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Abstract

In this paper we introduce and study the concept of optimal and surely optimal dual martingales
in the context of dual valuation of Bermudan options. We provide a theorem which give conditions
for a martingale to be surely optimal, and a stability theorem concerning martingales which are near
to be surely optimal in a sense. Guided by these theorems we develop a regression based backward
construction of such a martingale in a Wiener environment. In turn this martingale may be utilized for
computing upper bounds by non-nested Monte Carlo. As a by-product, the algorithm also provides
approximations to continuation values of the product, which in turn determine a stopping policy.
Hence, we obtain lower bounds at the same time. The proposed algorithm is pure dual in the sense
that it doesn’t require an (input) approximation to the Snell envelope, is quite easy to implement, and
in a numerical study we show that, regarding the computed upper bounds, it is comparable with the
method of Belomestny, et. al. (2009).

1 Introduction

It is well-known that evaluation of Bermudan callable derivatives comes down to solving an optimal stop-
ping problem. For many callable exotic products, for example interest products, the underlying state space
is high-dimensional however. As such these products are usually very hard to solve with deterministic
(PDE) methods and therefore simulation based (Monte Carlo) methods are called for. The first develop-
ments in this respect concentrated on the construction of a ’good’ exercise policy. We mention, among
others, regression based methods by Carriere (1996), Longstaff and Schwartz (2001) and Tsistsiklis and
Van Roy (1999), the stochastic mesh method of Broadie and Glasserman (2004), and quantization al-
gorithms by Bally and Pages (2003). Especially for very high dimension, Kolodko and Schoenmakers
(2004) developed a policy improvement approach which can be effectively combined with Longstaff and
Schwartz (2001) for example (see Bender et al. (2008) and Bender et al. (2006)).

As a common feature, the aforementioned simulation methods provide lower biased estimates for the
Bermudan product under consideration. As a new breakthrough, Rogers (2001) and Haugh and Kogan
(2004) introduced a dual approach, which comes down to minimization over a set of martingales rather
than maximization over a family of stopping times. By its very nature the dual approach gives upper
biased estimates for the Bermudan product and after its appearance several numerical algorithms for
computing dual upper bounds are proposed. Probably the most popular one is the method of Andersen
and Broadie (2004), although this method requires nested Monte Carlo simulation (see also Kolodko and
Schoenmakers (2004) and Schoenmakers (2005)). In a Wiener environment, Belomestny, et. al. (2009)
provide a fast generic method for computing dual upper bounds by non-nested simulation.

The algorithms for computing dual upper bounds so far have in common that they start with some given
’good enough’ approximation of the Snell envelope and then construct the Doob-martingale due to this
approximation. In a recent paper Rogers (2010), points out how to construct a particular ’good’ martingale
via a sequence of martingales which are constant on an ever bigger time interval. In this construction no
input approximation to the Snell envelope is used. The approach proposed in this paper has some flavor
of the method of Rogers (2010), in the sense that no approximation to the Snell envelope is used either.
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Moreover, a detailed analysis of the almost sure property of the dual representation is provided and a
new (backward) regression algorithm for constructing a dual martingale is proposed.

We introduce the concept of a surely optimal martingale, loosely speaking, a martingale that minimizes
the dual representation with a particular almost sure property (Section 3). In this respect we will point
out that a martingale which minimizes the dual representation is not necessarily surely optimal, and on
the other hand, a surely optimal martingale is generally not unique. As one of the main contributions
in this paper we provide a characterizing criterion that guarantees that a martingale is surely optimal
(Theorem 5). In the application of the Andersen and Broadie (2004) algorithm one generally observes
that, the better the constructed dual martingale, the lower the variance of the upper bound estimator.
Actually this observation was not well studied from a mathematical point of view by now. In Section 4
we study this phenomenon and, as a next contribution, give an explanation of it by a convergence or
stability Theorem 8. Finally, based on Theorem 5 and Theorem 8 we develop an algorithm in Section 5
for constructing a martingale which is in a sense near to be surely optimal by a regression procedure
in a Wiener environment. As a by-product of this regression procedure we obtain estimations of contin-
uation values as well. As a result we end up with a procedure which computes upper bound as well as
lower bounds at the same time by non-nested simulation. As such this new procedure is quite easy to
implement and may be considered as an interesting alternative to the non-nested method of Belomestny,
et. al. (2009), where a dual martingale is obtained by constructing a discretized Clark-Ocone derivative
of some (input) approximation to the Snell envelope via regression. In a numerical study (Section 6) we
demonstrate at two multi-dimensional examples that our new method is of the same quality as the one
in Belomestny, et. al. (2009) regarding the upper bounds, and it moreover produces very fast good lower
bounds. In Section 2 we start with a short resume of well-known facts on Bermudan derivatives.

