., 0)), (19)

where X ···;1t denotes the first component of X ···t cf. (2). Firstly, the martingale
condition (3) can now be formulated as

γ = γ(t) = −σ
2

2
− t−1 ln p̂(t,

(
0, x2, . . . , xd

)
, (−i, 0, ..., 0)), (20)

that is, γ may in principle depend on time t. More generally, the characteristic
function of (6) takes the form,

Φt(z) = eizγ(t)tp̂H(t, z)p̂(t,
(
0, x2, . . . , xd

)
, (z, 0, . . . , 0)), (21)

with p̂H(t, z) := E [exp(izHt)] , and

γ(t) = −t−1 ln p̂H(t,−i)− t−1 ln p̂(t,
(
0, x2, ..., xd

)
, (−i, 0, ..., 0)). (22)

In a situation where p̂ in (19) and (21), respectively, is unknown in closed form,
we propose to replace it with an approximation p̂K due to (16) for some level
K large enough. It is convenient to choose X1

t and H such that exp
(
X1
·
)

and
exp (H·) are martingales, respectively. Since X1

0 = H0 = 0, we then have γ = 0
in (22).

Before considering affine processes with really unknown characteristic func-
tion, in the next section we recall the known characteristics of a log-Heston type
model.

4.1 Heston model

Let us consider for X = (X1, X2) a log-Heston type model with dynamics

dX1 = −1

2
α2X2dt+ α

√
X2dW, X1(0) = 0, (23)

dX2 = κ
(
θ −X2

)
dt+ σ

√
X2
(
ρdW +

√
1− ρ2dW

)
, X2(0) = θ,
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for some α, σ, κ, θ > 0, and −1 ≤ ρ ≤ 1. Note that the initial value of X2

is taken to be the expectation of the long-run stationary distribution of X2.
The characteristic function X1 due to (23) is known as follows (we take Lord
and Kahl’s representation [7], using the principal branch of the square root and
logarithm1):

ln p̂(t, θ, z) := ln p̂(t, (0, θ) , (z, 0)) = A(z; t) +B(z; t)θ, with (24)

A(z; t) :=
θκ

σ2

(
(a− d)t− 2 ln

e−dt − g
1− g

)
,

B(z; t) :=
a+ d

σ2

1− edt

1− gedt
with (25)

a := κ− izασρ, d :=
√
a2 + α2σ2 (iz + z2), g :=

a+ d

a− d
,

while abusing notation in (24) slightly. By construction, exp
(
X1
t

)
is a mar-

tingale and so it holds that ln p̂(t, θ,−i) = 0. This can be easily seen from the
Heston dynamics (23) and also by taking z = −i in (25), where we then have
that a = κ− zασρ ∈ R, so d = |a| . Thus |g| = ∞ if a > 0 and |g| = 0 if a < 0
and for both cases we get that A(−i; t) ≡ B(−i; t) ≡ 0. As a consequence we
have γ = −σ2/2 in (20).

4.2 Heston model with state dependent jumps

We now consider a generalized Heston model with state dependent jumps in the
first component, henceforth termed the HSDJ model, of the following form:

dX1 = −λ0a0dt−
(
λ1a1 +

1

2
α2

)
X2dt+ α

√
X2dW (26)

+

∫
R
y
(
N(X2

−, dt, dy)− λ0µ0(y)dydt−X2λ1µ1(y)dydt
)
,

dX2 = κ
(
θ −X2

)
dt+ σ

√
X2
(
ρdW +

√
1− ρ2dW

)
with X1(0) = 0, X2(0) = θ and with t suppressed in Xt− (cf. (8)). In this
model N(w, dt, dy) is for each w > 0 a Poisson point process on R+×R and µ0

and µ1 are considered to be probability densities of jumps that arrive at rate
λ0 > 0 and wλ1 > 0, respectively. Further in (26), a0 and a1 are non-negative
constants given by

a0 =

∫
(ey − y − 1)µ0(y)dy and a1 =

∫
(ey − y − 1)µ1(y)dy, (27)

hence in particular it is assumed that the measures associated with µ0 and
µ1 have exponential moments. In the HSDJ model the density µ0 may have

