
Technische Universität Berlin WS 2013/2014
Fakultät II – Institut f. Mathematik
Instructor: Peschka Handed out: 17.12.
Tutor: Marschall Return during lecture: 08.01.

8. Assignment
”

Numerische Mathematik für Ingenieure II“
http://www.moses.tu-berlin.de/Mathematik/

Construction of finite elements – PART II

Decomposition: Assume we have a domain Ω with polygonal boundary. First we want to construct
a decomposition of Ω in order to construct basis functions for the finite element method.

1. Programming exercise: Element generation in 2D 10 points

Generate an admissible decomposition of Ωh = “Das Haus vom Nikolaus” using 5 elements,
so that the edges are the lines in the construction of the riddle.

0 0.5 1

0

0.5

1

1.5

0 1

0

1

−1 0 1

−1

0

1

examples: left) “Haus vom Nikolaus”, middle) square with N = 16, right) disc with N = 16

Furthermore generate an admissible decomposition of the square Ωs = (0, 1)2 and a disc
Ωd = {(x, y) ∈ R2 : x2 + y2 < 1}. For Ωd you are supposed to approximate the boundary by
a polygon. Illustrations are shown in the picture above, where red dots indicate boundary
points and green crosses are interior points. Therefore write MATLAB functions

(a) function [x,y,npoint,nelement,e2p,id]=generatehaus()

(b) function [x,y,npoint,nelement,e2p,id]=generatesquare(N)

(c) function [x,y,npoint,nelement,e2p,id]=generatedisc(N)

which return the x, y-coordinates of points, the number of points, the number of elements
(triangles), the element-to-point map e2p and a marker of boundary points id for Ωh,Ωs,Ωd.
The marker is a vector of size npoint which is zero for interior points and one for a boundary
point. Similar to the 1D construction, e2p is of size nelement x 3 and contains the numbers
of the vertices of an element, so that e2p(k,1), e2p(k,2), e2p(k,3) runs over points of
the element k anticlockwise.

For a) you are supposed to do this by hand, whereas for b,c) use the MATLAB function
delaunay which creates a Delaunay triangulation e2p using the convex hull of a given set
of points. The boundary marker needs to be constructed by hand using logical expressions
such as id(x<eps)=1 for the box. For b) the parameter N specifies the number of points
in each direction, whereas for c) N is the number of vertices on the boundary. Please make
sure that for c) you distribute the number of inner points somewhat evenly1 (as for example
in the figure above). For b) you might use the MATLAB function meshgrid.

(d) Furthermore write a function []=plotmesh(x,y,e2p,id) which plots a mesh as above.
The plot of the mesh can be done using the MATLAB command triplot(e2p,x,y), whereas
you are also supposed to plot boundary points (red circles) and inner points (green crosses).
Export the plots to haus.pdf, square.pdf and disc.pdf.

(e) Familiarize yourself with the tool triangle by J.R. Shewchuk, which can be
downloaded at http://www.cs.cmu.edu/~quake/triangle.html. Generate and plot your
own triangulation for a domain of your choice2 (see tutorial on ISIS 2 page).

1As N → ∞ the length of all edges shall go to zero and angles should neither be small nor large/obtuse.
2Except for the example included in the triangle help.

http://www.cs.cmu.edu/~quake/triangle.html


2. Programming exercise: Computation of transformation 8 points

We have the reference element (triangle)

Ωref = {(x, y) ∈ R2 : 0 < x < 1− y and y > 0}

with the corner points xref
1 = (0, 0), xref

2 = (1, 0), xref
3 = (0, 1) in anticlockwise sense. Assume

the kth triangle consists of points xi ∈ R2 for i = 1, 2, 3 also in anticlockwise sense. For a
given k the ith point should have the coordinates xi =x(e2p(k,i)) and yi =y(e2p(k,i)).

(a) Compute the unique linear transformation F : Ωref → Ωk, which maps the triangle Ωr

to the kth element, where in particular F (xref
i , yref

i ) = (xi, yi) for i = 1, 2, 3.

(b) Compute the Jacobian matrix ∇F , defined as (∇F )ij = ∂jFi, the determinant of the
Jacobian matrix det(∇F ), and the inverse of the Jacobian (∇F )−1 as a function of
xi, yi for i = 1, 2, 3.

(c) Write a function [edet,dFinv]=generatetransformation(k,e2p,x,y) which for
given element k=1..nelement computes the determinant of the Jacobian
edet=det(∇F ) and the inverse matrix dFinv= (∇F )−1 using your result from a,b).

(d) Write a function check=checkorientations(e2p,nelement,x,y) which checks the
sign of the determinants for all elements and returns check=true if all have positive sign,
and check=false otherwise. Verify that you get check=true for the meshes created in
exercise 1. If check=false the points of an element are not in anticlockwise order.