2 Bermudan derivatives and optimal stopping

Let (Zi : i = 0, 1, . . . , T )1 be a non-negative stochastic process in discrete time on a filtered probability
space (Ω,F, P ), adapted to a filtration F := (Fi : 0 ≤ i ≤ T ) which satisfies E|Zi| < ∞, for
0 ≤ i ≤ T. The measure P may be considered as a pricing measure and the process Z may be seen
as a (discounted) cash-flow, which an investor may exercise once in the time set {0, ..., T}. As such he
is faced with a Bermudan derivative. As a well known fact, a fair price of such a derivative is the value of
the Snell envelope process

Y ∗i = sup
τ∈{i,...,T},

EZτ , 0 ≤ i ≤ T, (2.1)

at time i = 0. In (2.1), τ denotes a stopping time, Ei := EFi
denotes conditional expectation with

respect to the σ-algebra Fi, and sup (inf) is to be understood as essential supremum (infimum) if it
ranges over an uncountable family of random variables. Let us recall some well-known facts (e.g. see
Neveu (1975)).

1 The Snell envelope Y ∗ of Z is the smallest super-martingale that dominates Z .

2 A family of optimal stopping times is given by

τ∗i = inf{j : j ≥ i, Zj ≥ Y ∗j }, 0 ≤ i ≤ T.
1For notational convenience we have chosen for this stylized time set. The reader may reformulate all statements and results

in this paper for a general discrete time set {T0, T1, . . . , TJ} in a trivial way.
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In particular,
Y ∗i = EZτ∗i , 0 ≤ i ≤ T,

and the above family is the family of first optimal stopping times if several optimal stopping families
exist.

The optimal stopping problem (2.1) has a natural interpretation in the point of view of the option holder:
He seeks for an optimal exercise strategy which optimizes his expected pay-off. On the other hand, the
seller of the option rather seeks for the minimal cash amount (smallest super-martingale) he has to have
at hand in any case the holder of the option exercises.

3 Duality and surely optimal martingales

We briefly recall the dual approach proposed by Rogers (2001) and, independently, Haugh and Kogan
(2004). The dual approach is based on the following observation. For any martingale (Mj) withM0 = 0
we have,

Y ∗0 = sup
τ∈{0,...,T}

E0Zτ ≤ sup
τ∈{0,...,T}

E0 (Zτ −Mτ ) ≤ E0 max
0≤j≤T

(Zj −Mj) (3.2)

hence the right-hand side provides a (dual) upper bound for Y ∗0 .

Rogers (2001) and independently Haugh and Kogan (2004) showed, that the equality in (3.2) is attained
at the martingale part of the Doob decomposition of Y ∗, i.e. Y ∗j = Y ∗0 + M∗j − A∗j where M∗ is a
martingale with M∗0 = 0, and A∗ is predictable with A∗0 = 0. I.e.,

M∗j =

j∑
l=1

(Y ∗l − El−1Y ∗l ) , A∗j =

j∑
l=1

(
Y ∗l−1 − El−1Y ∗l

)
, (3.3)

where A∗ is non-decreasing due to the Bellman principle. In addition, they showed that

Y ∗0 = max
0≤j≤T

(
Zj −M∗j

)
a.s. (3.4)

The next lemma by Kolodko and Schoenmakers (2006) provides a somewhat more general class of
super-martingales, which turn (3.2) into an equality such that moreover (3.4) holds.

Lemma 1. Let S be the set of super-martingales S with S0 = 0. Let S ∈ S be such that Zj−Y ∗0 ≤ Sj ,
1 ≤ j ≤ T . Then,

Y ∗0 = max
0≤j≤T

(Zj − Sj) a.s. (3.5)

For the proof see Kolodko and Schoenmakers (2006).

Examples 2. Obviously, by taking for S the Doob martingale (3.3), Lemma 1 applies. But, this is not the
only one. For example, in the case Z > 0 a.s. we may also take

Sj = (N∗j − 1)Y
∗
0

where N∗ is the multiplicative Doob part of the Snel envelope, i.e. Y ∗j = Y ∗0 N
∗
j B
∗
j for a martingale N∗

with N∗0 = 1 and predictable B∗ with B∗0 = 1. Hence

N∗j =

j∏
l=1

Y ∗l
El−1Y

∗
l

, B∗j =

j∏
l=1

El−1Y
∗
l

Y ∗l−1
. (3.6)
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Indeed, since B∗ is non-increasing due to the Bellman principle, we have

Sj = Y
∗
0

(
Y ∗j
Y ∗0 B

∗
j

− 1

)
≥ Y ∗0

(
Y ∗j
Y ∗0
− 1

)
= Y ∗j − Y

∗
0 ≥ Zj − Y

∗
0

and so Lemma 1 applies again.

The multiplicative Doob decomposition in (3.6) is used by Jamshidian (2007) for constructing a multi-
plicative dual representation. In a comparative study, Chen and Glasserman (2007) pointed out however,
that from a numerical point of view additive dual algorithms perform better due to the nice almost sure
property (3.4).

Remark 3. It is not true that for any martingale M which turns (3.2) into equality the almost sure state-
ment (3.4) holds. As a simple counterexample consider T = 1, Z0 = 0, Z1 = 2, M0 = 0, and M1 =
±1 each with probability 1/2. Indeed, we see that Y ∗0 = 2 = E0(2 −M1) = E0 max(0, 2 −M1),
but, Y ∗0 6= max(0, 2−M1) a.s.

In order to have a unified dual representation for the Snell envelope Y ∗i at any i, it is convenient to drop
the assumption that martingales start at zero. We then may restate the dual theorem as

Y ∗i = inf
M∈M

Ei max
i≤j≤T

(Zj −Mj +Mi) (3.7)

= max
i≤j≤T

(
Zj −M∗j +M∗i

)
a.s., (3.8)

for all i, 0 ≤ i ≤ T, where M is the set of all martingales and M∗ is the Doob martingale part of Y ∗.