1Roger Lord confirmed to J.S. a typo in the published version and so we refer to the
preprint version.
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support R, for example Gaussian, while the density µ1 may be concentrated on
(−∞, 0) for example. In this way λ0 and µ0 are responsible for the “normal”
random jumps in (26), while λ1 and µ1 are responsible for downward jumps
which, due to the (state) dependence on X2, arrive with increasing intensity as
the volatility X2 increases. As such the model covers a stylized empirical fact
observed for several underlying quantities, such as assets, indices, or interest
rates. Since µ0 and µ1 are assumed to be probability densities, the dynamics of
X1 in (26) may also be written as

dX1 =

(
−λ0 (m0 + a0)−

(
1

2
α2 + λ1 (m1 + a1)

)
X2

)
dt

+ α
√
X2dW +

∫
R
yN(X2

−, dt, dy), (28)

with

m0 :=

∫
R
yµ0(y)dy and m1 :=

∫
R
yµ1(y)dy. (29)

One can show rigorously that eX
1
t is a martingale with E

[
eX

1
t

]
= 1, and so we

may take in (20) γ = −σ2/2 again (see for example [3]).
In Appendix A we spell out the generator, cf. (7), and its corresponding

symbol derivatives (14) corresponding to the HSDJ model (26).

Example 3 In the case where λ1 = 0, the characteristic function p̂λ0,µ0 of X1

is simply given by (see (28), (27) and (29))

ln p̂λ0,µ0
(t, θ, z) = ln p̂(t, θ, z)− tλ0 (a0 + m0) iz + tλ0ψ0(z)

= ln p̂(t, θ, z)− tλ0ψ0(−i)iz + tλ0ψ0(z),

where

ψ0(z) :=

∫ (
eiyz − 1

)
µ0(y)dy =

∫
eiyzµ0(y)dy − 1

follows from the characteristic function of the jump measure and p̂(t, θ, z) is
given by (24). Note that we have ln p̂λ0,µ0

(t, θ,−i) = 0 again indeed. For exam-
ple if the jumps are N (c, ν2) distributed we have the well known expression

ψ0(z) = eicz−
1
2ν

2z2 − 1,

hence

ln p̂λ0,c,ν2(t, θ, z) := ln p̂(t, θ, z) + tλ0

(
eicz−

1
2ν

2z2 − izec+
1
2ν

2

+ iz − 1
)
.

5 Numerical examples

In this section we will price European options by a Fourier based method due
to Carr-Madan [2]. Let the stock price at maturity T be given as

ST = S0e
rT+YT ,
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where exp [Y·] is a martingale with Y0 = 0. If the characteristic function

ΦT (z) := E
[
eizYT

]
is known, then the the price of a European call option with strike K at time t
= 0 is given by

C(K) = (S0 −Ke−rT )+ +
S0

2π

∫ ∞
−∞

1− ΦT (z − i)

z(z − i)
e−iz ln

Ke−rT
S0 dz (30)

(Carr-Madan’s formula). For more general Fourier valuation formulas, see [6].

In general, the decay of the integrand in (30) is of order O(|z|−2) as |z| → ∞,
hence relatively slow. We therefore use a kind of variance reduction for integrals
using the formula

BS (S0, T, r, σB) = (S0 −Ke−rT )+ +
S0

2π

∫ ∞
−∞

1− ΦBST (z − i)

z(z − i)
e−iz ln

Ke−rT
S0 dz,

(31)
where BS is the well-known Black-Scholes formula based on the risk-neutral
Black-Scholes model

SBt := S0e
rT−σ2

BT/2+σBWT , with

ΦBST (z) := E
[
eiz(−σ

2
BT/2+σBWT )

]
= e−(z2+iz)σ2

BT/2,

for a suitable but in principle arbitrary σB > 0. Next, subtracting (30) and (31)
gives the variance reduced formula

C(K) = BS (S0, T, r, σB) +
S0

2π

∫ ∞
−∞

ΦBST (z − i)− ΦT (z − i)

z(z − i)
e−iz ln

Ke−rT
S0 dz,

(32)
where the integrand decays at a rate |z−2|max[|ΦBST (z − i)|, |ΦT (z − i)|] which
is typically (much) faster than in (30), provided that ΦT (z− i) tends to zero as
|z| → ∞.

