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Abstract

In this numerical study the semiclassical structure of finite temperature SU(3) Yang-
Mills theory is examined. The classical solutions with non-trivial holonomy, found
in the year 1998 by Kraan-van Baal and Lee-Lu, are of particular interest. The
classical gauge fields to be analysed are obtained from a Monte-Carlo ensemble by
the ’cooling’ method. The actual appearance of these solutions is determined by the
holonomy and the aspect ratio of the lattice. Despite the finiteness of the lattice,
the analytical behaviour for these solutions is confirmed, for single configurations
and for whole ensembles.

From these findings we conclude that the instanton model at finite temperature,
where Harrington-Shepard calorons are the building blocks of the semiclassical ap-
proximation, has to be reconsidered. Within our approach we find signals to identify
background fields of KvBLL caloron type in the quantised lattice Yang-Mills the-
ory near the deconfined phase transition. A new self-consistent semiclassical model
would have to take into account the fact that these new caloron fields couple to the
Polyakov loop, being the order parameter of the phase transition.

Zusammenfassung

Diese Arbeit beschäftigt sich mit der semiklassischen Struktur der SU(3) Gitter-
eichtheorie bei endlicher Temperatur. Von besonderem Interesse sind die klas-
sischen Lösungen der Feldgleichungen mit nichttrivialer asymptotischer Holonomie.
Instantonmodelle bei endlicher Temperatur gingen bisher von Lösungen mit triv-
ialem Polyakov-Loop in der räumlichen Asymptotik aus. Die hier untersuchten
Lösungen werden auf dem Gitter aus einemMonte-Carlo Ensemble in der Confinement-
Phase durch die ”cooling” Methode gewonnen. Wir finden bei diesen Feldern im all-
gemeinen eine nichttriviale Holonomie und die Signaturen, welche die von Kraan-van
Baal und Lee-Lu im Jahr 1998 beschriebenen Lösungen im S1 × � 3 besitzen.

In diesem Licht ist die bisherige Auswahl von klassischen Lösungen, wie sie in ein
Instantonmodell bei endlicher Temperatur einfließen, zu überdenken. Bei endlicher
Temperatur sollte eine semiklassische Approximation nahe dem Phasenübergang auf
allgemeineren KvBLL Caloronen beruhen, um die Kopplung an den Polyakov-Loop
konsistent zu beschreiben.



Chapter 1

Introduction

Today quantum field theory is the appropriate formalism to explain features of
elementary particles and their interactions. It is known to produce excellent results
in the case of perturbative quantum electrodynamics. It is widely believed that
the so-called quantum chromodynamics (QCD) is the theory that describes strong
nuclear forces. QCD is obtained from a local gauge principle based on the gauge
group SU(3)color. The strong interaction between fundamental quark flavours is
mediated by the exchange of coloured gluons, the vector bosons of the corresponding
Yang-Mills theory. The Lagrangian density of QCD in Euclidean space is [1–3]

L(Aµ, ψ, ψ̄) = −
1

4

∑
F a
µνF

a
µν +

∑
ψ̄f ( /D +mf )ψf ,

where the sums run over colour, spinor and flavour indices. Due to the non-
commutativity of the gauge group the gluons can self-interact.

Baryons and mesons, which are found in experiments, are described as bound
states of three quarks or a quark and an anti-quark. Within the so-called quark
model these bound states are qualitatively classified as multiplets of the flavour group
[4] (Nobel price 1969). The quark model has been kinematically very successful in
the description of the observed meson and baryon states and their quantum numbers.
On the other hand, no free quarks have ever been observed.

QCD can be studied perturbatively in deep inelastic electron-proton scattering
experiments [5]. However, the explanation of bound states of quarks lies within the
non-perturbative regime of QCD, where no reasonable results can be obtained from
perturbative expansions in the strong coupling constant αs. The lattice formulation
provides a convenient framework to study the non-perturbative regime of QCD.
Fundamental properties like confinement, which explains why quarks are only found
as colour-singlet bound states, are reproduced within the lattice approach. Nev-
ertheless, quantitative lattice calculations should be accompanied by a qualitative
understanding of the phenomenology of QCD and its vacuum structure.

One can imagine that the QCD vacuum consists of non-perturbative fluctuations
of the gluon fields. The model where these background fields are characterised by
superpositions of instanton and anti-instanton fields is the so-called instanton liquid
model [6–10].

An instanton is a topologically non-trivial solution of the SU(3) Yang-Mills equa-
tion of motion [11]. A prominent feature of the QCD vacuum is the axial U(1)
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3

anomaly. The conservation of the axial quark current, which holds for the clas-
sical theory, is not found in the quantum theory. In fact, the divergence of the
expectation value of the axial current does not vanish in the quantum theory, but
is proportional to the topological charge density. The topological charge density
related to the instanton field can give an qualitative explanation for the relatively
large mass of the η′ [12]. Another effect explained with the help of instantons is the
spontaneous breaking of chiral symmetry. The chiral condensate

〈
ψ̄ψ
〉
, which is the

order parameter of this symmetry, is connected with the spectral density ρ(λ) of the
Dirac operator by the Banks-Casher relation [13]

〈
ψ̄ψ
〉
= − lim

m→0
lim
V→∞

V −1
∂

∂m
lnZ = − lim

λ→0
lim
m→0

lim
V→∞

π

V
〈ρ(λ)〉 .

For a vacuum filled with instantons and anti-instantons a finite density of eigenvalues
near zero is generated by overlapping instantons. The eigenvalue λ = 0 of the Dirac
operator for a single (anti) instanton is lifted to λ = ±|ψI /D ψA| if a superposition
of an instanton zero-mode ψI and an anti-instanton zero-mode ψA is considered as
the proper vacuum background.

What is still missing from the point of view of the instanton liquid model is a
working mechanism of confinement. Today’s most accepted scenario for confinement
is based on the dual super-conductor picture [14]. Attempts to describe confinement
within the random instanton approach were not able to get a confining string tension
of the right magnitude or to get confinement at all [15]. It seems that additional
degrees of freedom are needed [16] in order to describe this key property. Only
very recently Negele [17] proposed a confinement mechanism based on a strongly
correlated instanton or meron ensemble in the regular gauge.

At finite temperature the Yang-Mills theory has a similar vacuum structure, built
from periodic instantons or so-called calorons [18]. These fields are characterised by
their Polyakov loop at spatial infinity, which is called the asymptotic holonomy. It
was pointed out that a non-trivial asymptotic holonomy (not in the centre of the
gauge group) is suppressed [19]. Hence, classical fields with a non-trivial asymptotic
Polyakov loop were neglected in the vacuum and a corresponding caloron solution
with non-trivial holonomy remained unknown. In the last years new caloron solu-
tions with non-trivial holonomy were found and studied by Kraan-van Baal [20] and
Lee-Lu [21], hence we call this solution KvBLL caloron. The mechanism of coupling
these fields to the Polyakov loop, the order parameter of the deconfinement phase
transition, is of particular interest. In certain limits the KvBLL caloron reproduces
the BPST instanton solution [11] or the caloron with trivial asymptotic Polyakov
loop [18] but it has some additional interesting features. Recent work [22, 23] also
deals with the semiclassical quantisation of calorons with non-trivial holonomy and
with the extension of the parameter space to other topological sectors [24]. All these
works point out that a non-trivial asymptotic Polyakov loop cannot be neglected.
Such analytical progress of semiclassical methods is supplemented by investigations
of lattice fields [25, 26], where the topological content of Monte-Carlo ensembles is
examined.



4 Chapter 1 Introduction

The subject of this work is to systematically study whether classical solutions,
which are numerically obtained on a finite and asymmetric lattice, can be described
within the parameter space, the so-called moduli space, of KvBLL calorons. These
fields serve as a starting point for the semiclassical approximation. In order to obtain
classical solutions of the SU(3) lattice gauge theory, Monte-Carlo fields are ’cooled’
[27, 28] until the equations of motion are sufficiently fulfilled. To extend the previous
work from SU(2) [29, 30] to the more challenging case of SU(3) many tools for the
investigation have been improved. The main problem, which was formulated for this
work, is the following.

Can we find evidence that classical SU(3) gauge fields on asymmetric
lattices are described in terms of KvBLL calorons?

This study tries to answer the question and to motivate the semiclassical calcu-
lations. It is organised as follows. In Chapter 2 the semiclassical approach is briefly
explained using a quantum mechanical toy model. Some numerical methods which
are important for QCD will be introduced and motivated. In particular, the numer-
ical approach in terms of the Feynman path-integral and the operator formalism are
compared for this toy model and the role of the vacuum is addressed. The cooling
technique is proposed to obtain classical solutions and to test the viability of the
semiclassical approach. In Chapter 3 the SU(3) Yang-Mills theory is introduced on
a classical level and the classical solutions of the equation of motion will be specified
and described. The chapter is closed by a brief review of the current status of the
semiclassical quantisation for finite temperature field theory. In Chapter 4 the lat-
tice formulation of the theory and the definitions of observables, which are essential
to identify KvBLL calorons and investigate their properties, are introduced. The
results of the numerical work are split up to show and discuss examples of calorons
within Chapter 5 and to show and discuss the statistical analysis for an ensemble of
calorons from different topological sectors in Chapter 6. The conclusions from the
numerical work and the summary are made in Chapter 7. Finally an outlook for
future work is given.



Chapter 2

Quantum mechanics and the

semiclassical approximation

In this chapter the path integral approach to quantum mechanics will be briefly
introduced . Within this formalism the semiclassical approach, also known as sad-
dle point method, is formulated. Analytical calculations and numerical results are
presented for a the double-well oscillator to illustrate the language and techniques,
that are also used in case of the semiclassical approach to QCD. The quantum me-
chanical vacuum will be described as a gas of non-interacting pseudo-particles (kink
gas). The own numerical work was guided by the publications of Creutz, Freedman
[31] and Huang [32].

2.1 The path-integral in quantum mechanics

In quantum mechanics physical quantities like momentum p and location x are usu-
ally replaced by Hermitian operators p̂ and x̂, which fulfil the commutator relations
[q̂, p̂] = i~, [q̂, q̂] = [p̂, p] = 0. This is the canonical approach. These operators
act on a Hilbert space of physical states |ψ 〉 . Within some arbitrary representa-
tion, e.g. position space, such states are complex functions with the scalar product
〈ψ |φ〉 =

∫
dxψ(x)φ(x). A measurement of a quantity Ô in a state |ψ 〉 is defined

〈ψ | Ô |ψ 〉 :=

∫
dxψ(x) Ô ψ(x).

In the Schrödinger picture the time dependence of states in a system with a Hamilton
operator H(p̂, q̂) is governed by the time dependent Schrödinger equation

i~
∂

∂t
|ψ(t) 〉 = H(p̂, q̂)|ψ(t) 〉

The time evolution of a state in Eq. 2.1 can formally be written using the time
evolution operator U(t) := exp [−iHt/~]

|ψ(t) 〉 = U(t)|ψ(t = 0) 〉
The path integral approach to quantum mechanics is an alternative method to for-
mulate quantum mechanics and to circumvent the non-commuting operators. For

5



6 Chapter 2 Quantum mechanics and the semiclassical approximation

this purpose one calculates the matrix element W of U(t) between location eigen-
states. One will see that this approach provides a different starting point for doing
the same quantum mechanical calculations. The matrix element in question is

W (x, t; y, 0) := 〈x |U(t)| y 〉 . (2.1)

The matrix element W , also known as Feynman kernel, solves the time dependent
Schrödinger equation with an initial condition

ψ(x, t) =

∫
dyW (x, t; y, 0)ψ(y, t = 0).

Since the time evolution operator has the property U(t)U(t′) = U(t+ t′) an expres-
sion for W can be obtained iteratively in the limit of an infinite number N → ∞
of infinitesimal small time translations ε = t/N → 0. The so-called transfer ma-
trix 〈x |T (ε)| y 〉 = W (x, ε, y, 0) , which enters the construction through the limit
U(t) = limN→∞ T (t/N)N , is explicitly known up to corrections of order O(ε3).

〈x |T (ε) | y 〉 =
( m

2π~ iε

)1/2
exp

[
im

2~ε
(x− y)2 − iε

2~
(V (x) + V (y))

]
+O(ε3).

To take this limit the time axis [0, t] is cut in N equal subintervals of length ε = t/N
and a unity operator

∫
dx |x 〉 〈x | = � is inserted to obtain W .

W (x, t; y, 0) = lim
N→∞

∫
dx1 . . . dxN−1〈x |T |x1 〉 〈x1 | . . . 〈xN−1 |T | y 〉

With the abbreviations

Dx :=
( m

2π~ iε

)N/2
dx1 . . . dxN−1 (2.2)

S[x] :=
N−1∑

n=0

ε

[
m

2

(
xn+1 − xn

ε

)2

− V (xn+1) + V (xn)

2

]
(2.3)

where the first is the measure and the latter is an approximation of the continuum
action for not necessarily classical paths, one arrives at the well known Feynman
form of path integral for a non-relativistic quantum-mechanical system

W (x, t; y, 0) = lim
N→∞

∫
Dx exp

[
i

~
S[x]

]
. (2.4)

The states x (final) and y (initial) enter the expression by x0 := y and xN :=x. Be-
sides the Schrödinger equation and the matrix approach the path-integral is another
fundamental approach to quantum mechanics. The idea for this new formulation
came from Dirac but it was Feynman [33] who further established it. One can imag-
ine the path integral being a sum of paths with an oscillating, complex-valued weight.



2.1 The path-integral in quantum mechanics 7

A heuristic argument for convergence is that the strongly oscillating contributions
cancel out and one is left with small fluctuations around a stationary path. The
transition to Euclidean time −it/~ → β and ∆τ = β/N , also known as Wick
rotation, makes the numerical computation by importance sampling possible and
yields an analogy to statistical mechanics. In the limit β →∞ the Feynman kernel
is dominated by the vacuum state because exp [−βH] is dominated by its smallest
eigenvalue. In the Euclidean language the Feynman kernel reads

WE(x, β; y, 0) = 〈x | exp [−βH] | y 〉 =
∫
DEx exp [−SE[x]] .

The action SE differs from S by the positive sign of the potential V (x) in the
Lagrangian function. The weight factor e−SE is now positive and real. If the potential
is bounded from below there exists a path with maximal weight. Where the main
contribution to the sum of path comes from is determined by the competition of
action versus the measure of paths1. In fact, the measure Dx is flat in case of
quantum mechanics and this competition looks trivial. Having performed the Wick
rotation, the Feynman kernel in Euclidean space is given by (from here ~ is set to
unity)

WE(x, β; y, 0) = lim
N→∞

∫
DEx exp [−SE] (2.5)

DEx :=
( m

2π∆τ

)N/2
dx1 . . . dxN−1

SE[xn] :=
N−1∑

n=0

∆τ

[
m

2

(
xn+1 − xn

∆τ

)2

+
V (xn+1) + V (xn)

2

]
.

However, one is interested in properties of the original system. With the exception
of the real-time evolution, almost all those properties can be conveniently studied
in the path integral language. To extrapolate back to the original problem it is best
to study the behaviour of the partition sum Zqm = tr (exp [−βH]) of the quantum
mechanical model2. By just looking at the propagator WE one might loose some
information, e.g. energy levels of some parity.

Being aware of that danger one also studies the lowest energy levels by inves-
tigating the asymptotic behaviour of WE for large Euclidean times β → ∞. One
could also study the two-point correlator 〈x(τ)x(τ ′)〉 to obtain the energy gap from
its exponential suppression for large Euclidean times |τ−τ ′| and β →∞. From now
on everything will be calculated in Euclidean space and the index ′E ′ is suppressed.

1Note: “finite action is of zero measure” [34]
2Note: The Feynman kernel has the representation WE(x, β;x, 0) =

∑
spec(H) e

−βEn |ψn(x)|2.



8 Chapter 2 Quantum mechanics and the semiclassical approximation

2.2 Semiclassical approach to quantum mechanics

The method and concept of the semiclassical approximation is explained for an
example from quantum mechanics. The standard calculation is expanded by non-
standard numerical investigations. There is some set of quantum mechanical models
one could favour here [31, 35]. However, the double-well potential, in Euclidean space
one should better call it the ’double-hill’ potential, is chosen

V (x) =
mω2

8η2
(
x2 − η2

)2
.

In this case a perturbation expansion around a minimum of V (x) would not give
right results for small couplings g2 ∝ η−2 because [36]

1. the perturbation series can be shown to be Borel non-summable in g,

2. the parity transformation leaves the potential invariant, such that the eigen-
functions are classified according to a principal quantum number and the parity
eigenvalues,

3. the energy splitting between states of opposite parity is described by non-
analytic factors of the form exp [−1/6g].

In the limit η → ∞ the problem decouples to a system of two harmonic oscillators
with E = ~ω/2. One can qualitatively understand this feature with the LCAO-
ansatz, where one makes the assumption that the wave function is just a symmet-
ric/antisymmetric linear combination of oscillator wave functions ψ0 centred at ±η

ψs/a(x) =
1

Ns/a

(ψ0(x+ η)± ψ0(x− η)) ψ0(x) =
2π

λ
exp

[
−λ/2x2

]

with λ = mω/~ and the normalisation factor Ns/a for the symmetric and antisym-
metric wave function respectively. The corresponding energies3 of the Hamiltonian
H = p̂2/2m+ V (x) are

ELCAO
± := 〈ψs/a |H|ψs/a 〉 =

~ω
2

+
3

32

~2

mη2
± 3

8

(~ω +mω2η2)

exp
[
mω
~ η

2
]
∓ 1

This solution respects parity but has the wrong asymptotical behaviour. At least it
already has an exponential behaviour for small couplings. The comparison with the
exact solution in Fig. 2.3 shows that the exponential small gap has the wrong slope.
In Fig. 2.1 one can see the energy levels En(η) for the exact solution together with
this ansatz for a fixed ω.

3This can be compared with the perturbative expansion in [37].
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Figure 2.1: comparison of LCAO with exact result

In particular one is interested in a weak coupling approximation, that correctly
describes the exponential behaviour of the mass gap. This is provided by the semi-
classical approach and the kink-gas approximation.

The idea of a semiclassical approximation is to substitute the action S[x] by
a series of fluctuations δx around a path xcl(τ), being a solution of the classical
equation of motion. Compared to any path x(t) = xcl(τ)+ δx(τ) its contribution to
the Euclidean path integral should be the biggest. However, a single path is of zero
measure in the sum of path. The hope is that by further integrating over quadratic
fluctuations around this path one will have isolated the relevant degrees and freedom
and one gets meaningful results for the calculation. Whether this hope is satisfied
will become clear later. From x(τ) = xcl(τ) + δx(τ) (δx(0) = δx(β) = 0) one gets a
functional expansion in S[xcl + δx].

S[xcl + δx] = S[xcl] +

∫ β

0

dτ

(
−d

2xcl
dτ 2

+ V ′(xcl)

)
δx(τ)

+
1

2

∫ β

0

∫ β

0

dτ dτ ′
δ2S

δx(τ)δx(τ ′)

∣∣∣∣
xcl

δx(τ)δx(τ ′) + O(δx3) (2.6)

The first integral will vanish, because xcl solves the classical equation of motion.
Note the sign of the potential in the equation of motions. The second part, which
will be denoted by Sfl, describes the action of quadratic fluctuations around this
classical path. The series, taken up to the 2nd order (1-loop), replaces the expression
for the action S in the path integral and one ends up with a series in δx which is called
the saddle-point approximation. The shift of x in the path integral is exact and the
approximation enters by cutting off higher orders of δxn. Inserting this into Eq. 2.5
gives the Euclidean Feynman kernel in the 1-loop (semiclassical) approximation

W (x, β; y, 0) = exp [−Scl]
∫
Dδx(τ) exp [−Sfl[δx]] =: e−Scl F(β). (2.7)
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The integral over the quadratic fluctuations F(β) in Eq. 2.7 can be written in terms
a Gaussian integral of a local operator4 δ2S/δxδy = M(x, y), which is called the
Hessian of SE. In the case of Euclidean quantum mechanics one has

F(β) =
∫
Dδx exp

[∫
dτ

1

2
δxM δx

]
with M = − d2

dτ 2
+m−1 V ′′(xcl). (2.8)

Gaussian integrals in N dimensions are explicitly solvable and lead to a determinant
of a N×N matrix. It is interesting to study the Feynman kernel WE(x, β, y, 0) with
x and y located at the minima of the potential x = ±η and y = η. Therefore the
analytic solutions of Euclidean equations of motion connecting these points are of
particular interest.

2.3 Kink solutions and fluctuations

The solutions of the Euclidean equation of motionmẍcl(τ) = V ′(xcl) are the building
blocks of the semiclassical approximation. By Euclidean energy conservation one
easily obtains the classical solution for the double-well potential. Using the fixed
location parameter xcl(τ0) = 0 the classical solution is

xcl(τ) = ±η tanh
[
(τ − τ0)

ω

2

]
. (2.9)

The two functions, one with xcl(−∞) = −η and the other with η, are called kink
and anti-kink solution. There are also classical solutions “falling from the tip of the
mountain”, but they have no finite action and thus they do not contribute. There
is no correspondence to a kink solution with E = 0 in the original theory because
there simply does not exist a classical path connecting both minima. But there
is the correspondence between a tunneling process in the Minkowskian quantum
mechanics and the kink pseudo-particle solution in the Euclidean formulation of the
path-integral. The classical action of the kink solution is calculated

Scl =

+∞∫

−∞

dτ
(m
2
ẋ2cl + V (xcl)

)
= m

+η∫

−η

dy
ω

2η

(
η2 − y2

)
=

2

3
η2ωm.

The kink is a localised pseudo-particle since the action density s(τ) = m
2
ẋ2 + V (x)

is localised at the kink position τ0 (see Fig. 2.2 rhs).

4Note: Since this operator is symmetric the eigenvalues are real and eigenfunctions are orthog-
onal. The form of an operatorM acting on δx is obtained after a partial integration.
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Figure 2.2: (left) double-well potential (middle) kink solution and (right) localised
action density of a kink solution

In Fig. 2.2 the double-well potential and the kink-solution are illustrated. The
duration time (radius) of the kink is r = 2ω−1 (dashed lines). It is visible, that
x(τ) is located at ±η for |τ − τ0| À r up to (exponential) small corrections. For
completeness and later use one should note that there also exist so called multi-kink
solutions, which are superpositions of kinks and anti-kinks. They can be considered
approximate solutions to the Euclidean equation of motions as long as their centres
τi are well separated |τi−τj| > r. Such solutions can be created by a product ansatz,

xncl(τ) = η
n∏

i=1

tanh
[
(τ − τi)

ω

2

]
where τ1 < τ2 . . . < τn.