In view of Remark 3 and Examples 2, a martingale for which the infimum (3.7) is attained must not
necessarily satisfy the almost sure property (3.8), and, martingales which do satisfy (3.8) are generally
not unique.

Definition 4. We say that a martingale M is surely optimal for the Snell envelope Y ∗ at a time i,
0 ≤ i ≤ T, if (3.8) holds.

Obviously, the Doob martingale of Y ∗ is surely optimal at each i, 0 ≤ i ≤ T. The next theorem provides
a characterization of surely optimal martingales.

Theorem 5. Let Y ∗ be the Snell envelope of the cash-flow Z and let M be any martingale. Then, for
every i ∈ {0, ..., T} the following statement holds:

For any set Ai ∈ Fi we have

1Ai
max
i≤j≤T

(Zj −Mj +Mi) ∈ Fi =⇒ 1Ai
max
i≤j≤T

(Zj −Mj +Mi) = 1Ai
Y ∗i .

Proof. We use backward induction on the number i. If i = T the statement reads, for any AT ∈ FT we
have 1AT

ZT ∈ FT =⇒ 1AT
ZT = 1AT

Y ∗T which is trivially true. Suppose the statement holds for

some i+ 1 with 0 ≤ i < T and assume for an arbitrary but fixed set Ai ∈ Fi that

1Ai
ϑi := 1Ai

max
i≤j≤T

(Zj −Mj +Mi) ∈ Fi.
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We then have

1Ai
ϑi = 1Ai

max(Zi, Mi −Mi+1 + max
i+1≤j≤T

(Zj −Mj +Mi+1))

= 1Ai
max(Zi, Mi −Mi+1 + ϑi+1) ∈ Fi.

We may then consider the following Fi measurable events:

Ai ∩Ai) with Ai) := {ϑi = Zi} ∩ {Mi −Mi+1 + ϑi+1 ≤ Zi}, and

Ai ∩Aii) with Aii) = Ω\Ai)

:= {ϑi = Mi −Mi+1 + ϑi+1} ∩ {Zi < Mi −Mi+1 + ϑi+1}.

By taking Fi-conditional expectations it follows that

1Ai∩Ai)Zi = Ei 1Ai∩Ai)Zi ≥ Ei (Mi −Mi+1 + ϑi+1) 1Ai∩Ai) = 1Ai∩Ai)Ei ϑi+1. (3.9)

Since M is a martingale, Ei+1 ϑi+1 is an upper bound for Y ∗i+1 by (3.7), and we thus have,

Ei ϑi+1 = EiEi+1 ϑi+1 ≥ EiY ∗i+1,

which yields combined with (3.9),

1Ai∩Ai)EiY
∗
i+1 ≤ 1Ai∩Ai)Zi

and so
1Ai∩Ai)ϑi = 1Ai∩Ai)Zi = 1Ai∩Ai)Y ∗i . (3.10)

On the other hand, we notice that 1Ai∩Aii)ϑi+1 ∈ Fi+1 so we have by induction that 1Ai∩Aii)ϑi+1 =
1Ai∩Aii)Y ∗i+1. It then follows that

1Ai∩Aii)ϑi = Ei 1Ai∩Aii)ϑi = Ei 1Ai∩Aii) (Mi −Mi+1 + ϑi+1) = 1Ai∩Aii)Eiϑi+1

= Ei 1Ai∩Aii)ϑi+1 = Ei 1Ai∩Aii)Y ∗i+1 = 1Ai∩Aii)EiY
∗
i+1. (3.11)

Combining (3.10) and (3.11) finally yields 1Ai
ϑi = 1Ai

Y ∗i .

As an immediate consequence of Theorem 5 we obtain:

Corollary 6. Let Y ∗, Z, and martingale M be as in Theorem 5. For i ∈ {0, ..., T} it holds,

max
i≤j≤T

(Zj −Mj +Mi) ∈ Fi =⇒ M is surely optimal at i.

Remark 7. Any martingale M is trivially surely optimal at i = T. However, it is not true that sure opti-
mality for some i with i < T implies sure optimality at i+1. As a counterexample let us consider T = 2,
and Z0 = 4, Z1 = 0, Z2 = 2. Take as martingale M0 = 0, M1 = ±1, each with probability 1/2, and
M2 = M1±1, each with probability 1/2 conditionalM1. Then max0≤j≤2 (Zj −Mj +M0) = 4 a.s.,
hence by Theorem 6 we have Y ∗0 = 4 and thus M is surely optimal at i = 0. But,
max1≤j≤2 (Zj −Mj +M1) = 2−M2 +M1 /∈ F1, so M is not surely optimal for Y ∗ at i = 1.
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4 Stability of surely optimal martingales

In equivalent terms, Corollary 6 states that, if a martingale M is such that the conditional variance of

ϑ
(M)
i := max

i≤j≤T
(Zj −Mj +Mi) , i = 0, ..., T,

is zero, i.e.

