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Abstract. Discrete approximations to solutions of stochastic differential equations are well-

known to converge with “strong” rate 1/2. Such rates have played a key-role in Giles’ multilevel

Monte Carlo method [Giles, Oper. Res. 2008] which gives a substantial reduction of the compu-
tational effort necessary for the evaluation of diffusion functionals. In the present article similar

results are established for large classes of rough differential equations driven by Gaussian processes

(including fractional Brownian motion with H > 1/4 as special case).

We consider implementable schemes for large classes of stochastic differential equations (SDEs)

(1) dYt = V0 (Yt) dt+

d∑
i=1

Vi (Yt) dX
i
t (ω)

driven by multidimensional Gaussian signals, say X = Xt (ω) ∈ Rd. The interpretation of these
equations is in Lyons’ rough path sense [LQ02, LCL07, FV10b]. This requires smoothness/boundedness
conditions on the vector fields V0 and V ≡ (V1, . . . , Vd); for the sake of this introduction, the reader
may assume bounded vector fields with bounded derivatives of all order (but we will be more specific
later). This also requires a “natural” lift of X (·, ω) to a (random) rough path

X· (ω) = 1 +

N∑
i=1

∫
0<s1<···<si<·

dXs1(ω)⊗ · · · ⊗ dXsi(ω),

a situation fairly well understood, cf. [FV10b, Ch. 15] and the references therein. The reader not
familiar with rough path theory may think of Y as “Stratonovich” solution to (1). In fact, Y is
known to be the Wong-Zakai limit, obtained by replacing X in ((1) by piecewise-linear approxima-
tion followed by taking the mesh-to-zero limit.

We shall simplify the discussion by choosing V0 ≡ 0 and using the short-hand notation

(2) dY = V (Y ) dX.

Of course, it would be easy to include equations of the form (1) into the framework (2), e.g., by
including time t as an additional (smooth) component of the noise X. This setting includes, for
instance, fractional Brownian motion [CQ02] with Hurst parameter H > 1/4. It may help the reader
to recall that, in the case when X = B, a multidimensional Brownian motion, all this amounts to
enhance B with Lévy’s stochastic area or, equivalently, with all iterated stochastic integrals of B

against itself, say Bs,t =
∫ t
s
Bs,· ⊗ dB. The (rough-)pathwise solution concept then agrees with the

usual notion of an SDE solution (in Itô- or Stratonovich sense, depending on which integration was
used in defining B). As is well-known this provides a robust extension of the usual Itô framework of
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stochastic differential equations with an exploding number of new applications (including non-linear
SPDE theory, robustness of the filtering problem, non-Markovian Hörmander theory).

In a sense, the rough path interpretation of a differential equation is closely related to strong,
pathwise error estimates of Euler- resp. Milstein-approximation to stochastic differential equations.
For instance, Davie’s definition [Dav07] of a (rough)pathwise SDE solution is

(3) Yt − Ys ≡ Ys,t = Vi (Ys)B
i
s,t + V ki (Ys) ∂kVj (Ys)Bi,js,t + o (|t− s|) as t ↓ s,

where we employ Einstein’s convention. In fact, this becomes an entirely deterministic definition,
only assuming

∃α ∈ (1/3, 1/2) : |Bs,t| ≤ C |t− s|α , |Bs,t| ≤ C |t− s|2α ,
something which is known to hold true almost surely (i.e. for C = C (ω) < ∞ a.s.), and some-
thing which is not at all restricted to Brownian motion. As the reader may suspect this approach
leads to almost-sure convergence (with rates) of schemes which are based on the iteration of the
approximation seen in the right-hand-side of (3). The practical trouble is that Lévy’s area, the
antisymmetric part of B, is notoriously difficult to simulate; leave alone the simulation of Lévy’s
area for other Gaussian processes. It has been understood for a while, at least in the Brownian
setting, that the truncated (or: simplified) Milstein scheme, in which Lévy’s area is omitted, i.e.
replace Bs,t by Sym (Bs,t) in (3), still offers benefits: For instance, Talay [Tal86] replaces Lévy area
by suitable Bernoulli r.v. such as to obtain weak order 1 (see also Kloeden–Platen [KP92] and the
references therein).1 In the multilevel context, [GS12] use this truncated Milstein scheme together
with a sophisticated antithetic (variance reduction) method. Finally, in the rough path context this
scheme was used in [DNT12]: the convergence of the scheme can be traced down to an underlying
Wong-Zakai type approximation for the driving random rough path – a (probabilistic!) result which
is known to hold in great generality for stochastic processes, starting with [CQ02] in the context of
fractional Brownian motion, see [FV10b, Ch. 15] and the references therein.

A rather difficult problem is to go from almost-sure convergence (with rates) to L1 (or ever:
Lr any r < ∞) convergence. Indeed, as pointed out in [DNT12, Remark 1.2]: ”Note that the
almost sure estimate [for the simplified Milstein scheme] cannot be turned into an L1-estimate [...].
This is a consequence of the use of the rough path method, which exhibits non-integrable (random)
constants.” The resolution of this problem forms the first contribution of this paper. It is based
on some recent progress [CLL, FR13], initially developed to prove smoothness of laws for (non-
Markovian) SDEs driven by Gaussian signals under a Hörmander condition, [CF10, HP].

Having established Lr-convergence (any r < ∞, with rates) for implementable “simplified”
Milstein schemes we move to our second contribution: a multilevel algorithm, in the sense of Giles
[Gil08b], for stochastic differential equations driven by large classes of Gaussian signals. A strong,
L2 error estimate (“rate β/2”) is the key assumption in Giles’ complexity theorem, and this is
precisely what we have established in the first part. Some other extension of the Giles theorem are
necessary; indeed it is crucial to allow for a weak rate of convergence α < 1/2 (ruled out explicitly in
[Gil08b]) whenever we deal with driving signals with sample path regularity “worse” then Brownian
motion. Luckily this can be done without too much trouble. Moreover, we more carefully keep
track of the relevant constants in front of the asymptotic terms, a necessity in such an irregular
regime.

More precisely, we consider the following scheme for approximating Y , see [DNT12, FV10b].
Given a equi-distant dissection D = (tk) of [0, T ] with mesh h, so that tk+1− tk ≡ h for all k, write

1A well-known counter-example by Clark and Cameron [CC80]) shows that it is impossible to get strong order 1

if only using Brownian increments.
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Xtk,tk+1
for the corresponding increments. We then define Y 0 ≡ Y0 and

(4) Y tk+1
= Y tk +

3∑
l=1

1

l!
Vi1 · · ·VilI

(
Y tk

)
Xi1
tk,tk+1

· · ·Xil
tk,tk+1

,

where I(y) = y is the identity function and the vector fields V1, . . . , Vd are viewed as linear first
order operators, acting on functions by Vig(y) = ∇g(y) · Vi(y). Whenever convenient we extend Y
to [0, T ] by linear interpolation. Moreover, the Einstein summation convention is in force. For a
more detailed description of the algorithm we refer to Section 2.3. We are now able to state our
main results; cf. Corollary 17:

Theorem 1 (Strong rates). Let X =
(
X1, . . . , Xd

)
be a continuous, zero-mean Gaussian process

with independent components. Assume furthermore that each component has stationary increments
and that

σ2 (t− s) := E
∣∣Xi

t −Xi
s

∣∣2
where σ2 is concave and σ2 (τ) = O

(
τ1/ρ

)
as τ → 0 for some ρ ∈ [1, 2).

Let Y be the solution to the rough differential equation (2) driven by (the rough path lift) of X and

Y = Y
h

be the approximate solution based on (4). Then we have strong convergence of (almost)
rate 1/ρ− 1/2. More precisely, for any 1 ≤ r <∞ and δ > 0, there exists a constant C such that∣∣∣∣∣E

(
sup
t∈[0,T ]

∣∣∣Yt − Y ht ∣∣∣r
)∣∣∣∣∣

1
r

≤ Ch1/ρ−1/2−δ.

The reader should notice that the assumption on X is met by multidimensional Brownian motion
(with ρ = 1) in which case Y is nothing but a Stratonovich solution of the SDE (1), which of course
may be rewritten as Itô equation. More interestingly, X may be a fractional Brownian motion
(with ρ = 1

2H > 1) in the (interesting) “rougher than Brownian” regime H ∈ (1/4, 1/2). Using
Giles’ multi-level Monte Carlo methodology, we can greatly improve the complexity bounds for the
discretization algorithm (4), see Theorem 22.

Theorem 2 (Multilevel complexity estimate). Let X and Y be as in the previous theorem and
f : C([0, T ],Rm) → Rn a Lipschitz continuous functional. Then the Monte Carlo evaluation of a
path-dependent functional of the form

E(f(Yt : 0 ≤ t ≤ T ))

to within a MSE of ε2, can be achieved with computational complexity

O
(
ε−θ
)
, ∀θ > 2ρ

2− ρ
.

As a sanity check, let us compare this results with the corresponding, well-known results for
classical stochastic differential equations (here: in Stratonovich sense) driven by d-dimensional
Brownian motion B. The assumptions on X are clearly met with ρ = 1. As a consequence, we
obtain strong convergence of (almost) rate 1/2 in agreement with the well-known strong rate 1/2 in
the classical setting. Concerning our multilevel complexity estimate, we obtain (almost) order ε−2

which is arbitrarily ”close” to known result O
(
ε−2 (log ε)

2
)

[Gil08a, Gil08b], recently sharpened

to O
(
ε−2
)

[GS12] with the aid of a suitable antithetic multilevel correction estimator.
Let us summarize the (computational) benefits of the multilevel approach in the present (“rougher

than Brownian”) setting. A direct Monte Carlo implementation of the scheme (4) would require a
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complexity of O(ε−(2+1/α)) in order to attain an MSE of no more than ε2. Here, α is the weak rate of
convergence of the scheme. On the other hand, we show in Theorem 18 that the complexity is only
O(ε−(1+2α−β)/α) for the multi-level Monte Carlo estimator, where β is two times the strong rate of
convergence. Thus, when the weak rate of convergence is equal to the strong rate of convergence2,
then the complexity of the multi-level estimator is reduced by a factor ε2 as compared by the
complexity of the standard Monte Carlo estimator. When the weak rate is two times the strong
rate, the speed up is still by a factor ε, see Table 1 and Table 2.

1. Rough path estimates revisited

In this section, we revisit and improve some classical estimates used in rough paths theory.
Definitions of the basic objects and all relevant notation may be found in the appendix. A more
detailed account to the theory of rough paths may be found in the monographs [LQ02], [LCL07] or
[FV10b].

1.1. Improved bounds for the Lipschitz constant of the Itô-Lyons map. It is well-known
that the Lipschitz constant of the Itô-Lyons solution map for an RDE driven by a rough path x
is of the order O(exp(C‖x‖pp−var)). Considering Gaussian driving signals, this (random) constant
fails to have finite q-th moments for any q. In this section, we improve the deterministic estimates
for the Lipschitz constant slightly which will allow us to derive the desired estimates.