The action of such a solution is Sncl ≈ nScl. The numerical investigation will also
make use of paths, which are ’almost’ solution of the equation of motion. These
solutions x(τ) are called streamlines.

On the classical level (0-loop) the solutions of the equation of motion themselves
are the basic ingredients of a semiclassical approximation. The quantum effects
are then introduced by calculating the path integral over quadratic fluctuations (1-
loop). Using the HessianM corresponding to the quantum mechanical action one
can rewrite Eq. 2.8 for a finite N using the definitions of Eq. 2.5

FN(β) =
( m

2π ∆τ

)1/2 [
det
(
∆τ 2M∆

)
N−1

]−1/2
(2.10)

where, at least for well behaved cases, the single divergent contribution from the
determinant and the prefactor (∝ 1/

√
∆τ) should give a finite result for limN→∞FN .

Of course that happens at least in the cases where the semiclassical approach is
known to be exact (free particle and harmonic oscillator). The HessianM∆ is the
discretised version ofM Eq. 2.8

M∆ =
1

∆τ 2




−2 +W1 1 . . . 0 0
1 −2 +W2 . . . 0 0
...

. . .
...

0 0 . . . −2 +WN−2 1
0 0 . . . 1 −2 +WN−1
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with Wn = ∆τ 2m−1 V ′′(n∆τ). In case of an (anti)kink the Hessian operatorM has
the explicit form

M(τ, τ ′) =

[
− d2

dτ 2
+ ω2

(
1− 3

2

1

cosh2(ω (τ − τ0)/2)

)]
δ(τ − τ ′). (2.11)

One should observe thatM explicitly acts on fields and not on the δ(τ − τ ′) distri-
bution after partial integration of the operator kernel Eq. 2.8. The spectrum corre-
sponds to the eigenvalue problem of the one-dimensional Schrödinger equation in a
Pöschl-Teller potential V (x) = cosh−2(x). A detailed discussion of this potential can
be found in the book of ’Landau and Lifshitz III, Introduction to quantum mechan-
ics’. This system has two bound states (discrete spectrum) λ0 = 0 and λ1 = 3/4ω2

and a continuous spectrum for λ ≥ ω2. The eigenfunction corresponding to λ0,
usually refered as zero-mode, is

x0(τ) =

√
3ω

8
cosh−2(ω (τ − τ0)/2).

Note that the zero-mode is proportional to the derivative of xcl(τ) with respect to τ0.
If one is interested in studying streamlines, one needs to know the Hessian matrix for
arbitrary paths x(τ) in the double-well potential which are not necessary solutions
of the classical equation of motion. This operator is

M(τ, τ ′) =

[
− d2

dτ 2
− ω2

2

(
1− 3

xE,cl(τ)
2

η2

)]
δ(τ − τ ′). (2.12)

For the further analysis the eigenvalues of M and some of the eigenvectors corre-
sponding to the lowest eigenvalues will be used for the purpose of interpretation.
For the numerical analysis to be given later the general expression for the Hessian
Eq. 2.12 is of importance.

The overall result for the calculation of the 1-loop Feynman kernel, after having
introduced a finite Hessian matrix, is

W (x, β; y, 0) = lim
N→∞

exp [−Scl] FN(β).

Usually the Feynman kernel is then calculated by normalising the determinant rel-
ative to the harmonic oscillator Wω with the HessianMω = − d2/dτ 2 + ω2

W (x, β; y, 0) = Wω(x, β, y, 0)

[
detM
detMω

]−1/2

xcl

exp [−Scl] . (2.13)

The analytical calculation of the ratio of determinants for the double-well potential
can be found in [37] or in a modern fashion in [38]. The main difficulty in the compu-
tation of the ratio of determinants is that the spectrum ofM contains an zero mode
x0(τ) whileMω has none. This is due to the τ0-translational invariance of the kink
solution. In QCD one will also encounter zero-modes, which come from symmetries
of the classical solution. Due to this invariance, the associated fluctuations are not
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Gaussian but can be calculated exactly by using the method of collective coordinates
[39, 40], where one replaces the integral over fluctuations associated with the exact
value of the integral and leaves the zero-eigenvalue out. The determinant without
the lowest eigenvalue is denoted by det′ [M].

[
detM
detMω

]−1/2

xcl

collective coordiantes
=⇒

√
Scl
2π

ω

∫
dτ0

[
det′ [M]

det′ [Mω]

]

︸ ︷︷ ︸√
12

−1/2

Putting all steps together one arrives at an expression for the Feynman kernel of the
double-well potential in the 1-loop approximation with a single kink

WE(η, β,−η, 0) =
√
mω

π
exp

[
−ωβ

2

]
exp [−Scl]

√
6Scl
π

ωβ (2.14)

In the end one question arises. Is the result based on the relevant degrees of freedom?
To extend this model usually a superposition of I kinks and A anti-kinks, where the
number I −A is fixed due to the boundary condition by

∫ β
0
dτ ẋcl(τ) = x(β)− x(0),

is considered. For β →∞ this is no serious restriction, although a superposition of
kinks and anti-kinks is no strict solution of the equation of motion.

2.4 Kink-gas approximation

The kink gas can be understood as a superposition of single kink-amplitudes. The
different centre positions {τi} are the position of pseudo-particles in the kink-gas.
Formally one writes

WE(±η, β; η, 0) =
∑

only even
or odd n

∫ [ n∏

i=1

dτi

]
WE(ηi+1, τi+1; ηi, τi) ηi = (−η)i. (2.15)

This expression describes the more realistic situation of kink-gas. The gas describes
the situation of non-interacting localised pseudo-particles in a volume β with κ =
ω
√

6Scl/π.

〈±η | exp [−βH] | η 〉 =

√
mω

π
e−

ωβ
2

∑

even or odd

1

n!
(κ exp [−Scl])n

=

√
mω

4π
e−

ωβ
2

[
exp

[
κe−Scl

]
± exp

[
−κe−Scl

]]

This expression seems to be complete in a sense, that the relevant degrees of
freedom were considered. From the transition amplitude one can read off the energy
splitting due to tunnelling5

E± = ~ω
(
1

2
± 2η

√
ωm

π~
exp

[
−2η2ωm

3~

])
(2.16)

5here we will insert the ~ factors
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It becomes clear that the expression for the energy gap ∆ = E+ − E−, whose
calculation was the purpose of this chapter, in the kink gas approximation fits very
well to the exact results. The exponential small energy gap is shown in Fig. 2.3 as
a function of η. The kink-gas approximation works only for a dilute gas of pseudo-
particles, hence the kink distance has to be larger than its size and one is bound to
the η À 2 in this numeric example.

1 2 3 4 5

10
−4

10
−2

10
0

η

E
2−

E
1

exact
IA−gas
LCAO

η=1 ⇒ distance ≈ width
η=2 ⇒ distance ≈ 5 width
η=3 ⇒ distance ≈ 60 width 

Figure 2.3: The mass gap in the kink-gas approximation. The approximation
becomes asymptotically exact for small couplings, has parity and the exponential
tail of the gap, which is a feature of the exact solution.

One can see that this approximation becomes good for small couplings and de-
scribes the exponential tail of the gap as it is predicted by the (numerical) exact
solution. Of course there is still much space for improvement of this method e.g.
kink interaction or higher loop calculations. For example the lowest energy E1 is
not exponentially close to ~ω/2 at all!

2.5 Numerical results for the double-well

The general theoretical explanations are supplemented by numerical calculations
which show further aspects of the semiclassical approximation of the double-well
potential. First the exact results are presented. They are meant to support the
analytical results from the previous sections. The second part consists of results
of a Monte-Carlo study of 2-point correlation functions. In the last part of this
section streamline configuration will be inspected and it will be argued, how one
could numerically determine, whether a semiclassical approach is feasible or not.
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Figure 2.4: eigenfunctions of double-well Hamiltonian with m = ω = 1 and η = 2.5

In Fig. 2.4 the two lowest eigenfunctions are shown. The corresponding energy
levels are shown as the global offset of the wave function. The results (Tab. 2.1
and Fig. 2.4) were calculated by computing the spectrum of a discretised Hamilton-
operator with MATLAB. The kinetic term p̂2/2 was implemented using the Fourier
transform of an exact lattice Laplacian Eq. 2.17. Whether the result is numerical
exact was checked by varying the lattice extent L (the lower bound for L depends
on η) and the number of lattice points ranging from N = 200 to N = 300. Due to
the limited numerical (double) precision no calculations are possible for η < 7.

(H)kl =

(
p̂2

2

)

kl

+
δkl
8η2

(
x̂2l − η2

)2
with

(
p̂2
)
kl
=

1

N

∑

p

p2 exp [i p (x̂k − x̂l)]

p ∈ π

2L
[−N,−N + 2, . . . , N − 2] and x̂k = −L+

2kL

N
(2.17)

Since the matrix (H)kl, where the indices k and l run from 1 to N , assumes periodic
boundary conditions for the kinetic part, its spectrum for the non-periodic case can
only be correct if the wave function drops fast enough at the boundary. In Tab. 2.1
the results for various values of η are shown.

η 1.0 2.5 5.0
E1 0.293298 0.419809 0.489498

E2 − E1 0.641225 0.060942 6.1175 · 10−7

Table 2.1: Numerical (exact) results for double-well potential with ~ = m = ω = 1

This should be compared with the results from numerical simulation. Since the
ultimate technique to obtain results in quantum field theory is the path-integral
approach using Monte-Carlo techniques it is worth to consider this approach in
quantum mechanics. Assume one creates a set of N uniformly and independently
path x(τ)n which are distributed randomly. An expectation value of an observable
Ô is then calculated by

〈
Ô
〉
=

1

N

∑

n

O[xn] exp [−S[xn]]
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where O[x]n is the classical quantity measured on a path of the Monte-Carlo en-
semble. This method is called straight sampling. This method in very inefficient,
since the weight e−S[xn] is strongly peaked in the configuration space, and most path
do not contribute to the expectation value. In the forthcoming analysis the set of
paths (Monte-Carlo ensemble) is already distributed according to the Boltzmann-
law P (xn) ∝ exp [−S[xn]] (importance sampling). Hence the probability to have a
path with the action S[x] is P (x). For comparison with the exact results the cases
η = 1.0 and η = 2.5 are chosen. To calculate the energy gap one usually measures
the exponential tail of the connected 2-point correlation function, in this case

〈x̂(τ)x̂(τ + T )〉 − 〈x̂(τ)〉 〈x̂(τ + T )〉 T,L→∞∝ exp [−(E2 − E1)T ] .

On a periodic lattice this has to be changed to a cosh((E2−E1)(T −L/2)) function,
since the 2-point function is symmetric for T → L − T . Using this fit function the
following results emerge from the Monte-Carlo simulation6.

η E2 − E1 (fit) χ2/DOF
1.0 (0.640± 0.007) 0.7
2.5 (0.063± 0.005) 1.1

Table 2.2: Results from Monte-Carlo simulation

The two 2-point function, measured on the periodic lattice is shown in Fig. 2.5.
The next step is to show some properties of the classical solution numerically and

to discuss, whether respectively when the semiclassical approach is reliable. For this
purpose the Monte-Carlo configurations for the double-well potential are used as the
starting point. To obtain the streamlines from those configurations one applies some
smoothing, which means that the local action is iteratively minimised (or lowered)
by substitutions with a small ’time’ step ε

xt+ε(n) = xt(n)− ε
[
2xt(n)− xt(n+ 1)− xt(n− 1)

a
+ a V ′(xt(n))

]
.

The dynamics introduced for the quantity t has no physical meaning and the stream-
lines should be thought as a point in function space, where the semiclassical approx-
imation can be performed. This process of removing short range fluctuations is also
known as cooling, smoothing or smearing in the literature [41–43]. In [32] the author
argues, that for consistency of a semiclassical approach one needs a scale separation
into ’slow’ (small) and ’fast’ (large) modes of the Hessian.
In particular the author concludes that self-consistency can be established through
the spectrum of the Hessian if

1. there is a gap that divides eigenvalues into small and large ones;

2. the spreading among the small eigenvalues is small relative to the gap.

6Note: For η = 1.0 we have chosen ∆τ = 0.04, β = 20 and for η = 2.5 the lattice spacing
∆τ = 0.4 and β = 200. ~ = ω = m = 1
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It is clear that ’excessive’ smoothing (t → ∞) will lead to a classical path with
such properties. That’s why a physical quantity, like a 2-point correlation function,
has to be monitored while cooling to ensure, that it is not biased by too excessive
smoothing. The observable can be insensitive to a certain amount of cooling and
the smoothed trajectory obtained then is the streamline, which lies halfway between
classical and Monte-Carlo trajectories.
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Figure 2.5: two-point function for η = 1.0 (left) and η = 2.5 (right)

From the fit to the Monte-Carlo data, shown in Tab. 2.3, it becomes clear that
the result for the two-point function, which is in agreement with the exact value,
is not affected by cooling in the weak coupling regime. Both correlations functions
are perfectly parallel. This is in correspondence to the statement of self-consistency
for the semiclassical approach in the weak coupling regime, if the Hessian shows
the scale separation. The result for strong couplings is heavily effected by the 100
smoothing steps. The would-be energy gap, measured after 100 smoothing steps in
the strong coupling regime, deviates by 26 σ from the exact value.

η exact (E2 − E1)MC (E2 − E1)100
1.0 0.641225 (0.646± 0.005) (0.538± 0.004)
2.5 0.060942 (0.061± 0.003) (0.061± 0.005)

Table 2.3: comparison of energy gap

In order to elucidate the reasons for success in the weak coupling case, we extend
the investigation of the semiclassical properties somewhat further. Especially the
spectrum of the Hessian is of interest now. If it shows a separation of scales, follow-
ing the arguments of Huang [32], the semiclassical approach is consistent for weak
couplings (because the gap resisted to the smoothing).

In Fig. 2.6 typical trajectories after a number of cooling steps are shown. For
weak couplings (left panel) the dilute kink(s), modulated by oscillations, are already
visible in the thermalised path. The trajectories are also smooth in the strong
coupling regime, but there are no typical kink solutions visible (right panel).
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Figure 2.6: typical trajectories from MC ensemble and after cooling for weak cou-
pling η = 2.5 (left) and for strong coupling η = 1.0 (right)

It is impossible to find a gap in the spectral density, which is averaged over 1000
configurations, in Fig. 2.7 without cooling. Nevertheless, after some cooling steps
the spectrum of the Hessian shows a scale separation. The narrow peak of almost-
eigenvalues is separated from the higher eigenvalues. This shows the self-consistency
of the semiclassical approach for the energy gap in the weak coupling regime. Similar
observations have been made by Huang [32].
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Figure 2.7: spectral density of the Hessian δ2S for various stages of cooling (aver-
aged over 1000 trajectories with ∆τ = 0.4, β = 200,~ = ω = m = 1 and η = 2.5
(weak coupling))

The numerical investigation is completed by showing some properties of the classical
kink solution. Especially the spectrum of the Hessian operator in the background of
a kink is interesting. The operator Eq. 2.11, with the Laplacian taken from Eq. 2.17,
is diagonalised and the lowest eigenmodes are illustrated in in Fig. 2.8.
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Figure 2.8: 3 eigenmodes ofM and one ofMω

The spectrum contains two isolated eigenmodes λ0 = 0 and λ1 = 3/4ω2, and a
continuous spectrum for λ ≥ ω2. The zero-mode is localised on the kink position
τ0 = 0. Higher modes look like their free counterparts but are influenced by the zero-
mode. Continuum modes can be identified by a inverse participation ratio IPR =
V
∑

x(ψ̄(x)ψ(x))
2 close to one. Due to the finite time interval β the zero mode of

one kink will be lifted to a near zero mode (exponential small). The interaction of
a kink and an anti-kink will drag the zero-mode to negative values. This effect can
actually be seen in Fig. 2.7 which is an average over Monte-Carlo trajectories with
different amount of smoothing. The λ0 and λ1 modes are enhanced after 160 cooling
steps. After 80 steps the gap is also already visible. In Fig. 2.9 one can compare
the spectrum of the Hessian of the harmonic oscillator, which is continuous in the
continuum and independent from a trajectory, with the Hessian of the double-well
oscillator in the background of a single kink, where to two bound states are also
visible. The similarity between of the lower right figure in Fig. 2.9 and the spectral
density in Fig. 2.7 is remarkably clear.
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Figure 2.9: Hessian of harmonic and anharmonic oscillator, left figures show full
spectrum, right figures only the low lying end
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The semiclassical approach to QCD has very similar features. Having understood
this toy model helps to formulate what one can expect from a semiclassical approach
to Yang-Mills theory.

2.6 Lessons for QCD

This extended analysis of the quantum mechanical path integral shows that there
exist some non-perturbative effects, which can be described by a semiclassical ap-
proximation. One alternative approach to Schrödingers quantum mechanics is given
by the path integral approach, which can be studied using Monte-Carlo techniques.
The discretisation of time (and space in QFT) is natural for the path integral. It
is unavoidable for the lattice formulation. In this approach the semiclassical ap-
proach (saddle point method) can be examined. The straight forward calculation
is accompanied by zero-modes associated with symmetries of the classical solution.
Whether this approach is applicable depends on whether there exists some scale
separation that allows one to divide the problem into a classical and a ’fluctuating’
part. Numerically this can be decided by evaluating the spectrum of the corre-
sponding Hessian δ2S/δφ(τ)δφ(τ ′). This separation is enhanced by cooling out UV
fluctuations around the more or less fuzzy path and simultaneously observing the
physical quantity, e.g. a correlator, of interest as a function of smearing steps. If the
observable of interest is not affected by this smoothing the semiclassical approach is
likely to work for this quantity, if one considers the corresponding streamline paths
as a starting point for the saddle-point method. One must be especially cautious
since this method might fail in some regime like is does for the strongly coupled
double-well oscillator!

Since solving the equation of motions for the SU(3) gauge theory is difficult
on itself it is convenient to use the smoothing technique to obtain solutions of the
equation of motion which are the ’kinks’ of QCD. This method, the so-called cooling
method, is used throughout the whole work to study classical solutions of SU(3)
lattice gauge theory.

With the help of the semiclassical method some effects like chiral symmetry
breaking where already successfully described in QCD but there is the open question
whether one can describe the property of confinement within this framework. Some
hopes are laid on a new type of solution. But first the basic notions of non-Abelian
gauge theory and the little ’zoo’ of its classical solutions need to be introduced.



Chapter 3

Classical SU(3) gauge fields

In this chapter the classical SU(3) Yang-Mills theory at finite temperature is intro-
duced for continuum gauge fields. The classical solutions for the Euclidean space� 4 and for finite temperature S1 × � 3 are introduced in a concise way and their
properties described. Finally the status of the semiclassical quantisation, especially
for finite temperature and non-trivial holonomy, is reviewed.

3.1 Classical SU(3) gauge theory

The semiclassical approach to a gauge theory starts with the same ingredients like
in quantum mechanics. First solutions of the classical equations of motion need
to be found. In non-Abelian field theory, however, topological properties enter the
construction of classical fields and the equations of motion are difficult to solve. The
dynamical variables of the SU(3) gauge theory are eight real-valued vector potentials
Aa
µ which form an anti-hermitian gauge field

Aµ(x) = igAa
µ(x) T

a a ∈ {1, . . . , 8}.
In case of finite temperature x is defined on [0, β]× � 3 and the gauge fields are in the
periodic gauge such that Aµ(x+ t̂ β) ≡ Aµ(x). For zero temperature x is defined on� 4. The hermitian generators T a (Gell-Mann matrices) of the SU(3) algebra obey
tr
(
T aT b

)
= 1

2
δab. With the induced covariant derivative Dµ = ∂µ + Aµ(x) the field

strength is

Fµν(x) := [Dµ, Dν ] = ∂µAν(x)− ∂νAµ(x) + [Aµ(x), Aν(x)] . (3.1)

Under a gauge transformation Ω(x) ∈ SU(3) these quantities transform as

Aµ(x)
Ω7→ Ω†(x) (Aµ(x) + ∂µ) Ω(x) and Fµν(x)

Ω7→ Ω†(x) Fµν(x) Ω(x).

With these definitions the Euclidean action of the SU(3) Yang-Mills theory is defined

SYM [A] := − 1

2g2

∫
d4x tr (Fµν(x) Fµν(x)) . (3.2)

21
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and the equations of motion, which follow from a variational principle, are

δS

δAµ

= 0 ⇒ [Dµ, Fµν ] = 0. (3.3)

To have a solution of the equations of motion it is sufficient but not necessary
that the field is self-dual or anti-selfdual. This means that the dual field strength
F̃µν =

1
2
εµνρσ Fρσ is up to a sign equal to the field strength itself.

In the spirit of mathematical literature mainly (anti) self-dual gauge fields are
considered in this work. Of main interest are the classical solutions of SU(3) Yang-
Mills theory at finite temperature. This corresponds to S1× � 3 as the base space of
the gauge fields. Self-dual or anti self-dual gauge connections for finite temperature
are called calorons. The analytical knowledge of the caloron moduli space or pa-
rameter space regarding classical solutions with non-trivial holonomy was extended
short time ago by Kraan-van Baal and Lee-Lu [20, 21]. The description is a subject
of current investigations, both from a numerical [25, 29] and an analytical [24, 44]
point of view. The ansatz of this work is to obtain classical gauge fields on the
lattice by relaxing the fields using the cooling method. This makes it possible to
obtain all classical solutions which are compatible with the boundary conditions,
are numerically stable on the discretised space time and which are tolerated by the
cooling method.

Within this framework it is not possible to obtain analytic expressions but this is
also not the purpose of this study. Rather the moduli space of classical solutions can
be explored and checked whether the analytical description of classical solutions is
complete and understood. It is argued that the description in terms of calorons with
trivial holonomy is incomplete and should be extended for a semiclassical description
just below the deconfinement transition.

To accomplish this task gauge invariant quantities, which show a characteristic
behaviour for the different classes of classical solutions, are studied and compared to
the known analytical formulae. The quantities which are used here are the topolog-
ical charge Q, the action S, the Polyakov loop P and the spectrum of the massless
Dirac operator with the background field Aµ. These quantities also need to be in-
troduced on the lattice, but their significance and definition is underlined here. The
Yang-Mills action was already introduced. Like in quantum mechanics the pseudo-
particle solutions are localised and will show up as a peak in the action density. For
(anti) self-dual gauge fields the action is proportional to the topological charge

Q[Aµ] := −
1

32π2

∫
d4x tr

(
F̃µν(x) Fµν(x)

)
∈ � . (3.4)

The topological charge is an integer for every smooth, but not necessarily classi-
cal, gauge field if only some weak conditions hold1. In this case Q just represents
the mapping degree from the base space to the group space and gives, properly
normalised, an integer.