5.1 Product of Heston models

We first consider a model where the stock price St is obtained as the product
of two independent Heston factors, i.e., (6) with X1

t another Heston model.
Clearly, in this case a closed form expression for the characteristic function of
lnSt exists, and therefore the asymptotic expansion presented in this paper is
not needed for pricing. This allows us to easily compute accurate reference
prices, and thus assess the numerical accuracy of prices obtained from the ex-
pansion of the characteristic function. All calculations were done using Mathe-
matica. Using its symbolic capabilities, we have implemented the recursion (15)
in full generality.

The Heston parameters for the components Ht and X1
t are presented in

Table 1. Additionally, we choose S0 = 10 and r = 0.05 for option pricing.
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Ht X1
t

α 1.0 1.0
κ 1.5 1.5
σ 0.6 0.3
θ 0.04 0.0225
ρ −0.2 −0.3
v 0.04 0.0225

Table 1: Parameters of the Heston+Heston-model. v denotes the initial variance
in both components.

Based on these parameters, we compute the asymptotic expansion p̂K of the
characteristic function using (12) with K = 8, i.e., including the first nine
terms in the expansion.
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(a) Real part, t = 1/2
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(b) Imaginary part, t = 1/2
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(c) Real part, t = 2

-15 -10 -5 5 10 15

-0.06

-0.04

-0.02

0.02

0.04

0.06

(d) Imaginary part, t = 2

Figure 1: Exact (blue) and approximate (orange) characteristic functions of the
logarithm of the normalized stock price in the generalized Merton model with
two Heston factors evaluated at time t = 1/2 and t = 2 (years).

In Figure 1, we compare the exact and the approximate characteristic func-
tions of the (normalized) logarithm of the stock prices—i.e., with S0 = 1 for
convenience. We can clearly see that the approximation deteriorates when |u|
becomes large, but then both the exact and the approximate characteristic func-
tions tend to 0. Moreover, the approximation formula is more accurate for small
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t (cf. (11), (16) and (12), (17, respectively).

L 2 4 8 16 32 64
Exact 0.8350 0.9621 1.1105 1.1832 1.1884 1.884
Approx. 0.8353 0.9626 1.1111 1.1842 1.1896 1.1896
(Rel. error) 0.2981 0.1912 0.0665 0.0054 0.0010 0.0010

Table 2: Price of ATM call option with maturity T = 1 computed using do-
main of integration [−L,L] for both the exact characteristic function and the
approximate formula, together with the relative error for using the approximate
formula—w.r.t. the most accurate price obtained from the exact formula.

When we come to option pricing, we plug the approximate formula for the
characteristic function into the Fourier pricing formula (32). For the imple-
mentation, we clearly need to replace the infinite domain of integration by a
finite one, i.e., we use (32) integrating from −L to L, L ∈ R+. This cut-off
is potentially critical for our approximation procedure, as large integration do-
mains (and, hence, large |u|) may correspond to large errors of the approximate
formula. Fortunately, Table 2 indicates that this effect does not materialize.

Remark 4 At this stage, we would like to highlight once more the heuristic
choice of η proposed in Remark 2. Without a good choice of η, it is very easy to
run into situations, where the approximation error is already too large for the
needed domain of integration.

(a) Relative error. (b) Absolute error.

Figure 2: Relative and absolute errors of European call option prices.

Let us consider option prices and the corresponding errors for maturities from
1/2 to 5 years and for strike prices between 7 (deep in) and 13 (deep out of) the
money. Figure 2 shows that errors remain small (≤ 2% ATM) for maturities up
to 2 years. For (deep) OTM options, it seems to be more reasonable to look at
absolute instead of relative errors, which give a similar impression.
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Finally, the implied volatility in this model is plotted in Figure 3. Con-
siderable deviations between the exact and the approximate formula are only
observed for higher maturities.

Figure 3: Implied volatility of the generalized Merton model based on two
Heston factors based on exact (blue) and approximate (orange) characteristic
functions.