V ari

(
ϑ
(M)
i

)
:= Ei (ϑi − Eiϑi)2 = 0, a.s., i = 0, ..., T,

then ϑ
(M)
i = Y ∗i , for i = 0, ..., T. Hence the martingale M is surely optimal for i = 0, ..., T. In this

section we present a stability result for martingales M which are, loosely speaking, near to be surely

optimal in the sense that each i, Vari
(
ϑ
(M)
i

)
is small. More specifically, for a sequence of martingales

(M (n))n≥1 we provide mild conditions which guarantee that the corresponding upper bounds converge
to the Snell envelope (although the sequence of martingales (M (n)) does not need to converge itself).
We have the following theorem.

Theorem 8. Suppose that for each i, 0 ≤ i ≤ T, Vari(ϑ
(n)
i )

P→ 0, if n → ∞, where ϑ
(n)
i :=

maxi≤j≤T

(
Zj −M (n)

j +M
(n)
i

)
. In addition, suppose that for each i, the sequence of martingales(

M
(n)
i

)
n≥1

is uniformly integrable for n ≥ 1. It then holds
(
ϑ
(n)
i

)
n≥1

is uniformly integrable for each

i, and

Ei ϑ
(n)
i

L1→ Y ∗i , i = 0, ..., T.

Proof. We will prove the theorem by backward induction on i. For i = T there is nothing to prove.
Suppose the theorem is proved for i+ 1, i < T. Let us consider

ϑ
(n)
i − Zi := max

i≤j≤T

(
Zj −M (n)

j +M
(n)
i

)
− Zi

=

(
M

(n)
i −M (n)

i+1 + max
i+1≤j≤T

(
Zj − Zi −M (n)

j +M
(n)
i+1

))
+

=
(
ϑ
(n)
i+1 − Zi +M

(n)
i −M (n)

i+1

)
+
, (4.12)

and define
ψ
(n)
i := ϑ

(n)
i+1 − Zi +M

(n)
i −M (n)

i+1. (4.13)

Due to the induction hypothesis Ei+1ϑ
(n)
i+1

L1→ Y ∗i+1 with ϑ
(n)
i+1 being uniformly integrable. Thus, ψ

(n)
i

and ϑ
(n)
i are uniformly integrability due to (4.12), (4.13), and the uniform integrability of the martingales.

So it holds,

Ei ψ
(n)
i = EiEi+1ϑ

(n)
i+1 − Zi

L1→ EiY
∗
i+1 − Zi. (4.14)

We will then show that
Ei

(
ψ
(n)
i

)
+

L1→
(
EiY

∗
i+1 − Zi

)
+
, (4.15)

which in turn implies by (4.12),

Ei ϑ
(n)
i

L1→ Zi +
(
EiY

∗
i+1 − Zi

)
+

= max
(
Zi, EiY

∗
i+1

)
= Y ∗i .
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Since the family Ei
(
ψ
(n)
i

)
+

is uniformly integrable too, it is enough to show that

Ei

(
ψ
(n)
i

)
+

P→
(
EiY

∗
i+1 − Zi

)
+
. (4.16)

From (4.14) it follows (
Ei ψ

(n)
i

)
+

P→
(
EiY

∗
i+1 − Zi

)
+
,

so it is sufficient to prove that

Ei

(
ψ
(n)
i

)
+
−
(
Ei ψ

(n)
i

)
+

P→ 0.

On the one side, by Jensen’s inequality, we have

Ei

(
ψ
(n)
i

)
+
≥
(
Eiψ

(n)
i

)
+

a.s.

Now take an arbitrary ε > 0 and consider the inequality

1{
Ei

(
ψ
(n)
i

)
+
>
(
Ei ψ

(n)
i

)
+
+ε

}1{(
ψ
(n)
i

)
+
≤
(
Ei ψ

(n)
i

)
+

} (4.17)

≤ 1{
Ei

(
ψ
(n)
i

)
+
>
(
Ei ψ

(n)
i

)
+
+ε

}1{(
ψ
(n)
i

)
+
≤Ei

(
ψ
(n)
i

)
+
−ε
}.

A conditional version of Chebyschev’s inequality implies that

In := 1{
Ei

(
ψ
(n)
i

)
+
>
(
Ei ψ

(n)
i

)
+
+ε

}Ei 1{(
ψ
(n)
i

)
+
≤Ei

(
ψ
(n)
i

)
+
−ε
}

≤ 1{
Ei

(
ψ
(n)
i

)
+
>
(
Ei ψ

(n)
i

)
+
+ε

}Vari

((
ψ
(n)
i

)
+

)
ε2

= 1{
Ei

(
ψ
(n)
i

)
+
>
(
Ei ψ

(n)
i

)
+
+ε

}Vari
(
ϑ
(n)
i

)
ε2

P→ 0,

by the assumptions of the Theorem. Since obviously 0 ≤ In ≤ 1, this implies that In
L1→ 0. Then note

that (see (4.17))

1{
Ei

(
ψ
(n)
i

)
+
>
(
Ei ψ

(n)
i

)
+
+ε

}1{(
ψ
(n)
i

)
−
>0

}
≤ 1{

Ei ψ
(n)
i >

(
Ei ψ

(n)
i

)
+
+ε

}1{(
ψ
(n)
i

)
+
≤
(
Ei ψ

(n)
i

)
+

}
.