1For example finite action is sufficient for � 4.
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For finite temperature the Polyakov loop operator

P(~x) := P.O. exp

[∫ β

0

A0(τ, ~x) dτ

]
(3.5)

characterises classical gauge fields. Since the Polyakov loop transforms under a
gauge transformation as Ω†(x) P(~x) Ω(x+ βt̂) the trace

P (~x) :=
1

3
tr (P(~x)) (3.6)

is invariant under gauge transformations. The holonomy in the periodic gauge is
defined as

P∞ := lim
|~x|→∞

P(~x) = Ω†(~x, 0) exp [2πi diag(µ1, µ2, µ3)] Ω(~x, β). (3.7)

The eigenvalues {µm} and the trace P∞ := tr (P∞) /3 of P∞ are gauge invariant.
Topological properties of a gauge field are also encoded in the spectrum of the
massless Dirac operator. The massless Dirac operator in the background of a gauge
field Aµ is defined

/D := γµ (∂µ + Aµ(x)) . (3.8)

The operator /D acts on spinor fields ψ(x) which carry a further spinor and a colour
index. For finite temperature QCD the spinor fields have to obey anti-periodic
boundary conditions. However, as a diagnostic tool for gluodynamics the influence
of temporal fermionic boundary conditions

ψ(x+ βt̂) = exp [2πiξ]ψ(x) (3.9)

on the spectrum can be studied. Like in the quantum mechanical example especially
the zero-modes ψ(0)(x) of the Dirac operator are interesting to study. Since γ5 anti-
commutes with the Dirac operator, the zero-modes can chosen to be eigenfunctions
of γ5 with eigenvalue γ5ψ

(0) = ±ψ(0). The number of eigenvalues with positive
(negative) γ5 eigenvalue are denoted by n+ (n−). The difference n− − n+, formally
known as the index of /D, can be written as −tr (γ5[U ]) = n−− n+ and is connected
to the topological charge Q by the famous Atiyah-Singer index theorem [45]

n− − n+ = Q. (3.10)

The trace is to be taken over spinor, colour and spacetime indices of the zero-
modes of the Dirac operator /D. In order to study localisation properties of classical
solutions it is interesting to study the zero-mode density ρ = ψ†ψ and the chiral
density χ = ψ†γ5ψ of the zero-mode. With the normalised action density s(x) and
topological density q(x)

s(x)

S0
:= − 1

32π2
tr (FµνFµν) q(x) := − 1

32π2
tr
(
FµνF̃µν

)
(3.11)

and the three-dimensional Polyakov loop these densities can be used to pinpoint
a localised pseudo-particle solution of classical equation of motions and to classify
classical gauge fields.

The next sections give an overview about the analytical knowledge of classical
solutions with trivial and non-trivial holonomy. The expressions for the gauge fields
are restricted to SU(2), where a uniform presentation is seeked.
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3.2 Calorons in SU(2)

The instanton solution was found in 1975 by Belavin, Polyakov, Schwartz and Tyup-
kin as a regular, non-trivial solution of Euclidean Yang-Mills theory with finite action
and topological charge Q = 1 [11]. The instanton is a localised pseudo-particle in� 4 and its existence results from the inequality between the action and topological
charge

S[Aµ] ≥
8π2

g2
|Q| Q[Aµ] ∈ � .

The inequality settles for an (anti) self-dual gauge field with topological charge Q
with S = |Q|S0. The action is quantised in units of S0 := 8π2/g2. An expression for
the gauge field in the singular gauge is given by

Aµ(x) =
τa
2
η̄aµν ∂ν ln

(
1 +

ρ2

(x− y)2
)

(3.12)

where the ’t Hooft symbols η̄aµν [46] and the generators τa/2 of the SU(2) algebra are
used. The 4 dimensional position is given by y = (t0, ~y) and the size of the instanton
is ρ. To have a uniform presentation of the gauge fields the following notation is
used

Aµ(x) =
τ3
2
η̄3µν ∂ν lnφ+

1

2
φ Re

(
(η̄1µν − iη̄2µν)(τ1 + iτ2)∂νχ

)
. (3.13)

With these definition the instanton gauge field is expressed through

φ(x) =
ψ(x)

ψ̂(x)
= 1 +

ρ2

(x− x0)2

ψ(x) = 2π2
(
(x− y)2 + ρ2

)
, ψ̂(x) = 2π2(x− y)2

χ(x) = 1− 1

φ
=

2π2ρ2

ψ
(3.14)

The caloron with trivial holonomy was found by Harrington and Shepard by putting
a chain of instantons with same colour orientation onto

� 4 with same spatial po-
sitions but separated by β in time [18]. The periodic solution can be written as a
generalisation of Fig. 3.14.

φ = 1 +
∞∑

k=−∞

ρ2

(~x− ~y)2 − (x4 − (t0 + kβ))2

= 1 +
πρ2

βr

sinh(2πr/β)

cosh(2πr/β)− cos(2πt/β)
(3.15)

with the abbreviation r = |~x − ~y| and t = x0 − t0. The periodicity of this solution
is β = T−1. For simplicity β = 1 is set throughout the following formulas. The
potentials for the caloron with trivial holonomy are then given by
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φ(x) =
ψ(x)

ψ̂(x)
= 1 +

πρ2

r

sinh(2πr)

cosh(2πr)− cos(2πt)
,

ψ(x) = cosh(2πr)− cos(2πt)− πρ2

r
sinh(2πr), ψ̂(x) = cosh(2πr)− cos(2πt),

χ(x) = 1− 1

φ
=
πρ2 sinh(2πr)

rψ
. (3.16)

The asymptotic Polyakov loop reaches P∞ = � and the Polyakov loop at the position
of the caloron takes the value P(~y) = − � . Classical solutions given until here are
described in terms of 5 parameters. An additional rotation in colour space can be
interpreted as a global gauge transformation. As soon as one deals with multi-
instanton solutions these degrees of freedom become important.

Atiyah et. al. [47] created a framework for the construction of generic (anti)
self-dual fields with arbitrary topological charge, known as ADHM construction.
Due to the ADHM formalism the complete construction of instantons is in principle
reduced to some linear algebra but the moduli space of instantons is only known for a
limited number of spaces. Hence it is particular interesting to explore the parameter
space of classical solution also from the numerical point of view. In the case of
SU(2) they predict (anti) self-dual gauge fields with topological charge Q which
depend on 8|Q| parameters from parameter counting arguments. These parameters
might be interpreted as position, size and colour orientation. But the instantons,
lined up to build the Harrington-Shepard caloron, have the same colour orientation.
The generalisation for |Q| = 1 is to introduce a relative colour rotation 4πω. This
parameter ω is actually given by the holonomy P∞ = exp [2πiωτ3] of the SU(2)
gauge field. In contrast to the calorons with trivial holonomy, classical solutions
with non-trivial holonomy where constructed only relatively recently [20, 21]. This
solution is parametrised by the potentials

φ(x) =
ψ

ψ̂
, χ = e4πitω

πρ2

ψ

{
e−2πits−1 sinh(4πsω) + r−1 sinh(4πrω̄)

}
, (3.17)

ψ(x) = cosh(4πrω̄) cosh(4πsω) +
(r2 + s2 + π2ρ4)

2rs
sinh(4πrω̄) sinh(4πsω)− cos(2πt)

+πρ2
{
s−1 sinh(4πsω) cosh(4πrω̄) + r−1 sinh(4πrω̄) cosh(4πsω)

}
,

ψ̂(x) = cosh(4πrω̄) cosh(4πsω) +
(r2 + s2 − π2ρ4)

2rs
sinh(4πrω̄) sinh(4πsω)− cos(2πt).

This expression is in the so-called algebraic gauge Aµ(~x, t + β) = P∞Aµ(~x, t)P∞†.
Using a non-periodic gauge transformation one can express the gauge field in the
periodic gauge using χ̃ = e−4πitωχ

Aµ =
τ3
2
η̄3µν∂ν lnφ+

φ

2
Re
(
(η̄1µν − iη̄2µν)(τ1 + iτ2)(∂ν + 4πiωδν0)χ̃

)
+δµ02πiωτ3. (3.18)

The holonomy parameters ω and ω̄ in this formula are related by ω̄ = 1/2 − ω
and 0 ≤ ω ≤ 1/2. The distances to the constituent cores are r = |~x − ~y1| and
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s = |~x− ~y2| and the distance between the constituents is πρ2/β = d = |~y1 − ~y2|. In
the limit ω → 0 or ω̄ → 0 the Harrington-Shepard caloron of Eq. 3.16 is obtained. If
the centres are well separated d À 1 one will obtain two static constituents, where
ω/8π2 and ω̄/8π2 are the masses of the constituents. The action density for all
previous solutions is given by the formula

s(x) = −1

2
∂2∂2 lnψ(x). (3.19)
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Figure 3.1: action densities of an BPST instanton (left) and for an Harrington-
Shepard caloron (right) in the z − t plane with x = y = 0; (ρ = 0.8β for caloron).
(figure taken from [23])

Figure 3.2: action density (logarithmic scale) of a SU(2) caloron with non-trivial
holonomy µ2 = µ1 = 0.125 ρ = 0.8, 1.2, 1.6β (left,right,middle) (figure taken from
[48])

The action density of the instanton solution is O(4) symmetric solution while the
Harrington-Shepard caloron only has O(3) symmetry (see Fig. 3.1). The KvBLL
calorons with non-trivial holonomy, are even less symmetric in the generic case.
The action-density of the caloron with non-trivial holonomy in Fig. 3.2 shows a
dissociation into constituents.
This short overview for SU(2) might have given the impression, that the moduli
space for the investigation of SU(3) gauge fields with |Q| = 1 is known now. But
this is not the case since the general solution for SU(3) cannot be described in terms
of the SU(2) caloron, but it is contained in a suitable limit. The SU(3) caloron is
not just an embedding but an extension of the SU(2) caloron solution.

That is the reason why it is also necessary to analyse the SU(3) KvBLL caloron
on its own.
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3.3 Calorons in SU(3)

The SU(3) |Q| = 1 caloron depends on 12 parameters [49, 50]. These are three po-
sitions ~yn (9 parameter) of the so-called constituent monopoles and the three eigen-
values of the asymptotic holonomy µ1,2,3 (2 independent parameter). The missing
parameter is a shift is the S1 coordinate of the caloron (1 parameter). Coming from
the abstract ADHM construction these parameter do not need to have an obvious
interpretation in terms of shape parameters of the caloron, like it is the case for
the BPST instanton. However, if the constituent monopoles are well separated, the
constituent positions ~yn can be identified by one of the following criteria [51]:

1. Spatial points ~x where the eigenvalues of the Polyakov loop P(~x) coincide.

2. The centres of mass of (spherical) lumps of action.

3. As Abelian monopoles, e.g. as a defect of the maximal Abelian gauge.

In this study extensive use of the first criterion is made since it allows to detect
several monopoles inside one (anti)self-dual lump of action. For definiteness the
eigenvalues of the asymptotic holonomy P∞ ' diag(e2πiµ1 , e2πiµ2 , e2πiµ3) are ordered
µ1 ≤ µ2 ≤ µ3 ≤ µ4 with µ4 := 1+ µ1 and are normalised

∑3
n=1 µn = 0. This ensures

that the masses 8π2νn, defined by νn :=µn+1 − µn, add up to one instanton unit.
If two eigenvalues of the asymptotic holonomy coincide, one constituent becomes
massless and the SU(2) KvBLL caloron is recovered. In the case of three coinciding
eigenvalue the asymptotic holonomy is in the center of SU(3) and two constituents
are massless. In this limit the ordinary Harrington-Shepard caloron is obtained. In
case of SU(2) the two eigenvalues of P degenerate only for P = ± � , which marks
the constituent position ~yn by P (~y) = ±1 then. The range of the trace P of the
SU(3) Polyakov loop in the the complex plane is shown in Fig. 3.3.
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Figure 3.3: Polyakov loop in the complex plane; schematic distribution of Polyakov
loop for a caloron with trivial (left) and non-trivial (right) asymptotic holonomy

If two of the eigenvalues coincide the value of the trace will lie on the boundary of the
triangle. If the holonomy P∞ is in the centre Z(3) = { � , e±2πi/3} of SU(3), the value
of its trace P∞ will lie on one of the outer edges of the triangle and the holonomy is
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said to be trivial. The case tr (P∞) = 0 (filled circle in right figure) is the so-called
maximally non-trivial holonomy. The Polyakov loop, calculated for the analytic
SU(3) caloron gauge field with separated monopole constituents, degenerates at the
positions of the constituent monopoles [52] ~yn with

P (~y1) = diag( e−πiµ3 , e−πiµ3 , e2πiµ3),

P (~y2) = diag( e2πiµ1 , e−πiµ1 , e−πiµ1), (3.20)

P (~y3) = diag(−e−πiµ2 , e2πiµ2 ,−e−πiµ2).
In Fig. 3.3 the asymptotic holonomy of trivial holonomy (left) and maximally non-
trivial holonomy (right) and the Polyakov loop at the constituent positions is shown
by the black and white circles. The (left) plot in Fig. 3.3 sketches the distribution
of the Polyakov loop for an embedded Harrington-Shepard caloron while the right
is a SU(3) caloron with maximally non-trivial holonomy. For SU(2) it is known
that the points where the eigenvalues of P coincide will shift outwards from the
constituent positions, while the centres of mass shifts inwards (e.g. [52] Fig. 2).
Hence the correspondence between the position of a constituent monopole and the
position where P degenerates is not exact.

The construction of the |Q| = 1 KvBLL caloron also provides an analytic formula
for the action density for SU(N) in general. In particular the caloron potential ψ(x)
for SU(3), which is needed to construct action density according to Eq. 3.19, is
expressed

ψ(x) :=
1

2
tr (A3A2A1)− cos(2πt/β), (3.21)

Am :=
1

rm

(
rm |~ρm+1|
0 rm+1

)(
cosh(2πνmrm/β) sinh(2πνmrm/β)
sinh(2πνmrm/β) cosh(2πνmrm/β)

)

with the definitions rm ≡ |~x − ~ym| and ~ρm ≡ ~ym − ~ym−1. It is sufficient that two
constituents are separated, that cos(2πt/β) in ψ(x) can be neglected and the first
term dominates the action Eq. 3.19. In this limit the caloron becomes static. If all
distances between the constituents ρm are small in units of β the action density is
time-dependent. By setting ~ym+1 = ~ym one can obtain the limit (at least for the
action density) of a SU(2) caloron. In Eq. 3.21 one obtains Am+1[νm+1]Am[νm] =
Am+1[νm+ νm+1], which describes only a single constituent with the combined mass
8π2(νm + νm+1). For the scalar density of the fermionic zero-modes one also has a
compact expression for all SU(N) calorons. This formula reads

ψ†z(x)ψz(x) = −
1

4π2
∂2f̂x(z, z), (3.22)

where f̂(z, z′) is the Green’s function, that plays a role in the construction of
calorons, and z the fermionic boundary condition ψz(x + β 1̂) = e−2πizψz(x). An
exact expression for the Green’s functions for an arbitrary SU(N) caloron with
|Q| = 1 can be given in a short form [53]. For z = z′ and if ~x is close to ~ym and
away from all other constituents, f̂ simplifies for z ∈ [µm, µm+1] to

f̂x(z, z) =
2π sinh(2π rm(z − µm)) sinh(2π rm(µm+1 − z))

rm sinh(2πνm rm)
. (3.23)
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The zero-mode is maximally localised for z = (µm+µm+1)/2 on the mth constituent
and is static, provided the constituents are separated. For further reading about
calorons consider the mathematical literature [20, 21, 44, 54–56].

3.4 Instanton model

In this section the current state and the history of the instanton model, especially for
finite temperature, is reviewed. Shortly after the discovery of the BPST instanton
’t Hooft performed the single loop calculation [46] of the single instanton amplitude.
Starting from a SU(2) gauge field theory with spinors and scalars, incorporated in
the Lagrangian

L = −1

4
F a
µνF

a
µν −Dµφ

∗Dµφ− ψ̄ /Dψ, (3.24)

he calculated the vacuum-to-vacuum amplitude in the background of an instanton.
With a classical solution Acl

µ at hand the steps to be taken are analogous to the
quantum mechanical calculation. The gauge field in Eq. 3.24 is replaced by Aµ →
Acl
µ + δAµ. The integrations over fluctuations, which correspond to infinitesimal

parameter changes of the instanton, are replaced by collective coordinates and the
action, here restricted to the Yang-Mills part Eq. 3.2. The action is expanded up to
second order

S[Acl
µ + δAµ] =

8π2

g2
+

1

2

∫
d4x d4y δAµ(x)Mµν(x− y) δAν(y) +O(δA3).

Again the first derivative term has dropped out because Acl
µ is a solution of the equa-

tions of motion. One normalises the transition amplitude to the free one, regularises
the divergent part of the quadratic fluctuation calculation2 and separately treats
the zero-modes. Due to the gauge freedom one has to account also for zero-modes
which correspond to gauge transformations. The result for the instanton amplitude,
expressed as an integral over collective coordinates, is

ZI =
∫
d4y dρ dΩ(Nc) d(ρ) with d(ρ) ∝ 1

ρ5
(Λ ρ)

11
3
Nc− 2

3
Nf . (3.25)

Integrating over the instanton positions gives a volume factor, which was also en-
countered in the integration over kink positions, and the contribution from instanton
orientations remains finite, since the gauge group is compact

∫
dΩ = 1. The inte-

gral over the instanton sizes suppresses small instantons and unfortunately strongly
diverges for large values of ρ. To have a meaningful result one must find a way to
cut the instanton size distribution d(ρ). This is qualitatively new in comparison
with the quantum mechanical kink-gas, where the kinks had an intrinsic scale and
the interaction could be neglected for a dilute gas of pseudo-particles. But in QCD
there is no coupling that by itself determines the diluteness of instantons. Anyway, a

2in this way a cut-off Λ and a scale enters the calculation
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single instanton is not relevant for the infinite volume. An ensemble of instanton and
anti-instantons is more likely to represent the QCD vacuum. This might also provide
a mechanism to solve the problem of the ρ integration, although a superposition of
instantons and anti-instantons is no strict solution of the equation of motion. The
idea of that vacuum structure was developed by Callan et.al. [7], who introduced
a sharp infrared cut-off ρc to render the ρ integration finite. This cut-off only had
to be sufficiently small in order to justify a dilute gas approximation by a small
packing fraction. There has been criticism that such a cut-off violates symmetries
of the Yang-Mills theory and certain low energy theorems and its appears arbitrary.
The ambiguity in choosing some cut-off was overcome by the development of a self-
consistent way to deal with an interaction Sint = S(AIA

µ ) − 2S0 between instantons
and anti-instantons [8–10] to regularise the integration. This method seems to be
more natural. The action of an overlapping instanton-antiinstanton pair will deviate
from 2S0 since their superposition is no solution of the equation of motion then.

The approach of [8, 9] was to consider the statistical mechanics of an instanton-
antiinstanton gas, whose interactions are of a hard core type for small distances and
of dipole type, actually proposed by [7], for large distances. The hard core interaction
makes the ρ distribution finite ranged such that the partition sum is reasonably
defined. In [10] the partition sum has been estimated using an trial function n(ρ)
to replace the d(ρ) distribution. From a variational principle δ lnZ/δn = 0 they
obtained the form

n(ρ) = d(ρ) exp
[
−const n̄ ρ̄2 ρ2

]
, (3.26)

depending on the actual size, the average size squared and average density. The pref-
actor d(ρ) from ’t Hoofts result is an upper bound for the instanton density. The
interaction is repulsive in the average. Therefore, in the mean field approximation,
it stabilises the ρ distribution. These models finally served to encourage the devel-
opment of the random instanton liquid model for T = 0, which is characterised by a
sharp ρ distribution around ρ̄ ≈ 0.3− 0.4 fm and an instanton density n̄ ≈ 1 fm−4.
These parameter enter the instanton gas model

n(ρ) = n̄ δ(ρ− ρ̄). (3.27)

further developed by Shuryak [6]. There were many attempts to prove the instanton
liquid model on the lattice, i.e. to obtain phenomenological parameters ρ̄ and n̄,
compatible with the phenomenological expectation. Contrary to the topological
susceptibility χt := 〈Q2〉 /V , which was confirmed very robustly, size and density
and the very instanton nature of topological lumps remained strongly subjective [57,
58]. Introducing fermionic degrees of freedom to the theory results in an attractive
instanton-antiinstanton interaction by quark exchange, an effect that is also seen in
QCD lattice simulations [59].

However, this work deals with the structure of the vacuum at finite temperature
T := β−1. Since finite temperature sets a scale, the temperature itself, this might
provide a natural cut-off for the maximal size of calorons. At a classical level the
action of an caloron does not depend on the temperature and this effect can only
enter by computation the quantum corrections. Indeed, Gross et.al. [19] performed
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this calculations analogously to [46] and showed that the size distribution

n(ρ, T ) = n(ρ, T = 0) exp

[
−1

3
(2Nc +Nf )(πρT )

2 −B(πρλ)

]
(3.28)

is exponentially suppressed for large calorons ρÀ T−1. The authors already realised
the possibility of fields, which possess a non-trivial holonomy or have a non-integer
topological charge. However, expanding these fields in powers of A0 shows that they
are suppressed by e−Seff with a 1-loop effective action of the form [19, 60, 61]

Seff =

∫
d4x

[
P (A0) + E2 fE(A0) +B2 fB(A0) + higher derivatives

]

where away from the lumps of action the quantity

P =
v2v̄2

3T (2π)2

∣∣∣∣
mod 2πT

with cos
( v

2T

)
:=P∞(A0) (3.29)

alone determines the probability. In Eq. 3.29 v̄ = 2πT−v is used in order to get it in
the more convenient form [22]. The zeros of the perturbative potential energy P (A0)
correspond to trivial asymptotic holonomy P∞ = ±1. Fields with non-trivial holon-
omy have an additional energy proportional to the 3d volume V and are strongly
suppressed. Hence only fields with trivial holonomy contribute.

This was the reason to restrict the calculation in [19] to calorons with trivial
asymptotic holonomy. For this case the result Eq. 3.28 can be trusted for T > Tcrit
as long as the caloron gas is dilute. One could use this to fit the T dependence of
the topological susceptibility χt. From lattice simulations with finite temperature it
is known [62] that χt(T ) drops, continuously and fast, to zero above the critical tem-
perature and that it is constant in the confined phase T < Tcrit. Therefore Eq. 3.28
cannot be right in the confined phase.