Recall the following definition, taken from [CLL]:

Definition 3. Let ω be a control function. For α > 0 and [s, t] ⊂ [0, T ] we set

τ0 (α) = s

τi+1 (α) = inf {u : ω (τi, u) ≥ α, τi (α) < u ≤ t} ∧ t
and define

Nα,[s,t] (ω) = sup {n ∈ N∪{0} : τn (α) < t} .
When ω arises from the (homogeneous) p-variation norm ‖ · ‖p−var of a (p-rough) path, x, i.e.
ωx = ‖x‖pp-var;[·,·], we shall also write Nα,[s,t] (x) := Nα,[s,t] (ωx).

It is easy to see that Nα,[0,T ] (x) . ‖x‖pp−var;[0,T ], but the tail estimates for Nα,[0,T ] (X) are

significantly better than for ‖X‖pp−var;[0,T ] when we consider Gaussian lifts X, cf. [CLL] and [FR13].

Next, we give the main result from this section.

Theorem 4. Consider the RDEs

dyit = V i(yit) dx
i
t; yi0 ∈ Re

for i = 1, 2 on [0, T ] where V 1 and V 2 are two families of vector fields, γ > p and ν is a bound on
|V 1|Lipγ and |V 2|Lipγ . Then for every α > 0 there is a constant C = C(γ, p, ν, α) such that∣∣y1 − y2

∣∣
∞;[0,T ]

≤ C
[
|y1

0 − y2
0 |+

∣∣V 1 − V 2
∣∣
Lipγ−1 + ρp−var;[0,T ](x

1,x2)
]

× exp
{
C
(
Nα,[0,T ](x

1) +Nα,[0,T ](x
2) + 1

)}
holds.

2By lack of the Markov property, the standard techniques of deriving weak error estimates fail in the setting of
an RDE driven by a general Gaussian process such as a fBM. Thus, computing the weak rate of convergence for the

simplified Euler scheme would be a non-trivial task. On the other hand, we present a numerical example in Section 4,

where the weak order is equal to the strong order even in a standard Brownian motion setting.



FROM ROUGH PATH ESTIMATES TO MULTILEVEL MONTE CARLO 5

Remark 5. Comparing the result of Theorem 4 with [FV10b, Theorem 10.26], one sees that we
obtain a slightly weaker result; namely, the distance between y1 and y2 is measured here in uniform
topology instead of p-variation topology. However, with little more effort, one can show that the
same estimate holds for ρp-var; [0,T ]

(
y1, y2

)
instead of

∣∣y1 − y2
∣∣
∞;[0,T ]

.

The proof of Theorem 4 will be given at the end of this section. We first prove some preparational
Lemmata.

Recall that if ω1 and ω2 are controls, also ω1 + ω2 is a control.

Lemma 6. Let ω1 and ω2 be two controls. Then

Nα,[s,t](ω
1 + ω2) ≤ 2Nα,[s,t](ω

1) + 2Nα,[s,t](ω
2) + 2

for every s < t and α > 0.

Proof. If ω is any control, set

ωα (s, t) := sup
(ti)=D⊂[s,t]
ω(ti,ti+1)≤α

∑
ti

ω(ti, ti+1).

If ω̄ := ω1 + ω2, ω̄(ti, ti+1) ≤ α implies ωi(ti, ti+1) ≤ α for i = 1, 2 and therefore ω̄α (s, t) ≤
ω1
α (s, t) + ω2

α (s, t). From Proposition 4.6 in [CLL] we know that ωiα (s, t) ≤ α
(
2Nα,[s,t]

(
ωi
)

+ 1
)

for i = 1, 2. (Strictly speaking, Proposition 4.6 is formulated for a particular control ω, namely the
control induced by the p-variation of a rough path. However, the proof only uses general properties
of control functions and the conclusion remains valid.) We conclude

αNα,[s,t] (ω̄) =

Nα,[s,t](ω̄)−1∑
i=0

ω̄(τi (α) , τi+1 (α))

≤ ω̄α(s, t)

≤ ω1
α (s, t) + ω2

α (s, t)

≤ α
(
2Nα,[s,t]

(
ω1
)

+ 2Nα,[s,t]
(
ω2
)

+ 2
)
.

�

Lemma 7. Let ω1 and ω2 be two controls and assume that ω2(s, t) ≤ K. Then

Nα,[s,t](ω
1 + ω2) ≤ Nα−K,[s,t](ω1)

for every α > K.

Proof. Set ω̄ := ω1 + ω2 and

τ̄0 (α) = s

τ̄i+1 (α) = inf {u : ω̄ (τ̄i, u) ≥ α, τ̄i (α) < u ≤ t} ∧ t.

Similarly, we define (τi)i∈N = (τi(α − K))i∈N for ω1. It suffices to show that τ̄i ≥ τi for i =
0, . . . , Nα,[s,t](ω̄). We do this by induction. For i = 0, this is clear. If τ̄i ≥ τi for some i ≤
Nα,[s,t](ω̄)− 1, superadditivity of control functions gives

α = ω̄(τ̄i, τ̄i+1) ≤ ω1(τi, τ̄i+1) +K

which implies τi+1 ≤ τ̄i+1. �
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Lemma 8. Let s < t ∈ [0, T ] and assume that ‖xi‖p−ω;[s,t] ≤ 1 for i = 1, 2. Then there is a
constant C = C(γ, p) such that

ν|y1 − y2|∞;[s,t] ≤
[
ν|y1

s − y2
s |+

∣∣V 1 − V 2
∣∣
Lipγ−1 + νρp−ω;[s,t](x

1,x2)
]

× (Nα,[s,t](ω) + 1) exp
{
Cνpα(Nα,[s,t](ω) + 1)

}
for every α > 0.

Proof. Set ȳ = y1 − y2 and

κ =

∣∣V 1 − V 2
∣∣
Lipγ−1

ν
+ ρp−ω;[s,t](x

1,x2).

From [FV10b, Theorem 10.26] we can deduce that there is a constant C = C(γ, p) such that

|ȳu,v| ≤ Cνω(u, v)1/p [|ȳu|+ κ] exp {Cνpω(u, v)}
for every u < v ∈ [s, t]. From |ȳu,v| ≥ |ȳs,v| − |ȳs,u| we obtain

|ȳs,v| ≤ Cνω(u, v)1/p [|ȳu|+ κ] exp {Cνpω(u, v)}+ |ȳs,u|
≤ [|ȳs|+ |ȳs,u|+ κ] exp {Cνpω(u, v)}

for s ≤ u < v ≤ t. Now let s = τ0 < τ1 < . . . < τM < τM+1 = v ≤ t for M ≥ 0. By induction, one
sees that

|ȳs,v| ≤ (M + 1)(|ȳs|+ κ) exp

{
Cνp

M∑
i=0

ω(τi, τi+1)

}

≤ CM+1 [|ȳs|+ κ] exp

{
Cνp

M∑
i=0

ω(τi, τi+1)

}
.

It follows that for every v ∈ [s, t],

|ȳs,v| ≤ [|ȳs|+ κ] (Nα,[s,t](ω) + 1) exp
{
Cνpα(Nα,[s,t](ω) + 1)

}
,

therefore

|ȳv| ≤ [|ȳs|+ κ] (Nα,[s,t](ω) + 1) exp
{
Cνpα(Nα,[s,t](ω) + 1)

}
+ |ȳs|

and finally

|ȳ|∞;[s,t] ≤ [|ȳs|+ κ] (Nα,[s,t](ω) + 1) exp
{
Cνpα(Nα,[s,t](ω) + 1)

}
.

�

Proof of Theorem 4. Let ω be a control such that ‖xi‖p−ω;[0,T ] ≤ 1 for i = 1, 2 (the precise choice
of ω will be made later). From Lemma 8 we know that there is a constant C = C(γ, p, ν, α) such
that ∣∣y1 − y2

∣∣
∞;[0,T ]

≤
[
|y1

0 − y2
0 |+

∣∣V 1 − V 2
∣∣
Lipγ−1 + ρp−ω;[s,t](x

1,x2)
]

× exp
{
C(Nα,[s,t](ω) + 1)

}
.

Now we set ω = ωx1,x2 where

ωx1,x2(s, t) = ‖x1‖pp−var;[s,t] + ‖x2‖pp−var;[s,t] +

bpc∑
k=1

(
ρ

(k)
p−var;[s,t](x

1,x2)
)p/k

(
ρ

(k)
p−var;[0,T ](x

1,x2)
)p/k .
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It is easy to check that

‖x1‖p−ωx1,x2 ;[0,T ] ≤ 1,

‖x2‖p−ωx1,x2 ;[0,T ] ≤ 1 and

ρp−ωx1,x2 ;[0,T ](x
1,x2) ≤ ρp−var;[0,T ](x

1,x2).

Finally, if α > bpc we can use Lemma 7 and Lemma 6 to see that

Nα,[0,T ](ωx1,x2) + 1 ≤ Nα−bpc,[0,T ](ωx1 + ωx2) + 1

≤ 3
(
Nα−bpc,[0,T ](x

1) +Nα−bpc,[0,T ](x
2) + 1

)
.

Substituting α 7→ α+ bpc gives the claimed estimate. �

1.2. Improved bounds for Euler approximations based on entire rough path. We are now
interested in proving a similar estimate for the distance between Euler-/Milstein approximations
for rough paths and the actual solution (for the purpose of unified terminology, in the sequel we will
only speak of Euler-schemes). Recall the notation from [FV10b]: If V = (V1, . . . , Vd) is a collection
of sufficiently smooth vector fields on Re, g ∈ TN

(
Rd
)

and y ∈ Re, we define an increment of the
step-N Euler scheme by

E(V ) (y, g) :=

N∑
k=1

Vi1 . . . VikI (y) gk,i1,...,ik

where gk,i1,...,ik = πk (g)
i1,...,ik ∈ R, I is the identity on Re and every Vj is identified with the first-

order differential operator V kj (y) ∂
∂yk

(throughout, we use the Einstein summation convention).

Furthermore, we set

Egy := y + E(V ) (y, g) .

Given D = {0 = t0 < . . . < tn = T} and a path x ∈ Cp−var0

(
[0, T ] ;Gbpc

(
Rd
))

we define the (step-
N) Euler approximation to the RDE solution y of

(5) dy = V (y) dx

with starting point y0 ∈ Re at time tk ∈ D by

yEuler;D
tk

:= Etk←t0y0 := E
SN (x)tk−1,tk ◦ · · · ◦ ESN (x)t0,t1 y0.

Theorem 9. Let x ∈ Cp−var0

(
[0, T ] ;Gbpc

(
Rd
))

and set ω (s, t) = ‖x‖pp−var;[s,t]. Assume that V ∈
Lipθ for some θ > p and let ν ≥ |V |Lipθ . Choose N ∈ N such that bpc ≤ N ≤ θ. Fix a dissection

D = {0 = t0 < . . . < tn = T} of [0, T ] and let yEuler;D
T denote the step-N Euler approximation of y.