As a consequence it follows that

0 ≤ Ei1{
Ei

(
ψ
(n)
i

)
+
>
(
Ei ψ

(n)
i

)
+
+ε

}1{(
ψ
(n)
i

)
−
>0

} ≤ In L1→ 0. (4.18)

Now since the family
(
ψ
(n)
i

)
−

is uniformly integrable also, it is not difficult to see that (4.18) implies

1{
Ei

(
ψ
(n)
i

)
+
>
(
Ei ψ

(n)
i

)
+
+ε

}Ei (ψ(n)
i

)
−

L1→ 0. (4.19)

7



Next we consider

1{
Ei

(
ψ
(n)
i

)
+
>
(
Ei ψ

(n)
i

)
+
+ε

}Ei (ψ(n)
i

)
−

= 1{
Ei

(
ψ
(n)
i

)
+
>
(
Ei ψ

(n)
i

)
+
+ε

} [Ei (ψ(n)
i

)
+
− Ei ψ(n)

i

]
≥ 1{

Ei

(
ψ
(n)
i

)
+
>
(
Ei ψ

(n)
i

)
+
+ε

} [(Ei ψ(n)
i

)
+
− Ei ψ(n)

i + ε

]
= 1{

Ei

(
ψ
(n)
i

)
+
>
(
Ei ψ

(n)
i

)
+
+ε

} [(Ei ψ(n)
i

)
−

+ ε

]
≥ ε1{

Ei

(
ψ
(n)
i

)
+
>
(
Ei ψ

(n)
i

)
+
+ε

} ≥ 0,

and so by (4.19),

P

(
Ei

(
ψ
(n)
i

)
+
>
(
Ei ψ

(n)
i

)
+

+ ε

)
→ 0.

The following simple example illustrates that Theorem 8 would not be true when the uniform integrability
condition is dropped.

Example 9. Take T = 1, Z0 = Z1 = 0, M
(n)
1 =: −ξn with E0ξn = 0, n = 1, 2, . . . Then we have

ϑ
(n)
0 = max(Z0 −M (n)

0 , Z1 −M (n)
1 ) = max(0, ξ(n)) = ξ

(n)
+ .

Now take

ξ(n) =

{
1 with Prob. n−1n
1− n with Prob. 1

n

(hence E0ξ
(n) = 0). Then, v

(n)
0 = E0(ξ

(n)
+ )2 −

(
E0ξ

(n)
+

)2
= n−1

n −
(
n−1
n

)2
= n−1

n2 → 0,

whereas E0ϑ
(n)
0 = E0ξ

+
n = n−1

n → 1. Clearly, for each K > 1, E0

∣∣∣M (n)
1

∣∣∣ 1{∣∣∣M(n)
1

∣∣∣>K} ≥
n−1
n 1{n−1>K} → 1 as n→∞, hence the

(
M

(n)
1

)
are not uniformly integrable.

Remark 10. Theorem 8 is important in practical situations, for instance, if there exists some underlying
(multi-dimensional) Markovian structure with respect to some (multi-dimensional) Wiener filtration. In this
environment we may consider the following class of uniformly integrable martingales.

LetX be aD-dimensional Markov process adapted to a filtration generated by anm-dimensional Brow-
nian motionW and let the function c(·, ·) : R≥0× RD → R≥0 be such thatE0

∫ T
0 c2(s,Xs)ds <∞.

Then the class MUI of martingales defined by

M ∈MUI :⇐⇒Mt =

∫ t

0
bT(s,Xs)dWs, 0 ≤ t ≤ T, for b with |b| ≤ c

is uniformly integrable due to the criterion of de la Vallée Poussin, since

sup
M∈MUI

E |Mt|2 ≤
∫ T

0
E0c

2(s,Xs)ds <∞, 0 ≤ t ≤ T.
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Remark 11. Consider any class of uniformly integrable martingales MUI . For example the one consid-
ered in Remark 10. As the topology of convergence in probability is metrizable by the Ky Fan Metric (e.g.,
see Dudley (2002))

dP (X,Y ) := inf{ε > 0 : P (|X − Y | > ε) ≤ ε},

one may restate Theorem 8 as follows. For any ε > 0 there exist a δ > 0 such that[
M ∈MUI ∧ max

0≤i≤T
dP (Vari(ϑ

(M)
i ), 0) < δ

]
=⇒ max

0≤i≤T

∥∥∥ϑ(M)
i − Y ∗i

∥∥∥
L1

< ε.

In view of Remark 11, Theorem 8 may be considered as a stability theorem related to the statement of
Corollary 6.

5 Dual backward construction of a nearly sure optimal martingale and
pricing of a Bermudan derivative

Let us suppose we are in an environment as outlined in Remark 10 and assume in addition that the
cash-flow process is of the form

Zi = Zi(Xi).

We then propose a dual backward algorithm for constructing a martingale
(
M̂i

)
such that the corre-

sponding conditional variances Vari
(
ϑ̂i

)
(see Theorem 8) are low. This martingale may then be used

for computing a price upper bound by linear Monte Carlo. As a by-product, the algorithm also provides
a set of continuation functions which may next be used to construct an exercise policy and to simulate a
lower bound in the usual way.