However, approaching and crossing the critical temperature from above, the finite
temperature gluodynamics rearranges to the disordered phase. So one can suspect
that calorons with non-trivial holonomy, the KvBLL calorons, become the relevant
degrees of freedom to describe the vacuum structure and, in a self-consistent manner,
create a minimum of Seff at P∞ = 0. The argument, that non-trivial holonomy can
become important for certain temperatures and the suppression Eq. 3.29 might be
overruled by an ensemble of calorons with non-trivial holonomy, was first raised
by Diakonov in [63]. Only very recently the vacuum-to-vacuum amplitude has been
calculated by Diakonov et.al. [22]. The authors give an expression for the amplitude
in the case of large constituent separations, d À T−1. Written in terms of the 6
location and the holonomy parameters, specified for the SU(2) KvBLL caloron
(dyon-dyon) gauge field, the amplitude has the form

ZDD =

∫
d3y1 d

3y2 T
6C

(
8π2

g2

)4(
Λeγ5

4πT

)22/3

(Td)−5/3
(
2π +

vv̄

T
d
)

× (vd+ 1)
4v
3πT

−1 (v̄d+ 1)
4v̄
3πT

−1 exp [−V P (v)− 2dπ P ′′(v)] (3.30)
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This formula permits to interpret the sign of P ′′ as the sign of the linear rising
part of the potential between dyons. If the holonomy is not far from being triv-
ial, 0.788 < |P∞| ≤ 1, ensuring that P ′′(v) > 0, the dyons attract each other, the
non-dissociated caloron is stable and the converging integral defines the fugacity of
a complete caloron. However, for |P∞| < 0.788 the sign of P ′′(v) changes, the inter-
action between dyons becomes repulsive and the integration over dyon distances in
Eq. 3.30 diverges. At this point the integration has to be replaced by some statis-
tical mechanics of an interacting dyon-antidyon gas or liquid. This was concluded
in [23] together with the important observation that below Tcrit = 1.125Λ trivial
holonomy becomes unstable, as shown in Fig. 3.4. This is an attractive scenario for
the deconfinement-confinement phase transition.
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Figure 3.4: free energy of non-interacting caloron gas in units of T 3V for T = 1.3Λ
(dotted), T = 1.125Λ (solid) and T = 1.05Λ (dashed) as a function of v in units of
2πT (figure taken from [23])

The behaviour of SU(3) calorons with non-trivial holonomy is qualitatively dif-
ferent from SU(2). For example the Polyakov loop of the SU(3) theory takes values
in the complex plane and consists of up to three monopoles. From this point of view
it is interesting to study classical fields on their own. In this sense this work might,
on the one hand, help to understand the moduli space of KvBLL calorons, on the
other hand, it might be technical interesting to develop lattice techniques to study
the caloron content which can be applied to cooled, smeared or even Monte-Carlo
fields itself. For this purpose the next chapter shortly describes the lattice method
to obtain the classical fields from a Monte-Carlo ensemble. Furthermore the observ-
ables, that where said to characterise the caloron and described in the beginning of
this chapter, are defined for the finite lattice.



Chapter 4

QCD on the lattice

4.1 Functional integral for lattice QCD

The numerical analysis of classical gauge fields is performed in the lattice gauge
theory approach. Lattice gauge theory is a manifestly gauge invariant approach,
which is suitable for studying non-perturbative QCD. Here the fundamental gauge
fields are SU(N) matrices1 , which are defined on bonds between neighbours of a
four-dimensional cubic lattice. The gauge connection (parallel transporter) between
a point x and x + µ̂ is denoted by Ux,µ and is called link variable. It is related to
the continuum gauge field Aµ(x) by

Ux,µ := P.O. exp

[∫ a

0

dz Aµ(x+ µ̂z)

]
(4.1)

where the symbol P.O. denotes the path ordering. The backward transporter is just
identified with Ux,−ν = U †x−ν̂,ν and the lattice the gauge fields generally obey the
periodic boundary conditions in all directions Ux+aNν ν̂,µ ≡ Ux,µ. Under a general
gauge transformation Ω(x) ∈ SU(N) the gauge connection Eq. 4.1 transforms as

Ux,µ
Ω7→ U ′x,µ = Ω†(x) Ux,µ Ω(x+ µ̂).

The simplest non-trivial gauge invariant quantity, which can be constructed on such
a lattice is the plaquette. It is calculated by

U2 = Ux,νUx+ν,µU
†
x+µ,νU

†
x,µ.

The simplest action of the gauge field encoded in the links Eq. 4.1 was proposed by
Wilson [64] for the pure gauge sector and is also known as the (standard) Wilson
plaquette action

Sg[U ] = β
∑

2

1

N
Re tr ( � − U2) for SU(N). (4.2)

With the identification β = 2N/g2 one can recover (in the continuum limit a → 0)
the continuum action

1SU(N) is the matrix group, such that U ∈ GL(N, � ) fulfils UU † = � and detU = 1

33
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SYM [Aµ] = −
2

g2

∫
d4x tr (Fµν(x)Fµν(x)) = Sg[U ] +O(a5).

In order to quantise this gauge theory, a functional integral (path integral) for these
fields has to be defined. The formal expression for the partition function of the
system is

Z =

∫
DAµ exp [−S[Aµ]]

which is an analogue to the statistical weight in a thermodynamical model. The
expectation value of some observable M , which is a functional of Aµ, is then

〈M〉 = 1

Z

∫
DAµ M [Aµ] exp [−S[Aµ]] .

This expression is a highly dimensional integral over compact SU(N) groups in the
case of the lattice gauge theory. Corresponding expectation values for a function
M(Ux,µ) of the lattice gauge fields read

〈M〉 = 1

Z

∫ ∏

x,µ

dUx,µ M(Ux,µ) exp [−Sg[U ]] with Z =

∫ ∏

x,µ

dUx,µ exp [−Sg[U ]] .

The unique integration measure dU for an integration in SU(N) group space is the
Haar measure. For a Monte-Carlo study with importance sampling, the gauge fields
have to be generated according to the Haar measure dU and the weight factor e−S[U ]

that

P [U ] = Z−1 exp [−Sg[U ]] dU.
For SU(N) this can be effectively implemented using a pseudoheatbath algorithm
[65, 66], that works in subgroups [67] of SU(N). Since this study is restricted
to N = 3 three SU(2) subgroups were used for simulation. The main part of this
investigation of SU(3) lattice gauge theory was done for β = 5.65, which corresponds
to confined phase, on a 4 × 123 lattice. For this setting one can measure e.g. the
plaquette expectation value 〈Re tr (( � − U2)/3)〉 = 0.537783(8).

4.2 QCD at finite temperature

The classical theory has no intrinsic scale parameter. Therefore one has no idea
of a lattice spacing a in the classical Yang-Mills theory. Therefore, in the classical
theory the notion finite temperature refers to S1 × � 3 as the domain of definition
for the periodic gauge fields. On the lattice this can be realised by choosing some
asymmetric Nt ×N3

s lattice, with Ns À Nt. In quantised finite temperature lattice
gauge theory finite temperature is attained by sending L = Nsa to infinity while the
temperature T = (Nta)

−1 remains fixed at some finite value. The lattice spacing a(β)
depends on the bare coupling β and has to be phenomenologically determined from
some correlation function. Pure SU(3) Yang-Mills theory with finite temperature
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has an exact global Z(3) symmetry. The notion Z(3) refers to the centre of the
group SU(3), which is the largest subgroup that commutes with all elements of
SU(3). This group only consists of only three elements, which can be written as

SU(3) ⊃ Z(3) 3 z = exp
[
2πi

m

3

]
� m = {0, 1, 2}. (4.3)

On the lattice this symmetry can be seen as follows. Multiplying all links in t
direction in a t = const. plane with a center element z leaves the action invariant
since the plaquette variables are not changed

U ′2 = (zU1)U2(zU3)
†U †4 = |z|2U1U2U †3U †4 = U2.

Each closed loop crosses a t = const plane either twice or not at all! The same holds
for any other observable built from closed loops. However if an observable is made
gauge invariant only due to the temporal periodic boundary conditions, it will pick
up a phase factor z only once since it crosses this t plane only once. This applies for
the Polyakov loop, which is the order parameter of this symmetry. On the lattice
with Nt gauge links in the temporal direction the Polyakov loop is defined

P(~x) :=
Nt−1∏

n=0

Ux+nt̂,t P (~x) :=
1

3
tr P(~x). (4.4)

Under a gauge transformation P(~x) transforms as Ω†(0, ~x)P(~x)Ω(Nt, ~x) which, for
periodic gauge transformations, conserves the trace of P(~x). For the Z(3) symme-
try transformation, described above, the Polyakov loop becomes z · P(~x). For the
statistical (quantised) system this symmetry implies 〈P 〉 ≡ 0 for all β if there are
no external sources present. However, this symmetry is spontaneously broken in the
deconfined phase for β > βcrit. A good indicator for this first order phase transition
(for SU(3)) is the spatially averaged modulus of the Polyakov loop

〈|P |〉 :=
〈
V −1

∣∣∣∣∣
∑

~x

P (~x)

∣∣∣∣∣

〉
. (4.5)

The β dependence of 〈|P |〉 for several lattices is shown in Fig. 4.1. In the case of
Nt = 4, 6 the critical values βcrit = 5.6925(2), 5.8941(5) [68] for the Wilson plaquette
action (dashed line) agree qualitatively with our measurements. For β < βcrit the
symmetry 〈|P |〉 = 0 is restored up to finite size effects and above the critical coupling
the 〈|P |〉 has a non-vanishing expectation value. Our motivation to work just below
the deconfinement transition is to ensure, that non-trivial holonomy dominates the
classical fields.
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Figure 4.1: β dependence of 〈|P |〉 for (4, 5, 6) × 123 lattices (left) and topological
susceptibility for finite temperature pure SU(3) theory, taken from Di Giacomo et.al
[62] (right)

The topological susceptibility falls rapidly to zero above the critical temperature.
Hence topological non-trivial fields are suppressed for T À Tcrit. This effect is seen
in the topological charge distribution Fig. 4.2 after 50 cooling steps. The fields
shown there were generated in the confined β = 5.6 and deconfined β = 5.8 phase.
Therefore a large scale statistics of cooled fields with non-trivial holonomy and from
various topological sectors should start in the confined phase.

One can use the two-loop formula for asymptotic scaling as a crude approxima-
tion to determine the temperature scale T/Tcrit. The scaling of a(β) Λ = R(β) for
sufficient large β is given by

R(β) =

(
β

2Nb0

)b1/(2 b20)

exp

[
− β

4Nb0

]

with the renormalisation coefficients b0 =
11N
48π2

and b1 =
34
3

(
N

16π2

)2
. Deviations from

scaling can be included by an additional function λ(β) with λ(β) := aΛ/R(β) [68].
With the data from [68], extrapolated back to β = 5.65, one obtains T/Tcrit ≈ 0.91
(Nt = 4) and T/Tcrit ≈ 0.6 (Nt = 6).
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Figure 4.2: topological charge distribution for β = 5.6 and β = 5.8 for 4 × 123
lattice after 50 cooling steps
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4.3 Improved actions

To consider the impact of improved actions different definitions or gauge actions can
be used. We consider improved gauge actions with higher loop (irrelevant) operators
where the couplings ci can depend on the gauge coupling g or some external param-
eter ε. Until now only the plaquette U2 was introduced. The loops encountered in
the improved actions, to be introduced, are

R2 = 6

- -
?

¾¾
rectangle,

C2 = 6

©©*©©
-
?

©©¼©©¾
parallelogram and

S2 = 6

-

?

¾

2a× 2a square.

An ansatz for an improved action Simp with higher loop operators can be written
in the following form

Simp[U ] = −β
[
∑

µ>ν

c1
1

3
Re tr ( � − U2) + c2

1

3
Re tr ( � −R2)

+c4(ε)
1

3
Re tr ( � − S2) +

∑

µ>ν>σ

c3(g)
1

3
Re tr ( � − C2)

]
. (4.6)

One possible choice for a RG improved action is the tadpole improved Luescher-
Weisz action [69]. There the couplings depend on

〈
1
3
Re tr (U2)

〉
= u40(g) and addi-

tionally on α = −(ln u40)/3.06839 in the following form

c1 = 1, c2(g) = −
1

20u20
(1 + 0.4805α) , c3(g) = −

1

u20
0.03325α and c4 = 0.

This definition of an action is very costly and is not adjusted to improve the classical
properties of instantons. For this purpose first explorations with Luescher-Weisz
action were abandoned and the the so-called square action, where the couplings
depend on an adjustable parameter ε, was only used to cool equilibrium gauge fields

c1(ε) =
4− ε
3

, c2 = c3 = 0, c4(ε) =
ε− 1

48
. (4.7)

Using ε = 1 the standard Wilson plaquette action is obtained. With ε = 0 the
O(a2) tree level improved square action is obtained. For ε = −1 the action is the
so-called over-improved action and prevents instantons from shrinking of instantons
due to lattice discretisation artifacts [27]. First explorations started with Luescher-
Weisz action. Only the over-improved gauge action was helpful to circumvent the
shrinking of instantons due to artifacts of the gauge action. However, mainly the
Wilson gauge action was used in this work.
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4.4 Cooling methods

The equation of motion, that corresponds to one of these lattice actions, has to be
solved to obtain a classical gauge field. Since the equation of motion can be written
using an variational principle δS[U ] = 0 it is equivalent to look for local minima of
S[U ]. Throughout this work cooling with various definitions of actions was used.
For all cooling methods one uses the decomposition of the action

S[U ] = −Re tr
(
Ux,µM

†)+ rest, (4.8)

where the matrix M in Eq. 4.8 is called the staple of (x, µ) and ’rest’ is the part of
the action which does not depend on the link Ux,µ in question. The staples for the

Wilson action can be written as M =
∑

ν 6=µ Ux,νUx+ν,µU
†
x+µ,ν as shown in Fig. 4.3.

µx+

x

µx,U1cM = +
Ux,µ

Ux,µ

4cW =

x

x

Figure 4.3: staples for Wilson plaquette action (ε = 1) (left) and additional staples
for square action (ε = −1) (right)

An artificial dynamics is then introduced by replacing the old link Ux,µ by some
other SU(3) matrix U ′, for which S[U ′] < S[U ]. To have some definite scheme one
would use the maximal choice, that is the projection described in Appendix A. Hence
cooling with respect to Wilson plaquette action or over-improved square action is
achieved by replacing the link variable

Ux,µ → PSU(3) (M) or PSU(3) (M +W )

where PSU(3), the ReTrMax projection Eq. A.1, is used and the new link is replaced
immediately after the projection. In the heatbath of neighbouring links the replaced
link is a solution of the equation of motions. Iterating this over the whole lattice is
a so-called cooling step.

Another method to relax the gauge field is the APE-smearing. The original gauge
field W

(0)
x,µ :=Ux,µ is mapped to a gauge field W

(n)
x,µ by defining an APE-blocking step

W (n+1)
x,µ = PSU(3)

(
(1− α)W (n)

x,µ +
α

6

∑

±ν 6=±µ
W (n)

x,νW
(n)
x+ν,µW

†(n)
x+µ,ν

)
.

This blocking steps under-relaxes the change, that would be proposed by the cooling
step. Usually a small number of APE-blocking steps n = 10 is combined with
α = 0.45 to leave the long range structure of gauge fields intact. Since it under-
relaxes this method is not suitable to obtain classical solutions on the lattice but
to remove UV fluctuations from the gauge fields. Assuming one can implement the
elementary projection step, the cooling method is suited for all gauge actions, which
can be linearised in the elementary link variable. Classical solutions can be very
conveniently obtained by the cooling method.
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4.5 Detecting classical fields on the lattice

After having obtained classical gauge fields the main part of this work was to identify
and categorise these field configurations and their topology. In the beginning of the
last section the observables, which need to be measured, were introduced but need
to be defined on the lattice.

4.5.1 Gluonic observables on the lattice

The standard Wilson gauge action for SU(3) is is defined analogous to Eq. 4.2 as
Sg[U ] =

∑
2

β
3
Re tr ( � − U2). Averaging all possible loops Ux,µν in a µ − ν plane

which are attached to a certain point x point is called clover average of the loops at
x and is used to obtain a smoother definition of the action density2. For standard
Wilson gauge action this yields a definition for the local action density

sg(x) :=
1

12

∑

clover avg.
µ<ν

Re tr ( � − Ux,µν) . (4.9)

Fixing a µ−ν plane and calculating the clover averaged loops open at x and projected
to the algebra with Eq. 4.11 gives the naive definition of the field strength Fµν(x).
Since the topological charge derived from this expression strongly deviates from an
integer value, even for classical fields, this definition was not found sufficient to make
an analysis for higher charge sectors. For the measurements of topological properties
of classical fields with |Q| > 1 it was found crucial to use an improved operator for
the field strength [41].

Fµν(x) :=
∑

clover avg.

(
k1C

(1,1)
µν + k2C

(2,2)
µν + k3C

(1,2) + k4C
(1,3) + k5C

(3,3)
µν

)
algebra

(4.10)

The matrix C
(n,n)
µν is an n × n gauge invariant Wilson loop starting at the point x.

The subscript algebra denotes making the expression traceless and anti-hermitian.
This is also the standard procedure if one wants to extract the Aµ

a(x) from the Ux,µ
fields.

(U)algebra =
1

2

[(
U − U †

)
− 1

3
tr
(
U − U †

)]
(4.11)

With the choice of k5 = 1/90 the the 3-loop O(a4)-improved field-strength tensor is
obtained

k1 = 19/9− 55k5 = 3/2, k2 = 1/36− 16k5 = −3/20,
k3 = 64k5 − 32/45 = 0, k4 = 1/15− 6k5 = 0.

(4.12)

This definition is computationally cheaper compared to choices which employ all
coefficients and the topological charge, calculated from the improved field strength,
deviates O(10−3) from integer values in the case of a smooth gauge field. For equi-
librium fields the topological charge is not well-defined. The improved field strength
provides an improved definition for the action and the topological charge

2the β dependence of the action is omitted here
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S[U ]/S0 = − 1

8π2

∑

x

∑

µ<ν

3∑

i,j=1

F ij
µν(x)F

ji
µν(x) (4.13)

Q[U ] = − 1

8π2

∑

x

∑

µ<ν
ρ<σ

3∑

i,j=1

εµνρσ F
ij
µν(x)F

ji
ρσ(x) (4.14)

The field strength here is Eq. 4.10 with the couplings taken from Eq. 4.12 and the
definition of the topological charge according to Eq. 3.4. The field strength Fµν takes
it values in the fundamental representation of the SU(3) Lie algebra and is a 3× 3
complex matrix with the elements F ij

µν .
With the Polyakov loop operator Eq. 4.4 the asymptotic holonomy is defined

as follows. First the 4-dimensional action density s(x) is projected down two 3
dimension s(~x) by summing it over the 1st (temporal) direction s(~x) :=

∑
t s(t, ~x).

Ten percent of all points ~x in the volume with the smallest spatial action s(~x) are
defined as the asymptotic region V∞. The asymptotic holonomy is then calculated
by averaging3

P∞ :=
1

V∞

∑

~x ∈ V∞

P (~x) and (4.15)

P∞ := exp(2πi diag(µ∞1 , µ
∞
2 , µ

∞
3 )) with (4.16)

µ∞m :=
1

V∞

∑

~x ∈ V∞

µm(~x). (4.17)

The angles µm(~x) are just the eigenvalues of the Polyakov loop operator P(~x), defined
in Eq. 4.4. Certainly these eigenvalues are gauge invariant.

4.5.2 Fermionic observables on the lattice

As already mentioned, an important observable is the spectrum of the massless Dirac
operator. Here one is especially interested in the lowest eigenvalues and correspond-
ing eigenmodes of the Dirac operator with arbitrary temporal fermionic boundary
conditions

ψ(x+ β1̂) = exp [2πiξ]ψ(x). (4.18)

On the lattice the so called doubling problem occurs. Eigenmodes on the edge
of the Brillouin zone give rise to unphysical zero-momentum modes. Historically
the Wilson Dirac operator has been proposed to avoid doubling at the expense of
violating chiral symmetry explicitly. A further improvement with respect to O(a2)
corrections is the clover-improved Wilson-Dirac operator4, which is defined

M(x, y) = δx,y − κ
4∑

µ=1

[
( � − γµ) Ux,µ̂ δx+µ,y + ( � + γµ) U

†
x−µ,µ̂ δx−µ,y

]

/D(x, y) = M(x, y) +
i

2
κ csw σµν Fµν(x)δx,y with σµν =

i

2
[γµ, γν ] . (4.19)

3Note: This procedure makes only sense if the eigenvalues {µn} are sorted.
4colour and spinor indices are omitted
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For the massless and classical improved Dirac operator one has to chose the param-
eter κ = 1/8 (massless) and csw = 1 (tree level improved). In the case of finite
temperature it is interesting to study the dependency of the Dirac operator on the
temporal boundary condition Eq. 4.18. Chosing some boundary condition for the
improved Dirac operator induces a family of operators Eq. 4.20

/D
(ξ)
(x, y) ' /D(x, y) + γ0

2πiξ

β
δxy. (4.20)

This corresponds to the formula used in the construction of KvBLL calorons and
circumvents the boundary conditions by an extra term. Nevertheless, for this work
the boundary conditions are explicitly used by applying this phase factor to the
neighbour terms in Eq. 4.19. This operator, represented as a general complex N×N
matrix acts on complex vectors ψ by

( /D
(ξ)
ψ)rα(x) =

∑

y,s,β

/D
(ξ)
rα,sβ(x, y)ψsβ(y) (4.21)

where ψrα(x) is a complex field with four spinor indices α and 3 colour indices r
defined on the NtN

3
s points of the lattice. Hence the Dirac operator is a complex

N × N matrix with N = 12NtN
3
s . The computation of eigenvectors ψ(λ) and

eigenvalues and λ for the eigenvalue problem

/D
(ξ)
ψ(λ) = λψ(λ) (4.22)

is a large scale problem. For example one has N = 82944 for a 4×123 lattice or N =
576000 for a 6× 203 N = 576000 lattice. To solve this problem the ARPACK code
package [70], that uses the implicit restarted Arnoldi algorithm, is used to calculate

10-80 eigenvectors ψ(λ) and eigenvalues λ of /D
(ξ)

with the smallest modulus for
some fixed values of the boundary condition ξ. From the zero-modes the zero-mode
density ρ and the chiral density χ are computed to study localisation of topology.
On the lattice both quantities are defined by

ρ(x) :=
∑

a,k

ψ
(0)†
ak (x)ψ

(0)
ak (x) χ(x) :=

∑

a,k

(
ψ(0)†(x)γ5ψ

(0)(x)
)
ak
. (4.23)

The localisation of a normalised eigenmode is measured with the inverse participa-
tion ratio IPR which is defined as

IPR := V
∑

x

ρ(x)2 ∈ [1, V ] (4.24)

and ranges from 1 to V = NtN
3
s . This quantity was already used to study lo-

calisation eigenmodes of the Dirac operator [25]. For a maximally localised mode
ρ(x) = δx0,x one has IPR = V while it becomes IPR = 1 for a maximally spread
(constant) density ρ(x) = V −1. As already seen in the quantum mechanical model
the eigenmodes, that correspond to a symmetry5 of the pseudo-particle, are localised
while the continuum eigenmodes have IPR ≈ 1.