Then for every ζ ∈
[
N
p ,

N+1
p

)
and α > 0 there is a constant C = C (p, θ, ζ,N, ν, α) such that

∣∣∣yT − yEuler;D
T

∣∣∣ ≤ C exp
{
C
(
Nα,[0,T ](x) + 1

)} n∑
k=1

ω (tk−1, tk)
ζ
.

In particular, if x is a Hölder rough path and |tk+1 − tk| ≤ |D| for all k we obtain

(6)
∣∣∣yT − yEuler;D

T

∣∣∣ ≤ CT ‖x‖ζp1/p-Höl;[0,T ] exp
{
C
(
Nα,[0,T ](x) + 1

)}
|D|ζ−1
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Proof. We basically repeat the proof of [FV10b, Theorem 10.30]. Recall the notation π(V ) (s, ys; x)
for the (unique) solution of (5) with starting point ys at time s. Set

zk = π(V )

(
tk,E

tk←t0y0; x
)
.

Then z0
t = yt, z

k
tk

= Etk←t0y0 for every k = 1, . . . , n and znT = yEuler;D
T , hence∣∣∣yT − yEuler;D

T

∣∣∣ ≤ n∑
k=1

∣∣zkT − zk−1
T

∣∣ .
One can easily see that

zk−1
T = π(V )

(
tk−1, z

k−1
tk−1

; x
)

= π(V )

(
tk, z

k−1
tk

; x
)

for all k = 1, . . . , n. Applying Theorem 4 (in particular the Lipschitzness in the starting point) we
obtain for any α > 0 ∣∣zkT − zk−1

T

∣∣ ≤ c1 ∣∣zktk − zk−1
tk

∣∣ exp
{
c1
(
Nα,[0,T ](x) + 1

)}
.

Moreover (cf. [FV10b, Theorem 10.30]),∣∣zktk − zk−1
tk

∣∣ ≤ ∣∣∣π(V ) (tk−1, ·,x)tk−1,tk
− E(V )

(
·, SN (x)tk−1,tk

)∣∣∣
∞
.

Let δ ∈ [0, 1) such that ζ = N+δ
p . Since (N + δ) − 1 < N ≤ γ we have V ∈ Lip(N+δ)−1. Thus we

can apply [FV10b, Corollary 10.15] to see that

∣∣∣π(V ) (tk−1, ·,x)tk−1,tk
− E(V )

(
·, SN (x)tk−1,tk

)∣∣∣
∞
≤ c2

(
|V |Lip(N+δ)−1 ‖x‖p−var;[tk−1,tk]

)N+δ

≤ c2 |V |pζLipγ ω (tk−1, tk)
ζ

which gives the claim. �

2. Probabilistic convergence results for RDEs

Recall that our basic object is a multidimensional, zero-mean Gaussian processX = (X1, . . . , Xd)
with independent components and continuous sample paths. The covariance function will be de-
noted by RX . The existence of a lift X of X to a process with sample paths in a rough paths
space follows if RX is smooth enough in terms of 2-dimensional ρ-variation; more precisely, if
Vρ(RX ; [0, T ]2) < ∞ for some ρ < 2, X exists in a natural way (cf. [FV10a] or Theorem 25 in the
appendix). The associated Cameron-Martin space of X will be denoted by H. Recall that every
path φ ∈ H has the form φt = E(XtZ) where Z is a random variable lying in the L2-closure of

span{Xt : t ∈ [0, T ]} and 〈φ, φ̃〉H = E(ZZ̃) if φt = E(ZXt), φ̃t = E(Z̃Xt). In the following,
smoothness of the Cameron-Martin paths in terms of its p-variation index will be crucial. More
precisely, we will say that complementary Young-regularity holds for the trajectories of X and the
paths in the Cameron-Martin space if the trajectories have finite p-variation almost surely and if
there is a continuous embedding

ι : H ↪→ Cq−var for some q ≤ p such that
1

p
+

1

q
> 1.

Complementary Young-regularity will be a fundamental assumption. We recall some sufficient
conditions:
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(1) If RX has finite ρ-variation, the Cameron-Martin paths have finite ρ-variation and comple-
mentary Young-regularity holds for ρ ∈ [1, 3/2). In this case,

‖ι‖H→Cq−var ≤
√
Vρ(RX ; [0, T ]2)

(cf. [FV10a, Proposition 17]).
(2) If RX has finite mixed (1, ρ)-variation, the Cameron-Martin paths have finite q-variation

for

q =
1

1
2ρ + 1

2

and complementary Young-regularity holds for ρ ∈ [1, 2). In this case,

‖ι‖H→Cq−var ≤
√
V1,ρ(RX ; [0, T ]2)

(cf. [FGR13, Theorem 1]).

(3) If X has stationary increments and σ2(u) := E(|Xu−X0|2) is concave with σ2(u) ≤ Cσ|u|
1
ρ ,

there is a constant l > 0 such that RX has finite mixed (1, ρ)-variation on squares [s, t]2

with |t− s| ≤ l and

V1,ρ(RX ; [s, t]2) ≤ 5Cσ|t− s|
1
ρ

holds for all |t − s| ≤ l (cf. [FGR13, Theorem 6]). Hence we have complementary Young-
regularity for ρ ∈ [1, 2) and ‖ι‖H→Cq−var ≤ CK,l,ρ,T with K ≥ Cσ. This covers fractional
Brownian motion with Hurst parameter H ∈ (1/4, 1/2].

In the following subsection, we will establish Lp-convergence rates for step-N Euler approxima-
tions based on the entire Gaussian rough paths, i.e. schemes involving iterated (random) integrals
up to order N . Although these schemes are hard to implement (the distributions of the iterated
integrals are in general not known) it will serve as a stepping stone to more simple schemes. We
continue by giving Lp-rates for the Wong-Zakai theorem in the Gaussian case. Putting together
both results, we can give Lp convergence rates for an (easy-to-implement) simplified Euler scheme
presented first in [DNT12]. We will see that the (sharp) almost sure convergence rates obtained in
[FR] also hold in Lp.

2.1. Lr-rates for step-N Euler approximation (based on entire rough path). For simplic-
ity, the following Theorem is formulated only in the Hölder case.

Theorem 10. Assume that Vρ

(
RX ; [s, t]

2
)
≤ K |t− s|1/ρ holds for all s < t, some ρ ∈ [1, 2) and

a constant K. Assume that

ι : H ↪→ Cq−var

for some q < 2, let M ≥ ‖ι‖H→Cq−var and assume that complementary Young-regularity holds.
Choose p > 2ρ, assume that V ∈ Lipθ for some θ > p and let ν ≥ |V |Lipθ . Set

D = {0 < h < 2h < . . . < (bT/hc − 1)h < T}

and let Y Euler;D
T denote the step-N Euler approximation of Y , the (pathwise) solution of

dY = V (Y ) dX ; Y0 ∈ Re

where N is chosen such that bpc ≤ N ≤ θ.
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Then for every r ≥ 1, r′ > r and ζ ∈
[
N
p ,

N+1
p

)
there is a constant C = C(ρ, p, q, θ, ν,K,M, r, r′, N, ζ)

such that ∣∣∣YT − Y Euler;D
T

∣∣∣
Lr
≤ CT

∣∣∣‖X‖ζp1/p-Höl;[0,T ]

∣∣∣
Lr′

hζ−1

holds for all h > 0.

Remark 11. By choosing p̂ ∈ (2ρ, p) one has N+1
p < N+1

p̂ and applying the Theorem with p̂ instead

of p shows that ∣∣∣YT − Y Euler;D
T

∣∣∣
Lr
. h

N+1
p −1

holds for every p > 2ρ if h→ 0.

Proof of Theorem 10. Lemma 5 together with Corollary 2 and Remark 1 in [FR13] show that there
is a α = α(p, ρ,K) > 0 and a positive constant c1 = c1 (p, q, ρ,K) such that we have the tail
estimate

P (Nα,[0,T ](X) > u) ≤ exp
{
−c1α2/pu2/q

}
for all u > 0. Now we use the pathwise estimate (6) and take the Lr norm on both sides. The
Hölder inequality shows that∣∣∣YT − Y Euler;D

T

∣∣∣
Lr
≤ c1T

∣∣∣‖X‖ζp1/p-Höl;[0,T ]

∣∣∣
Lr′

∣∣exp
{
C
(
Nα,[0,T ](X) + 1

)}∣∣
Lr′′
|D|ζ−1

holds for some (possibly large) r′′ > r. Our tail estimate for Nα,[0,T ](X) shows that the right hand
side is finite which gives the claim. �

2.2. Lr-rates for Wong-Zakai approximations. We aim to formulate a version of the Wong-
Zakai Theorem which contains convergence rates in Lr, any r ≥ 1 for a class of suitable approxi-
mations Xh of X. By this, we mean that

(1)
(
Xh, X

)
: [0, T ] → Rd+d is jointly Gaussian,

(
Xh;i, Xi

)
and

(
Xh;j , Xj

)
are independent

for i 6= j and

(7) sup
h∈(0,1]

Vρ

(
R(Xh,X); [0, T ]

2
)

=: K <∞

for some ρ ∈ [1, 2).
(2) Uniform convergence of the second moments:

sup
t∈[0,T ]

E
[∣∣Xh

t −Xt

∣∣2] =: δ (h)
1/ρ → 0 for h→ 0.

Example 12. A typical example of such approximations are the piecewise linear approximations of
X (ω) at the time points {0 < h < 2h < . . . < (bT/hc − 1)h < T} (see [FV10b, Chapter 15.5]). In

the case Vρ

(
RX ; [s, t]

2
)
. |t− s|1/ρ (i.e. if we deal with Hölder rough paths), one can show that

δ (h) . h.

Theorem 13. Let X : [0, T ] → Rd be a centered Gaussian process with continuous sample paths,
independent components and covariance of finite ρ-variation for some ρ ∈ [1, 2). Let (Xh)h>0 be a
family of suitable approximations as seen in the beginning of this section. Let Hh and H0 denote
the Cameron-Martin spaces of the processes Xh resp. X. Assume that

ιh : Hh ↪→ Cq−var

for some q < 2, let M ≥ ‖ιh‖H→Cq−var for all h > 0 and assume that complementary Young-
regularity holds. Let X and Xhdenote the lift of X resp. Xh to a process with p-rough sample paths
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for some p > 2ρ. Let V = (V1, . . . , Vd) be a collection of vector fields in Re. Choose η < 1
ρ −

1
2 and

assume that |V |Lipθ ≤ ν < ∞ for some θ > 2ρ
1−2ρη . Let Y, Y h : [0, T ] → Re denote the pathwise

solutions to the equations

dYt = V (Yt) dXt; Y0 ∈ Re

dY ht = V (Y ht ) dXh
t ; Y h0 = Y0 ∈ Re.

