Scharfetter Gummel Schemes for Non-Boltzmann Statistics

Patricio Farrell Weierstrass Institute (WIAS)

Joint work with: T. Koprucki, J. Fuhrmann, N. Rotundo, H. Doan

Weierstrass Institute for Applied Analysis and Stochastics ECMI 2016

Numerical methods for interesting physics

Numerical methods for interesting physics

Numerical methods for interesting physics

Outline

- semiconductor equations (arb. distribution function) and their discretisation
- discuss three numerical flux approximations
- assess quality by looking at a benchmark

Semiconductor Equations (van Roosbroeck)

For the electrostatic potential, electron and hole densities

$$-\nabla \cdot (\varepsilon \nabla \psi) = q(C + p - n)$$
$$n_t - \frac{1}{q} \nabla \cdot \mathbf{j}_n = -R(n, p)$$
$$p_t + \frac{1}{q} \nabla \cdot \mathbf{j}_p = -R(n, p)$$

Semiconductor Equations (van Roosbroeck)

For the electrostatic potential, electron and hole densities

$$-\nabla \cdot (\varepsilon \nabla \psi) = q(C + p - n)$$
$$n_t - \frac{1}{q} \nabla \cdot \mathbf{j}_n = -R(n, p)$$
$$p_t + \frac{1}{q} \nabla \cdot \mathbf{j}_p = -R(n, p)$$

Currents

Chemical potentials

Currents $\mathbf{j}_n = -q\mu_n n\nabla \psi + qD_n \nabla n \quad \text{and} \quad \mathbf{j}_p = -q\mu_p p\nabla \psi - qD_p \nabla p$

Chemical potentials

Currents

Chemical potentials

Currents

 $\mathbf{j}_n = -q\mu_n n \nabla \psi + q D_n \nabla n$ and $\mathbf{j}_p = -q\mu_p p \nabla \psi - q D_p \nabla p$

Chemical potentials

 $n = N_c \mathcal{F}\left(\frac{q(\psi - \varphi_n) + E_{ref} - E_c}{k_B T}\right) \quad \text{and} \quad p = N_v \mathcal{F}\left(-\frac{q(\psi - \varphi_p) + E_{ref} - E_v}{k_B T}\right)$

Currents $\mathbf{j}_n = -q\mu_n n\nabla \psi + qD_n \nabla n \quad \text{and} \quad \mathbf{j}_p = -q\mu_p p\nabla \psi - qD_p \nabla p$

Chemical potentials

 $n = N_c \mathcal{F}(\eta_n)$ and $p = N_v \mathcal{F}(\eta_p)$

Currents

 $\mathbf{j}_n = -q\mu_n n\nabla\psi + qD_n\nabla n$ and $\mathbf{j}_p = -q\mu_p p\nabla\psi - qD_p\nabla p$

Chemical potentials

 $n = N_c \mathcal{F}(\eta_n)$ and $p = N_v \mathcal{F}(\eta_p)$

$$\frac{D_n}{\mu_n U_T} = \frac{n}{N_c} (\mathcal{F}^{-1})' \left(\frac{n}{N_c}\right) \quad \text{and} \quad \frac{D_p}{\mu_p U_T} = \frac{p}{N_v} (\mathcal{F}^{-1})' \left(\frac{p}{N_v}\right)$$

Currents $\mathbf{j}_n = -q\mu_n n\nabla\psi + qD_n\nabla n$ and $\mathbf{j}_p = -q\mu_p p\nabla\psi - qD_p\nabla p$

Chemical potentials

 $n = N_c \mathcal{F}(\eta_n)$ and $p = N_v \mathcal{F}(\eta_p)$

Diffusion and mobility

 $\frac{D_n}{\mu_n U_T} = g\left(\frac{n}{N_c}\right) \quad \text{and} \quad \frac{D_p}{\mu_p U_T} = g\left(\frac{p}{N_v}\right)$

$$\begin{aligned} \mathbf{Currents}\\ \mathbf{j}_n &= -q\mu_n \left\{ n \nabla \psi - U_T g\left(\frac{n}{N_c}\right) \nabla n \right\} \quad \text{and} \quad \mathbf{j}_p = -q\mu_p \left\{ p \nabla \psi + U_T g\left(\frac{p}{N_v}\right) \nabla p \right\}\\ \end{aligned}$$

$$\begin{aligned} \mathbf{Chemical \ potentials}\\ n &= N_c \mathcal{F}(\eta_n) \quad \text{and} \quad p = N_v \mathcal{F}(\eta_p) \end{aligned}$$

$$\frac{D_n}{\mu_n U_T} = g\left(\frac{n}{N_c}\right) \quad \text{and} \quad \frac{D_p}{\mu_p U_T} = g\left(\frac{p}{N_v}\right)$$

