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Excitability of chaotic transients in a semiconductor laser
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Abstract – Using a semiconductor laser with integrated optical feedback, excitability of high-
dimensional chaotic transients is demonstrated in a continuous and autonomous system. The
generic phase-space portrait behind our observation consists in a boundary crisis of a chaotic
attractor with a saddle born in a saddle-node bifurcation of continuous-wave states. The excitation
of the chaotic transients, performed by short optical pulses, exhibits a distinct threshold as well as
a refractory time. The escape from the chaotic saddle is strictly single-exponential and the escape
time is an inverse-power function of the the distance to the boundary crisis with —despite of
high dimensionality— a critical exponent close to unity. The device is capable of emitting pulses
with a delay that is more than two orders of magnitude longer than the time scale of the internal
carrier-photon dynamics.
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Two nonlinear dynamical phenomena treated so far only
separately are combined in this letter: excitability and
chaotic transients. Excitability means that the response
of a system on external perturbations is “all” or “none”
depending on whether the strength of the stimulus is
above or below a critical threshold. Prominent examples
of excitable systems are the spiking of neurons [1], the
cardiac muscle [2], the dynamics of life populations [3], or
nonlinear chemical reactions [4]. Recently, the excitability
of optical systems has become a focus of interest [5–7].
Chaotic transients, on the other hand, are long episodes
of chaotic behavior which end eventually at an attractor
that is usually not chaotic. Such transients are generated
by switching a control parameter across a boundary crisis
through which a chaotic saddle (CS) is formed [8]. Chaotic
transients have been studied mostly in nonautonomous
systems, among them modulated CO2 [9,10] and NMR [11]
lasers and, theoretically, for semiconductor lasers under
external injection [12].
Excitability requires a certain phase space configura-

tion. An equilibrium state (or a small-amplitude orbit) is
the only attractor available and serves as rest state. Close
to it, a sharp separatrix between trajectories of differ-
ent types must exist. One type of trajectories approaches
the rest state directly and determines the subthreshold
response. The trajectories beyond the separatrix under-
take extended phase space excursions before returning and

govern the superthreshold response. Such configurations
appear generically after bifurcations where an extended
periodic orbit is suddenly destructed [13]. Paradigmatic
examples are the Canard transition in the FitzHugh-
Nagumo model [2] and homoclinic bifurcations [6,14,15].
The ruin of the destructed orbit guides the long excursions
after superthreshold stimulation in either case.
Our idea is to replace the regular orbit by a chaotic

attractor (CA). Specifically, we consider the configura-
tion sketched in fig. 1. A saddle-focus and a stable focus
stemming from a nearby saddle-node (SN) bifurcation
exist in close neighborhood. Branch u2 of the unsta-
ble manifold of the saddle-focus goes to the stable focus
representing the rest state. The other branch u1 leads to
a CS formed just before in a boundary crisis when a CA
has touched the stable manifold of the same saddle-focus.
Obviously, the stable manifold of the saddle-focus sepa-
rates two completely different types of trajectories. Those
below this separatrix are spiraling along unstable branch
u2 directly to the rest state. Those above follow unstable
branch u1 into the CS and reach the rest state only after
moving for some time along the saddle. Accordingly, the
perturbed system may exhibit two qualitatively different
responses: immediate return to the rest state upon weak
perturbations and a long chaotic excursion along the CS
when the stimulus is strong enough to push the system
beyond the separatrix.
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Fig. 1: Schematic phase-space portrait of an excitable chaotic
saddle.
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Fig. 2: Scheme of the multi-section semiconductor DFB laser
with amplified optical feedback from the facet reflectivity
R≈ 30%. The injection currents are used to prepare the
configuration of fig. 1. 30 ps optical pulses injected into the
laser serve as stimuli.