Now all observables, which are needed to investigate the semiclassical structure
of cooled gauge fields, is at our disposal and will be used in the next chapters.

5The symmetry is not obvious in this case.
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Classical solutions on the lattice -

examples

In this chapter the search for SU(3) lattice calorons is presented. Solutions of the
lattice equation of motions are obtained by cooling thermalised gauge fields and
compared with discretised analytic expressions for the KvBLL gauge field. The
observables, mentioned in the previous chapter, are computed for these fields and
tested for the typical behaviour of KvBLL calorons. The techniques and observables
developed in the present chapter also enter the statistical analysis of the next chapter.

5.1 Systematics of the investigation

To acquire classical solutions of Euclidean SU(3) Yang-Mills theory at finite tem-
perature, which are the subject of this study, lattice gauge fields are cooled with
over-improved and Wilson gauge action. The original gauge fields are generated
with standard Wilson gauge action at β = 5.65. This corresponds to confinement
close to the deconfinement phase transition T/Tcrit ≈ 0.91, 0.6 for Nt = 4, 6. In this
state the average Polyakov loop vanishes and remains so for a part of the cooling
history. The different lattice sizes 4 × 123, 6 × 123, 4 × 203, 6 × 203 and 124 are
chosen to study how the yield of classical configurations from cooling depends on
the lattice geometry.

Starting from the deconfined phase only fields with trivial asymptotic holonomy
are obtained by cooling if a suitable stopping criterion has applied. Our study here
is restricted to the confinement phase since the KvBLL solutions have generic non-
trivial asymptotic holonomy. To which extent a lattice gauge field can be regarded
classical is measured by the violation of (anti) self-duality δF , defined by

δF :=
1

32π2

∑

x

∣∣∣tr (FµνFµν)−
∣∣∣tr
(
Fµν F̃µν

)∣∣∣
∣∣∣ . (5.1)

For a self-dual or anti-selfdual gauge field, this quantity vanishes. Since this quantity
measures the local violation of (anti) self-duality also superpositions of self-dual and
anti-selfdual calorons may have small values of δF . So this criterion is found to
be equivalent to definitions of the violation of equation of motion used in previous

42
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works [29, 71] for SU(2). During the process of cooling δF , the action, the topological
charge and the non-staticity, which is defined as

δt :=
Nt

4

∑
x

∣∣s(x+ t̂)− s(x)
∣∣

∑
x s(x)

, (5.2)

are monitored. If the action density s(x) of a given gauge field only weakly depends
on t, the non-staticity is close to zero. Assuming that the gauge field has maximally
non-trivial holonomy at least two dyons can be distinguished by the two maxima of
the action density if the non-staticity is lower than the bifurcation value δ∗t = 0.27
for SU(2) and SU(3) [72]. Then if the non-staticity of the caloron with maximally
non-trivial holonomy is even smaller than δ∗∗t = 0.06 it is possible to see three
separated dyons in the analytical action profile for a SU(3) KvBLL caloron. These
branching points were calculated from the analytical formula for the action density
of the KvBLL caloron for a symmetric setup of constituents. The prefactor Nt/4 in
δt is chosen conventionally following the previous work for SU(2) which used Nt = 4
[29].

Excessive cooling with Wilson action will lead to the trivial vacuum S → 0 and
Q→ 0, apart from a few ultimately stable cases. That is why a stopping condition
for the cooling has to be introduced to define, when a gauge field is adequately
classical and to stop cooling. From the technical observables non-staticity δt and
the violation of (anti) self-duality two self-containing stopping conditions (A) and
(B) were formulated, with the goal to explore the moduli space of calorons as far as
possible. These conditions are

(A) stop the cooling if the violation of (anti) self-duality δF passes through a min-
imum and δF < 0.1 or

(B) stop the cooling if either the violation of (anti) self-duality passes through a
minimum or the non-staticity does, depending on what happens first. Addi-
tionally δF < 0.2 is required.

Both conditions (A) and (B) result in nearly (anti) self-dual gauge fields representing
various topological sectors. In particular, in most cases configurations with some
integer topological charge Q and action S ' S0|Q| are found.

The first stopping condition is the traditional choice. Cool the gauge field un-
til the equation of motion are fulfilled as good as possible and the violation of the
equation of motion is sufficiently small. There are some reasons that this stopping
condition might be too strict. Like in the kink-gas model superpositions of semi-
classical objects (kinks and anti-kink or instanton and anti-instanton) are no strict
solution of the equations of motion. Nevertheless they provide a realistic model of
the vacuum structure. On the other hand it is impossible to model the moduli space
for an infinite volume. The numerical investigation can only be done for a discrete
torus, where one can obtain a charge 1 solution only at the expense of violating the
(anti) self-duality [55]. Accepting a certain violation of the equation of motion is a
compromise between the moduli spaces of the torus and finite temperature S1× � 3.
Furthermore lattice artifacts of the action will bias the semiclassical content of fields.
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Hence one should not insist in perfect solutions to the equation of motion. Stopping
condition (B) tends to stop cooling in an earlier stage of cooling.

To characterise classical fields the observables introduced in Chapter 3 and Chap-
ter 4 are measured. The topological charge Q, the normalised action S/S0 and the
violation of (anti) self-duality characterise to which extent the field is classical and to
which topological sector Q it belongs. These quantities are derived from the O(a4)
improved field strength. A perfect (anti)self-dual solution has Q ∈ � , S = S0|Q|
and δF = 0. From the previously defined Polyakov loop P the holonomy P∞, the
positions ~yn and overall number of the constituent monopoles is determined.

The most robust definition of a constituent monopole is given with the help of the
Polyakov loop operator P(~y) ' diag(eiφ1(~y), eiφ2(~y), eiφ3(~y)). For sufficiently separated
constituents a monopole at ~y exists if two eigenvalues of P(~y) approach each other.
For the caloron solution in the continuum they would coincide. This definition is
still applicable to define monopoles if only a single peak is visible in the topological
charge or action density. In the numerical work a monopole is found by searching
for the local minimum ~y of the function f(~y) defined as follows

f(~y) := min
i,j
|eiφi(~y) − eiφj(~y)| (5.3)

in 3 dimensional space with the additional constraint

min
φ∈[0,2π)

∣∣P (~y)− (2eiφ + e−2iφ)/3
∣∣ < 0.05.

This constraint ensures that the eigenvalues are sufficiently degenerated and (ap-
proaching some φ) which guarantees that P (~x) is sufficiently close to the boundary
in Fig. 3.3.

For well separated constituents these positions can be compared with the local
maxima of the action density. To avoid spurious positions only maxima, which
have s(x) > 0.1maxy s(y) are considered. For all examples of this chapter and a
subset of the later ensembles the spectrum of the clover improved Dirac operator
with adjustable temporal boundary conditions was computed. Depending on the
fermionic boundary condition ξ ∈ [0, 1] the maxima of the zero-mode density and
the inverse participation ratio IPR are computed. These maxima can be compared
with the positions ~y, computed from P(~y). To compare with the analytical prediction
of the fermionic mode notice that z = 1− ξ. The zero-mode is localised on the mth

constituent for z ∈ (µm, µm+1) and delocalises for z ≈ µm. For consistency the index
theorem n− − n+ = Q is checked for all configurations. It is also instructive to
check the predicted interplay Eq. 3.21 between the asymptotic holonomy and the
monopole behaviour, known from the analytical solution for separated constituents.

In this chapter examples for topological charge |Q| = 1, 2 with either trivial or
maximally non-trivial holonomy are chosen as extremal cases of ’old’ Harrington-
Shepard versus ’new’ KvBLL calorons. Especially the property of the zero-mode
jumping is described with great care since recent investigations make use of this
criterion for thermalised gauge fields [25, 26].
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5.2 Constructed calorons with |Q| = 1

The presentation of KvBLL calorons is started by showing two lattice gauge fields,
which are obtained by putting the analytic solution Aµ(x) for a SU(3) charge 1
KvBLL caloron on the lattice [73]. For a generic gauge field Aµ link Ux,µ is con-
structed by a partitioning into N sub-links and approximately calculated by

Ux,µ :=PSU(3)( � + αAµ(x
′)) · · ·PSU(3)( � + αAµ(x

′ + (N − 1)αµ̂)). (5.4)

The abbreviation α = a/N , x′ = x + aµ̂/2 and the projection to the gauge group
PSU(3) are used for the evaluation of the sub-links. This procedure is performed for
all links on a 6 × 203 lattice, where the links conventionally have to obey periodic
boundary conditions for all directions. Since this definitely not the case for the
analytic formula Aµ, the discretised lattice field has to be adapted to the periodic
boundary conditions by making O(10) cooling steps. The analytical formula simpli-
fies when all monopole constituents are placed in the x− y plane. The parameters
which are used for the caloron with trivial and non-trivial holonomy are shown in
Tab. 5.1.

1 2 3

x 6.5 16.5 11.5
y 6.5 6.5 16.5
z 11.5 11.5 11.5

holonomy trivial non-trivial

µ1 −0.05 −0.30
µ2 0.01 0.05
µ3 0.04 0.25

Table 5.1: position of constituents (left) and eigenvalues of holonomy P∞ (right).

The S1 coordinate of the caloron field is t = 1. For trivial holonomy P∞ → �
the eigenvalues are chosen not to coincide exactly to avoid numerical instability.
Direct fitting of cooled gauge fields by the lattice version of the KvBLL solution
is not feasible because (i) the construction of all links starting from the continuum
KvBLL gauge field is very time consuming, (ii) the gauge connection is not periodic
in spatial direction and (iii) the constituents are placed in the x−y plane. Moreover
the gauge would have to be fixed for the cooled caloron. Fitting to the zero-mode
density is actually possible, as will be shown in the last part of this chapter.

5.2.1 KvBLL caloron with non-trivial holonomy

The first example is the constructed KvBLL caloron with non-trivial holonomy.
This gauge field was designed to have tr (P∞) = 0 and Q = −1 and the constituents
were organised in the x − y plane with constant z position according to Tab. 5.1.
After relaxing the boundary conditions the observables, which where described in
the previous chapter, are measured as shown in Tab. 5.2.
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KvBLL caloron / non-trivial holonomy

S/S0 1.33
Q −1.00
δF 0.3

index( /D) −1
δt 1.0 × 10−2

holonomy {µi}
−0.34
0.00

+0.34
local extrema r1 = (1, 07, 07, 12)

of q(x) r2 = (6, 15, 09, 12)
(t,x,y,z) r3 = (2, 12, 14, 12)
monopole ~y1 = (06, 06, 12)
position ~y2 = (17, 07, 12)
(x,y,z) ~y3 = (12, 16, 12)

Table 5.2: gluonic observables of KvBLL caloron (non-trivial)

The positions, holonomy and topological charge fit very well to the setting in Tab. 5.1
but the gauge field is obviously not yet anti-selfdual. The violation of anti-selfduality
δF = 0.3 is quite large and corresponds to the action value S/S0 = 1.33 ≈ |Q|+ δF .
But note that this solution is constructed for S1 × � 3 and not for T 4 and that
the strong overlap effect, visible in Fig. 5.1, will have an impact on the classical
solutions. Applying further O(103) cooling steps with Wilson action to cure this
problem decreases the violation of anti-selfduality. At the same time the monopole
constituents approach each other and the caloron becomes non-static. In this case
the only observable which exhibits the non-trivial substructure in this state of cooling
would be the Polyakov loop.
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Figure 5.1: topological charge profile (left); monopole position −f(~y) (middle) and
topological charge profile in temporal direction (right) are shown

In Fig. 5.1 the topological charge profile of the discretised KvBLL caloron in a fixed
plane and the constituent monopole position as a peak in the surface plot of f(~y)
are shown. The scalar field f(~y) is projected down to two dimensions by taking
the minimal value along the remaining direction which gives to know whether the
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eigenvalues coincide at any 2d position coinciding with the self-dual lumps. The
topological charge density, allows one to judge how static the caloron actually is.

A further question that arises is whether the asymptotic holonomy P∞ is actually
well defined. Therefore one needs to check whether the limit lim|~x|→∞ P(~x) is justified
and the Polyakov loop becomes constant at spatial infinity. Since the Polyakov loop
can only become constant up to a gauge transformation it is only meaningful to
average over the eigenvalues of the asymptotic Polyakov loop, like it is done in
Eq. 4.16. In Fig. 5.2 (lhs.) the eigenvalues of the Polyakov loop P(x) are plotted
versus the spatial action1 s(~x) =

∑
t s(x). Typically points with small action have

definite eigenvalues and points with larger action have not. Hence the asymptotic
holonomy P∞ is well defined. This might not be very surprising in the view of the
continuum solution but it seems worthwhile check to what extent this is also true
on a finite lattice.
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Figure 5.2: scatter plot of Polyakov loop eigenvalues µi versus spatial action (left)
and scatter plot of Polyakov loop (trace) in the complex plane with predicted values
for the monopoles (right)

As already mentioned, there is also a correlation between the Polyakov loop at
the positions of the caloron constituents and the asymptotic holonomy known for
SU(3). The numerical observation for the analytical solution in case of separated
constituents is that the Polyakov loop P(~ym) at the mth constituent is given by
Eq. 3.21.

Although it is a numerical observation for the analytical KvBLL gauge fields it
is a further evidence that the classical solution on the lattice behaves as it is known
for the analytic KvBLL solution. This prediction of P(~ym) can be checked with the
finding at the monopole position for the discretised caloron what is actually shown
in Tab. 5.3. An explanation for the deviation could be that the constituents where
placed between the lattice points Tab. 5.1 to avoid numerical instability during the
construction of the links for the lattice KvBLL caloron. In the scatter plot of P (~x)
also the prediction for the values at the position of the monopoles is shown Fig. 5.2
(rhs.). In general the predicted values for P Eq. 3.21 are touched by high action
lattice points.

1The action is summed up over the time direction and assigned to a 3d coordinate.
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prediction found

~y1 0.15− 0.30 i 0.18− 0.27 i
~y2 0.16 + 0.30 i 0.18 + 0.28 i
~y3 −0.33− 0.02 i −0.33 + 0.01 i

Table 5.3: prediction and the finding of the Polyakov loop at the monopole position
(compare with Fig. 5.2)

The spectrum of the clover-improved Dirac operator is measured with the adjustable
temporal fermionic boundary condition ψ(x + t̂β) = e2πiξ ψ(x). In Fig. 5.3 the
imaginary part of some low lying eigenvalues2 and the corresponding inverse par-
ticipation ratio is shown for several values of the boundary condition ξ. Since the
holonomy is maximally non-trivial, tr (P∞) = 0, one would expect the jumping for
ξ = {0, 1/3, 2/3} what corresponds to the values µi = {−1/3, 0,+1/3} in Tab. 5.1 or
Tab. 5.2. The zero-mode density is maximally localised in the middle of the intervals
for the boundary conditions ξ = {1/6, 1/2, 5/6}. This behaviour was actually found
and is shown3 in the right part of Fig. 5.3.
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Figure 5.3: fermionic flow depending on (temporal) fermionic boundary condition

The strong dependence of the gap between imaginary value of zero-eigenvalue and
the next eigenvalue is very pronounced in Fig. 5.3. In Tab. 5.4 additionally the po-
sition of the maximum of the zero-mode density for different values of the boundary
condition is shown. Note that this values has no meaning if the mode is delocalised
(IPR ≈ 1).

2ten eigenvalues with the smallest modulus
3Unfortunately this is not shown in a high resolution in ξ since the calculation for 6×203 lattice

needs many computer resources.
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ξ t x y z IPR

0.0 1 12 01 20 1.1
0.1 1 07 07 12 3.1
0.2 1 07 07 12 3.8
0.3 1 06 06 12 1.5
0.4 1 12 16 12 2.5
0.5 1 12 16 12 4.6
0.6 1 12 17 12 2.5
0.7 1 17 07 12 1.5
0.8 1 16 08 12 4.6
0.9 1 16 08 12 3.8
1.0 1 12 01 20 1.1

x y z enumeration

6 6 12 1st

17 7 12 2nd

12 16 12 3rd

2 3

−1/3 +1/30

µ 1 µ µ
3 1 2 3rd st nd rd

01/2 ξ

Table 5.4: localisation of zero-mode density ρ (left) and monopole position again
(right). the schematic plot visualises that the zero-mode is localised on the 1st con-
stituent for ξ ∈ (0, 1

3 ), on the 3
rd for ξ ∈ ( 13 , 2

3 ) and on the 2
nd for ξ ∈ ( 23 , 1).

After having enumerated the monopole positions following Eq. 3.21, the maximum of
the zero-modes density coincides with the monopole position, defined by coinciding
eigenvalues of P , for the designated value of ξ in Tab. 5.4.

The anti-selfdual gauge field obtained by discretising an analytical expression for
a KvBLL caloron shows the typical behaviour of the analytically accessible observ-
ables. The three constituent positions, which were put into the analytic formula
Tab. 5.1, are recovered by the

1. local maxima of the action density and topological charge density Tab. 5.2,

2. three-dimensional points, where two eigenvalues of P(~x) coincide Tab. 5.2,

3. the points where the fermionic zero-mode density rho settles for the predicted
values of the fermionic boundary condition Tab. 5.4.

The numerical observation for the Polyakov loop at the monopole position is con-
firmed and determined by the asymptotic holonomy. In the absence of really asymp-
totic distances the asymptotic holonomy, defined by the average of P(~x) over points
with low action, is well defined. The only deficiency is the large violation of anti-
selfduality.

5.2.2 KvBLL caloron with trivial holonomy

The second example is the discretised field of KvBLL caloron with trivial holonomy
P∞ → � . The analytic formula differs in the choice of the asymptotic holonomy in
Tab. 5.1 but the position parameters are unchanged. After adapting the periodic
boundary conditions to the 6×203 gauge field the following observables are measured.



50 Chapter 5 Classical solutions on the lattice - examples

KvBLL caloron / trivial holonomy

S/S0 1.33
Q −1.00
δF 0.3

index( /D) −1
δt 0.08

holonomy {µi}
−0.05
0.00
0.05

extrema
of q(x)

r=(1,12,17,11)

monopole not well defined
position (see Fig. 5.4 rhs.)

Table 5.5: gluonic observables of KvBLL caloron (trivial)

Since the asymptotic holonomy resides in the center of the gauge group P∞ ∈ Z(3)
the three eigenvalues already coincide in the asymptotic region. Therefore it makes
no sense to speak of a position of a constituent monopole defined by degenerated
eigenvalues in the present case of trivial holonomy. The 3rd constituent has the full
mass S0 and is actually observed. Comparing with the non-trivial caloron this is
indeed consistent. In Fig. 5.4 the profile of the topological charge density and the
(would-be) localisation of monopoles due to doubly degenerate eigenvalues of the
Polyakov loop is shown.
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Figure 5.4: topological charge density q(x) of the KvBLL solution with triv-
ial holonomy for different slices (left,middle) and the position of the constituent
monopoles (right)

Obviously the positions of the monopoles ~y1, ~y2, defined by the twofold degener-
ated eigenvalues, are not correlated to a position of some gluonic maximum. With
our monopole-finder Eq. 5.3 a lot of spurious constituent monopoles are found. In
Fig. 5.5 the eigenvalues are again plotted versus the spatial action. At spatial ’in-
finity’ the eigenvalues of the Polyakov loop become constant and the asymptotic
holonomy is again well defined. The scatter plot of the Polyakov loop in Fig. 5.5
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shows the signature of a Harrington-Shepard caloron with trivial holonomy like it
was shown in the left panel of Fig. 3.3. The Polyakov loop at the position of the
maximum of the action density comes close to P(~x) ' diag(−1,−1,+1) as it would
be expected for such an SU(2) embedded trivial caloron, and the trace comes close
to P (~x) = −1/3. The other values are P(~y1/2) = � what actually corresponds to the
asymptotic area. The masses for the corresponding constituents vanish and hence
they cannot be observed. Analytically is is argued [52] that these monopoles might
be recovered in a suitable limit but this seems difficult to be arranged for the lattice.
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Figure 5.5: Polyakov loop eigenvalues versus the spatial action (left) and the scatter
plot of P (~x) for points with large action in the complex plane

The fermionic flow for the trivial caloron is shown in Fig. 5.6. Comparing with
Fig. 5.3 it is visible that the zero-mode delocalises maximally for periodic temporal
boundary conditions but is maximally localised only for one ξ and hence also only on
one position. This is actually the position of the 3rd constituent with the maximal
localisation at ξmax = (µ3 + µ4)/2 = 1/2.
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Figure 5.6: fermionic flow depending on (temporal) fermionic boundary condition

For the sake of completeness also the constant positions for different values of the
boundary conditions are shown in Tab. 5.6. In fact there is no monopole position
available, but the position coincides with the gluonic maximum and the input pa-
rameter. Note again that giving a position is meaningless for IPR ≈ 1. Comparing
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with the caloron with non-trivial holonomy also the difference in the maximal value
of the inverse participation ratio IPR is noticeable. Partially this is due to the
static nature of the non-trivial caloron but looking at the gluonic densities Fig. 5.1
it is obvious that overlapping effects due to the spatial boundary conditions are less
important here.

ξ t x y z IPR

0.0 1 01 12 11 1.1
0.2 1 12 17 12 13.2
0.4 1 12 16 12 46.0
0.6 1 12 16 12 46.7
0.8 1 12 17 12 14.3
1.0 1 01 12 11 1.1

Table 5.6: localisation of the fermionic density ρ; no monopole position available

Trivial holonomy is also covered by the KvBLL caloron solution. For P∞ = �
one obtains the gauge field for the Harrington-Shepard caloron. In the language
of the KvBLL caloron this means that with P∞ → � two constituent monopoles
are massless ν1,2 → 0 and cannot be seen in the gluonic or fermionic densities.
The Polyakov loop P is not only degenerate at some spatial points but rather in a
large portion of space. In this case an interpretation of constituent monopoles, to
be identified on the lattice by isolated minima of the distance between eigenvalues,
makes no sense. A proper cut to the holonomy should be imposed to exclude these
cases from an investigation which uses the definition of coinciding eigenvalues as a
definition of a constituent.
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5.3 Cooled calorons with |Q| = 1

The following examples for calorons are obtained by cooling from equilibrium con-
figurations, generated at β = 5.65 with respect to various definitions of the action
and stopping criteria on different lattice sizes.