On a pseudo algorithmic level, we construct
(
M̂i

)
i=0,...,T

by backward induction as follows. At i = T

we simply set ϑ̂T = M̂T = Z(T,XT ), hence VarT
(
ϑ̂T

)
= 0. Suppose we have constructed for

i < T the martingale
(
M̂j

)
i+1≤j≤T

such that Vari+1

(
ϑ̂i+1

)
is low. Then for any extension M̂i such

that
(
M̂j

)
i≤j≤T

is a martingale we consider

ϑ̂i := max
i≤j≤T

(
Zj(Xj)− M̂j + M̂i

)
= max

(
Zi(Xi), M̂i − M̂i+1 + max

i+1≤j≤T

(
Zj(Xj)− M̂j + M̂i+1

))
= max

(
Zi(Xi), M̂i − M̂i+1 + ϑ̂i+1

)
following (4.12). In the spirit of Belomestny, et. al. (2009) we choose a set of (possibly time dependent)
basis functions

(ϕk(t, x))1≤k≤K :=
(
ϕ
(d)
k (t, x)

)
d=1,...,D, 1≤k≤K

(where one might take for each d the same set of functions of course), and set

M̂i+1 − M̂i =

K∑
k=1

βk

∫ i+1

i
ϕT
k (u,Xu)dWu.

9



We then require that

max

(
Zi(Xi), ϑ̂i+1 −

K∑
k=1

βk

∫ i+1

i
ϕT
k (u,Xu)dWu

)
(5.20)

is ”approximately” Fi-measurable. Moreover, since the Snell envelope Y ∗i isXi measurable, we will even
require that (5.20) is ”approximately” Xi measurable. For this we consider in addition an auxiliary set of

basis functions
(
ϕ
(0)
k (t, x)

)
1≤k≤K

and, in fact, estimate approximately the continuation pay-off by the

regression procedure

(γ̂i, β̂i) := arg min
γ,β

E

[
ϑ̂i+1 −

K∑
k=1

γkϕ
(0)
k (i,Xi)−

K∑
k=1

βk

∫ i+1

i
ϕT
k (u,Xu)dWu

]2
.

Next we set

M̂i = M̂i+1 −
K∑
k=1

β̂i,k

∫ i+1

i
ϕT
k (u,Xu)dWu, and then set

ϑ̂i = max

(
Zi(Xi), ϑ̂i+1 −

K∑
k=1

β̂k

∫ i+1

i
ϕT
k (u,Xu)dWu

)
.

In the context of a real Monte Carlo algorithm, the procedure is as follows: Given a Monte Carlo sample

of trajectories (X
(m)
r , 0 ≤ r ≤ T, m = 1, ...,M) we estimate

(γ̃i, β̃i) := arg min
γ,β

M∑
m=1

[
ϑ̂
(m)
i+1 −

K∑
k=1

γkϕ
(0)
k (i,X

(m)
i )

−
K∑
k=1

βk

∫ i+1

i
ϕT
k (u,X(m)

u )dW (m)
u

]2
, (5.21)

where the ϑ̂
(m)
i+1, m = 1, ...,M, are assumed to be already constructed. For a detailed description of

Monte Carlo based regression procedures we refer to Glasserman (2003). In (5.21) the Wiener integrals
may be approximated as usual by∫ i+1

i
ϕT
k (u,X(m)

u )dW (m)
u ≈

δ−1−1∑
l=0

ϕT
k (i+ lδ,X

(m)
i+lδ)

(
W

(m)
i+(l+1)δ −W

(m)
i+lδ

)
, (5.22)

for a small enough δ > 0. Finally we set

M̂i = M̂i+1 −
K∑
k=1

β̃i,k

∫ i+1

i
ϕT
k (u,Xu)dWu, and then set

ϑ̂
(m)
i = max

(
Zi(X

(m)
i ), ϑ̂

(m)
i+1 −

K∑
k=1

β̂k

∫ i+1

i
ϕT
k (u,X(m)

u )dW (m)
u

)
, m = 1, ...,M.

By working backward from i = T to i = 0, the above sequential regression procedure yields a (nearly
surely) martingale

M̂r =
r−1∑
i=1

K∑
k=1

β̃i,k

∫ i+1

i
ϕT
k (u,Xu)dWu, (5.23)
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and, as a by-product, an additional system of approximations to the continuation value functions,

Ci(x) ≈
K∑
k=1

γ̃i,kϕ
(0)
k (i, x). (5.24)

The martingale (5.23) may be used to compute a tight dual upper bound at i = 0, by starting a new

simulation of trajectories X̃
(m)
i , m̃ = 1, ..., M̃ , and computing

Y up
0 ≈ 1

M̃

M̃∑
m̃=1

max
0≤j≤T

(
Zj(X̃

(m̃)
j )−

j−1∑
r=1

K∑
k=1

β̃r,k

∫ r+1

r
ϕT
k (u, X̃(m̃)

u )dW̃ (m̃)
u

)

(see (5.22) for approximation of the Wiener integrals).

On the other side, based on the approximate continuation functions (5.24), we may define an exercise
strategy

τ0 := inf{i : 0 ≤ i ≤ T, Zi(Xi) ≥ Ci(Xi)},

and simulate a lower biased price estimate,

Y low
0 ≈ 1

M̃

M̃∑
m̃=1

Z
τ
(m̃)
0

(X̃
(m̃)

τ
(m̃)
0

), where

τ
(m̃)
0 = inf{i : 0 ≤ i ≤ T, Zi(X̃(m̃)

i ) ≥ Ci(X̃
(m̃)
i )}, m̃ = 1, ..., M̃ .