The phase-space configuration of fig. 1 is prepared
by means of a multi-section semiconductor laser with
integrated optical feedback. Such devices allow for the
systematic realization of desired phase-space portraits by
suitable choice of the injection currents [16]. Previously,
excitability at a homoclinic bifurcation of a laser with
passive feedback has been demonstrated [14]. The present
laser structure, sketched in fig. 2, consists of a single-
mode 1.55µm distributed feedback (DFB) laser, a passive
phase-tuning section made of a higher band-gap material,
and a 1.55µm amplifier section, all with the same length
dimension of a few 100µm.While the current IDFB pumps
the laser above threshold, IA and IP on the amplifier
and passive section are to adjust strength and phase of
the feedback, respectively. Details about the device are
found in ref. [16]. The output is analyzed by a spectrum
analyzer (bandwidth: 40GHz) or, in order to record time
transients, by a digital sampling oscilloscope (bandwidth:
50GHz, sampling rate: 500 kHz). The external stimulus
is represented by 30 ps long pulses generated with a
commercial gain-switched semiconductor laser operating
at 1.53µm. The pulses with a maximum energy of 10 pJ
and a repetition rate of 5MHz are injected in the laser
region of the multi-section device where they excite extra
carriers markedly above the bandgap.
The control parameter of the present study is the phase

current. Choosing IDFB and IA appropriately and tuning
IP , the device first changes to a self-pulsation mode, runs
subsequently via a torus bifurcation into chaotic behavior,
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Fig. 3: Route of the multi-section laser into chaos. a) Maximum
(Pmax) and minimum (Pmin) output power vs. phase current.
The data are elaborated from time transients recorded with
the sampling oscilloscope, Ic = 6.87mA. b) Power spectra at
selected phase currents belonging to the dynamics on the torus
(5.5mA), chaos (6.85mA), and stationary cw state (6.9mA).
Dotted: Power spectrum at 6.9mA under the superthreshold
stimulation. Note the logarithmic scale and the power offset
shown by thin horizontal lines. The other currents were
IDFB = 41.7mA, IA = 49.5mA.

and, then, abruptly switches back at critical current Ic to
continuous-wave (cw) operation. This is documented in
figs. 3a and b where data extracted from time transients
and power spectra are depicted, respectively. Motion on
the torus is signified by two groups of sharp lines in
the power spectrum. Here, relaxation and mode-beating
oscillations coexist [16]. Chaotic behavior at larger phase
currents is indicated by an extremely broad spectrum
where the bimodal shape is reminiscent of the torus.
Locating the device relatively far above the critical

current in the cw regime, the response on optical injection
is indeed very similar to excitability (fig. 4). Relaxation
oscillations and return to stable emission within about
2 ns are characteristics of small perturbations (panel a).
Instead, for sufficiently large stimuli a distinct spike is
generated followed by diffuse response (panel b). When
plotting the height of the main spike versus the energy
of the stimulation pulse, an “all-or-none” response with a
sharp threshold is found (panel c).
Using pairs of stimulation pulses with tunable time-lag,

the existence of a refractory period is evidenced (see [23]).
The pulse pairs are generated by splitting the path of the
optical injection in two branches of different length using
3 dB couplers as sketched on top of fig. 5. The shorter
branch 1 contains a tunable delay line with an about 340 ps
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Fig. 4: Response of the multi-section laser on pulsed optical
excitation (IP = 7.1mA). a) and b): Oscilloscope traces after
sub- and superthreshold stimulation, respectively. Each panel
collects hundreds of repeated excitations. c) Maximum device
output vs. optical pulse energy.

Fig. 5: Demonstration of refractory behavior (IP = 7.2mA).
The pair of superthreshold stimuli 1 and 2 is marked by dashed
lines in the plane (time, pulse-delay). The device response is
grey coded (black: highest intensity, white: lowest intensity).

continuous tuning range. Two fixed fiber lengths are used
for path 2 resulting in accessible pulse-delay ranges of
90–430 ps and 590–930 ps, respectively. Both stimuli are
well above threshold. For sufficiently long delays (lower
part of the figure), the device responds by an individual
spike upon each stimulus. However, when the second
stimulus is injected too early, namely before the emission
of the first spike, no extra reaction is observed. Exhibiting
a sharp threshold as well a refractory period, the device
response fulfills the main criteria of excitability. However,
marked differences to the standard excitability scenario
turn out, when the operation point is moved closer to the
chaotic regime, as will be addressed below.
Numerical calculations based on the traveling-wave