5.2 Generalized Merton model with state-dependent jumps

Let us consider a generalized Merton model of the form (6) where X1 is an affine
jump process with state-dependent jump-intensity in the sense of (26). The
parameters corresponding to the diffusive parts of both H and X1 are chosen
as in Table 1. Regarding the jump part of X1, we set λ0 = 0, µ0 = 0, thereby
turning off the jumps with constant, i.e., not state dependent, intensities. The
jump parameters of X1 are chosen according to Table 3.

X1
t

λ1 10
µ1(y) 1y<0pe

py

p 4.48

Table 3: Jump parameters of X1

This means that jumps in the log-price have exponentially distributed mag-
nitude and negative sign. The mean jump of the log-price is around 0.22, i.e.,
in case of a downward jump (“crisis”), the stock loses about 20% of its value on
average. The intensity λ1 seems excessively high, but recall that this intensity
is multiplied by the instantaneous variance of the Heston component, which is
started at 0.04.
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Figure 4: Sample path of St in the generalized Merton model with state-
dependent jumps (first panel), volatility (more precisely, the square root of
the sum of both variance components) of St (second panel), and of the variance
component of the second Heston factor. A jump occurs shortly after time 0.75.

14



By (33), and (34) below, we obtain

ψ0(ξ) = 0, m0 + a0 = ψ0(−i) = 0,

ψ1(ξ) =

∫ 0

−∞

(
eiξy − 1

)
pepydy = − iξ

p+ iξ
, m1 + a1 = ψ1(−i) = − 1

p+ 1
.

-15 -10 -5 5 10 15

0.2

0.4

0.6

0.8

1.0

(a) Real part, t = 1/2

-15 -10 -5 5 10 15

-0.05

0.05

(b) Imaginary part, t = 1/2

Figure 5: Approximate characteristic function (orange) of the logarithm of the
normalized stock price in the generalized Merton model with one Heston factor
and one Heston factor with jumps evaluated at time t = 1/2 (year). Comparison
with the characteristic function computed by a Monte Carlo simulation (blue).

Figure 5 shows the approximate characteristic function including jumps at
time t = 1/2, compared with the exact characteristic function. As expected, the
jumps lead to a considerable change in the characteristic function. We compare
the characteristic function to another numerical approximation based on Monte
Carlo simulation. Both approximations lead to very close results especially in
the real part. The results are less close for the imaginary part, but notice that
the graphical representation exaggerates the differences as the scale is much
smaller in the second plot (from −0.1 to 0.1 instead of 0 to 1).

These changes in the distribution have the expected changes in the option
prices. In particular, the implied volatilities become larger, and also the smile
becomes much more pronounced, comparing Figure 6 with Figure 3.

K 7 8 9 10 11 12 13
Monte Carlo 3.2719 2.3688 1.5511 0.8888 0.4427 0.2006 0.0884
Asym. formula 3.2279 2.3276 1.5144 0.8583 0.4217 0.1880 0.0818
Rel. error 0.0134 0.0174 0.0237 0.0343 0.0476 0.0627 0.0744
MC stat. error

Ref. price 0.0018 0.0023 0.0031 0.0044 0.0067 0.0106 0.0166

Table 4: Option prices for maturity T = 1/2 for various strike prices in the Hes-
ton model plus jumps. We compare prices obtained by the asymptotic expansion
of the characteristic function with prices obtained by Monte Carlo simulation.

Finally, let us directly compare the price for some European call options with
reference prices obtained by Monte Carlo simulation, see Table 4. Once again,
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Figure 6: Implied volatility of the generalized Merton model with one Heston
factor and one Heston factor with jumps (orange), compared with the implied
volatilities computed with the exact characteristic function in Figure 3.

we used S0 = 10 and r = 0.05. The Monte Carlo prices are based on 100, 000
trajectories with 1000 time-steps each, the statistical error, i.e., the standard
deviation divided by the square root of the number of samples, is considerable
smaller than the observed difference.