Then, for any r ≥ 1 there is a constant C = C(ρ, p, q, θ, ν,K,M, η, r) such that∣∣∣∣∣Y h − Y ∣∣∞;[0,T ]

∣∣∣
Lr
≤ Cδ (h)

η

holds for all h > 0.

Remark 14. We give some sufficient conditions under which the assumptions on the Cameron-
Martin paths in Theorem 13 are fulfilled:

(1) If the Cameron-Martin paths associated to the process X have finite q-variation, if com-
plementary Young-regularity holds for the trajectories of X and the Cameron-Martin paths
and if the operators Λh : ω 7→ ωh are uniformly bounded in the sense that

sup
h>0
‖Λh‖Cq−var→Cq−var <∞,

we have suph>0 ‖ιh‖H→Cq−var < ∞. This is the case, for instance, when dealing with
piecewise-linear or mollifier approximations.

(2) In the case ρ ∈ [1, 3/2), the assumptions are always fulfilled using (7) and the Cameron-

Martin embedding from [FV10a, Proposition 17] and we can set M =
√
K.

(3) For ρ ∈ [1, 2), another sufficient condition is uniform mixed (1, ρ)-variation:

sup
h∈(0,1]

V1,ρ(R(Xh,X); [0, T ]2) =: K ′ <∞.

In this case, we can choose K = K ′ and M =
√
K ′ (see [FGR13, Theorem 1]). This holds,

for instance, for fractional Brownian motion with Hurst parameter H > 1/4.

Proof of Theorem 13. By assumption, we know that

|φ|q−var ≤M |φ|Hh

holds for every φ ∈ Hh and h ≥ 0. As in the proof of Theorem 10, we can find a α = α(p, ρ,K) > 0
and a positive constant c1 = c1 (p, q, ρ,M) such that we have the uniform tail estimate

P (Nα,[0,T ](X
h) > u) ≤ exp

{
−c1α2/pu2/q

}
for all u > 0 and h ≥ 0. Choose p̂ ∈

(
2ρ

1−2ρη , θ
)

and set X̂h = Sbp̂c
(
Xh
)

and X̂ = Sbp̂c (X).

Lipschitzness of the map Sbp̂c and [FR13, Lemma 2] show that also

(8) P (Nα,[0,T ](X̂
h) > u) ≤ exp

{
−c1α2/pu2/q

}
hold for all u > 0 and h ≥ 0 for a possibly smaller α > 0. Now we use Corollary 4 and the
Cauchy-Schwarz inequality to see that∣∣∣∣∣Y h − Y ∣∣∞;[0,T ]

∣∣∣
Lr
≤ c2

∣∣∣ρp̂−var;[0,T ](X̂
h, X̂)

∣∣∣
L2r

∣∣∣exp
{
c2

(
Nα,[0,T ](X̂

h) +Nα,[0,T ](X̂) + 1
)}∣∣∣

L2r
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for a constant c2. The uniform tail estimates (8) show that

sup
h≥0

∣∣∣exp
{
c2

(
Nα,[0,T ](X̂

h) +Nα,[0,T ](X̂) + 1
)}∣∣∣

L2r
≤ c3 <∞.

Using [FR, Theorem 6] gives∣∣∣ρp̂−var;[0,T ](X̂
h, X̂)

∣∣∣
L2r
≤ c4 sup

t∈[0,T ]

∣∣Xh
t −Xt

∣∣1− ργ
L2 = δ (h)

η

for a constant c4 which finishes the proof. �

2.3. Lr-rates for the simplified Euler schemes. For N ≥ 2, step-N Euler schemes contain
iterated integrals whose distributions are not easy to simulate when dealing with Gaussian processes.
In contrast, the simplified step-N Euler schemes avoid this difficulty by substituting the iterated
integrals by a product of increments. In the context of fractional Brownian motion, it was introduced
in [DNT12]. We make the following definition: If V = (V1, . . . , Vd) is sufficiently smooth, x is a
p-rough path, y ∈ Re and N ≥ bpc, we set

Esimple
(V )

(
y, SN (x)s,t

)
:=

N∑
k=1

1

k!
Vi1 . . . VikI (y)xi1s,t · · ·x

ik
s,t

for s < t and

E
SN (x)s,t
simple y := y + Esimple

(V )

(
y, SN (x)s,t

)
.

Given D = {0 = t0 < . . . < tn = T} and a path x ∈ Cp−var0

(
[0, T ] ;Gbpc

(
Rd
))

we define the sim-
plified (step-N) Euler approximation to the RDE solution y of

dy = V (y) dx

with starting point y0 ∈ Re at time tk ∈ D by

ysimple Euler;D
tk

:= Etk←t0simpley0 := E
SN (x)tk−1,tk

simple ◦ · · · ◦ E
SN (x)t0,t1
simple y0

and at time t ∈ (tk, tk+1) by

ysimple Euler;D
t :=

(
t− tk

tk+1 − tk

)(
ysimple Euler;D
tk+1

− ysimple Euler;D
tk

)
+ ysimple Euler;D

tk
.

Theorem 15. Let X : [0, T ]→ Rd be as in Theorem 10 with covariance of finite ρ-variation, ρ < 2.
Choose N ≥ b2ρc and

η1 <
1

ρ
− 1

2
, η2 <

1

2ρ
and η3 <

N + 1

2ρ
− 1.

Assume that |V |Lipθ ≤ ν <∞ for some θ ∈ (0,∞] chosen such that θ > 2ρ
1−2ρη1

and θ ≥ N . Set

D = {0 < h < 2h < . . . < (bT/hc − 1)h < T}

for h > 0. Then for any r ≥ 1,∣∣∣∣Y − Y simple Euler;D
∣∣
∞

∣∣
Lr
. hη1 + hη2 + hη3

for all h > 0.
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Remark 16. In the proof we will see that the rate η1 is the rate for the Wong-Zakai approximation,
the rate η2 comes from the (almost) 1

2ρ -Hölder-regulartiy of the sample paths of Y and η3 comes

from the step-N Euler approximation. Since ρ ≥ 1, the Wong-Zakai error always dominates η2.
In particular, for ρ = 1 we can choose N = 2 to obtain a rate arbitrary close to 1

2 . For ρ > 1,

the choice N = 3 gives a rate of almost 1
ρ −

1
2 . In both cases the rate does not increase for larger

choices of N .

From this remark, we immediately obtain

Corollary 17. Assume that the vector fields V = (V1, . . . , Vd) are bounded, C∞ with bounded
derivatives and that the covariance of X has finite mixed (1, ρ)-variation for some ρ < 2. Then the
simlified step-3 Euler scheme (step-2 in the case ρ = 1) converges in Lr, for any r ≥ 1, and rate
1
ρ −

1
2 − δ, for any δ > 0, to the solution of the corresponding rough differential equation.

Proof of Theorem 15. Let Xh denote the Gaussian process whose sample paths are piecewise linear
approximated at the time points given by D and let Y h : [0, T ]→ Re denote the pathwise solution
to the equation

dY h = V (Y h) dXh; Y h0 = Y0 ∈ Re.
Then for any tk, tk+1 ∈ D we have

Xh;k;i1,...,ik
tk,tk+1

=
1

k!
Xi1
tk,tk+1

· · ·Xik
tk,tk+1

,

hence Y simple Euler;D
t = Y h; Euler;D

t for any t ∈ D and thus∣∣∣Yt − Y simple Euler;D
t

∣∣∣ ≤ ∣∣Y − Y h∣∣∞ + max
tk∈D

∣∣∣Y htk − Y h; Euler;D
tk

∣∣∣
if t ∈ D. For t /∈ D, choose tk ∈ D such that tk < t < tk+1. Set a = t−tk

tk+1−tk and b = tk+1−t
tk+1−tk . Then

a+ b = 1 and by the triangle in equality,∣∣∣Yt − Y simple Euler;D
t

∣∣∣ ≤ a
∣∣Yt − Ytk+1

∣∣+ b |Yt − Ytk |+ a
∣∣∣Ytk+1

− Y simple Euler;D
tk+1

∣∣∣
+ b

∣∣∣Ytk − Y simple Euler;D
tk

∣∣∣
. h1/p ‖Y ‖1/p-Höl;[0,T ] + max

tk∈D

∣∣∣Ytk − Y simple Euler;D
tk

∣∣∣
. h1/p

(
‖X‖1/p-Höl;[0,T ] ∨ ‖X‖

p
1/p-Höl;[0,T ]

)
+
∣∣Y − Y h∣∣∞

+ max
tk∈D

∣∣∣Y htk − Y h; Euler;D
tk

∣∣∣
for any p > 2ρ. Since the right hand side does not depend on t, we can pass to the sup-norm on the
left hand side. We now take the Lr-norm on both sides and check that the conditions of Theorem
13 and 10 are fulfilled and that the constants can be chosen independently from h. Since we are
dealing with piecewise linear approximations, we have

sup
h>0

Vρ

(
R(Xh,X); [0, T ]

2
)
<∞ and sup

t∈[0,T ]

E
[∣∣Xh

t −Xt

∣∣2] . h1/ρ

(cf. [FV10b, Chapter 15]). Furthermore, for every ω ∈ Ω one has
∣∣ωh∣∣

p−var
≤ 31−1/p |ω|p−var and∣∣ωh∣∣

1/p−Höl
≤ 31−1/p |ω|1/p−Höl for every p ≥ 1 and h > 0 (this follows, for instance, from [FV10b,
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Theorem 5.23]). This shows that we can apply Theorem 13 to see that for any δ > 0,∣∣∣∣Y − Y h∣∣∞∣∣Lr . hη1
holds for all h > 0. Furthermore, can choose p′ > 2ρ such that N+1

p′ − 1 = η3 and then apply

Theorem 10. Since
∣∣d1/p′-Höl(X

h,X)
∣∣
Lr
→ 0 for h → 0, clearly suph>0

∣∣∣∥∥Xh
∥∥

1/p′-Höl;[0,T ]

∣∣∣
Lr

< ∞
and the constants on the right hand side can be chosen independently of h. Choosing p such that
1
p = η2 gives the claim. �

3. Multilevel simulation of RDEs

In the spirit of Giles [Gil08b] we consider a multilevel Monte Carlo procedure in connection
with the developed schemes for RDEs. In this context we reconsider and refine the complexity
analysis by Giles 2008 in certain respects. On the one hand we relax the requirement α ≥ 1/2
in Giles 2008 concerning the bias rate, and on the other we keep track of various proportionality
constants more carefully. Naturally, in case one is only interested in achieving asymptotically the
desired multilevel complexity rate, one may fix the trade-off between the bias and variance of the
estimator, and also one doesn’t need to distinguish between proportionality constants due to the
zero-level and the other ones (cf. Giles 2008). However, it so may happen that the proportionality
coefficient of the estimated asymptotic complexity is so large that the “critical accuracy” where
the multilevel estimator starts outperforming the standard one is too close to zero. For example,
for certain RDEs the multilevel complexity rate still contains a relatively high negative power of ε.
A too large proportionality constant would then lead to a critical accuracy that cannot be reached
within a reasonable computation time by the multilevel estimator and by the standard estimator
even more. (Cf. the importance of various proportionality constants in the multilevel Andersen-
Broadie algorithm for simulating dual prices of American options due to multilevel sub-simulation
in [BSD13].)