5.3.1 Non-trivial caloron from standard cooling

The standard strategy in order to obtain self-dual gauge fields is to use Wilson gauge
action to cool an equilibrium gauge field until (A) the violation of (anti) self-duality is
minimal. With this approach no static dissociated caloron with dyonic constituents
and charge 1 was obtained from O(1000) cooled gauge fields, even if the holonomy
happened to remain maximally non-trivial. This might answer the question, why
dissociated charge 1 KvBLL calorons were not seen in earlier cooling studies. The
gauge field example to be presented now was cooled on a 4 × 123 lattice and has
non-trivial holonomy but is not static. Due to the exit criterion the violation of the
lattice equation of motion δF is smaller than the values for the discretised calorons
discussed before. The action density in Fig. 5.7 clearly shows only one localisation.

Cooled caloron with (A)

S/S0 1.03
Q −1.00
δF 0.03

index( /D) −1
δt 0.23

holonomy {µi}
−0.381
0.003
0.379

extrema
of q(x)

r = (3, 06, 09, 06)

~y1 = (05, 09, 04)
monopole

~y2 = (06, 10, 08)
position

~y3 = (06, 08, 06)

Table 5.7: gluonic observables of CFG157

2 4
6 8

10 12

2
4

6
8

10
12

−6

−4

−2

0

x 10
−3

zy

q(
x)

2 4
6 8

10 12

1
2

3
4

−6

−4

−2

x 10
−3

xt

q(
x)

2 4
6 8

10 12

2
4

6
8

10
12

−1.2

−1

−0.8

−0.6

−0.4

zy

−
f

Figure 5.7: topological charge density q(x) (left,middle) and position of the con-
stituent monopole (right).



54 Chapter 5 Classical solutions on the lattice - examples

−0.5 0 0.5

10
−4

10
−3

10
−2

µ
i
(x) of P(x)

sp
at

ia
l a

ct
io

n 
s(

x)
/S

0

µ
1

µ
2

µ
3

−0.5 0 0.5 1
−1

−0.5

0

0.5

1

Re P

Im
 P

monopole
prediction
holonomy
P(s>max/4)

Figure 5.8: scatter plot of eigenvalues of P(~x) versus the spatial action (left) and
scatter plot of P (~x) in the complex plane with constituent monopoles (points where
eigenvalues coincide) and predictions

From the observables measured on this gauge field it can be seen in Tab. 5.7
that the caloron with non-trivial holonomy is not static (δt = 0.23) and that there
are no further dyonic lumps visible (only one relevant local extremum in the local
topological charge q(x) and in the local action s(x)). The action density and the
topological charge density allow no substructure but the Polyakov loop does. How-
ever, the prediction of P(~y) by Eq. 3.21 deviates from its actual value, shown in
Tab. 5.8.

ξ t x y z IPR

0.0 3 06 09 06 4.5
0.1 3 05 09 05 6.8
0.2 3 05 09 05 9.4
0.3 3 06 09 05 8.1
0.4 3 06 09 05 6.2
0.5 3 06 09 06 6.4
0.6 3 06 09 06 6.3
0.7 3 06 09 07 8.1
0.8 3 06 10 07 9.3
0.9 3 06 10 07 6.6
1.0 3 06 09 06 4.5

prediction found

~y1 0.01− 0.39 i −0.12− 0.47 i
~y2 0.00 + 0.39 i −0.12 + 0.47 i
~y2 −0.33− 0.01 i −0.32 + 0.01 i

x y z enumeration

5 9 4 1st

6 10 8 2nd

6 8 6 3rd

Table 5.8: This table shows the localisation of the fermionic density (left) and the
prediction of P(~yn) compared with the actual finding (upper right).

The consistent ordered monopoles are shown in the lower right part of Tab. 5.8.
Again the zero-mode should be placed on the 1st constituent for ξ ∈ (0, 0.4) on the
3rd for ξ ∈ (0.4, 0.6) and for ξ ∈ (0.6, 1) on the 2nd. Simply because constituents
strongly overlap this behaviour is barely visible. The fermionic part in the same table
shows that there is a no jumping over large distances and no full delocalisation for the
zero-mode which would be the case at ξ = {0, 0.4, 0.6} if separated monopoles would
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be present. The slight movement along the z-axis visible in Tab. 5.8 or Fig. 5.10 and
the variation of the inverse participation in ratio in Fig. 5.9 at the suspected values
of ξ are hints to the non-trivial substructure, that can also be seen in the Polyakov
loop pattern in Fig. 5.8. Further evidence for the constituent picture comes from
the fact, that the topological charge density, shown in Fig. 5.7 and Fig. 5.10, is not
rotational symmetric around the center of mass like it would be expected for an
instanton gauge field. It is rather extended in the z-direction.
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Figure 5.9: inverse participation ratio (left plot) and imaginary eigenvalue-flow
(right plot) as a function of the temporal boundary condition
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Figure 5.10: zero-mode density ρ for ξ = {0.2, 0.5, 0.8} (red/points, green/lines,
blue/dashed) (left) and topological charge density (right) as isosurface plots

The later analysis makes clear why it is not possible to obtain a |Q| = 1 static
solution with dissociated dyonic structure using Wilson gauge action and simultane-
ously insisting on minimal violation of the equation of motion (as they are defined
here) even among a large statistics of cooled gauge fields. The cooling history4 for
this configuration shows, that this solution was already static during the process
of cooling. In the last stage of cooling however the dyonic constituents merge, the
action density becomes non-static and only afterwards the stopping criterion (A) is

4observables are measured during the process of cooling to see, what is ’dynamical’ preferred
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fulfilled. The importance of non-trivial holonomy is still visible but the moduli space
of classical solution cannot be fully explored using this standard cooling method !

In order to illustrate how cooling with Wilson gauge action acts on a gauge field
and how the instability of calorons evolves, a cooling history for the total action
S/S0, the topological charge Q and the non-staticity δt are shown for this example
in Fig. 5.11. That the dynamical effect of suppressing static calorons can be reduced
by the stopping condition (B) is also illustrated in the same figure. The states of
cooling where the stopping criteria apply are marked with (A) and (B).
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Figure 5.11: This figure shows the cooling history for configuration 157. The (left)
figure shows the action normalised to instanton units and the topological charge,
while the (right) figure shows the non-staticity δf as a function of the cooling sweeps.

As usual the topological charge settles early in the cooling history, even if the
gauge field is far from being self-dual. The gauge field only has to be sufficiently
smooth in order to possess a well defined topological charge. The monotonic de-
creasing action reaches a plateau S = S0 |Q| only in the last stage of cooling before
the stopping condition (A) is fulfilled (in the last cooling step). In the right plot
in Fig. 5.11 it is visible that the gauge field reaches a plateau after 60 cooling
steps where it is static for 50 − 100 cooling steps. During these 50 − 100 cooling
steps the constituent monopoles approach each other and the action density be-
comes time-dependent. One can prevent this behaviour using an improved action
like over-improved action that prevents instantons from shrinking or caloron con-
stituents from approaching each other [27, 74]. Another possibility is to use some
modified stopping criterion like (B), that triggers to static calorons and would stop
here after ≈ 60 iterations. But first the effect of cooling by the use of the improved
action is tested.
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5.3.2 Non-trivial caloron from improved cooling

The following example is a caloron with maximally non-trivial holonomy, obtained
from cooling with the over-improved action according to Eq. 4.7. Actually, this
4 × 123 lattice gauge field was the first cooled gauge field with charge 1 obtained
with cooling and still unmodified stopping condition (A). Using improved actions
for cooling is known to stabilise instantons and to prevent them from shrinking and
finally falling through the lattice [27, 74]. Any lattice gauge action Slatt explicitly
breaks the scale invariance of the instanton solution

Slatt[U, ρ, a] = S0

(
1 +

(
a

ρ

)2

d2 +O(a/ρ)4
)

for ρÀ a. (5.5)

The sign of the coefficient d2 determines whether the instanton shrinks or inflates.
Since cooling lowers the lattice action it is accompanied by a decreasing the instanton
radius ρ if d2 < 0 and by an increasing radius ρ (stabilising effect) for d2 > 0. For
standard Wilson gauge action one has d2 < 0 and the instanton will shrink. For the
square action Eq. 4.7 d2 = −ε/5 is known [27] and called over-improved action for
the choice ε = −1. We also observed that one will more likely obtain a dissociated,
static charge 1 caloron if using the over-improved action with stopping condition (A).
This example is obtained from an ensemble of O(100) gauge fields which were cooled
with the over-improved action. It is characterised by the following observables.

Cooled caloron with improvement

S/S0 1.19
Q 1.00
δF 0.19

index( /D) 1
δt 0.05

holonomy {µi} µi =
−0.381
0.044
0.337

r1 = (4, 10, 10, 03)
local extrema

r2a = (4, 08, 06, 03)
of q(x)

r2b = (4, 07, 05, 03)
~y1 = (10, 10, 03)

monopole
~y2 = (06, 03, 04)

position
~y3 = (08, 06, 02)

Table 5.9: gluonic observables of CFG92OI
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Figure 5.12: topological charge density (left,middle) and position of the constituent
monopole (right)

ξ t x y z IPR

0.0 4 10 10 03 2.6
0.1 4 10 10 03 5.9
0.2 4 10 10 03 6.9
0.3 4 10 10 03 3.4
0.4 2 07 05 03 1.4
0.5 4 08 05 03 3.3
0.6 4 07 05 03 3.8
0.7 4 07 04 03 3.5
0.8 1 06 03 04 3.7
0.9 1 06 03 04 2.3
1.0 4 10 10 03 2.6

prediction found

~y1 0.15− 0.30i +0.09− 0.32i
~y2 −0.00 + 0.39i −0.08 + 0.44i
~y2 −0.34 + 0.18i −0.34 + 0.19i

x y z enumeration

10 10 3 1st

6 3 4 2nd

8 6 2 3rd

Table 5.10: This table shows the localisation of the fermionic density (left) and the
prediction of P(~yn) compared with the actual finding (upper right). The (lower right)
part shows the monopoles positions, enumerated by the analytic relation between
holonomy eigenvalues {µm} and the mth constituent.

The profile of the local topological charge shows separated self-dual lumps. Al-
though only two self-dual lumps are identified through the topological charge density
Tab. 5.9, three distinguishable monopoles are identified using the Polyakov loop cri-
terion Fig. 5.12. The monopole positions are reproduced by the localisation of the
zero-mode for the corresponding values ξ of the temporal fermionic boundary condi-
tion. The distribution of the local Polyakov loop in Fig. 5.13 also shows the triangle
like behaviour, which was already observed in case of the KvBLL caloron with
non-trivial holonomy. The Polyakov loop, as it is predicted from the asymptotic
holonomy in Fig. 3.21, is also reproduced for the extremal points in Fig. 5.13 in this
case. That no pronounced KvBLL caloron with three constituents was observed
on the 4 × 123 can be understood because of the small volume. Earlier studies for
SU(2) were performed on a 4 × 163 lattice! It might also be that using improved
gauge actions is not sufficient to fully cure the instability for calorons with periodic
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boundary conditions5. Hence a refinement of the stopping criterion is useful, also if
an improved action is available for cooling.
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Figure 5.13: distribution of Polyakov loop values with the prediction of monopoles
from the asymptotic holonomy.

A more detailed fermionic analysis is shown for this gauge field. The zero-mode
of the Q = 1 gauge field is a γ5 eigenfunction with λ50 = −1.000 (n− = 1, n+ = 0).
The corresponding eigenvalue of the Dirac operator λ0 has a real part ∝ 10−4 and
an imaginary part that is zero on the level of the computational accuracy6. For
non-zeromodes the γ5 matrix element

∫
d4x ψ(x)γ5ψ(x) is zero up to the numerical

precision. In Tab. 5.9 it is visible, that the zero-mode is localised at the monopole
position for the proper value of the boundary condition.
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Figure 5.14: inverse participation ratio (left) and imaginary eigenvalue-flow (right)
as a function of the temporal boundary condition.

5It is known for SU(2) that using improved gauge action or suitably twisted boundary conditions
charge 1 calorons become ultimately stable on the lattice [27, 74].

6single precision ∝ 10−8 is used for the fermionic investigation
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Figure 5.15: localisation of the zero-mode density (left) and the corresponding
isosurface of the topological charge (right). The red (dotted) surface corresponds to
ξ = 0.3, th green (full lines) to ξ = 0.6 and the blue (without lines) to ξ = 0.8.

The inverse participation ratio and the eigenvalue flow for various boundary con-
ditions is shown in Fig. 5.14. The zero-mode delocalises and changes the position
Tab. 5.9, similar to the analytical solution or the discretised KvBLL caloron with
non-trivial holonomy in Fig. 5.3. The actual localisation of the zero-mode for differ-
ent values of ξ is also shown in in Fig. 5.15 and can be compared with the topological
charge density, which is also shown there.

The properties of the discretised KvBLL caloron are reproduced by the gauge
field which was produced by over-improved cooling. The dissociation into three
dyons can already be seen from the monopole content Tab. 5.9 and the non-trivial
pattern of the Polyakov loop in Fig. 5.13 although only two maxima are visible in
the topological charge density Fig. 5.12. These findings are corroborated by the
behaviour of the spectrum of the Dirac operator in Fig. 5.14 and Fig. 5.15.

5.3.3 Summary for |Q| = 1 calorons

The KvBLL calorons, which are discretised and put on the lattice are the reference
examples for the analytical behaviour of KvBLL calorons. The analytical behaviour
for the action and topological charge density, the Polyakov loop and the spectrum
of the Dirac operator for of these references is reproduced by cooled gauge fields.

For the calorons, which are obtained by different cooling actions and the stopping
criterion (A) a similar behaviour is found. Using Wilson gauge action to obtain (anti)
self-dual gauge fields by cooling with usual stopping condition (A) is not suitable to
get static KvBLL calorons. The over-improved gauge action makes it more probable
to see static and dissociated calorons but is more time consuming. Anyhow, even for
non-static calorons with non-trivial holonomy a structure, e.g. in the Polyakov loop
Fig. 5.8, is observed and points toward the importance of calorons with non-trivial
holonomy. Since the moduli space of classical solution needs to be explored as far as
possible a modified stopping condition like (B) needs to be introduced! An example
that was obtained by the combined stopping criterion (B) with Wilson gauge action
will be shown later in Sect. 5.6.
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5.4 Cooled calorons with |Q| = 2

Caloron solutions with higher topological charge were known only for trivial holon-
omy. Recent works by Bruckmann et.al. [24] analytically expand this view with
the explicit parametrisation of charge two calorons with non-trivial holonomy in
case of SU(2). Generic charge Q solutions in SU(3) depend on 12|Q| parameters.
This shows that the interpretation in terms of |Q| = 1 parameter has to be extended.
Nevertheless, we remain investigating the charge two case with the observables, used
in the last section. There is no technical restriction to obtain higher charges calorons
on the lattice, like it can be seen in the distribution of topological in Fig. 5.16.
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Figure 5.16: Distribution of topological charges for 4× 123 lattice calorons.

There is no analytic expression for a SU(3) KvBLL caloron with charge two
so far available to us. Hence the further investigation classical solution with higher
topological charge is restricted to gauge fields obtained by the cooling method. It
is observed that the classical fields with |Q| = 2 also have the behaviour, that was
found typical for the |Q| = 1 KvBLL caloron. These fields are not destabilised
during cooling to such an extend, as it was shown to be unavoidable for lattice
charge 1 calorons.

5.4.1 Caloron with non-trivial holonomy

In the case of |Q| = 2 it was possible to obtain classical gauge fields which persist
longer on a self-dual plateau against cooling and have a lower violation of self-duality
compared to |Q| = 1. This was already observed in a study of stability of self-dual
gauge fields on the torus by Leinweber et.al [41]. Therefore the standard Wilson
gauge action is, surprisingly, sufficient to obtain classical gauge fields with higher
charges. In this case the combined stopping criterion (B) was used to stop cooling
of the 4 × 203 lattice gauge field. This serves as an example for a static self-dual
caloron with maximal non-trivial holonomy.
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Cooled caloron

S/S0 2.04
Q 2.00
δF 0.04

index( /D) 2
δt 0.007

holonomy {µi} µi =
−0.3241
0.0044
0.3197

5 separated
local extrema

lumps shown
of q(x)

in Fig. 5.17
6 separated

monopole
constituents

position
shown in Fig. 5.17

Table 5.11: gluonic observables of CFG170

In Tab. 5.11 the global observables are shown. Contrary to the calorons with
|Q| = 1 the violation of the equation of motion δF = 0.04 is small. The low value
of the non-staticity already points out the dissociated nature of the caloron. This
becomes evident by identifying the constituents by the topological charge density,
the zero-mode density or the monopoles of this fields. In Fig. 5.17 the localised
constituents of the caloron are visualised by showing the action density and the
function f(~y), defined in Eq. 5.3, as an isosurface7 plot. The six constituents can be
counted in this figure if one avoids double counting due to the periodic boundary
conditions. Hence these observables make sense to investigate on the characteristic
behaviour of these fields.
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Figure 5.17: spatial topological charge density q(~x) =
∑

t q(x) (left) and constituent
monopoles by and isosurface plot of f(~x); note that two constituents overlap in q(x)

7For a charge 2 solution with six constituents this is much more transparent than showing 2d
surface plots.
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Figure 5.18: definiteness of holonomy as eigenvalues are plotted versus the spatial
action (left) and the scatter-plot of Polyakov loop (right) with predictions from the
holonomy and the monopoles, which were found.

Again the holonomy is well defined, since the eigenvalues of the Polyakov loop
in Fig. 5.18 become constant for points with a small spatial action. Especially the
significant triangle pattern, known from the discretised KvBLL caloron with unit
topological charge, becomes also visible (twice) in this figure. The constituents align
their Polyakov loop in compliance with the asymptotic holonomy. The spectrum of
the Dirac operator is again used and both zero-modes show the behaviour of a two
KvBLL caloron superposition under the influence of the same asymptotic holonomy.
Due to the degeneracy of the kernel of the Dirac operator, the choice of a special
zero-mode or to track the ξ dependent flow only for one zero-mode seems artificial
and an ordering the eigenmodes impossible. To overcome this ambiguity the sum
over zero-modes

ρzm(x) =
∑

kernel /D

ψ†n(x)ψn(x), (5.6)

which does not depend on a special choice of base, is shown in Fig. 5.19. The left
part of this figure shows again the monopoles, while the right one visualises ρzm for
different values of ξ.
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Figure 5.19: ρzm for different fermionic boundary conditions (red/points ξ1 = 0.15,
green/lines ξ2 = 0.5, no shading ξ3 = 0.85)
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Figure 5.20: inverse participation ratio (left) and a sketch of Fig. 5.18

Neglecting the ordering problem, the behaviour of the inverse participation ratio
in Fig. 5.20 and the localisation of a single zero-mode is very similar to the KvBLL
caloron with non-trivial holonomy. The right panel of this figure shows how the
colour code, which is used in Fig. 5.19, is associated with the Polyakov loop at
the constituent. Using Eq. 3.21 this allows to order the constituents and to check
whether the zero-mode is localised on the right constituent for some value of ξ. This
is indeed the case because the zero-mode is localised on the

constituent with colour code b.c.
1st pair red (points) for ξ1,
2nd pair blue (no marks) for ξ3,
3rd pair green (lines) for ξ2.

The jumping takes place in the order 1→ 3→ 2, as it was explained in Tab. 5.4 and
expected from the analytic solution of the Q = 1 KvBLL caloron, if the fermionic
boundary condition ξ runs 0→ 1.

Using similar tools and observables like for the KvBLL caloron seems useful to
explore the properties of higher charge calorons. At least with non-trivial holonomy
and if well separated constituents the charge 2 caloron looks like a superposition
of charge 1 KvBLL calorons but seemingly free of the instability of the charge 1
case. This is suggested by the Polyakov loop pattern and the investigation of the
spectrum of the Dirac operator. A problem how to order the zero-modes makes it
difficult to track the localisation of a fermionic eigenmode.



5.4 Cooled calorons with |Q| = 2 65

5.4.2 Caloron with trivial holonomy

It is is not very probable to obtain a caloron that has trivial holonomy with cooling
starting from the confinement phase. On the other hand the yield of higher charge
calorons starting from the deconfined phase is low. Hence this caloron was cooled
using fixed (cold) temporal links at the boundary. This means that Ux,1̂ = � is
fixed for the x values at the spatial boundaries of the lattice during heating and
cooling. After some amount of cooling the average Polyakov loop for this field is
close to trivial holonomy and the fixed links are made dynamic again until a |Q| = 2
gauge field is obtained. To accelerate this process, the cooling was done for a SU(2)
gauge field on a 4×163 lattice. This fields was then embedded into SU(3), after the
violation of anti-selfduality was minimal (A) for the SU(2) field.

(Semi)cooled caloron

S/S0 2.01
Q −1.98
δF 0.02

4− 6 = −2 for ξ = 0, 1
index( /D)

0− 2 = −2 for ξ ∈ (0, 1)
δt 0.17

holonomy {µi}
−4 · 10−2

0
4 · 10−2

local extrema 2 separated
of q(x) narrow lumps

monopole not well defined
position (see Fig. 5.21)

Table 5.12: gluonic observables of cooled caloron
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Figure 5.21: (left,middle) Topological charge density q(x) and (right) the position
of the constituent monopoles are shown.

Notice that the violation of anti-selfduality is very small for this field but that it
is very narrow localised in space and not static. Like for the discretised solution it
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makes no sense to define the monopoles by coinciding eigenvalues for trivial holon-
omy because they are massless and spread over a large region and hence cannot be
recovered on the lattice.
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Figure 5.22: eigenvalues of Polyakov loop versus spatial action (left) and scatter
plot of Polyakov loop in the complex plane (right)

The Polyakov loop is arranged like it was already seen for the constructed solution
with trivial holonomy and approximately resembles the Harrington-Shepard caloron
solution.
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Figure 5.23: flow of imaginary part of eigenvalues (left) and inverse participation
ratio for the two zero-mode densities (right)

It is noticeable, that the eigenvalues in Fig. 5.23 come close to zero. With the
clover improved Dirac operator it is even possible to find six zero-modes for exact
periodic boundary conditions. Summing up the chiral density of all zero-modes still
gives rise to

∑
kernel /D ψnγ5ψn ≈ 2 for this operator (for details see Appendix B).