Unfortunately, the results of Table 4 are not as convincing as the accuracy
of the approximation in the pure diffusion case suggested, compare Table 2
and Figure 2. We suspect a combination of slow decay of the characteristic
function, sub-optimal choice of the damping parameter η and higher truncation
error of the asymptotic characteristic function, see the conclusions below for
some further comments.

Conclusions From the examples we conclude that for times being not too
large the approximation procedure based on [1] performs rather well. More
specifically, if no jumps are in the play the procedure works very good, but with
incorporated (state dependent) jumps the accuracy is somewhat worse. In order
to resolve this issue one could investigate different directions. One reason for
lower accuracy may be a diminished effect of the Black-Scholes ingredients in
the Fourier pricing formula (32) in the presence of state dependent jumps. This
in turn might require a larger integration range where that approximation gets
worse at the upper and lower end, respectively. As a way out, it looks natural
to replace the role of the Black-Scholes ingredients in (32) by an affine model
with state independent jumps for which the characteristic function is known,
leading to a representation of the form

Cappr(K) = (S0 −Ke−rT )+ +
S0

2π

∫ ∞
−∞

1− Φknown
T (z − i)

z(z − i)
e−iz ln

Ke−rT
S0 dz

+
S0

2π

∫ ∞
−∞

Φknown
T (z − i)− Φappr

T (z − i)

z(z − i)
e−iz ln

Ke−rT
S0 dz =: Iknown + Iappr.
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The integral Iknown can be computed with any desired accuracy while for the
integral Iappr a relatively small integration range may be sufficient.

Other reasons for the decreased accuracy in Section 5.2 for instance, may be
a too small η chosen due to Remark 2, or not enough iterations. However, we
leave all these investigations for further research, since this article is considered
merely a first guide on numerical implementation of the method in [1].

A Generator and bβ for the HSDJ model

By conferring (7), (8), and (26), we have in fact

v(x, dz) = v0(dz) +x>v1(dz) = λ0µ0(z1)δ0(z2)dz1dz2 +x2λ1µ1(z1)δ0(z2)dz1dz2

with δ0 being the Dirac delta function, that is the (singular) density of the Dirac
probability measure R concentrated in {0} . Thus, the generator of the HSDJ
model is given by

Af (x1, x2) =

(
−λ0a0 −

(
1

2
α2 + λ1a1

)
x2

)
∂x1

f + κ (θ − x2) ∂x2
f

+
1

2
α2x2∂x1x1

f + ασρx2∂x1x2
f +

1

2
σ2x2∂x2x2

f

+

∫
R

[f(x1 + z1, x2)− f(x1, x2)− z1∂x1
f ] (λ0µ0(z1)dz1 + x2λ1µ1(z1)dz1) .

Since we are dealing with jump probability densities rather than infinite jump
measures, as in the case of infinite activity processes, the generator may be
written as

Af (x1, x2) =

(
−λ0 (m0 + a0)−

(
1

2
α2 + λ1 (m1 + a1)

)
x2

)
∂x1

f

+κ (θ − x2) ∂x2
f +

1

2
α2x2∂x1x1

f + ασρx2∂x1x2
f +

1

2
σ2x2∂x2x2

f

+λ0

∫
R

[f(x1 + y, x2)− f(x1, x2)]µ0(y)dy

+x2λ1

∫
R

[f(x1 + y, x2)− f(x1, x2)]µ1(y)dy,

using (29).

With fu(x) = eiu
>x we so obtain,

Afu(x)

fu(x)
=

(
−λ0 (m0 + a0)−

(
1

2
α2 + λ1 (m1 + a1)

)
x2

)
iu1

+κ (θ − x2) iu2 −
1

2
α2x2u

2
1 − ασρx2u1u2 −

1

2
σ2x2u

2
2

+λ0ψ0(u1) + x2λ1ψ1(u1)
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with

ψi(ξ) :=

∫
R

(
eiξy − 1

)
µi(y)dy, i = 0, 1. (33)

Note that we have
mi + ai = ψi(−i), i = 0, 1. (34)

The first order derivatives w.r.t. u are,

∂u1

Afu(x)

fu(x)
= −λ0 (m0 + a0) i−

(
1

2
α2 + λ1 (m1 + a1)

)
ix2

− α2x2u1 − ασρx2u2 + λ0∂u1
ψ0(u1) + x2λ1∂u1

ψ1(u1)

∂u2

Afu(x)

fu(x)
= κ (θ − x2) i− ασρx2u1 − σ2x2u2.