We adapt the main theorem of [Gil08b] to our needs. Below one should think

P = f (Y·)

for a Lipschitz function f and Y the solution to the Gaussian RDE dY = V (Y ) dX. Let P̂l
denote some (modified) Milstein approximation à la [DNT12], for instance (4), based on a meshsize
hl = T/(M0M

l). Recall the basic idea

E [P ] ≈ E
[
P̂L

]
for L large

= E
[
P̂0

]
+

L∑
l=1

E
[
P̂l − P̂l−1

]
set P̂−1 ≡ 0 and define the (unbiased) estimator Ŷl of E

[
P̂l − P̂l−1

]
, say

(9) Ŷl =
1

Nl

Nl∑
i=1

(
P̂

(i)
l − P̂

(i)
l−1

)
based on i = 1, . . . , Nl independent samples. Note that P̂

(i)
l − P̂

(i)
l−1 comes from approximations

with different mesh but the same realization of the driving noise.
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3.1. Giles’ complexity theorem revisited. The following abstract theorem is an extension
of [Gil08b] to the case α < 1/2, with special consideration of the involved constants.

Theorem 18. Let 0 < α < 1/2 and 0 < β ≤ 2α. In the spirit of Giles, we assume that there are
constants c1, c′2, c2 and c3 such that

(i) E
[
P̂l − P

]
≤ c1hαl ,

(ii) E
[
Ŷ0

]
= E

[
P̂0

]
and E

[
Ŷl

]
= E

[
P̂l − P̂l−1

]
, l > 0,

(iii) var
[
Ŷ0

]
≤ c′2N−1

0 and var
[
Ŷl

]
≤ c2N−1

l hβl for l ∈ N,3

(iv) the complexity Cl of computing Ŷl is bounded by C0 ≤ c3N0h
−1
0 for l = 0 and Cl ≤

c3Nl(h
−1
l + h−1

l−1) for l ≥ 1.4

Then for every ε > 0, there are choices L and Nl, 0 ≤ l ≤ L, to be given below in (13)
and (14), respectively, and constants c4 and c5 given in (15) together with (16) such that the

multilevel estimator Ŷ =
∑L
l=0 Ŷl satisfies the mean square error bound

MSE ≡ E
[(
Ŷ − E[P ]

)2
]
< ε2,

with complexity bound

C ≤ const ε−
1+2α−β

α + o
(
ε−

1+2α−β
α

)
,

where const = c4 for β < 2α and const = c4 + c5 for β = 2α.

Proof. We first ignore the basic requirement of L and Nl being integer values to obtain (almost)
optimal real-valued choices for L and Nl. Then we are going to verify the above given bounds for
the MSE and the complexity using the smallest integers dominating our real-valued choices. In this
proof, we abuse notation by setting T = T/M0, noting that both complexity and MSE only depend
on T and M0 by T/M0.

The mean-square-error satisfies

MSE = E

[(
Ŷ − E[P ]

)2
]

= E

[(
Ŷ − E

[
Ŷ
])2

+
(
E
[
Ŷ
]
− E[P ]

)2
]

= var
[
Ŷ
]

+
(
E
[
P̂L

]
− E[P ]

)2

≤
L∑
l=0

var
[
Ŷl

]
+ c21h

2α
L

≤ c′2N−1
0 + c2T

β
L∑
l=1

N−1
l M−lβ + c21h

2α
L .

3We distinguish between c′2 and c2, since the former controls the variance var
[
Ŷ0

]
, which is often already pro-

portional to the variance of f(Y·), whereas the latter controls the variance of the difference Ŷl, which is often much
smaller in size.

4Note that the complexity at the 0-level is proportional to the number of timesteps h−1
0 , whereas at higher levels,

we need to apply the numerical scheme twice, once for the finer and once for the coarser grid.
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Now we need to minimize the total computational work

C ≤ c3N0h
−1
0 + c3

L∑
l=1

Nl
(
h−1
l + h−1

l−1

)
= c3T

−1

[
N0 +

M + 1

M

L∑
l=1

NlM
l

]
under the constraint MSE ≤ ε2. We first assume L to be given and minimize over N0, . . . , NL, and
then we try to find an optimal L. We consider the Lagrange function

f(N0, . . . , NL, λ) ≡ c3T−1

[
N0 +

M + 1

M

L∑
l=1

NlM
l

]
+

+ λ

(
c′2N

−1
0 + c2T

β
L∑
l=1

N−1
l M−lβ + c21h

2α
L − ε2

)
.

Taking derivatives with respect to Nl, 0 ≤ l ≤ L, we arrive at

∂f

∂N0
= c3T

−1 − λc′2N−2
0 = 0,

∂f

∂Nl
= c3T

−1M lM + 1

M
− λc2T βM−lβN−2

l = 0,

implying that

N0 =
√
λ

√
c′2
c3
T ,(10a)

Nl =
√
λ

√
c2
c3
T (1+β)/2

√
M

M + 1
M−l(1+β)/2, 1 ≤ l ≤ L,(10b)

which we insert into the bound for the MSE to obtain

(11)
√
λ =

[√
c′2c3T

−β +
√
c2c3

√
M + 1

M
M (1−β)/2M

L(1−β)/2 − 1

M (1−β)/2−1

]
T−(1−β)/2

ε2 − c21T 2αM−2αL
.

By construction, we see that for any such choice of N0, . . . , NL, the MSE is, indeed, bounded by
ε2. For fixed L, the total complexity is now given by

C(L) ≡ c3T−1

√λ√c′2
c3
T +

M + 1

M

√
c2c3

L∑
l=1

M l
√
λ

√
c2
c3
T (1+β)/2

√
M

M + 1
M−l(1+β)/2


=
√
λT−(1−β)/2

[√
c′2c3T

−β +
√
c2c3

√
M + 1

M
M (1−β)/2M

L(1−β)/2 − 1

M (1−β)/2 − 1

]
(12)

=

[√
c′2c3T

−β +
√
c2c3

√
M + 1

M
M (1−β)/2M

L(1−β)/2 − 1

M (1−β)/2 − 1

]2
T−(1−β)

ε2 − c21T 2αM−2αL
.

In general, the optimal (but real-valued) choice of L would now be the arg-min of the above function,
which we could not determine explicitly in an arbitrary regime. We parametrize the optimal choice
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of L by d1 in

(13) L =

⌈
log
(
d1c1T

αε−1
)

α log(M)

⌉
.

There are three different approaches to the choice of L: Giles chooses d1 = 1/2, which is probably
motivated by the considerations in Remark 20 below. If all the constants involved have already
been estimated, then one could choose L by numerical minimization of the complexity, or one could
provide an asymptotic optimizer L (for ε → 0). The latter approach has been carried out for the
special case β = 1 in Theorem 21 below, and in this case the optimal L is indeed (almost) of the

form (13) with d1 weakly depending on ε. Moreover, we choose with κ = 1−β
2α

N0 =

⌈ √
c′2T

β

ε2(1− d−2
1 )

(√
c′2T

−β +
√
c2

√
M + 1

M
M (1−β)/2 d

κ
1c
κ
2T

(1−β)/2ε−κ − 1

M (1−β)/2 − 1

)⌉
,

(14a)

Nl =


√
c2

√
M
M+1T

β

ε2(1− d−2
1 )

(√
c′2T

−β +
√
c2

√
M + 1

M
M (1−β)/2 d

κ
1c
κ
2T

(1−β)/2ε−κ − 1

M (1−β)/2 − 1

)
M−l(1+β)/2

 ,
(14b)

1 ≤ l ≤ L.
By construction, the MSE will be bounded by ε2 using the choices (13) and (14). As x ≤ dxe ≤

x+ 1 and using the inequalities

ML ≤ d1/α
1 c

1/α
1 TMε−1/α,

ML(1−β)/2 ≤ dκ1cκ1T (1−β)/2M (1−β)/2ε−κ,

together with the shorthand-notations

e1 =
√
c′2T

−β −
√
c2

√
M + 1

M

M (1−β)/2

M (1−β)/2 − 1
,

e2 = dκ1c
κ+1/2
2

√
M + 1

M

M (1−β)/2

M (1−β)/2 − 1
T (1−β)/2

motivated from our choice (14), we arrive after a tedious calculation at

C ≤ c3T−1

[
N0 +

M + 1

M

L∑
l=1

NlM
l

]

≤ c3T−1

[
1 +

√
c′2T

β(1− d−2
1 )−1(e1 + e2ε

−κ)ε−2+

+
√
c2T

β(1− d−2
1 )−1

√
M + 1

M

M (1−β)/2

M (1−β)/2 − 1

(
dκ1c

κ
1T

(1−β)/2M (1−β)/2ε−κ − 1
)

(e1 + e2ε
−κ)ε−2+

+
M + 1

M − 1

(
d

1/α
1 c

1/α
1 TMε−1/α − 1

)]
.
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Arranging the terms according to powers of ε and recalling κ = 1−β
2α , we get

(15) C ≤ c4ε−2(1+κ) + c5ε
−1/α + c6ε

−(2+κ) + c7ε
−2 + c8,

where

c4 = cκ1c
1+κ
2 c3

d2κ
1

1− d−2
1

M + 1

M

M3(1−β)/2(
M (1−β)/2 − 1

)2 ,(16a)

c5 = c
1/α
1 c3d

1/α
1

M(M + 1)

M − 1
,(16b)

c6 = (cκ1 + cκ2 )
√
c2c3

d2κ
1

1− d−2
1

T−(1−β)/2

√
M + 1

M

M (1−β)/2

M (1−β)/2 − 1
(16c)

×

(√
c′2T

−β −
√
c2

√
M + 1

M

M (1−β)/2

M (1−β)/2 − 1

)
,(16d)

c7 =
c3T

−(1−β)

1− d−2
1

e2
1,(16e)

c8 = −2
c3T

−1

M − 1
.(16f)

We remark that, under the condition that β ≤ 2α, we have 2(1 + κ) ≥ 1/α with equality iff
β = 2α. Consequently, ε−2(1+κ) is the dominating term in the complexity-expansion. We further
note that the second term in the expression can be either ε−1/α or ε−(2+κ). �

The leading order coefficients c4 and c5 are positive, whereas the sign of c6 is not clear. In

particular, if we do not distinguish between the variance of Ŷ0 (controlled by c′2) and the variances

of the differences Ŷl, l = 1, . . . , L, controlled by c2, then c6 will be negative. c7 is again positive
(but often small) and c8 is negative. Clearly, we could simplify the complexity bound by omitting
all terms with negative coefficients in (15). We further note that the leading order terms of the
complexity do not depend on T or M0.