3. Programming exercise: Computation of local matrices 8 points

On the reference element Ωref we have the three affine linear basis functions defined by
φi(x

ref
j , yref

j ) = δij . So they are φ1(x, y) = 1− x− y, φ2(x, y) = x, φ3(x, y) = y.

(a) Compute the 3× 3 matrices

Mij =

∫
Ωref

φi(x, y)φj(x, y) dxdy

Sij =

∫
Ωref

∇φi(x, y) · ∇φj(x, y) dx dy

(b) For a fixed k consider the map F : Ωref → Ωk as defined in the previous exercise. Let
φ̄i : Ωk → R defined by φ̄i

(
F (x, y)

)
= φi(x, y). We want to compute

M̄ij =

∫
Ωk

φ̄i(x, y)φ̄j(x, y) dxdy

S̄ij =

∫
Ωk

∇φ̄i(x, y) · ∇φ̄j(x, y) dx dy

using integration-by-substitution. Therefore verify the following two equations

M̄ij = det(∇F )Mij

S̄ij =
1

2
det(∇F )(Gi1Gj1 +Gi2Gj2)

where

Giα =

2∑
j=1

∂φi
∂xref

j

∂xref
j

∂xα

or in other words S̄ = 1
2 det(∇F )GG>. In particular show that∫

Ωk

dx dy =
1

2
det(∇F ).

Why is the expression for S of no big help?

(c) Using the results from (a,b) write two functions function mloc=localmass(edet) and
function sloc=localstiff(edet,dFinv) which for given value of edet and dFinv

compute the element mass matrix M̄ and stiffness matrix S̄. It might be useful to write
a separate function to compute G ∈ R3×2 and then set sloc=1/2*edet*G*G’.



4. Programming exercise: Construction of global matrix 10 points

For the moment we will consider a problem with homogeneous Dirichlet boundary conditions
on the whole boundary. Therefore let I be the indices of nodes, which lie on the boundary,
i.e. i ∈ I implies (xi, yi) ∈ ∂Ω. Then we want to distinguish the following two types of
functions

v(x, y) =

npoint∑
j=1

αjwj(x, y), v0(x, y) =

npoint∑
j=1,j /∈I

αjwj(x, y)

and the corresponding discrete spaces Vh and V 0
h . In particular we have the relation V 0

h ⊂ Vh.
Obviously we have dimVh = npoint and dimV 0

h = npoint-nboundary < npoint. With
nboundary we denote the number of points on the boundary, which is the same as the
number of elements in I.

Our variational problem reads

“Find a function uh ∈ V 0
h such that a(uh, vh) = f∗(vh) for all test-functions vh ∈ V 0

h .”

with bilinear form

a(uh, vh) =

∫
Ω

(
∇uh · ∇vh + c uhvh

)
dΩ

and c ≥ 0 a given constant. For the given linear form

f∗(vh) =

∫
Ω

f(x, y)vh(x, y) dx dy

assume that f ∈ Vh.

(a) Show that for wi ∈ Vh

f∗(wi) =

npoint∑
j=1

M̂ijfj

where we have the global mass matrix

M̂ij = 〈wi, wj〉L2(Ω) =

∫
Ω

wi(x, y)wj(x, y)dxdy

for fj = f(xj , yj) and 1 ≤ i, j ≤ npoint .

(b) Let Âij = a(wj , wi) for wi, wj ∈ Vh instead of V 0
h . Show that the Galerkin equation is

still equivalent to the variational form

“Find coefficients αi such that
∑npoint

j=1,j /∈I Âijα
j = fi for all i /∈ I.”

For example consider the case f(x) = 1. Explain why in MATLAB we get the equivalent
reduced system by

rhs = M*ones(npoint,1);

rhs = rhs(id==0);

Ar = A(id==0,id==0);

u = zeros(npoint,1);

u(id==0) = Ar \ rhs;

trisurf(e2p,x,y,u);

(c) Consider the code elliptic2d.m which uses your functions to construct the global
matrix corresponding to the Galerkin equation. Explain how and why this works. Point
out the differences to the 1D implementation.

(d) Solve the problem with c = 0 and f = 1 on Ωs and Ωd and plot the solution. For Ωd
compare with the exact solution on the disc (it is a polynomial of second degree).

(e) Modify elliptic2d.m so that you solve the problem with c = 1 and f = 1 on Ωd
and homogeneous Neumann boundary conditions (natural boundary conditions) and
compare with exact solution. Why is the solution with Neumann conditions unique?

(f) Modify elliptic2d.m so that you solve the problem with f = 0 and inhomogeneous
Dirichlet boundary conditions u = x2 on the square by modification of f using u(x, y) =
u0(x, y) + ū(x, y), where

u0(xi, yi) =

{
x2 i ∈ I,
0 otherwise.

total sum: 36 points