Remark 12. We have no doubt that the convergence of the regression algorithm presented in this section
can be proved in the spirit of Belomestny, et. al. (2010) or Clement et al. (2002).

6 Numerical examples

In this section we test our algorithm at two benchmark examples: Bermudan basket-put on 5 assets and
Bermudan max-call on 2 assets, which are also considered in Bender et al. (2006a) and Belomestny, et.
al. (2009), respectively. In both examples, the risk-neutral dynamic of each asset is governed by

dXd
t = (r − δ)Xd

t dt+ σXd
t dW

d
t , d = 1, ..., D,

where D is the number of assets, W d
t , d = 1, ..., D, are independent one-dimensional Brownian mo-

tions and r, δ and σ are constants. Exercise opportunities are equally spaced at times Tj = jT
J , j =

0, ..., J . The discounted payoff from exercise at time t is given by

Zt(Xt) = e−rt(K − X1
t + . . .+XD

t

D
)+ for the Bermudan basket-put

and
Zt(Xt) = e−rt(max(X1

t , . . . , X
D
t )−K)+ for the Bermudan max-call,

where Xt = (X1
t , . . . , X

D
t ).

For each numerical implementation, the time interval [Tj , Tj+1], j = 0, . . . , J − 1, is supposed to be
partitioned into L equal subintervals of width ∆t = T

N with N = J × L. The numerical procedure
can be described briefly as follows. We first simulate M independent samples of Brownian increments

11



{(∆W 1,(m)
i , . . . ,∆W

D,(m)
i ), i = 1, . . . , N}, m = 1, . . . ,M . Then the trajectories of X

(m)
i =

(X
1,(m)
i , . . . , X

D,(m)
i ), i = 1, . . . , N , m = 1, . . . ,M are given by

X
d,(m)
i = X

d,(m)
i−1 exp{(r − δ − 1

2
σ2)∆t+ σ∆W

d,(m)
i }

for d = 1, . . . , D and initial data X0. We run the regression procedure as explained in Section 5. We
notice that the Wiener integrals should be approximated by using the same Brownian increments as
above. Once we obtain the estimation of coefficients (γ̃i, β̃i), we simulate a new set of M̃ independent

Brownian increments and trajectories X
(m)
i and compute the upper and lower bounds Y up

0 , Y low
0 as

shown in Section 5.

As one can expect, the choice of basis functions is crucial to obtain tight upper and lower bounds. In this
respect, special information on the pricing problem may help us finding suitable basis functions. Suppose
Et (ZT (XT )) = f(t,Xt) for 0 ≤ t ≤ T = TJ . Then, by Itô’s formula and the fact that Et(ZT ) is a
martingale we have

ZT (XT )− ETJ−1
(ZT (XT )) =

D∑
d=1

σ

∫ T

TJ−1

fxd(t,Xt)X
d
t dW

d
t .

Recall that ϑ̂T = ZT and ETJ−1
(ZT (XT )) can be expressed in the following form

ETJ−1
(ZT (XT )) = e−rTJ−1EP (TJ−1, XTJ−1

;T ),

whereEP (t, x;T ) is the price of the corresponding European option with maturity T at time t. Thus, it is

natural to choose from time T to time TJ−1 European option values for the basis
(
ϕ
(0)
k (t, x)

)
1≤k≤K

,

and the corresponding European deltas multiplied by the value of the underlying asset for the basis
(ϕk(t, x))1≤k≤K . Although for the following steps (t < TJ−1) there is no easy way to predict optimal

choices of (ϕ
(0)
k ) and (ϕk), the above analysis suggests us to always include the still-alive European

options into the basis (ϕ
(0)
k ) and include the information on the European deltas into the basis (ϕk). In

fact, these choices of basis functions were already proposed in Belomestny, et. al. (2009).

6.1 Bermudan basket-put

In this example, we take the following parameter values,

r = 0.05, δ = 0, σ = 0.2, D = 5, T = 3,

and
X1

0 = . . . = XD
0 = x0, K = 100.

For Tj ≤ t < Tj+1, j = 0, . . . , J − 1, we choose {1, Pol3(Xt), Pol3(EP (t,Xt;Tj+1)),

Pol3(EP (t,Xt;TJ))} as the basis functions ϕ
(0)
k , where Pol3(y) denotes the set of polynomials of

degree up to n in the components of a vector y and EP (t,X;T ) denotes the (approximated) value of

a European basket-put with maturity T at time t. We use {1, Xd
t
∂EP (t,Xt;Tj+1)

∂Xd
t

, Xd
t
∂EP (t,Xt;TJ )

∂Xd
t

, d =

1, . . . , D} as basis functions ϕk.
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Since there is no closed-form formula for the still-alive European basket-put, we use the moment-matching
method to approximate their values (e.g., see Brigo et al. (2004), and Lord (2005)). Let

St =
X1
t + . . .+XD

t

D
, and consider another asset Gt whose risk-neutral dynamic follows

dGt = rGtdt+ σ̃Gt,

where σ̃ is a constant. The value of the European put on this asset can be easily computed by the
Black-Scholes formula, that is,