We do not know the rate of weak convergence α of our simplified Milstein scheme, but for
Lipschitz functions f , we clearly have

|E [f(X·)− f(Y·)]| ≤ |f |LipE [|X − Y |∞] ,

so that the weak rate of convergence is at least as good as the strong rate of convergence, i.e.,
α ≥ β/2 in the above notation. In fact, if we only impose minimal regularity conditions on f , then
it is highly unlikely that we can get anything better than α = β/2.

Corollary 19. Under the assumptions of Theorem 18, let us additionally assume that α = β/2.
Then the complexity of the above multi-level algorithm is bounded by

C ≤ c′4ε−1/α + o
(
ε−1/α

)
,

where

c′4 = c3d
1/α
1 (M + 1)

[
c
(1−β)/β
1 c

1/β
2

d2
1 − 1

M3(1−β)/2

M
(
M (1−β)/2 − 1

)2 + c
2/β
1

M

M − 1

]
.
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The optimal choice of d1 minimizing c′4 is obtained by

d1 =

√
1− (1− β)f1

2f2
+

√
(1− β)2f2

1 + 4βf1f2

2f2
,

with

f1 = c
(1−β)/β
1 c

1/β
2 c3

M + 1

M

M3(1−β)/2(
M (1−β)/2 − 1

)2 ,
f2 = c

2/β
1 c3

M(M + 1)

M − 1
.

Proof. We use c′4 = c4 + c5 in order to obtain the formula for the constant. Then we consider c′4 as
a function of d1 and get the minimizer as the unique zero of the derivative in ]1,∞[, noting that c′4
approaches ∞ on both boundaries of the domain. �

Remark 20. In the now classical works of Giles on multilevel Monte Carlo, he usually chooses
d1 =

√
2, see for instance [Gil08b]. This means that we reserve the same error tolerance ε/2 both

for the bias or discretization error and for the statistical or Monte Carlo error. In many situations,
this choice is not optimal. In fact, even in an ordinary Monte Carlo framework, one should not
blindly follow this rule.

For instance, for an SDE driven by a Brownian motion, the Euler scheme usually (i.e., under
suitable regularity conditions) exhibits weak convergence with rate 1. Assuming the same constants
for the weak error and the statistical error, a straightforward optimization will show that it is
optimal to choose the number of timesteps and the number of Monte Carlo samples such that the
discretization error is ε/3 and the statistical error is 2ε/3.

In the above, the choice of d1 corresponds to the distribution of the total MSE ε2 between the
statistical and the discretization error according to

ε2 =
ε2

d2
1︸︷︷︸

disc. error

+

(
1− 1

d2
1

)
ε2︸ ︷︷ ︸

stat. error

.

So, depending on the parameters, Corollary 19 shows that the canonical error distribution is not
optimal.

As the leading order coefficients c′4 depends only mildly on M , we do not try to find an optimal
choice of the parameter M .

The above analysis has also given us new insight into the classical multi-level Monte Carlo
algorithm corresponding to the choice β = 1. Indeed, even in this case an equal distribution of the
error tolerance ε among the bias and the statistical error is far from optimal. Indeed, we have

Theorem 21. For β = 1 and α ≥ 1/2, the optimal choice of L is (apart from rounding up) given
by

L(ε) =
1

α logM
log

ε−1

c21T 2α

1 +

√
c′2
c2T

M

M + 1
α logM

+ c21T
2α log ε−1

1/2


+O(
log log ε−1

log ε−1
),
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which is of the form (13) with

d1 ≈

1 +

√
c′2
c2T

M

M + 1
α logM + log ε−1

1/2

.

Proof. Let us investigate the behaviour of (12) for β ↑ 1. For β ↑ 1 we obtain

(17) Cβ=1(L) =

[√
c′2c3T

−1 +
√
c2c3

√
M + 1

M
L

]2
1

ε2 − c21T 2αM−2αL
,

and we want to minimize this object for L. Let us abbreviate to

D(L) :=
C(L)

c′2c3T
−1

= (1 + aL)
2 1

ε2 − bM−cL

with obvious definitions for a, b, c. Setting the derivative to zero yields

D′(L) = 2a (1 + aL)
1

ε2 − bM−cL
− (1 + aL)

2 bcM
−cL logM

(ε2 − bM−cL)
2 = 0

i.e.

2a
(
ε2 − bM−cL

)
= (1 + aL) bcM−cL logM

2aε2M cL = 2ab+ bc logM + abcL logM

abbreviate again

ε2M cL = b+
bc

2a
logM +

bc

2
L logM =: p+ qL

and write the latter as

(18)
M cL

p+ qL
=

1

ε2

We now derive an asymptotic expansion for the solution L(ε) to (18) for ε ↓ 0. For this we take the
logarithm of (18) to obtain with y := log ε−2 (with y →∞ as ε ↓ 0).

(19) L =
y

c logM
+

log (p+ qL)

c logM
.

By reformulating (19) as

L =
y

c logM
+

1

c logM

(
logL+ log q + log

(
p

qL
+ 1

))
=

y

c logM
+

log q

c logM
+

logL

c logM
+O(L−1), y →∞,(20)

and then writing (20) as

L =

y
c logM + log q

c logM +O(L−1)

1− logL
Lc logM

we easily observe that L = O(y) as y →∞. We thus get by iterating (19),

L =
y

c logM
+O(log y),
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and iterating once again,

L =
y

c logM
+

log
(
p+ qy

c logM +O(log y)
)

c logM

=
y

c logM
+

log
(
p+ qy

c logM

)
c logM

+O(
log y

y
).

The next few iterations yield

L =
y

c logM
+

log

(
p+ qy

c logM +
q log(p+ qy

c logM )
c logM

)
c logM

+O(
log y

y2
), and

L =
y

c logM
+

log

p+ qy
c logM +

q log

(
p+ qy

c logM +
q log(p+ qy

c logM )
c logM

)
c logM


c logM

+O(
log y

y3
),

etc. After re-expressing the asymptotic solution in the origonal terms via

a =

√
c2
c′2

M + 1

M
T

b = c21T
2α

p = c21T
2α

(
1 +

√
c′2
c2T

M

M + 1
α logM

)
q = c21αT

2α logM

we gather, respectively,

L(ε) =
log ε−1

α logM
+O(log log ε−1),

L(ε) =
1

α logM
log ε−1(21)

+
1

2α logM
log

c21T 2α

1 +

√
c′2
c2T

M

M + 1
α logM

+ c21T
2α log ε−1


+O(

log log ε−1

log ε−1
)

etc. The resulting complexity (12) will be obviously

Cβ=1(L) = O(
log2 ε−1

ε2
),
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where sharper expressions can be obtained by inserting one of the above asymptotic expansions for
L(ε). Note that (21) may be written as

L(ε) =
1

α logM
log

ε−1

c21T 2α

1 +

√
c′2
c2T

M

M + 1
α logM

+ c21T
2α log ε−1

1/2


+O(
log log ε−1

log ε−1
)

which suggest that in (13),

d1 ≈

1 +

√
c′2
c2T

M

M + 1
α logM + log ε−1

1/2

for the case β = 1. �

MLMC classical MC speed up of MLMC

Generic ε−(1+2α−β)/α ε−(2+1/α) ε−β/α

α = β/2 ε−1/α ε−(2+1/α) ε−2

α = β ε−(1/α+1) ε−(2+1/α) ε−1

Table 1. Comparison of asymptotic complexity for multilevel and standard Monte
Carlo in the framework of Theorem 18. α denotes the weak order of convergence,
β/2 the strong order. We distinguish the cases α = β/2 and α = β.

Under the assumptions of Theorem 18, we can summarize the complexity requirements for the
multi-level and the classical Monte Carlo methods, respectively, to obtain an MSE of order ε2, see
Table 1. In particular, note that the complexity of classical Monte Carlo is asymptotically worse
by a factor ε−2 in the “non-regular” case, when the weak rate is equal to the strong rate, but still
worse by a factor ε−1 when the weak rate is actually twice as good as the strong rate.

3.2. Multilevel Monte Carlo for RDEs. Let X : [0, T ] → Rd be Gaussian with the same as-
sumptions as in Theorem 10 for some ρ ∈ [1, 2). Consider the solution Y : [0, T ] → Rm of the
RDE

dYt = V (Yt) dXt; Y0 ∈ Rm

where V = (V1, . . . , Vd) is a collection of vector fields in Rm with |V |Lipγ < ∞ for some γ ≥ 2ρ
ρ−1 .

Set S := Y and let S(hl) be the simplified step-3 Euler approximation of Y with mesh-size hl (in the
case ρ = 1, it suffices to consider a step-2 approximation). Let f : C([0, T ],Rm)→ Rn be a Lipschitz

continuous functional and set P := f(S), P̂l := f(S(hl)). We want to calculate the quantities needed
in Theorem 18. It suffices to apply the modified complexity theorem with α = β/2. To wit,

var
[
P̂l − P

]
≤ E

[(
P̂l − P

)2
]
≤ |f |2LipE

[∣∣∣S(hl) − S
∣∣∣2] = O

(
hβl

)
and

var
[
P̂l − P̂l−1

]
≤
(

var
[
P̂l − P

]1/2
+ var

[
P̂l−1 − P

]1/2)2

= O
(
hβl

)
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for all β < 2
ρ − 1. Of course the variance of the average of Nl IID samples becomes

var
[
Ŷl

]
=

1

Nl
var
[
P̂l − P̂l−1

]
= O

(
hβl /Nl

)
.

This shows (iii). Trivially, a strong rate is also a weak rate, in the sense that

E
(
P̂l − P

)
≤ E

[(
P̂l − P

)2
]1/2

= O
(
h
β/2
l

)
.

Condition (ii), “unbiasedness” is obvious for the estimator (9). Theorem 15 and 19 then imply

Theorem 22. The Monte Carlo evaluation of a functional of an RDE driven by Gaussian signal,
to within a MSE of ε2, can be achieved with computational complexity

O
(
ε−θ
)
∀θ > 2ρ

2− ρ
.

Remark 23. In the context of an RDE driven by fractional Brownian motion, the condition (iv) of
Theorem 18 is not precisely satisfied, as there seems no exact simulation algorithm for increments
of a fractional Brownian motion with linear complexity, see [Die04]. There are inexact simulation
algorithms satisfying (iv), but those would introduce additional error terms in the other conditions.
On the other hand, there are exact simulation algorithms with “almost linear” complexity, i.e.,
linear complexity up to logarithmic terms. Obviously, these logarithmic terms would propagate into
the complexity statement of Theorem 18. However, Theorem 22 above remains unchanged, due to
the “δ > 0”-term inherited from Corollary 17.