Currents

 $\mathbf{j}_n = -q\mu_n n \nabla \varphi_n$ and $\mathbf{j}_p = -q\mu_p p \nabla \varphi_p$

Chemical potentials

 $n = N_c \mathcal{F}(\eta_n)$ and $p = N_v \mathcal{F}(\eta_p)$

Diffusion and mobility

 $\frac{D_n}{\mu_n U_T} = g\left(\frac{n}{N_c}\right) \quad \text{and} \quad \frac{D_p}{\mu_p U_T} = g\left(\frac{p}{N_v}\right)$

Currents

 $\mathbf{j}_n = -q\mu_n n \nabla \varphi_n$ and $\mathbf{j}_p = -q\mu_p p \nabla \varphi_p$

drift and diffusion quasi Fermi potential

Chemical potentials

 $n = N_c \mathcal{F}(\eta_n)$ and $p = N_v \mathcal{F}(\eta_p)$

$$\frac{D_n}{\mu_n U_T} = g\left(\frac{n}{N_c}\right) \quad \text{and} \quad \frac{D_p}{\mu_p U_T} = g\left(\frac{p}{N_v}\right)$$

Currents

 $\mathbf{j}_n = -q\mu_n n \nabla \varphi_n$ and $\mathbf{j}_p = -q\mu_p p \nabla \varphi_p$

drift and diffusion quasi Fermi potential

Chemical potentials

 $n = N_c \mathcal{F}(\eta_n)$ and $p = N_v \mathcal{F}(\eta_p)$

densities ↔ chemical potentials

$$\frac{D_n}{\mu_n U_T} = g\left(\frac{n}{N_c}\right) \quad \text{and} \quad \frac{D_p}{\mu_p U_T} = g\left(\frac{p}{N_v}\right)$$

Currents

 $\mathbf{j}_n = -q\mu_n n \nabla \varphi_n$ and $\mathbf{j}_p = -q\mu_p p \nabla \varphi_p$

drift and diffusion quasi Fermi potential

Chemical potentials

 $n = N_c \mathcal{F}(\eta_n)$ and $p = N_v \mathcal{F}(\eta_p)$

densities ↔ chemical potentials

Diffusion and mobility

 $\frac{D_n}{\mu_n U_T} = g\left(\frac{n}{N_c}\right) \quad \text{and} \quad \frac{D_p}{\mu_p U_T} = g\left(\frac{p}{N_v}\right)$

nonlinear

Voronoi Cells

http://postitdoodling.tumblr.com

Voronoi Cells

Flux along 1D edge

$$\nabla \cdot (\varepsilon \nabla \psi) + q(C + p - n) = 0$$
$$\frac{\partial}{\partial t}n - \frac{1}{q}\nabla \cdot \mathbf{j}_n + R(n, p) = 0$$
$$\frac{\partial}{\partial t}p + \frac{1}{q}\nabla \cdot \mathbf{j}_p + R(n, p) = 0$$

$$\int_{K} \nabla \cdot (\varepsilon \nabla \psi) d\mathbf{x} + q \int_{K} (C + p - n) d\mathbf{x} = 0$$
$$\frac{\partial}{\partial t} \int_{K} n d\mathbf{x} - \frac{1}{q} \int_{K} \nabla \cdot \mathbf{j}_{n} d\mathbf{x} + \int_{K} R(n, p) d\mathbf{x} = 0$$
$$\frac{\partial}{\partial t} \int_{K} p d\mathbf{x} + \frac{1}{q} \int_{K} \nabla \cdot \mathbf{j}_{p} d\mathbf{x} + \int_{K} R(n, p) d\mathbf{x} = 0$$

$$\int_{K} \nabla \cdot (\varepsilon \nabla \psi) d\mathbf{x} + q \int_{K} (C + p - n) d\mathbf{x} = 0$$
$$\frac{\partial}{\partial t} \int_{K} n d\mathbf{x} - \frac{1}{q} \int_{K} \nabla \cdot \mathbf{j}_{n} d\mathbf{x} + \int_{K} R(n, p) d\mathbf{x} = 0$$
$$\frac{\partial}{\partial t} \int_{K} p d\mathbf{x} + \frac{1}{q} \int_{K} \nabla \cdot \mathbf{j}_{p} d\mathbf{x} + \int_{K} R(n, p) d\mathbf{x} = 0$$

