Handed out: 19.11. Return during lecture: 26.11.

5. Assignment "Numerische Mathematik für Ingenieure II" http://www.moses.tu-berlin.de/Mathematik/ Periodic boundary conditions and the 1D heat equation

1. Exercise: Periodic boundary conditions

8 points

Let $f: [0,1) \to \mathbb{R}$ be sufficiently smooth and 1-periodic. We want to find 1-periodic solutions $u: [0,1) \to \mathbb{R}$ of -u''(x) = f(x). Using the 3-point stencil the discrete problem is

(1)
$$L^{h}u^{h} = \frac{1}{h^{2}} \begin{pmatrix} 2 & -1 & 0 & 0 & 0 & -1 \\ -1 & 2 & -1 & 0 & 0 & 0 \\ & \ddots & \ddots & \ddots & & \\ 0 & 0 & 0 & -1 & 2 & -1 \\ -1 & 0 & 0 & 0 & -1 & 2 \end{pmatrix} \begin{pmatrix} u_{0}^{h} \\ u_{1}^{h} \\ \vdots \\ u_{N-2}^{h} \\ u_{N-1}^{h} \end{pmatrix} = \begin{pmatrix} f_{0}^{h} \\ f_{1}^{h} \\ \vdots \\ f_{N-2}^{h} \\ f_{N-1}^{h} \end{pmatrix}$$

where $u_i^h = u^h(x_i), f_i^h = f(x_i), x_i = ih \ (i = 0, .., N - 1)$ with h = 1/N.

- (a) Assume you have a solution for the discrete problem u^h or the continuous problem u. Show that $\bar{u}^h = u^h + C$ or $\bar{u} = u + C$ are also a solutions for any given $C \in \mathbb{R}$.
- (b) What is the solvability condition in the continuous and in the discrete case?
- (c) For $b \in \mathbb{R}^N$ formulate an extended equation

$$\begin{pmatrix} L^h & b \\ b^T & 0 \end{pmatrix} \begin{pmatrix} u^h \\ \rho \end{pmatrix} = \begin{pmatrix} f^h \\ 0 \end{pmatrix}$$

which takes care of the solvability condition. Discuss the cases $\rho = 0$ and $\rho \neq 0$.

(d) Rewrite (1) using the fourth-order consistent central difference scheme

(2)
$$-u''(x) = \frac{1}{12h^2} \left(u_{i-2} - 16u_{i-1} + 30u_i - 16u_{i+1} + u_{i+2} \right) + R.$$

Lesson: Here you learn how to use periodicity conditions.

2. **Exercise:** A slightly different problem statement

4 points

Let L^h as in eq. (1) and for c > 0 consider the problem

$$(\mathbb{I} + cL^h)u^h = f^h$$

with \mathbb{I} being the $N \times N$ identity matrix.

(a) Is the discrete problem uniquely solvable?

(b) Compute $h \sum_{i=0}^{N-1} u_i^h$ just using f^h . What does this imply for the continuous solution?

Hint: You might use that for any given real matrix A

$$(v, Au) = (A^T v, u)$$

for all u, v with Euclidean scalar product $(u, v) := h \sum_{i=0}^{N-1} u_i v_i$ and $(A^T)_{ij} = A_{ji}$. **Remark**: The factor h in the scalar product is so that $(u, u) = ||u||_{2,h}^2$. For the current assignment this is of no importance.

Lesson: This shows you how much simpler a slightly modified problem might be. The result can be applied to time-dependent problems, where $c = \tau \theta$.

3. **Programming exercise:** Parabolic θ scheme

For given 1-periodic f(x) consider the problem

$$\partial_t u + Lu = f, \qquad u(0, x) = u_0(x),$$

where u(t, x) is 1-periodic¹ in x. The discrete θ scheme for $u^{k+1} \in \mathbb{R}^N$ is

$$\frac{u^{k+1} - u^k}{\tau} + \theta L^h u^{k+1} + (1 - \theta) L^h u^k = f.$$

- (a) Write a function [xh,Lh]=a05ex03getLh(p,flag) which for flag=0 returns the matrix L^h in eq. (1), for flag=1 returns the corresponding matrix with 5-point stencil from eq. (2). Note: The grid has N = 2^p points.
- (b) Use a05ex03getLh to write a function [xh,Ah,Mh]=a05ex03getTheta(p,theta,tau,flag) which returns the grid xh, the matrices Ah,Mh for given parameters p,theta,tau and flag (as before), so that the θ-scheme can be written

$$A^h u^{k+1} = M^h u^k + \tau f.$$

(c) What can you say about

$$h \sum_{i=0}^{N-1} u_i^{k+1}$$
 ?

(d) For f = 0 and $u_0(x) = 2 + \cos(2\pi x) + \sin(6\pi x)/2$ the smooth exact solution is given by

$$u(t,x) = 2 + \exp(-(2\pi)^2 t) \cos(2\pi x) + \frac{1}{2} \exp(-(6\pi)^2) \sin(6\pi x).$$

Write a function [error,xh,uh]=a05ex03solveThetaStep(p,M,theta,tau,flag) which performs M steps $t \in (0, \tau, 2\tau, ..., M\tau = T)$ and solves the problem with discrete initial $u^0 = r_h u_0(x)$ and returns the error $= \max_k \max_i |u_i^k - u(k\tau, ih)|$, the grid xh, and uh $= u^M$.

(e) Make case studies for T = 1 with the following parameters:

i. p = 5, M = 300, $\theta = \{0, 1/2, 1\}$, flag=0, ii. p = 5, M = 300, $\theta = \{0, 1/2, 1\}$, flag=1, iii. p = 10, M = 300, $\theta = \{0, 1/2, 1\}$, flag=0, iv. p = 10, M = 300, $\theta = \{0, 1/2, 1\}$, flag=1, v. p = 5, M = 3000, $\theta = \{0, 1/2, 1\}$, flag=0, vi. p = 5, M = 3000, $\theta = \{0, 1/2, 1\}$, flag=1.

If the error is unreasonably large, e.g. error>1, then return error=Inf. What is the error and the theoretical stability criterion from the lecture in each case (for both norms)?

(f) What order of convergence do you expect for different θ and flag=0,1? What are advantages and disadvantages of different θ and flag? For small τ check the EOC² as $h \to 0$ and for small h check the EOC for $\tau \to 0$ for $\theta = 1/2$ and flag=1.

Lesson: Here you learn about the practical advantages and disadvantages of various numerical schemes with different consistency orders in space and time.

4. Programming exercise: Parabolic problem with Dirichlet data 3 points

How do you need to modify Ah,Mh above to account for homogeneous Dirichlet boundary conditions instead of periodic boundary conditions? Be specific and write Ah,Mh in a schematic form similar to the matrix eq. (1). You do not need to write a MATLAB program.

Note: The initial condition u^0 satisfies the boundary conditions.

Lesson: You learn how to implement boundary conditions for time-dependent problems.

total sum: 25 points

10 points

¹As in the lecture this means u(t, x + 1) = u(t, x) for all x. ²EOC = experimental order of convergence