For the second order derivatives we have

∂u1u1

Afu(x)

fu(x)
= −α2x2 + λ0∂u1u1

ψ0(u1) + x2λ1∂u1u1
ψ1(u1)

∂u1u2

Afu(x)

fu(x)
= −ασρx2, ∂u2u2

Afu(x)

fu(x)
= −σ2x2,

and for multi-indices β with |β| ≥ 3, i.e. the higher order ones,

∂uβ
Afu(x)

fu(x)
=

{
λ0∂u|β|1

ψ0(u1) + x2λ1∂u|β|1
ψ1(u1) for β = (|β| , 0),

0 if β 6= (|β| , 0).

Hence the ingredients (14) of the recursion (15) are in multi-index notation as
follows.
|β| = 0 :

b0(x, u) = −λ0 (m0 + a0) iu1 + κθiu2 + λ0ψ0(u1)

+x2

(
λ1ψ1(u1)−

(
1

2
α2 + λ1 (m1 + a1)

)
iu1 − κiu2 −

1

2
α2u21 − ασρu1u2 −

1

2
σ2u22

)
whence

b00(u) = −λ0 (m0 + a0) iu1 + κθiu2 + λ0ψ0(u1),

b10,e1(u) = 0, b10,e2(u) = λ1ψ1(u1)−
(

1

2
α2 + λ1 (m1 + a1)

)
iu1

− κiu2 −
1

2
α2u21 − ασρu1u2 −

1

2
σ2u22.

For |β| = 1, (14) yields

b(1,0)(x, u) = −λ0 (m0 + a0)− λ0∂u1ψ0(u1)i−
(

1

2
α2 + λ1 (m1 + a1)

)
x2

+ α2x2u1i + ασρx2u2i− x2λ1∂u1
ψ1(u1)i

b(0,1)(x, u) = κ (θ − x2) + ασρx2u1i + σ2x2u2i,
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whence

b0(1,0)(u) = −λ0 (m0 + a0)− λ0∂u1
ψ0(u1)i, b1(1,0),e1(u) = 0,

b1(1,0),e2(u) = −
(

1

2
α2 + λ1 (m1 + a1)

)
+ α2u1i + ασρu2i− λ1∂u1ψ1(u1)i

and

b0(0,1)(u) = κθ, b1(0,1),e1(u) = 0,

b1(0,1),e2(u) = −κ+ ασρu1i + σ2u2i.

Next, for |β| = 2, (14) yields

b(2,0)(x, u) = α2x2 − λ0∂u1u1
ψ0(u1)− x2λ1∂u1u1

ψ1(u1),

b(1,1)(x, u) = ασρx2,

b(0,2)(x, u) = σ2x2

whence

b0(2,0)(u) = −λ0∂u1u1
ψ0(u1), b1(2,0),e1(u) = 0,

b1(2,0),e2(u) = α2 − λ1∂u1u1
ψ1(u1),

b0(1,1)(u) = b1(1,1),e1(u) = 0, b1(1,1),e2(u) = ασρ,

b0(0,2)(u) = b1(0,2),e1(u) = 0, b1(0,2),e2(u) = σ2.

For multi-indices β with |β| ≥ 3 we get

bβ(x, u) =

{
λ0i
−|β|∂

u
|β|
1
ψ0(u1) + x2λ1i

−|β|∂
u
|β|
1
ψ1(u1) for β = (|β| , 0),

0 if β 6= (|β| , 0),

whence

b0β(u) =

{
λ0i
−|β|∂

u
|β|
1
ψ0(u1) for β = (|β| , 0),

0 if β 6= (|β| , 0),

and

b1β,e1(u) = 0,

b1β,e2(u) =

{
λ1i
−|β|∂

u
|β|
1
ψ1(u1) for β = (|β| , 0),

0 if β 6= (|β| , 0).
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