$$\int_{K} \nabla \cdot (\varepsilon \nabla \psi) d\mathbf{x} + q |K| (C_{K} + p_{K} - n_{K}) = 0$$
$$\frac{\partial}{\partial t} |K| n_{K} - \frac{1}{q} \int_{K} \nabla \cdot \mathbf{j}_{n} d\mathbf{x} + |K| R(n_{K}, p_{K}) = 0$$
$$\frac{\partial}{\partial t} |K| p_{K} + \frac{1}{q} \int_{K} \nabla \cdot \mathbf{j}_{p} d\mathbf{x} + |K| R(n_{K}, p_{K}) = 0$$

$$\int_{K} \nabla \cdot (\varepsilon \nabla \psi) d\mathbf{x} + q |K| (C_{K} + p_{K} - n_{K}) = 0$$
$$\frac{\partial}{\partial t} |K| n_{K} - \frac{1}{q} \int_{K} \nabla \cdot \mathbf{j}_{n} d\mathbf{x} + |K| R(n_{K}, p_{K}) = 0$$
$$\frac{\partial}{\partial t} |K| p_{K} + \frac{1}{q} \int_{K} \nabla \cdot \mathbf{j}_{p} d\mathbf{x} + |K| R(n_{K}, p_{K}) = 0$$

$$\int_{\partial K} \mathbf{n} \cdot (\varepsilon \nabla \psi) dS + q |K| (C_K + p_K - n_K) = 0$$
$$\frac{\partial}{\partial t} |K| n_K - \frac{1}{q} \int_{\partial K} \mathbf{n} \cdot \mathbf{j}_n dS + |K| R(n_K, p_K) = 0$$
$$\frac{\partial}{\partial t} |K| p_K + \frac{1}{q} \int_{\partial K} \mathbf{n} \cdot \mathbf{j}_p dS + |K| R(n_K, p_K) = 0$$

$$\sum_{L \in N(K)} \sigma_{KL} (\mathbf{x}_L - \mathbf{x}_K) \cdot (\varepsilon \nabla \psi) + q |K| (C_K + p_K - n_K) = 0$$
$$\frac{\partial}{\partial t} |K| n_K - \frac{1}{q} \sum_{L \in N(K)} \sigma_{KL} j_{n,KL} + |K| R(n_K, p_K) = 0$$
$$\frac{\partial}{\partial t} |K| p_K + \frac{1}{q} \sum_{L \in N(K)} \sigma_{KL} j_{p,KL} + |K| R(n_K, p_K) = 0$$

$$\sum_{L \in N(K)} \sigma_{KL} (\mathbf{x}_L - \mathbf{x}_K) \cdot (\varepsilon \nabla \psi) + q |K| (C_K + p_K - n_K) = 0$$
$$\frac{\partial}{\partial t} |K| n_K - \frac{1}{q} \sum_{L \in N(K)} \sigma_{KL} j_{n,KL} + |K| R(n_K, p_K) = 0$$
$$\frac{\partial}{\partial t} |K| p_K + \frac{1}{q} \sum_{L \in N(K)} \sigma_{KL} j_{p,KL} + |K| R(n_K, p_K) = 0$$

- Desired properties:
- stable
- preservation of max principle
- approximate boundary layers well
- consistency with thermodynamic equilibrium

Consistency with equilibrium

Zero current leads to

$$\mathbf{0} = \nabla \psi - U_T \nabla \eta_n$$

Consistency with equilibrium

Zero current leads to

$$\mathbf{0} = \nabla \psi - U_T \nabla \eta_n$$

Mimic this numerically via

$$0 = \delta \psi - U_T \delta \eta_n$$

with

$$\delta \psi = \psi_L - \psi_K$$
 and $\delta \eta = \eta_L - \eta_K$

Consistency with equilibrium

Zero current leads to

$$\mathbf{0} = \nabla \psi - U_T \nabla \eta_n$$

Mimic this numerically via

Important for coupling!

$$0 = \delta \psi - U_T \delta \eta_n$$

with

$$\delta \psi = \psi_L - \psi_K$$
 and $\delta \eta = \eta_L - \eta_K$

$$\sum_{L \in N(K)} \sigma_{KL} \left(\mathbf{x}_L - \mathbf{x}_K \right) \cdot \left(\varepsilon \nabla \psi \right) + q |K| (C_K + p_K - n_K) = 0$$
$$\frac{\partial}{\partial t} |K| n_K - \frac{1}{q} \sum_{L \in N(K)} \sigma_{KL} j_{n,KL} + |K| R(n_K, p_K) = 0$$
$$\frac{\partial}{\partial t} |K| p_K + \frac{1}{q} \sum_{L \in N(K)} \sigma_{KL} j_{p,KL} + |K| R(n_K, p_K) = 0$$

constant!