E[e−rT (K −GT )+] = BS(G0, r, σ̃,K, T ). (6.25)

If ST andGT have the same moments up to two, then the Black-Scholes price in (6.25) can be regarded
as a good approximation for the value of the European basket-put E

(
e−rT (K − ST )+

)
. Since

E(ST ) =
1

D

D∑
d=1

Xd
0e
rT ,

E(S2
T ) =

1

D2
e2rT

 D∑
i,j=1

Xi
0X

j
0 exp(1i=jσ

2T )


and

E(GT ) = G0e
rT , E(G2

T ) = G2
0e

2rT+σ̃2T ,

we can simply set

G0 =
1

D

D∑
d=1

Xd
0

and

σ̃2 =
1

T
ln

 1

(
∑D

d=1X
d
0 )2

D∑
i,j=1

Xi
0X

j
0 exp(1i=jσ

2T )

 .

The European deltas can be approximated by

∂BS

∂G0

∂G0

∂Xd
0

= −N(−d1)
1

D
, d = 1, . . . , D,

where d1 =
ln(G0

K ) + (r + σ2

2 )T

σ̃
√
T

and N denotes the cumulative standard normal distribution function.

The numerical results are shown in Table 1. 100000 simulations are used for the regression procedure
and 100000 simulations for computing the upper and lower bounds. Values in parentheses are the stan-
dard errors. The last column in the table shows the lower and upper bounds obtained in Bender et al.
(2006a).

6.2 Bermudan max-call

We use the same parameter values as in Section 6.1 except δ = 0.1 and D = 2. As in the previous
example we use European (call) options as basis functions in (ϕ0) and the corresponding deltas in

13



Table 1: Lower and upper bounds for Bermudan basket-put on 5 assets with parameters r = 0.05,
δ = 0, σ = 0.2, K = 100, T = 3 and different J and x0

J x0 Lower Bound (SD) Upper Bound (SD) BKS Price Interval
90 10.0000 (0.0000) 10.0000 (0.0000) [10.000,10.004]

3 100 2.1649 (0.0119) 2.1817 (0.0015) [2.154,2.164]
110 0.5357 (0.0060) 0.5584 (0.0008) [0.535,0.540]
90 10.0000 (0.0000) 10.0007 (0.0001) [10.000,10.000]

6 100 2.3986 (0.0112) 2.4336 (0.0013) [2.359,2.412]
110 0.5870 (0.0061) 0.5994 (0.0007) [0.569,0.580]
90 10.0000 (0.0000) 10.0024 (0.0001) [10.000,10.005]

9 100 2.4862 (0.0109) 2.5197 (0.0012) [2.385,2.502]
110 0.6006 (0.0060) 0.6164 (0.0006) [0.577,0.600]

the basis (ϕk). The value of European max-call options is computed by the following formula (Johnson
(1987)).

D∑
l=1

X l
0

e−δT√
2π

∫
(−∞,dl+]

exp[−1

2
z2]

D∏
l′=1
l′ 6=l

N

 ln
Xl

0

Xl′
0

σ
√
T
− z + σ

√
T

 dz

−Ke−rT +Ke−rT
D∏
l=1

(
1−N

(
dl−

))
,

where

dl− :=
ln

Xl
0
K + (r − δ − σ2

2 )T

σ
√
T

, dl+ = dl− + σ
√
T .

We use the central difference quote
f(x+ h

2 )− f(x− h
2 )

h
(or the forward difference quote

f(x+ h)− f(x)

h
) to approximate the European deltas. Note that the rounding errors resulting from

too small values of h may give a totally different basis function. So special attentions need to be paid for
choosing a suitable h. The numerical results are shown in Table 2. They are based on 1000 simulations
for the regression procedure, 1000 simulations for computing the upper bound, 100000 simulations for
computing the lower bound. The price intervals in the last column are quoted from Andersen and Broadie
(2004).

Table 2: Lower and upper bounds for Bermudan max-call on 2 assets with parameters r = 0.05, δ =
0.1, σ = 0.2, K = 100, T = 3 and different x0

x0 Lower Bound (SD) Upper Bound (SD) A&B Price Interval
90 8.1027 (0.0380) 8.1369 (0.0379) [8.053, 8.082]

100 13.8049 (0.0475) 14.0501 (0.0467) [13.892, 13.934]
110 21.3208 (0.0556) 21.4860 (0.0531) [21.316, 21.359]
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6.3 Conclusion

The numerical results presented in Tables 1, 2 due to our new algorithm may be considered satisfactory,
given the required low computation times, which are in the order of minutes (in a C++ compiled imple-
mentation). In this respect it should be noted that the upper bounds in Bender et al. (2006a) (Table 1)
and Andersen and Broadie (2004) (Table 2) are computed with nested Monte Carlo simulation requir-
ing computation times in the order of hours. Moreover, the algorithm delivers very fast and surprisingly
good lower bounds while the upper bounds are comparable with the ones obtained with the algorithm
in Belomestny, et. al. (2009). Needless to say that, as for the method of Belomestny, et. al. (2009), the
performance of the here presented algorithm will highly depend on the choice of the basis functions. An
in depth treatment of this issue is considered beyond scope however.
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