(TW) equations entirely confirm the experimentally

Fig. 6: Excitability threshold vs. distance from the bound-
ary crisis. a) Calculation (IDFB = 40mA, IA = 28mA). SN
bifurcation (�) and boundary crisis occur at feedback phase
φ= 4.1936 and φc = 4.1930, respectively. Rectangles: stimu-
lus energy at threshold, scattering dots left of φc: maximum
device output in the chaotic regime computed over a time
of 10 ns, lower solid and dashed lines: carrier inversion ∆n
on node and saddle, respectively, measured relative to its
value at the SN bifurcation. b) Measurement (IDFB = 41.7mA,
IA = 49.5mA). Meaning of rectangles and scattering dots as in
a), circles: maximum spike strength under superthreshold stim-
ulation (see [23]). Note that the power output right after the
device edge is plotted in the calculation, while the experimen-
tal signal is attenuated by the various optical elements of the
setup before detection.

observed pathway to chaos and reveal the underlying
bifurcations. For a detailed description of the TW model
as well as the parameter set, the reader is referred to
our previous work [16]. In the calculations, instead of
IP , the feedback phase φ produced per round-trip in
the passive section is directly used as control parameter.
Figure 6 compares theoretical and experimental results.
Note that increasing IP means decreasing φ [16]. A SN
bifurcation (� in fig. 6a) occurs still within the chaotic
domain. The resultant cw states are the stable focus and
saddle-focus required in the phase-space portrait of fig. 1.
Slightly right of the SN bifurcation at critical phase φc,
the CA responsible for the chaotic behavior breaks up in
a boundary crisis by touching the stable manifold of the
saddle-focus. A close neighborhood of both transitions is
achieved by proper choice of DFB and amplifier current.
The numerical analysis enables us to quantify the

chaotic dynamics by computing the Lyapunov exponents.
For this goal, the partial-differential TW equations are
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approximated by ordinary differential equations (ODE)
for a truncated set of optical modes [17]. The number
of modes is carefully chosen to reproduce the solutions
of the full TW model in the relevant φ range. Lyapunov
exponents and Kaplan-Yorke dimension of the resulting
17 real ODE are calculated as described in ref. [18]. The
Lyapunov spectra are nearly independent of φ within the
grey-shaded interval of fig. 6a. In decreasing order, the first
four exponents have approximate values of 2.7, 0, −1.0,
and −3.0 ns−1. The respective Kaplan-Yorke dimension
varies between 3.3 and 3.7 and is thus indicative of a high-
dimensional CA1.
A distinct finding, both in experiment and theory, is

that the stimulation threshold strongly declines when the
device is set closer to the boundary crisis, whereas the
strength of the dominant response spikes stays practi-
cally constant. In parallel, the diffusive response becomes
pronounced more and more. Closest to the SN bifurcation,
an optical power as low as 100 fJ is sufficient for excitation.
The calculation verifies that the threshold is determined
by the saddle-node separation (fig. 6a), in full agreement
with the role of the stable saddle-manifold as separatrix.
Various facts clearly signify that the excitable dynamics
of the system close to the boundary crisis is correlated
with the former CA. First, the experimental spike heights
agree very well with the maximum output fluctuations of
the device for IP < Ic (fig. 6b) and no injection. Second,
the power spectrum under optical stimulation is practi-
cally identical with that in the chaotic regime (fig. 2b).
Third, as will be detailed in the remainder, the transient
spike trains subsequent to stimulation are highly irregular
in frequency and amplitude.
Figure 7 summarizes calculated and experimentally

detected response transients close to the boundary crisis.
The cw state prior to excitation is characterized by a
power as well as an optical phase. The latter is random
in the measurements because of a phase drift between
successive excitation steps due to unavoidable experimen-
tal noise. The two transients in fig. 7a are computed for the
same stimulus strength but slightly different initial phases.
The spike trains coincide only initially but diverge after
longer times. One transient (grey) approaches equilibrium
already after 3 ns, while the other one (black) keeps spik-
ing as long as 20 ns. Such extreme sensitivity on the initial
conditions is a clear fingerprint of chaotic dynamics asso-
ciated with the motion along the CS. Indeed, also in
the calculations, the excited spike sequences resemble very
well the power fluctuations in the CA just before the
boundary crisis. Furthermore, as can be tracked in the
numerics, the irregular spiking always stops when the tra-
jectory passes the separatrix close to the saddle-focus.
The sampling technique used experimentally provides

one data point per stimulation event in the power-time
diagram. Repeating the time scans sufficiently often yields