In Table 2 we compare typical asymptotic complexities for RDEs driven by fractional Brownian
motion for both the multi-level and the classical Monte Carlo estimators. We distinguish between
the “non-regular” regime when α = β/2 and the more favorable regime when α = β. Moreover,
we have simplified the presentation in Table 2 by neglecting the higher order terms. I.e., any
complexity ε−a in Table 2 should actually be understood as ε−a−δ for any δ > 0. Thus, when the
Hurst parameter is not too small, multi-level can make the difference between a feasible simulation
and a quite impossible one. E.g., when H = 2/5 and the payoff function f is so irregular that the
weak rate of convergence is not better than the strong rate of convergence, the complexity for a
standard Monte Carlo estimator would be roughly of order ε−5.33, whereas the multi-level version
would have complexity roughly of order ε−3.33, which is not much worse than the complexity of a
standard Monte Carlo estimator of the usual Brownian motion regime. Admittedly, when H = 1/3
and one has an irregular payoff, then the complexity of both standard and multi-level Monte Carlo
are probably too bad for many situations.

4. Numerical experiments

We consider a linear RDE in R3 driven by a two-dimensional fractional Brownian motion with
Hurst index H. In fact, we consider vector fields Vi(y) = Aiy, y ∈ R3, i = 1, 2, with

A1 =

 0 1 2
−1 0 1/2
−2 −1/2 0

 , A2 =

 0 0.7 0.9
−0.7 0 1
−0.9 −1 0

 .

Note that the matrices A1 and A2 are anti-symmetric, implying that the sphere S2 is invariant
under the solution of the SDE. We implement the simplified Euler scheme (4), where the increments
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H = 2/5 H = 1/3
MLMC classical MC MLMC classical MC

α = β/2 ε−10/3 ≈ ε−3.33 ε−16/3 ≈ ε−5.33 ε−6 ε−8

α = β ε−8/3 ≈ ε−2.67 ε−11/3 ≈ ε−3.67 ε−4 ε−5

Table 2. Comparison of asymptotic complexities for multi-level and classical
Monte Carlo for RDEs driven by fractional Brownian motion with Hurst index
H = 2/5 and H = 1/3. We distinguish between the cases α = β/2 and α = β.
For this summary, we neglect the “higher order terms”, i.e., we neglect the δ in
β/2 = 1/ρ − 1/2 − δ. For H = 2/5, we set β/2 = 3/10, and for H = 1/3 we set
β/2 = 1/6.

of the fractional Brownian motion were simulated by Hosking’s method, see [Die04].5 Hosking’s
method is an exact simulation method, i.e., if fed with truly Gaussian random numbers, it will
produce samples from the true distribution of increments of the fractional Brownian motion. It is
similar to the more obvious simulation method based on the Cholesky factorization of the covariance
matrix of the increments, but preferable in terms of memory requirement, especially when grids
of sizes of up to 214 = 16384 are considered. As Cholesky’s method, the complexity of simulating
the increments of the fractional Brownian motion on a grid with size M is essentially proportional
to M2. There are non-exact methods with linear complexity, and even exact methods with linear
complexity up to logarithmic terms, but we prefer Hosking’s algorithm due to its simplicity.

Starting at Y0 = (1, 0, 0), Figure 1 shows the strong and weak convergence of the scheme for

H = 0.4. More precisely, let Y
N

1 denote the result of the scheme based on a uniform grid on

[0, 1] based on N time-step. Then consider Y
2N

1 based on the increments of the same fBM.6 Then,

the lower part of Figure 1 shows the Monte Carlo estimator of E
[∣∣∣Y N1 − Y 2N

1

∣∣∣] plotted against

N . We, indeed, observe the expected rate of strong convergence, which, due to Theorem 15 is
2H − 1/2 = 0.3, but only after a prolonged pre-asymptotic phase.

In the upper panel of Figure 1, we plot the weak error for the calculation of E [f (Y1)] for the
functional

f(y) := (|y| − 1)+.

This implies that E [f (Y1)] = 0, so that we do not need to carry out lengthy calculations in order
to find an appropriately accurate reference value. The figure indicates that the rate of the weak
error is again equal to the strong rate 0.3. Note that the same would be true even in the case
H = 1/2, because the Markov semigroup associated to the solution (in the case H = 1/2) is not
smoothing and, in addition, the functional f is non-smooth on S2, i.e., with probability 1. Again,
the roughness of the driving signal leads to a remarkably strong pre-asymptotic regime. Indeed,
when the grid is too coarse, then the weak approximation error can be huge. Visually, it seems
that the asymptotic error analysis accurately describes the true error when the mesh of the grid is
at least around 0.02 for the case H = 0.4.

Figure 2 shows strong and weak errors for the same differential equation and the same function
f , but in the even rougher case H = 0.33. In this case, the size of the errors for very coarse grids

5The underlying Gaussian random numbers are simulated using the Box-Müller method. The pseudo random
numbers are generated by the Mersenne-Twister [MN98].

6In practice, this means that we generated the increments of the fBM X on the finer grid k
2N

, k = 0, . . . , 2N and

then obtained the increments on the coarser grid by adding the respective increments on the fine grid.
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Figure 1. Strong and weak error for a fBM with Hurst index H = 0.4. Dashed
line corresponds to the theoretical strong rate of convergence 0.3, dotted lines
show confidence intervals around the error due to the integration error. Weak
error corresponds to the functional f(y) := (|y(1)| − 1)+.

are even larger than for H = 0.4, and, moreover, the pre-asymptotic phase seems even longer: here
the mesh of the grid should probably be at least 0.01 in order to describe the true computational
error by the asymptotic error bounds.
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Figure 2. Strong and weak error for a fBM with Hurst index H = 0.33. Dashed
line corresponds to the theoretical strong rate of convergence 0.16, dotted lines
show confidence intervals around the error due to the integration error. Weak
error corresponds to the functional f(y) := (|y(1)| − 1)+.

This long pre-asymptotic phase, in which the computational error is very large, needs to be
taken into account when constructing a successful multi-level estimator: indeed, it is advisable to
choose the coarsest grid used in the multi-level iteration already within the asymptotic regime.
Thus, in the case H = 0.4, we would recommend to choose h0 ≤ 0.02 for this particular example.
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This is remarkably different from the standard SDE case, where often h0 is chosen to be equal to
T , i.e., the coarsest grid contains only the start and end points of the interval [0, T ]. However,
when employing this strategy for the fBM example here, the constants in the error bound for the
multi-level estimator will completely overshadow the asymptotic convergence rate, to the extent
that even for long computation time no “empirical” convergence is exhibited. Indeed, the coarsest
levels then combine a large error with an even larger variance, and this combination, while harmless
in the asymptotic limit ε→ 0, renders the standard multi-level construction useless.

Fortunately, the picture is completely different when the coarsest grid is chosen to be fine enough,
in the current example for H = 0.4 this means h0 ≤ 0.02. Then the multi-level algorithm requires
considerably less computational time for the same MSE tolerance than a classical MC estimator,
even for quite moderate levels of the tolerance. For this demonstration, we choose a different
function, namely

g(y) = |y|1y1>0.

Indeed, the previously used function f(y) = (|y| − 1)+ has the property that f(Y1) ≡ 0, so that the

variance of f(Y
N

1 ) goes to 0 when N →∞. This, however, makes the basic idea of the multi-level
approach redundant, as the variance of estimators anyway decrease when the mesh is decreased,
even without the telescoping procedure.

A direct comparison of the performance of the classical and the multi-level Monte-Carlo estimator
is difficult in our situation, as it is very hard to obtain a reference value, i.e., a “true result”.
Moreover, by the same reasoning the coefficients ci in Theorem 18 are very difficult to estimate.
Thus, we use the following procedure to test the respective performances:

• Fix L, the number of levels in the multi-level procedure, and h0, the coarsest grid. Here,
we choose h0 = 1/64 and L = 7. Thus, the finest grid in the multi-level Monte Carlo
corresponds to hL = 0.00012 = 1/8192. As the fixed L is probably sub-optimal, this choice
is disadvantageous to the multi-level algorithm. We also choose the multiplication factor
M = 2 here, and we parametrize the number of paths Nl for the level l by the number of
paths N0 at the coarsest level by some heuristic. In Table 3, we choose N0 = 100. Again,
these non-optimal choices favour the classical Monte Carlo estimator.

• Choose the mesh of the classical Monte Carlo estimator to be equal to hL, the finest grid in
the multi-level hierarchy. This guarantees that both estimators have the same bias – even
though we cannot easily estimate this bias due to the absence of a reference value.

• Choose the number of paths in the classical Monte Carlo estimator and the number of paths
in the coarsest grid for the multi-level estimator such that the complexity for the classical
Monte Carlo estimator is equal to the complexity of the multi-level Monte Carlo estimator.
We use an a-priori estimate for the complexity.

– For the classical Monte Carlo method, the complexity is estimated by the number of
trajectories multiplied by the size of the grid.

– For the multi-level Monte Carlo method, the complexity at a level l is estimated by
the product of the size of the finer grid and the number of trajectories for the level.
The overall complexity is estimated by the sum of these complexity estimates for the
individual levels.

Note that in practice, this complexity estimate is only given up to a constant of propor-
tionality, which can be checked by comparing run-times on a computer.

• Compute the sample variance for both estimators. If the sample variance for the multi-
level Monte Carlo estimator is (significantly) smaller than the sample variance for the
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classical Monte Carlo estimator, then we, indeed, have demonstrated that the multi-level
estimator will have a smaller MSE than the classical Monte Carlo estimator given the same
computational budget, i.e., the same complexity.

The nice aspect of this procedure is that it allows a reliable comparison of MSE given a certain
complexity, even when the true MSE is not known because of the absence of a reference value.
However, we stress again that the multi-level estimator constructed above will certainly not be
optimal.In order to take care of the constant in the complexity bound, we also compare the actual
run-times as empirical complexity estimates.

Multilevel Classical MC
Variance 1.47× 10−2 1.90× 10−2

Time 0.99 s 3.68 s
Table 3. Variance and run-times for the multi-level and the classical Monte Carlo
algorithm for fixed complexity and bias. Calculations are normalized by N0 = 100.

Table 3 finds that for comparable complexity the variance associated to the classical Monte
Carlo estimator is considerably lower than the variance of the classical Monte Carlo estimator. It is
interesting to note that the classical Monte Carlo estimator takes considerably longer computational
time. The reason is that the multi-level algorithm uses the Euler scheme on coarser grids on average
than the classical Monte Carlo algorithm. As the complexity for sampling the increments of the
fractional Brownian motion increases quadratically in the size of the grid when Hosking’s method
is applied, this explains why the computational time is almost four times larger for the classical
Monte Carlo method. Note that there are other exact simulation methods with a complexity
of order O(M log(M)) in the grid size M , and approximate simulation methods even with order
O(M), see [Die04]. However, at least for the present, linear differential equation, the simulation of
the increments of the fBM will always dominate the Euler steps, even when the complexity does
only increase linearly. Thus, the conclusions of Table 3 should hold irrespective of the simulation
method.7

Appendix A. Recalls on RDEs driven by Gaussian signals

In this section, we introduce the concepts and definitions from rough path theory that are
necessary for our current application. For a detailed account of the theory, we refer readers to
[FV10b], [LCL07] and [LQ02].