It is also visible that the inverse participation is maximal for antisymmetric
boundary conditions and that the corresponding density ψ†ψ(ξ=0.5) is very narrow
localised. This corresponds to the observations for the constructed KvBLL caloron
with trivial holonomy.
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5.4.3 Summary for |Q| = 2 calorons

Investigating higher charge (anti) self-dual gauge fields suffers less from instabili-
ties than it is observed for calorons with topological charge 1. This is especially
interesting since the knowledge of moduli space is still incomplete for SU(3). To
examine those gauge fields it is instructive to use observables like Polyakov loop,
field strength and the spectrum of the Dirac operator with boundary conditions to
probe the nearly (anti) self-dual gauge fields.

The general behaviour of KvBLL calorons is also found for the |Q| = 2 case with
non-trivial holonomy on the lattice. In the example |Q|Nc = 6 lumps where found
Fig. 5.17. These findings are confirmed by the maxima of the zero mode density and
the monopole positions, defined by positions where the Polyakov loop eigenvalue
approach each other. For trivial holonomy four of the six monopole constituents (of
the charge two caloron) are massless and only two self-dual lumps are observed. The
zero-modes are pinned down on top of each of those lumps and delocalise only for
symmetric boundary conditions.

5.5 Caloron-anticaloron superposition with Q = 0

Since the stopping criteria (A) and (B) trigger to a local violation of (anti) self-
duality, gauge fields which are described as a superposition of calorons and anti-
calorons are also found with a low rate (≈ 2% for the 4× 123 lattice). The violation
of the equation of motion of those semi-classical objects is small if they are well
separated. Therefore in the relatively small volume only objects with S/S0 = 3 and
|Q| = 1 or S/S0 = 2 and Q = 0 are found. Here only one example with S/S0 = 2
and Q = 0, which was cooled with criterion (A) and Wilson gauge action on a 4×123
lattice, is shown. This is also very interesting because generically a superposition of
calorons and anti-calorons (or dyons and anti-dyons) rather then self-dual (or anti
self-dual) KvBLL calorons are the relevant degrees of freedom in a semi-classical
approach with a caloron liquid.
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Figure 5.24: The local topological charge (red=positive, blue=negative) for differ-
ent slices. The remaining direction is summed up.
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The topological charge profile in Fig. 5.24 already shows that this gauge field is a
superposition of a self-dual and an anti-selfdual caloron. The four local maxima give
rise to a SU(2) caloron-anticaloron superposition. The global gluonic observables of
this gauge field are given in Tab. 5.13

Cooled caloron

S/S0 2.01
Q ≈ 10−4

δF 0.17
index( /D) 0

δt 0.06

holonomy {µi} µi =
−0.18
−0.08
0.26

r−1 = (2, 01, 06, 05)
local extrema r−2 = (3, 02, 12, 05)

of q(x) r+1 = (4, 10, 05, 01)
r+2 = (4, 08, 11, 11)

monopole
position

6 constituents

Table 5.13: gluonic observables of cooled caloron

The gauge field is static δt = 0.06 and violates the equation of motion, given that
it is a S = 2S0 and Q = 0 field, with δF = 0.17 in a moderate way. The Polyakov
loop, which is almost degenerated to a real line, also motivates to speak of a SU(2)
embedding. However, it is possible to separate six monopole constituents in Fig. 5.25,
defined by degenerated eigenvalues of the Polyakov loop.
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Figure 5.25: eigenvalues of Polyakov loop versus the spatial action (left) and the
scatter plot of Polyakov loop in the complex plane (right)

The eigenvalue flow for the Dirac operator shows no zero mode for any value of the
boundary condition. Nevertheless it is interesting to see the flow and investigate



5.5 Caloron-anticaloron superposition with Q = 0 69

on the properties of the low lying eigenmodes. For this configuration a jumping for
these near zero-modes is visible Tab. 5.14.

ξ Imλ/10−3 t x y z IPR

0.0 4.8 3 02 12 05 2.8
0.1 8.5 3 02 12 06 1.6
0.2 8.9 3 01 06 06 1.3
0.3 8.0 3 01 06 05 2.9
0.4 9.1 3 01 06 05 5.3
0.5 8.7 3 01 06 05 5.7
0.6 4.9 3 01 06 05 3.6
0.7 5.7 3 01 06 06 1.6
0.8 13 3 02 12 05 1.8
0.9 8.1 3 02 12 05 3.2
1.0 4.8 3 02 12 05 2.8

Table 5.14: the behaviour of the eigenmode of /D with the smallest positive imagi-
nary part. Since the mode with λ∗ can be obtained by γ5ψλ, IPR and position will
be the same for this pair and is not shown.

In Fig. 5.26 the eigenvalue flow is shown. For the superposition of classical gauge
fields with a self-dual and an anti-selfdual part the index theorem is only trivially
fulfilled with n+ = n− ≡ 0.
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Figure 5.26: Flow of Im (λ) of as a function of b.c. with a closer look at the region
of interest. No crossing happens!

Since only two jumps are observed in Tab. 5.14 and Fig. 5.27 (rhs) possibly not
all ’hot-spots’ (caloron constituents) are visited. Looking at the chiral density for
anti-periodic boundary conditions Fig. 5.27 shows that the mode is always located
on two positions, which correspond to opposite topological charge (compare with
Fig. 5.24 rhs.).
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Figure 5.27: (left) chiral density ψγ5ψ for anti-periodic b.c. ξ = 0.5 and inverse
participation ratio IPR as a function of b.c.; circles (diamonds) show the IPR of
lowest positive (negative) eigenvalue respectively

A new feature shown in Fig. 5.27, which explicitly shows that near zero-modes
are entangled with the behaviour of the calorons, is that non-zero-modes are also
localised IPR > 1. For previously shown purely (anti) self-dual calorons the non-
zeromodes had IPR ≈ 1 with a weak dependence on the boundary condition. For
the next-to-zero mode of the present Q = 0 example a localisation behaviour similar
to the KvBLL caloron is unlikely since the eigenmodes of /D are obviously not chiral.

Resuming this section it can be seen that one can obtain also classical gauge
fields with S/S0 > |Q|, but these fields violate the equation of motions if the self-dual
and anti-selfdual lumps are not sufficiently separated. The behaviour of the Dirac
operator is not simply a superposition of a positive and negative chiral mode since
the degeneracy of eigenvalues is lifted through an caloron-anticaloron interaction.
Hence one must be cautious with the interpretation of jumping. Nevertheless, the
low lying eigenmodes modes also show a localisation behaviour closely related to the
classical solution.

5.6 Fitting an analytical expression

Although the gauge field is practically impossible to fit, there are observables like
the action density s(x) Eq. 3.21 or the zero-mode density ρ(x) Eq. 3.22 which are
easily accessible and where analytic formulas are known for SU(3) (or even SU(N)).
The gauge field on which such a fit is attempted is obtained by cooling with Wilson
gauge action and stopping condition (B). The lattice geometry is 4×203. This gauge
field has the topological charge |Q| = 1 and maximally non-trivial holonomy. Since
the constituents are well separated the KvBLL pattern is very pronounced.

The most promising analytic expression for a fit is the zero-mode density. Since
the zero-mode is only localised on one constituent at a time the effect of the boundary
conditions can be minimised. Therefore the ξ ≡ 1 − z values8 with the maximal

8the definition fermionic b.c. is against the literature
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localisation zm = 1/2[µm + µm+1] are chosen. For maximally non-trivial holonomy
this happens at z = {1/6, 1/2, 5/6}. The formula Eq. 3.23 for the Green function
f̂x(z, z

′), which enters the definition of the fit function ψ†ψ(ξ), simplifies in the case
of well separated monopole constituents and z ∈ [µm, µm+1] to

f̂ zmx (z, z) = π(rmβ)
−1 tanh(πrmνm/β). (5.7)

From this the zero mode density can is calculated by Eq. 3.23 and, for the three
values of ξ, the matching with the theoretical prediction is performed by minimising
the function

χ =
∑

x

∣∣∣ψ†ψ(x)− (ψ†ξψξ)
zm(x)

∣∣∣

with respect to the constituent position ~yn and its mass νn. But first have a glance
at the gluonic and fermionic observables. In Fig. 5.28 an isosurface plot for the
topological charge density and for the zero-mode density is shown. The effect of
the periodic boundary conditions is clearly visible what makes it difficult to fit the
analytic formula for the action density to the lattice profile.
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Figure 5.28: (left) isosurface plot of spatial part of topological charge density;
(right) the zero-mode density ψ†ψ for ξ1 = 1/6, (red sphere/dashed lines),ξ2 = 1/2
(green/white lines) and ξ3 = 5/6 (blue/black lines) for ξi

The monopole constituents, defined by the positions of coinciding eigenvalues
of the Polyakov loop operator or by the center of mass of self-dual lumps, fall to-
gether with the maximum of the zero-mode density ρ(x) for the different boundary
conditions. This feature shows very impressively the connection of the analytical
prediction for the KvBLL caloron and the numerical result for classical gauge fields
which are obtained from cooling. Note that the localisation shown in Fig. 5.29 is
indeed maximal for ξ = {1/6, 1/2, 5/6}. From the gluonic observables the following
parameters are determined. The actual holonomy is µm = {−0.363,−0.001, 0.364}
(νm = {0.364, 0.361, 0.275}).
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dyon monopole position P (~yi)

1 (red) ~y1 = (05, 04, 19) 0.096− 0.323 i
2 (blue) ~y2 = (09, 10, 14) 0.061 + 0.341 i
3 (green) ~y3 = (12, 20, 09) −0.328 + 0.030 i

constituent ξ x y z α = πνm/β χmin

1 0.15 4.8 4.3 18.6 0.36 0.04
3 0.50 11.5 19.3 9.6 0.28 0.06
2 0.85 8.8 9.5 13.7 0.34 0.05

Table 5.15: positions from monopoles and holonomy (upper table) and parameters
from fit (lower table)

The positions, which now can take non-integer values are shown in Tab. 5.15.
Since the eigenmodes are normalised, the value of χ(ξ = 0.15) = 0.04 corresponds
to a deviation of 4% what is mainly due to the periodic spatial boundary conditions.
In Fig. 5.30 one can see that this fit is nevertheless working good and deviates for
small densities.
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Figure 5.29: inverse participation ratio IPR as a function of the fermionic b.c.

The eigenmode density is shown in the left part of Fig. 5.30 for the density (full lines)
of the zero-mode determined by ARPACK and compared with the fitted density
(dashed lines). In this plot the coordinates t = 2 and z = 19 are fixed and the
dependence of ψ†ψ on x is shown. Different lines correspond to different values of y
so that ψ†ψ in the x−y plane is sufficiently covered. Clearly the fit is not compatible
with the periodic boundary conditions at x ≈ 15. Nevertheless the density is well
described where the fit is not effected by the boundary condition. The right plot
of the same figure shows that action density. Obviously the periodic boundary
conditions are not fulfilled but the isosurface looks very similar to Fig. 5.28.
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Figure 5.30: fit to the eigenmode for ξ1 = 0.15, dashed lines shows analytical
prediction, full lines show ψ†ψ obtained by ARPACK (left) and analytical spatial
action with input from fit (right)

5.7 Summary

The local structure of analytic and discretised KvBLL solutions is reproduced for
calorons obtained by different actions and stopping conditions. The composition of
the caloron moduli space found after cooling actually depends on the method that is
used. For |Q| = 1 this effect is most striking. For example, it is not possible to obtain
static charge 1 calorons by cooling with respect to Wilson gauge action and using
the minimal violation of self-duality (A) as a stopping criterion. Still the structure
can only be described in terms of KvBLL calorons with non-trivial holonomy in the
sector of less separated constituents. The non-trivial substructure is always visible
for calorons with non-trivial holonomy. Only with the use of improved actions or an
alternative stopping criterion static and dissociated calorons with charge 1 can be
found.

Problems of stability apparently do not exist for the examples of classical lattice
gauge fields with higher topological charge. This might be a hint that the instability
is indeed connected with the instability of classical solution with charge 1 on the
torus [55]. Some recent studies [41] affirm that this effect might be observable on the
lattice. In some cases a caloron with |Q| = 2 might be interpreted as a superposition
of KvBLL calorons with unit topological charge, which does not see the instability
of its caloron building block.

Fitting to analytical formulas for the KvBLL solution has systematic uncer-
tainties due to the spatial periodic boundary conditions on the lattice. This makes
fitting only possible if these effects might be neglected. This is the case for the zero-
mode, since it is localised only on one monopole constituent. From these examples
one must conclude that the characteristic behaviour of SU(3) KvBLL calorons is
found on the lattice!



Chapter 6

Classical solutions on the lattice -

statistical properties

So far the classical gauge fields were only discussed on an exemplary basis. The next
step is to make a statistical analysis on a larger set of classical gauge fields. In the
forthcoming chapter the moduli space of the self-dual gauge fields is explored and
compared to the known behaviour of KvBLL -caloron solutions. Several lattice sizes
are used to investigate the dependence on the aspect ratio Nt/Ns. For this purpose
again the topological charge, action density, Polyakov loop and the spectrum of the
Dirac operator, which were found to characterise the examples, are measured on a
large number of cooled gauge fields. Due to the experience gained in the investiga-
tion of examples in the previous chapters it is clear that cooling with Wilson gauge
action is sufficient to accomplish this task if the combined stopping criterion (B) is
used. Improved or over-improved cooling would be better but requires much more
computer time.

Due to the fact that there is no strict self-dual |Q| = 1 solution on the torus
T 4 [55] drastic differences between charge 1 and self-dual fields of higher topological
charge are expected to show up in a lattice study. This was already observed in
the last chapter and will become more pronounced with statistics. First searches
for classical solutions failed to find any static charge 1 solution, consisting of several
separated monopole constituents (or dyons) and rather a non-static (anti) self-dual
lump containing all action S0 was observed instead. A showcase for this behaviour
was discussed in Sect. 5.3.1. After recalling the problem inherent to stopping con-
dition (A) with respect to the the statistical properties only the combined stopping
condition (B) will be used to explore a large part of the caloron moduli space. This
underlines our previous findings and supports the claim, that KvBLL calorons with
non-trivial holonomy can be seen on the lattice and become important degrees of
freedom in the confined phase.

6.1 Problems finding calorons in SU(3)

The first ensemble of cooled gauge fields was produced by demanding that the vi-
olation of (anti) self-duality goes through a minimum during the cooling, which is

74
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stopped there. With this stopping criterion (A) an ensemble of 6000 classical 4×123

configurations is obtained from a Monte-Carlo ensemble. The sector with Q = 0 is
omitted from the ensemble. The ensemble was generated using Wilson gauge action
in the confined phase at β = 5.65. Like the example Sect. 5.3.1, each configuration
has been cooled with respect to the Wilson gauge action. Non-trivial holonomy is
no exception but rather the generic case after cooling has stopped. This can be seen
in the distribution of the modulus of the asymptotic holonomy |P∞| in Fig. 6.1.
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Figure 6.1: distribution of asymptotic holonomies for the whole ensemble (left) and
distribution of topological charges (right)

Obviously, the (anti) self-dual lattice gauge fields obtained in this way cannot
be described in terms of calorons with trivial holonomy. The distribution of the
violation of the (anti) self-duality δF in Fig. 6.2 shows, that the gauge fields of
the various topological sectors |Q| 6= 1 obtained with stopping criterion (A) are
overwhelmingly close to being (anti) self-dual. The plot for |Q| = 1 alone shows a
little surprise. One might have expected that calorons with smallest action, hence
the calorons with |Q| = 1, violate the equation of motion on the lattice to a minimal
extent. But the distribution for this charge shows that there exists a lower positive
bound for the violation of self-duality δF by calorons.
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One can ask whether the moduli space is complete and in particular whether the
ensemble contains static charge 1 calorons. In Fig. 6.3 the distribution of the non-
staticity δt of the (anti) self-dual lattice calorons for different topological sectors |Q|
is shown. In order to guide the eye the first branching point δ∗t (1 → 2 lumps) is
shown as a dashed line. Here δt < δ∗t indicates that at last two dyons are visible
in the analytic action density of a |Q| = 1 caloron, provided that the holonomy is
maximally non-trivial. Static calorons are found for |Q| = 2, 3, 4 but not for |Q| = 1.
The few |Q| = 1 configurations with δt < δ∗t were not reliably resolved as dissociated
calorons, since the distance between lumps of topological charge did not exceed one
lattice spacing in every direction. The general behaviour can be made more clear by
counting the number of local maxima in the topological charge density of the (anti)
self-dual fields, as it is done in the left panel of Fig. 6.3. Of course, only relevant
maxima (maxima with a modulus of at least 10% of the global maximum) contribute
here. The chance to see constituents is enhanced if a cut |P∞| < 0.2 is introduced
in Fig. 6.3, since the constituents then have comparable masses.
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Figure 6.3: distribution of non-staticity for various topological sectors (left) and
average number of local maxima for topological sectors (right) with cut |P∞| < 0.2.
Note: The bars in the right panel show the standard deviation!

The lower line of in the right figure corresponds to the expectation for trivial caloron
with only one peak per unit of |Q| while the steeper curve represents the (extremal)
KvBLL case were all 3|Q| monopole constituents are visible. Again, there are no
signs of dissociated calorons for |Q| = 1 visible, but surely for |Q| > 1. It needs
to be emphasised that this is in agreement with the interpretation in terms of the
analytical KvBLL solution. If the constituents are not separated one can still have
non-trivial holonomy but the caloron becomes non-static. In this sense the left and
the right panel of Fig. 6.3 support this interpretation. For |Q| > 1 static calorons
are found. A zero-mode analysis for a subset of O(100) calorons with |Q| = 1 and
four values of the fermionic boundary condition ξ = {0, 1/3, 1/2, 2/3} has shown no
signs of zero-mode jumping.

The strategy to produce an ensemble of classical fields with stopping condition
(A) has been finally abandoned, since the moduli space for |Q| = 1 would be effec-
tively restricted to non-dissociated calorons only.
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6.2 Moduli space of lattice calorons

In this section the moduli space for lattice calorons is explored finally in a more
complete way and compared to the KvBLL caloron solutions. The comparison
focuses on some basic statements that can be made for SU(3) calorons.

1. The caloron with topological charge Q is built from 3|Q| constituents.

2. Caloron solutions are characterised by asymptotic holonomy P∞ and (3d) posi-
tions. If the constituents are separated, the caloron with non-trivial holonomy
is static.

3. For different values of the temporal fermionic boundary condition jumping of
the zero-mode can be observed.

The previous chapter has made clear that a modified stopping criterion needs to
be introduced to make calorons sufficiently (anti) self-dual on one hand and to find
static, dissociated calorons on the other hand. For this reason for the remaining part
of this chapter the stopping condition (B) will be used. Only fields with |Q| > 0 are
taken into account. Still restricting ourselves to cooling with Wilson gauge action,
gauge fields of various lattice sizes are selected with this stopping condition. The
statistics obtained with this method for a number of lattices is shown in Tab. 6.1.
Since some configuration do not fulfil condition (B) at any time during cooling, the
effective statistics of classical fields is smaller.

number of condition (B)
lattice size

configurations is fulfilled
4× 123 10000 7840
6× 123 6000 5627
124 1600 1448

4× 203 ≈ 200 –
6× 203 ≈ 100 –

Table 6.1: ensemble of gauge fields generated at β = 5.65 with Wilson gauge action

Lattice data for 4 × 203 and 6 × 203 have been collected to examine the effect of a
larger volume, for the 6 × 123 lattices in order to investigate the effect of a larger
aspect ratio Nt/Ns. In case of the symmetric 124 lattice the cooled gauge fields are
more likely to be interpreted in terms of O(4)-symmetric instantons (on the torus)
with various asymptotic holonomies.

After cooling the topological charge is well defined for the improved operator and
the deviation of the topological charge from an integer value is generally small. For
the 4 × 123 ensemble 67% of the cooled configurations deviate less than 0.01 from
an integer value. In Fig. 6.4 the distribution of the topological charge (Q = 0 is
excluded) and the distribution of the modulus of asymptotic holonomy are shown.
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Figure 6.4: topological charge Q3li and the distribution of asymptotic holonomy.

Non-trivial holonomy is still essential to describe the calorons obtained by cooling
starting from the confinement phase. The effect of the combined stopping condition
(B) is that the statistics is split up into two almost disjoint parts for |Q| = 1, and
to a smaller extent also for |Q| = 2. These parts (a) and (b) (see Fig. 6.5) mainly
depend on whether cooling stopped because of (b) a minimal value for δF or (a) a
minimal value of δt respectively. The distribution of the topological charge and the
asymptotic holonomy in Fig. 6.4 are qualitatively like the previous ones in Fig. 6.1.
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Figure 6.5: distribution of non-stationarity for various topological sectors (left) and
the violation of self-duality (right)

The part (b) violates the equation of motion on the lattice less than (a), but only (a)
contains static and dissociated calorons. Both parts together could not be obtained
by a single stopping condition. For |Q| = 1 the combined stopping condition is a
compromise between having a field belonging either to the moduli space of the torus,
which in the strict sense excludes |Q| = 1 calorons with a finite size, or to the moduli
space of S1× � 3, where static calorons would dominate according to the assumption
the constituent positions are distributed randomly (dÀ β). Both parts account for
the moduli space of approximate caloron solutions on the lattice. This partitioning
into part (a) and (b) will be also visible (and marked) in some other figures.
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Now we are asking whether all these lattice calorons consist of 3|Q| constituents.
A robust definition of constituent monopoles was given in the beginning of the last
chapter and was already successfully used to identify 3|Q| monopoles. Unfortu-
nately this criterion will not work if the gauge fields have trivial holonomy or are
not sufficiently smooth. For trivial holonomy P∞ ∈ Z(3) three eigenvalues are de-
generated in the asymptotic region and the (massless) monopoles cannot be located
on the lattice using this criterion. On the other hand, if the fields are not sufficiently
cooled and the field is not yet classical the Polyakov loop is still fuzzy and no signals
(e.g. positions) from a single configurations can be obtained. Since the ensemble
was cooled until the fields are sufficiently (anti) self-dual the second problem poses
no danger. In Fig. 6.6 the results for the number of monopoles, obtained with this
definition, for different cuts applied to the asymptotic holonomy |P∞| and the non-
staticity δt are shown. Over-counting constituents in calorons with trivial holonomy
would actually pose a problem.
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Figure 6.6: number of monopoles through local maxima and Polyakov loop criterion
with cuts to |P∞| and δt. Note: The bars show the standard deviation!