1The rotational invariance of the optical equations is not
accounted here. It gives another zero Lyapunov exponent and
increases the attractor dimension by one.
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Fig. 7: Excitable chaotic transients. a) Calculated response
at φ= 4.15 and a stimulus of 1 pJ. The two cases differ only
by the initial optical phase of the rest state. b) Experimental
response at IP − Ic = 0.01mA. The plot is a superposition of
500 repetitive scans with 500 data points each. c) Probability
of presence in the CS vs. time after stimulation for three
different distances from the boundary crisis IP − Ic: 0.04mA
(triangles), 0.02mA (squares), and 0.01mA (circles). Lines:
singe-exponential fits. d) Mean lifetime τ on the CS vs. IP − Ic.
Solid line: inverse-power function with exponent γ = 1.

then the probability that the device emits a certain
power at given time. An example of such measurement
is displayed in fig. 7b. Chaotic transients differ from
each other after a time of the order of the largest
inverse Lyapunov exponent. Consistently, a pair of quasi-
deterministic spikes is seen at very early times in fig. 5b.
Later spikes are irregularly spaced and yield thus only a
cloud of uncorrelated dots. The latter starts few nano-
seconds after stimulation, which is in fair agreement
with the numerically calculated Lyapunov exponents.
The power distribution along a vertical line in fig. 7b
is a superposition of the narrow Gaussian related to
the rest state and a much broader band due to the
chaotic response. The area below the wide band is a
measure for the probability to find the system still in
the CS at this time. Extracting this area from the data
and plotting it versus time (fig. 7c) reveal that this
probability decays strictly single-exponential with a time
constant τ representing the mean lifetime in the CS. This
lifetime becomes shorter with increasing distance from
the boundary crisis. As long as the distance is not too
large, τ obeys an inverse-power law ∼ (IP − Ic)−γ with a
critical exponent γ ≈ 1 (fig. 7d). Beyond IP − Ic ≈ 0.1mA,
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saturation sets on and τ approaches a constant value of
about 1.8 ns. In parallel, as already noted above, the
response of the device becomes increasingly dominated by
a single spike and is thus fully analogous to the previously
observed excitability at a homoclinic bifurcation [14].
A time-independent escape rate 1/τ from the CS is

a generic property of chaotic transients [19–21]. Inverse-
power laws are well established for one- or two-dimensional
maps [19] and have been experimentally verified in a
nonautonomous mechanical system [20]. Three dimensions
have been treated theoretically only very recently [21]. The
present study provides direct evidence that an inverse-
power law remains valid also for the boundary crisis of
a high-dimensional CA in a continuous and autonomous
system. The critical exponent of one-dimensional maps
is generically 0.5 [19], a three-dimensional example has
yielded 1.5 [21], and those of two-dimensional maps lie
in between. It has been argued [19] that the critical
exponents should increase with the dimension of the
chaos. Our results do not confirm this conjecture: In the
continuous system under study, γ is close to 1 although
the estimated dimension of the CA is as large as 3.5.
Noise in the presence of a CS can also induce chaotic

behavior [22]. In order to investigate the role of noise in the
multi-section laser, we have repeated the measurements
without external excitation. Indeed, close to the boundary
crisis, random jumps into chaotic transients are observed.
However, in marked contrast to the excitable dynamics,
their probability decreases very rapidly with the distance
from the crisis and becomes negligible already at an
excess current of 0.01mA. Noise-induced dynamics is thus
of minor importance in our case. In particular, the few
data points in fig. 7b before application of the excitation
pulse are not a result of noise but correspond to chaotic
transients which last longer than the 200 ns separation
between subsequent stimuli. Such an extremely extended
response is a characteristic feature of a CS: It involves
trajectories wandering arbitrarily long in the saddle before
approaching an attractor.
In conclusion, using a semiconductor laser device,

excitability of high-dimensional chaotic transients has
been observed in a continuous and autonomous system.
The escape from the underlying CS is strictly single-
exponential and validity of an inverse-power law for the
escape time is found close to the boundary crisis. Despite
the high dimensionality, the critical exponent is close to
unity. The excitation of the chaotic transient exhibits
a distinct threshold as well as a refractory time and,
sufficiently far from the boundary crisis, the standard
response of excitable systems is recovered. The relaxation
times of the carrier-photon dynamics in the laser are in
the sub-ns range. A striking finding from a practical point
of view is therefore that the device is capable of emitting
pulses with a delay on a two orders of magnitude longer

time scale. This might have a number of application,
e.g., in the emerging field of chaos communication or in
networks of lasers with excitable chaos.
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