Fix the time interval [0, T ]. For all s < t ∈ [0, T ], let ∆s,t denote the simplex

{(u1, u2) | s ≤ u1 ≤ u2 ≤ t},

7The following heuristic calculation also supports this conclusion: assuming that we replace Hosking’s algorithm
by an algorithm with linear complexity and the same constant. Then we can easily predict the run-time of the
classical Monte Carlo algorithm by dividing the run-time reported in Table 3 by the size of the (finest) grid, i.e., by

8192, which gives a predicted run-time of 0.00045 seconds. For the multilevel Monte Carlo method, the corresponding

factor would be (with Ml = Th−1
l and Nl = N02−l(1+β)/2 = N02−0.8l)

M2
0N0 + · · · + M2

LNL

M0N0 + · · · + MLNL
= 2799,

giving a predicted run-time of 0.00035 seconds, which is still lower then the predicted run-time for the classical Monte
Carlo algorithm.
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and we simply write ∆ for ∆0,T . In what follows, we will use x to denote an Rd-valued path, and X
to denote a stochastic process in Rd, which is a Gaussian process in the current paper. Let (E, d)
be a metric space and x ∈ C([0, T ], E). For p ≥ 1, we define

‖x‖p−var;[s,t] := sup
D⊂[s,t]

 ∑
ti,ti+1∈D

|d(xti , xti+1
)|p
 1

p

and ‖x‖α−Höl;[s,t] := sup
(u,v)∈∆s,t

d (xu, xv)

|v − u|
1
p

.

We will use the short hand notation ‖·‖p−var and ‖·‖α−Höl for ‖·‖p−var;[0,T ] resp. ‖·‖α−Höl;[0,T ] which

are easily seen to be semi-norms. Given a positive integer N the truncated tensor algebra of degree
N is given by the direct sum

TN
(
Rd
)

= R⊕ Rd ⊕ ...⊕
(
Rd
)⊗N

.

With tensor product⊗, vector addition and usual scalar multiplication, TN
(
Rd
)

=
(
TN

(
Rd
)
,⊗,+, .

)
is an algebra. Let πi denote the canonical projection from TN

(
Rd
)

onto
(
Rd
)⊗i

.

For a path x : [0, 1]→ Rd of bounded variation, we define the canonical lift x ≡ SN (x) : [0, T ]→
TN

(
Rd
)

via iterated (Young) integration,

xt ≡ SN (x)t = 1 +

N∑
i=1

∫
0<s1<...<si<t

dxs1 ⊗ ...⊗ dxsi

noting that x0 = 1 + 0 + ...+ 0 =: e is the neutral element for ⊗, and that xt really takes values in

GN
(
Rd
)

=
{
g ∈ TN

(
Rd
)

: ∃x ∈ C1-var
(
[0, T ] ,Rd

)
: g = SN (X)1

}
,

a submanifold of TN
(
Rd
)
, called the free step-N nilpotent Lie group with d generators. We will

use the canonical notion of increments expressed by

xs,t := x−1
s ⊗ xt.

The dilation operator δ : R×GN
(
Rd
)
→ GN

(
Rd
)

is defined by

πi (δλ(g)) = λiπi(g), i = 0, ..., N.

The Carnot-Caratheodory norm, given by

‖g‖ = inf
{

length(s) : x ∈ C1-var
(
[0, 1] ,Rd

)
, SN (x)1 = g

}
defines a continuous norm on GN

(
Rd
)
, homogeneous with respect to δ. This norm induces a

(left-invariant) metric on GN
(
Rd
)

known as Carnot-Caratheodory metric,

d(g, h) :=
∥∥g−1 ⊗ h

∥∥ .
Let x, y ∈ C0

(
[0, T ], GN

(
Rd
))

, the space of continuous GN
(
Rd
)
-valued paths started at the

neutral element. We define p-variation- and 1
p -Hölder-distances by

dp−var(x,y) := sup
D⊂[0,T ]

 ∑
ti,ti+1∈D

|d(xti,ti+1
,yti,ti+1

)|p
 1

p

and

d 1
p−Höl(x,y) := sup

(s,t)∈∆

d (xs,t,ys,t)

|t− s|
1
p

.
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Note that d 1
p−Höl(x, 0) = ‖x‖α−Höl and dp−var(x, 0) = ‖x‖p−var where 0 denotes the constant path

equal to the neutral element. These metrics are called homogeneous rough paths metrics. We define
the following path spaces:

(i) Cp−var
0

(
[0, T ] , GN

(
Rd
))

: the set of continuous functions x from [0, T ] into GN
(
Rd
)

such
that ‖x‖p−var <∞ and x0 = e.

(ii) Cα−Höl
0

(
[0, T ] , GN

(
Rd
))

: the set of continuous functions x from [0, T ] into GN
(
Rd
)

such
that ‖x‖α−Höl <∞ and x0 = e.

(iii) C0,p−var
0

(
[0, T ] , GN

(
Rd
))

: the dp−var-closure of{
SN (x) , x : [0, T ]→ Rd smooth

}
.

(iv) C0,α−Höl
0

(
[0, T ] , GN

(
Rd
))

: the dα−Höl-closure of{
SN (x) , x : [0, T ]→ Rd smooth

}
.

If N = bpc, the elements of the spaces (i) and (ii) are called weak geometric (Hölder) rough paths, the
elements of (iii) and (iv) are called geometric (Hölder) rough paths. Recall that if V = (Vi)i=1,...,d

is a collection of Lipγ(Re) vector fields (in the sense of Stein, cf. [FV10b]) for some γ > p and x is
a p-rough path, one can make sense of a unique solution y : [0, T ]→ Re of the equation

dyt = V (yt) dxt; y0 ∈ Re.

In this article, we will mainly be interested in inhomogeneous rough paths metrics which we
aim to define now. First recall that a control is a function ω : ∆ → R+ which is continuous and
super-additive in the sense that for all s ≤ u ≤ t one has

ω(s, u) + ω(u, t) ≤ ω(s, t).

If ω is a control, we define

‖x‖p−ω;[s,t] := sup
s≤u<v≤t

‖xs,t‖
ω(s, t)1/p

ρ
(k)
p−ω;[s,t](x,y) := sup

s≤u<v≤t

|πk(xu,v − yu,v)|
ω(u, v)k/p

ρp−ω;[s,t](x,y) := max
k=1,...,bpc

ρ
(k)
p−ω;[s,t](x,y)

ρ
(k)
p−var;[s,t](x,y) := sup

(ti)⊂[s,t]

(∑
i

∣∣πk (xti,ti+1
− yti,ti+1

)∣∣p/k)k/p
ρp−var;[s,t](x,y) := max

k=1,...,bpc
ρ

(k)
p−var;[s,t](x,y).

Note that the metrics dp−var and ρp−var both induce the same topology on the respective rough
paths spaces, as do the metrics d 1

p−Höl and ρp−ω;[s,t] with the choice ω(s, t) = |t − s|; cf. [FV10b]

for more details.
We now recall the basic facts about Gaussian rough paths. If I = [a, b] is an interval, a dissection

of I is a finite subset of points of the form {a = t0 < . . . < tm = b}. The family of all dissections
of I is denoted by D(I). Let I ⊂ R be an interval and A = [a, b] × [c, d] ⊂ I × I be a rectangle.
If f : I × I → V is a function, mapping into a normed vector space V , we define the rectangular
increment f(A) by setting
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f(A) := f

(
a, b
c, d

)
:= f

(
b
d

)
− f

(
a
d

)
− f

(
b
c

)
+ f

(
a
c

)
.

Definition 24. Let p ≥ 1 and f : I × I → V . For [s, t]× [u, v] ⊂ I × I, set

Vp(f ; [s, t]× [u, v]) :=

 sup
(ti)∈D([s,t])
(t′j)∈D([u,v])

∑
ti,t′j

∣∣∣∣f ( ti, ti+1

t′j , t
′
j+1

)∣∣∣∣p


1
p

.

If Vp(f, I × I) <∞, we say that f has finite (2D) p-variation. Similarly, we set

V1,p(f ; [s, t]× [u, v]) :=

 sup
(ti)∈D([s,t])
(t′j)∈D([u,v])

∑
t′j

(∑
ti

∣∣∣∣f ( ti, ti+1

t′j , t
′
j+1

)∣∣∣∣
)p

1
p

.

and call this the (mixed, right) (1, p)-variation of f .

Let X = (X1, . . . , Xd) : [0, T ] → Rd be a centered Gaussian process. Then the covariance
function RX(s, t) := CovX(s, t) = E(Xs ⊗ Xt) is a map RX : I × I → Rd×d. Next, we cite the
fundamental existence result about Gaussian rough paths. For a proof, cf. [FV10a] or [FV10b,
Chapter 15].

Theorem 25. Let X : [0, T ]→ Rd be a centered Gaussian process with continuous sample paths and
independent components. Assume that there is a ρ ∈ [1, 2) such that Vρ(RX ; [0, T ]2) < ∞. Then
X admits a lift X to a process whose sample paths are geometric p-rough paths for any p > 2ρ,
i.e. with sample paths in C0,p−var

0 ([0, T ], Gbpc(Rd)) and π1(Xs,t) = Xt −Xs for any s < t. X is a
natural lift of X in the sense that if Xh is a suitable approximation of X (cf. [FV10b, chapter 15]
or section 2.2 for the exact definition), then∣∣dp−var(Sbpc(Xh),X)

∣∣
Lr
→ 0

for h→ 0 and all r ≥ 1. Moreover, if Vρ(RX ; [s, t]2) . |t− s|
1
ρ holds for all s < t, then the sample

paths of X can be lifted to 1
p -Hölder rough paths and the Lr-convergence holds for the d 1

p−Höl metric.

Remark 26. The condition Vρ(RX ; [s, t]2) . |t− s|
1
ρ can be checked for many Gaussian processes.

It holds, for instance, for Brownian motion, the Ornstein-Uhlenbeck process and the Brownian
bridge with the choice ρ = 1. Moreover, it holds for the fractional Brownian motion BH with
1
2ρ = H, where H denotes the Hurst parameter, even in the stronger form of mixed (1, ρ)-variation,

cf. [FGR13, Theorem 6]. Theorem 25 implies that BH has a lift in the sense of Theorem 25 as
long as H > 1

4 .
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for SDEs driven by fractional Brownian motion, Ann. Inst. Henri Poincaré Probab. Stat. 48 (2012), no. 2,
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