Introducing the cut to the holonomy is acting to suppress the case of (nearly) triv-
ial holonomy where the definition of the monopoles will not work. Indeed, if the
cut |P∞| < 0.2 is introduced the standard deviation of the number of monopoles
becomes smaller and the result is only compatible with 3|Q| constituent monopoles.
The latter cut to the non-staticity δt is applied, since dissociated calorons are dis-
cernible as static ones for non-trivial holonomy and this enhances the the number
of local maxima in the action. The gain due to this cut is marginal and the average
number of local maxima identified in the topological charge is smaller than 3|Q| but
systematically larger than |Q|. This behaviour is further illustrated by the distri-
bution of the number of monopoles for single topological sectors is shown Fig. 6.6.
Again the cut |P∞| < 0.2 is used to get rid of trivial asymptotic holonomy.
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Figure 6.7: distribution of monopole number for S/S0 = 1, 2, 3 with |P∞| < 0.2

The number of configurations in Fig. 6.7 is dominated by cases with a number of
monopoles equal to 3|Q|. The over-counting can be further suppressed by a more
strict cut to the holonomy. From the analytic action form of the density for |Q| = 1
it is known that a caloron with separated constituents gives rise to a static action
density whereas a non-dissociated caloron is localised in 4 dimensions and hence is
not static. In Fig. 6.8 (rhs.) this relation is shown to be realised for the clusters
formed in the moduli space obtained by the combined stopping condition (B). If the
constituents are separated the caloron is static and if all constituents come close the
caloron is time-dependent.
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Figure 6.8: distribution of average monopole distance (left) and scatter-plot of
non-staticity δt versus average monopole distance (right) restricted to |P∞| < 0.2
and topological charge |Q| = 1

For a subsample of 200 configurations with 1 ≤ |Q| ≤ 4 the spectrum of the clover-
improved Dirac operator was computed. The boundary conditions were taken at
the midpoints between the eigenvalues of the asymptotic holonomy (1 − ξn) =
(µn+1 + µn)/2, where the zero-mode is expected to be maximally localised on the
nth constituent. If the nth constituent is massless νn = 0, the zero-mode density will
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be also delocalised for this ξn. The jumping range dnm between the maxima of the
zero-mode density for charge 1 and different boundary conditions is computed by

dnm = |r(ξn)− r(ξm)|torus.
The torus distance is the length of the smallest straight line on the flat torus and
r is the position of the maximum of ψ†ψ for the specified boundary condition. The
histogram for the jumping range for possible combinations of boundary conditions is
shown in Fig. 6.9. To avoid false signals from delocalised modes the jumping range
is not shown if IPR < 2.
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Figure 6.9: distance between maxima of zero-mode density for different b.c. only
with IPR > 2 (left) and with IPR > 2 and |P∞| < 0.2 (right).

Jumping over large distances (on the torus) is visible. Again the behaviour typical
for KvBLL -caloron is enhanced, if a cut with respect to the asymptotic holonomy
|P∞| < 0.2 is imposed.

Within the statistics it is possible to give evidence that lattice caloron configu-
ration for SU(3) consist of 3|Q| monopoles. Through the definition of monopoles
by coinciding eigenvalues of the Polyakov loop this is even possible for a relatively
small volume of 4 × 123. In order to get rid of false signals from trivial holonomy
only configurations with |P∞| < 0.2 are allowed to contribute. For |Q| = 1, and to
a smaller extent also for |Q| = 2, two nearly separated parts of the moduli space
become visible. This supports using the stopping criterion (B) since the accessible
part of the caloron moduli space is extended and the typical behaviour of KvBLL
calorons becomes visible.
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6.3 Dependence on the aspect ratio Nt/Ns

The aspect ratio and the volume together1 define to which extent the lattice models
S1 × � 3. For this study the aspect ratio needs to be small and the volume big such
that the overlap effect in space can be neglected. If the aspect ratio is send to one,
more instanton-like classical solutions are expected. For SU(2) a ’Recombination2

of dyons into calorons’ was observed to take place during this limit [29]. In order
to study this behaviour the cases Nt/Ns = 6/12 and Nt/Ns = 12/12 are studied on
ensembles which were cooled with the stopping condition (B). The yield of classical
configurations is shown in the upper part of Fig. 6.10. Similar to [29] static calorons
vanish, if the aspect ratio Nt/Ns is increased (lower part of Fig. 6.10).
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Figure 6.10: distribution of non-staticity and topological charge for 6 × 123 (left)
and 124 (right) lattice

The distribution of the modulus of the asymptotic holonomy is not much different
from Fig. 6.4 for both ensembles, non-trivial holonomy is still important approaching
the symmetric torus. In Fig. 6.11 the number of constituents, found for different
topological sectors |Q|, for Nt = 6 is shown. Different cuts with respect to the
holonomy |P∞| and non-staticity δt are applied.

1Note: This also depends on the caloron size.
2dissociated dyonic constituents recombine into one non-dissociated calorons
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Figure 6.11: Dissociation into constituents from local maxima of action and
monopole counting (defined by coinciding eigenvalues) for 6×123 lattice with different
cuts imposed.

Despite the bigger aspect ratio 3|Q| monopoles are found while a lower number of
local extrema in the topological charge is observed Fig. 6.11. This has not been
checked on the symmetric lattice, since the role of the Polyakov loop in a certain
direction is not well-defined in this case.
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Figure 6.12: Distribution of number of monopoles for different topological (self-
dual) sectors. The figures show the results for |Q| = 1, 2, 3 (left,middle,right).

Imposing a cut on the asymptotic holonomy makes the definition of the monopoles
useful and it can be seen in Fig. 6.12 that mainly 3|Q| monopoles are discernible
in the (anti) self-dual charge Q sector. A clear signal is observed for |Q| = 1 and
washed out for higher charges. For |Q| = 3 finite volume effects will certainly become
important since for |Q| = 3 nine constituents need to be packed into the relatively
small volume.

The recombination into static non-dissociated calorons is also observed for SU(3)
if Nt/Ns is increased Fig. 6.10 but the monopoles can still be observed in the non-
trivial substructure of the Polyakov loop.
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6.4 Dependence on the volume N 3
s

The main effect in the finite volume is to restrict possible positions and distances
of monopole constituents to a finite (periodic) box. Hence the monopole distance
in units of the temporal extent r/β cannot become larger then L/β = Ns/Nt. In-
creasing the volume N 3

s with a fixed Nt increases the possible distances in units of
β between caloron constituents. Assuming that the distribution of the distances
between constituents scales, independent of Nt, with the volume, almost all calorons
are static since the distances between constituents become arbitrarily large. Con-
sidering gauge fields, cooled with the combined stopping condition (B) and Wilson
gauge action, this is illustrated in Fig. 6.13. Due to the small statistics the distri-
bution of topological charges is quite irregular.
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Figure 6.13: Distribution of topological charges (upper panel) and distribution of
δt for 4× 203 (left) and 6× 203 (right)

For the 6 × 203 lattice the aspect ratio is close to the value of the 4 × 123

lattice and the distribution of δt already moves away from zero. Especially for
the 4 × 203 lattice, where one has significant higher distances and a lower aspect
ratio Nt/Ns = 0.2, static and dissociated calorons dominate the statistics. Almost
all classical configurations of the topological sectors |Q| = 1 . . . 4 obtained for this
lattice size have a non-staticity which is lower than the bifurcation value δ∗t = 0.27,
shown as the dashed line.
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6.5 Non-caloron configurations from cooling

By cooling one can also find non-caloron configurations which are stable with respect
to cooling but not (anti) self-dual. They are very stable with respect to cooling and
do not satisfy any of our stopping conditions (A) or (B) at any time. Cooling was
stopped by fiat after 1000 steps to handle these leftover configurations. Since they
have been recorded it is possible to show these fields and their frequency for the
Q = 0 sector. In Fig. 6.14 the distribution of S/S0 and the scatter plot of the
non-staticity δt versus the normalised action S/S0 is shown.
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Figure 6.14: action S/S0 (left) and the scatter plot showing non-staticity δt versus
S/S0 for stable fields with Q=0 and Nt/Ns = 4/12

Gauge fields which have an constant action S0Nt/Ns and are stable with re-
spect to cooling were already found in previous cooling studies [75]. These so-called
Dirac sheet configurations can be described in terms of Abelian, constant curvature
solutions and are well understood [76].

Fµν = i
τ3
2

2πnµν
lµlν

nµν ∈ � and nµν = −nνµ. (6.1)

Within the 10000 configurations there are 380 configurations (≈ 4%) of that type.
They have a constant curvature Fµν (hence δt ¿ 1 see Fig. 6.14 right panel) are
Abelian and have an action S = S0 (Nt/Ns±0.01). The Dirac sheets with S/S0 = 1/3
are not very static because they were actually expected and intercepted by a special
trigger before 1000 steps of cooling were applied to them. The frequency of Dirac
sheets agrees qualitatively with [75]. There it was also found that in the limit
Ns → ∞ the measure of these configurations vanishes. Hence they are artifacts of
the finite volume. In Fig. 6.14 marginally stable fields with S = S0 {1/2, 2/3, 3/4}
are shown. Multiples of 1/3 are expected for the same aspect ratio but 1/2 cannot
be explained in terms of SU(2) solutions like Eq. 6.1. The yield of Q = 0 fields with
S = 2S0 is most likely from caloron-anticaloron superpositions and with S = S0
from dyon-antidyon events, which were also observed in the previous SU(2) cooling
studies [71]. For Nt/Ns = 6/12 stable and static fields with S = S0 {3/8, Nt/Ns, 3/4}
are observed with the statistics {92, 82, 7} out of the 6000 cooled configurations.
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6.6 Summary

This chapter confirms on a statistical basis what was already shown in the last one.
At finite temperature and T < Tcrit there are lattice solutions of the equation of
motion which need to be described in terms of calorons with non-trivial asymptotic
holonomy. These calorons can be described in terms of 3|Q| monopole positions
defined by coinciding eigenvalues for the Polyakov loop operator (Figs. (6.6, 6.7, 6.11
and 6.12)). It is visible in Fig. 6.5 that the calorons are static if the constituents
are separated and not static if they are close to each other. Preliminary results
presented in Fig. 6.9 confirm that zero-mode jumping takes place. This was already
observed for selected classical configurations in the last chapter. If the temperature is
lowered the dissociated calorons recombine into single (anti) self-dual and non-static
lumps but can be embedded in a non-trivial holonomy and thus posses a non-trivial
substructure in the Polyakov loop. A larger volume makes static and dissociated
calorons more probable and enhances the KvBLL pattern.
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Figure 6.15: results from the SU(2) cooling study [29] on Nt × 163 lattices for
|Q| = 1.

The results (e.g. Fig. 6.10) for the different aspect ratios Nt/Ns qualitatively
agree with the former results for SU(2), shown in Fig. 6.15, but can hardly be
compared quantitatively. The result of cooling also strongly depends on the cooling
method and especially also depends on the stopping condition. Additionally non-
caloron fields, which were already observed in case of SU(2) are also found here and
give rise to new constant curvature fields within SU(3).



Chapter 7

Summary and Outlook

7.1 Summary

With the goal to prepare for an understanding of the non-perturbative vacuum
structure of QCD, the quantum mechanical kink-gas was introduced and compared
with a numerical evaluation of the path-integral. The applicability of the saddle
point method was numerically studied by inspecting the Hessian operator during a
series of smoothing steps, limited by the requirement that the expectation value of
an interesting observable is not biased by smoothing. For the weak coupling case
this was successfully verified for the energy gap. In case of strong coupling, where
classical solutions can only be washed out by numerous cooling steps, the energy
gap was biased.

In the case of SU(3) Yang-Mills theory we focused on classical solutions at finite
temperature with non-trivial holonomy. These so-called KvBLL calorons might,
incorporated in a semiclassical approximation, provide a microscopic mechanism for
the deconfinement-confinement phase transition. It was interesting to perform this
numerical study since SU(3) calorons are qualitatively different from calorons with
trivial holonomy or from SU(2) embeddings, which appear as certain limiting cases
of the KvBLL solution. Previous investigations of the semiclassical structure al-
ready dealt with SU(2) [29] but some technical improvements were necessary to
proceed to SU(3). For example an improved definition of the field strength, the
clover-improved Dirac operator and an over-improved action were used. These im-
provements were necessary to study higher topological sectors more reliable and to
circumvent the instability of classical solutions due to lattice artifacts and topologi-
cal restrictions. In order to obtain a caloron solution we cooled gauge fields starting
from a Monte-Carlo ensemble generated in the confined phase, close to the decon-
finement phase transition. Examining these classical configurations we found that
non-trivial holonomy is the generic case. All configurations we found resemble the
analytical KvBLL caloron, despite the fact that the analytic solution exists in an
infinite volume. Typical properties are that (i) a caloron of charge Q consists of 3|Q|
constituents, (ii) non-dissociated calorons show a substructure in the Polyakov loop
profile and are non-static, (iii) dissociated calorons are static and the zero-mode is lo-
calised on a monopole constituent, depending on the fermionic boundary condition.
The dependence on the boundary condition is determined by the holonomy. These
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findings were reproduced consistently by measuring the Polyakov loop, the topolog-
ical charge density and the spectrum of the Dirac operator for certain values of the
boundary condition. Generally the asymptotic holonomy is a well-defined quantity
even on a finite lattice. Having found this on selected examples, these features were
also reproduced for a large number of cooled fields. Due to lattice artifacts of the
gauge action and stability problems on the torus one could miss the KvBLL caloron
signature for |Q| = 1. We have overcome this by a combined stopping condition,
that accepts also static solution even if not perfectly self-dual. Effectively cooling
stops earlier. Although the solutions are much more complicated for higher charges
[54] we were able to characterise them using the same techniques.

A recombination into non-dissociated calorons takes place if the aspect ratio
Nt/Ns is increased towards the symmetric lattice while the KvBLL pattern be-
comes more pronounced, if the aspect ratio is lowered. Non-trivial holonomy stays
important as long as cooling starts from the confined phase.

7.2 Conclusions

We conclude that classical solutions with non-trivial holonomy and the typical be-
haviour known from KvBLL caloron solutions exist on asymmetric lattices with
suitable aspect ratio. In the spirit of these findings, previous numerical and ana-
lytical studies which describe the semiclassical structure at finite temperature only
in terms of instantons or calorons with trivial holonomy, need a reinterpretation.
The temperature range near Tcrit can be understood only with the ’new’ caloron.
There, the SU(3) KvBLL calorons should be the building blocks of a semiclassical
calculation, where the statistical mechanics of constituents at a given temperature
determines the holonomy.

7.3 Outlook

Future work on this subject has two aspects. First one needs to develop further the
knowledge of classical solutions, also for higher charges and for the interesting case
of SU(3) gauge theory. Th present work is only the first step in this direction. In-
vestigations on the lattice have the potential to accompany this development on the
analytic side and to give hints for the general composition of the moduli space [77].
The second aspect, which has to be studied numerically, is to search for correspond-
ing signatures in equilibrium Monte-Carlo configurations. Current investigations
on APE-smeared configurations already deal with the interpretation of low-lying
fermion modes [25, 26]. It remains to be seen whether a model of the QCD vacuum
based on calorons with non-trivial holonomy provides a viable microscopic mecha-
nism for confinement, at least at finite temperature.



Appendix A

Projection to SU(N)

A.1 General remarks

The essential part of a smearing or cooling procedure is the ’projection’ onto the
gauge group SU(N). A possible mapping PSU(N) : M(n, � ) 7→ SU(N), where gen-
erally SU(N) ⊂M(N, � ) is identical mapped to itself, is defined by the requirement

PSU(N)(M) =
{
U ∈ SU(N) : Re tr

(
UM †) = maximal

}
. (A.1)

This procedure is called the MaxReTr projection. By replacing a link variable Ux,µ

by PSU(N)(M) the local action Re tr
(
� − Ux,µM †) is minimised. The existence of a

matrix U in Eq. A.1 is obvious since SU(N) is compact but there are cases where
this construction and the requirement are not unique (e.g. M = � ). However,
such a case was never encountered in the simulation with random matrices. The
construction of PSU(N)(M) is described in Sect. A.3. Another possibility to project
to SU(N) is the so called UnitCircle formula

P′SU(N)(M) =
M φ√
M †M

, (A.2)

where the phase φ renders this unitary matrix special unitary. This construction
makes only sense if M has non-zero eigenvalues. An important observation is that
these methods are not equivalent. Both projections ’respect gauge invariance’ which
means that for the following diagram commutes.

M
PSU(N)

//

Ω
²²

U

Ω
²²

M ′
PSU(N)

// U ′

For the ReTrMax projection this only holds numerical if convergence was reached
with respect to the numerical precision. The generalised staplesM , independent of a
specific lattice action, transform as M →M ′ = Ω(x)MΩ(x+µ)† under gauge trans-
formations Ω(x). From the the observation that Re tr

(
UM †) ≡ Re tr

(
U ′(M ′)†

)

and the uniqueness property of P (which was not proven here) one concludes that

PSU(N)(M
′) = U ′ = Ω(x)PSU(N)(M)Ω(x+ µ)†. (A.3)
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Two gauge fields remain gauge-equivalent after projection and are in both cases
connected by the same gauge transformation. In this sense Eq. A.3 is equivalent to
the property that the diagram is commutative. In Tab. A.1 these projection and the
naive method, which projects back by orthonormalising the row vectors, are com-
pared for SU(3). As a test of numerical stability one random gauge field on a 4×123

lattice is cooled by the APE-smearing method using these three projection meth-
ods. For each method the average plaquette after a number of APE blocking steps
is shown. As a test, whether projection and gauge transformation are compatible,
a parallel history for a random gauge copy is included.

MaxReTr projection
steps original gauge field gauge copy
0 -0.000796934548055 -0.000796934548055
1 0.249483394417475 0.249483394417475
2 0.419962269229319 0.419962269229319
3 0.524804733451640 0.524804733451640
4 0.597637923168918 0.597637923168917
5 0.653131016265543 0.653131016265544

UnitCircle projection
steps original gauge field gauge copy
0 -0.000796934548055 -0.000796934548055
1 0.246866166968911 0.246866166968911
2 0.417470795318875 0.417470795318875
3 0.522740823515202 0.522740823515202
4 0.595853938998313 0.595853938998313
5 0.651568409397263 0.651568409397263

projection by orthonormalisation
steps original gauge field gauge copy
0 -0.000796934548055 -0.000796934548055
1 0.232618217274054 0.233145269931380
2 0.388669863129825 0.389271969451491
3 0.491558739476750 0.492009565989056
4 0.565775939195666 0.566232968210528
5 0.623338491956017 0.623966176858063

Table A.1: Comparison of average plaquette after a number of APE-blocking steps
for different projection methods for SU(3)

By definition only theMaxReTr projection Eq. A.1 gives the maximum of Re tr
(
UM †)

but due to the absence of an explicit formula only the UnitCircle projection Eq. A.2
is differentiable and can be used e.g. for a HMC algorithm [78]. Both methods
evidently respect gauge invariance up to the numerical precision as shown by the
highlighted bold letters in Tab. A.1 for the plaquette measurements. The naive pro-
jection by orthonormalising should only be used if the matrix M is either ’close’ to
SU(N) or when the projection does not need to preserve the gauge. In these cases
naive orthonormalisation is preferred because its considerably faster than the other
methods. If the matrix M is ’close’ to SU(N) UnitCircle and naive projection of M
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clearly tend to be ’close’ to the ReTrMax projection.

A.2 Projection to SU(2)

To complete the comments to the projection the ReTrMax projection for SU(2)
needs to be specified. This is a mapping

PSU(2) :M =

(
m11 m12

m21 m22

)
→ U ∈ SU(2)

with M ∈ GL(n, � ). If one uses the parametrisation U = a0 � + i ~a~σ the matrix is
special unitary if the a0 ∈

�
, ~a ∈ � 3 and the condition a20 + ~a 2 = 1 is fulfilled. The

projection condition max Re tr
(
UM †) in this parametrisation reads

a0Re (m
∗
11 +m∗

22) + a1Re (i(m
∗
12 +m∗

21))

+ a2Re (m
∗
12 −m∗

21) + a3Re (i(m
∗
11 −m∗

22)) = maximal,

which looks like the scalar product of two 4 dimensional vectors. Since a is restricted
to lie on a 3 sphere, the product is maximised if a is parallel aligned to the other
vector and normalised. Using a = m11 +m∗

22, b = m12 −m∗
21 and c = 1/

√
|a|2 + |b|2

this gives the final expression

PSU(2)(M) = c

(
a b
−b∗ a∗

)
∈ SU(2). (A.4)

The class of matrixes for which this works is not specified here but during numerical
work no problems with singular matrices occurred. IfM is a sum of SU(2) matrices,
what is clearly not the general case, the projection can simply be accomplished by
dividing through the square root of the determinant

PSU(2)(M ∝ SU(2)) =
1√

detM
M ∈ SU(2). (A.5)

A.3 Iterative projection to SU(N)

The iterative procedure of the projection of an complex N×N matrixM is described
in terms of the projection to SU(2) ála Cabbibo-Marinari [67].

1. Choose a (preconditioned) matrix U0 to start with and set k = 0.

2. Select an 2× 2 block m of M · Uk and project to SU(2) wk = PSU(2)(m)

3. Define Uk+1 :=Uk · wk where Wk only acts on the chosen subgroup.

4. For numerical stability Uk+1 should be normalised1 back to SU(3).

5. Set k → k + 1 and go to 2 until numerical convergence in all subgroups.

6. Finally PSU(N)(M) := Uk+1.

1Here it is sufficient to use orthonormalisation of the row vectors.



Appendix B

Testing the Dirac operator

For the |Q| = 2 caloron with trivial holonomy, that was shown as an example, the
spectrum is shown more explicitly. Since this field was generated in SU(2), one has
to distinguish the properties of the SU(2) field and the embedding into SU(3). From
this example one can judge to what extend the operator is improved and how the
spectrum looks like on a cooled gauge field. On the other hand the index theorem
is non-trivially fulfilled for the SU(3) embedding. This might be of general interest.
In Fig. B.1 some properties of 80 low lying eigenmodes.
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Figure B.1: low lying spectrum of the clover improved Dirac operator with sym-
metric b.c. for the Q = 2 caloron with trivial holonomy (embedded solution); the
real and imaginary part of eigenvalues (left); γ5 matrix element (middle) and inverse
participation ratio (right) versus the imaginary part of λ

Two of six zero-modes have definite chirality +1 while the others have not. The trace
of γ5 in the kernel of /D gives tr (γ5[U ])zm = 2.03. Diagonalising the overlap-matrix
Mij =

∫
d4x ψiγ5ψj for i, j ∈ kernel /D gives the expected result

O†MO = diag(−1.02,−0.97,+1.03,+0.99,+1.00,+1.00).

Up to numerical errors, which are caused by violation of chiral symmetry of the
operator, one has n+ = 4 and n− = 2. The original gauge field in SU(2), however,
has only 2 zeromodes with n+ = 2.
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