Scharfetter & Gummel (1969) for Boltzmann statistics:

 $\frac{d}{dx}j_{n,KL} = 0 \quad \text{with} \quad \begin{array}{l} n(\mathbf{x}_K) = n_K \\ n(\mathbf{x}_L) = n_L \end{array}$

Scharfetter & Gummel (1969) for Boltzmann statistics:

$$\frac{d}{dx}j_n = \frac{d}{dx}q\mu \left\{ U_T \frac{d}{dx}n - n\frac{d}{dx}\psi \right\} = 0 \quad \text{with} \quad \begin{array}{l} n(\mathbf{x}_K) = n_K \\ n(\mathbf{x}_L) = n_L \end{array}$$

Scharfetter & Gummel (1969) for Boltzmann statistics:

$$\frac{d}{dx}j_n = \frac{d}{dx}q\mu \left\{ U_T \frac{d}{dx}n - n\frac{d}{dx}\psi \right\} = 0 \quad \text{with} \quad \begin{array}{l} n(\mathbf{x}_K) = n_K \\ n(\mathbf{x}_L) = n_L \end{array}$$

leads to exact solution

$$j = q\mu U_T \left[B\left(\frac{\delta\psi_{KL}}{U_T}\right) n_L - B\left(-\frac{\delta\psi_{KL}}{U_T}\right) n_K \right]$$

Scharfetter & Gummel (1969) for Boltzmann statistics:

$$\frac{d}{dx}j_n = \frac{d}{dx}q\mu \left\{ U_T \frac{d}{dx}n - n\frac{d}{dx}\psi \right\} = 0 \quad \text{with} \quad \begin{array}{l} n(\mathbf{x}_K) = n_K \\ n(\mathbf{x}_L) = n_L \end{array}$$

leads to exact solution

$$j = q\mu U_T \left[B\left(\frac{\delta\psi_{KL}}{U_T}\right) n_L - B\left(-\frac{\delta\psi_{KL}}{U_T}\right) n_K \right]$$

$$B(x) := \frac{x}{e^x - 1}$$

Bernoulli function

Scharfetter & Gummel (1969) for Boltzmann statistics:

$$\frac{d}{dx}j_n = \frac{d}{dx}q\mu \left\{ U_T \frac{d}{dx}n - n\frac{d}{dx}\psi \right\} = 0 \quad \text{with} \quad \begin{array}{l} n(\mathbf{x}_K) = n_K \\ n(\mathbf{x}_L) = n_L \end{array}$$

leads to exact solution

 $\mathbf{2}$

0.5

_2

$$j = q\mu U_T \left[B\left(\frac{\delta\psi_{KL}}{U_T}\right) n_L - B\left(-\frac{\delta\psi_{KL}}{U_T}\right) n_K \right],$$

Bernoulli function

Scharfetter & Gummel (1969) for Boltzmann statistics:

$$\frac{d}{dx}j_n = \frac{d}{dx}q\mu \left\{ U_T \frac{d}{dx}n - n\frac{d}{dx}\psi \right\} = 0 \quad \text{with} \quad \begin{array}{l} n(\mathbf{x}_K) = n_K \\ n(\mathbf{x}_L) = n_L \end{array}$$

leads to exact solution

$$j = q\mu U_T \left[B\left(\frac{\delta\psi_{KL}}{U_T}\right) n_L - B\left(-\frac{\delta\psi_{KL}}{U_T}\right) n_K \right],$$

$$B(x) := \frac{x}{e^x - 1}$$

Bernoulli function

Exact solution for Boltzmann statistics! What about other \mathcal{F} ?

Three flux approx. for Blakemore!

General Scharfetter-Gummel

Koprucki/Gärtner (2013):

$$\frac{d}{dx}j_n = \frac{d}{dx}q\mu \left\{ U_T g\left(\frac{n}{N_c}\right)\frac{d}{dx}n - n\frac{d}{dx}\psi \right\} = 0 \quad \text{with} \quad \begin{array}{l} n(\mathbf{x}_K) = n_K\\ n(\mathbf{x}_L) = n_L \end{array}$$

General Scharfetter-Gummel

Koprucki/Gärtner (2013):

$$\frac{d}{dx}j_n = \frac{d}{dx}q\mu \left\{ U_T g\left(\frac{n}{N_c}\right)\frac{d}{dx}n - n\frac{d}{dx}\psi \right\} = 0 \quad \text{with} \quad \begin{array}{l} n(\mathbf{x}_K) = n_K\\ n(\mathbf{x}_L) = n_L \end{array}$$

Exact solution for Blakemore

$$j = j_0 \left\{ g\left(\frac{n_L}{N_C}\right) B\left(\frac{\delta\psi_{KL}}{U_T} + \gamma \frac{j}{j_0}\right) \frac{n_L}{N_C} - g\left(\frac{n_K}{N_C}\right) B\left(-\frac{\delta\psi_{KL}}{U_T} - \gamma \frac{j}{j_0}\right) \frac{n_K}{N_C} \right\}$$

with

$$g(x) = x(\mathcal{F}^{-1})'(x) = \frac{1}{1 - \gamma x}$$
 and $j_0 = q \mu N_C U_T$

General Scharfetter-Gummel

Koprucki/Gärtner (2013):

$$\frac{d}{dx}j_n = \frac{d}{dx}q\mu \left\{ U_T g\left(\frac{n}{N_c}\right)\frac{d}{dx}n - n\frac{d}{dx}\psi \right\} = 0 \quad \text{with} \quad \begin{array}{l} n(\mathbf{x}_K) = n_K\\ n(\mathbf{x}_L) = n_L \end{array}$$

Exact solution for Blakemore

fixed point equation exact (up to machine precision)

$$j = j_0 \left\{ g\left(\frac{n_L}{N_C}\right) B\left(\frac{\delta\psi_{KL}}{U_T} + \gamma \frac{j}{j_0}\right) \frac{n_L}{N_C} - g\left(\frac{n_K}{N_C}\right) B\left(-\frac{\delta\psi_{KL}}{U_T} - \gamma \frac{j}{j_0}\right) \frac{n_K}{N_C} \right\}$$

with

$$g(x) = x(\mathcal{F}^{-1})'(x) = \frac{1}{1 - \gamma x}$$
 and $j_0 = q \mu N_C U_T$

Diffusion averaging

Bessemoulin-Chatard (2012) and Koprucki et al. (2014):

$$\frac{d}{dx}j_n = \frac{d}{dx}q\mu \left\{ U_T g\left(\frac{n}{N_c}\right)\frac{d}{dx}n - n\frac{d}{dx}\psi \right\} = 0 \quad \text{with} \quad \begin{array}{l} n(\mathbf{x}_K) = n_K \\ n(\mathbf{x}_L) = n_L \end{array}$$

Diffusion averaging

Bessemoulin-Chatard (2012) and Koprucki et al. (2014):

$$j = q\mu U_T \bar{\boldsymbol{g}}_{KL} \left[B \left(-\frac{\delta \psi_{KL}}{U_T \bar{\boldsymbol{g}}_{KL}} \right) n_K - B \left(\frac{\delta \psi_{KL}}{U_T \bar{\boldsymbol{g}}_{KL}} \right) n_L \right]$$

Diffusion averaging

Bessemoulin-Chatard (2012) and Koprucki et al. (2014):

$$j = q\mu U_T \bar{\boldsymbol{g}}_{KL} \left[B \left(-\frac{\delta \psi_{KL}}{U_T \bar{\boldsymbol{g}}_{KL}} \right) n_K - B \left(\frac{\delta \psi_{KL}}{U_T \bar{\boldsymbol{g}}_{KL}} \right) n_L \right]$$

where

$$\bar{\boldsymbol{g}}_{\boldsymbol{K}\boldsymbol{L}} = \frac{\mathcal{F}^{-1}\left(\frac{n_L}{N_c}\right) - \mathcal{F}^{-1}\left(\frac{n_K}{N_c}\right)}{\log(n_L/N_c) - \log(n_K/N_c)}$$

only consistent average!

approximates

$$g(x) = x(\mathcal{F}^{-1})'(x) = \frac{(\mathcal{F}^{-1})'(x)}{\log'(x)}$$

Inverse Activity Coefficients

Fuhrmann (2015):

$$\frac{d}{dx}j_n = \frac{d}{dx}\left(-q\mu N_c\beta(\eta)e^{\eta}\frac{d}{dx}\varphi_n\right) = 0 \quad \text{with} \quad \begin{array}{l} \eta(\mathbf{x}_K) = \eta_K\\ \eta(\mathbf{x}_L) = \eta_L \end{array}$$

with
$$\beta(\eta) = \frac{\mathcal{F}(\eta)}{e^{\eta}}$$
 leads to

Inverse Activity Coefficients

Fuhrmann (2015):

$$\frac{d}{dx}j_n = \frac{d}{dx}\left(-q\mu N_c\beta(\eta)e^{\eta}\frac{d}{dx}\varphi_n\right) = 0 \quad \text{with} \quad \begin{array}{l} \eta(\mathbf{x}_K) = \eta_K\\ \eta(\mathbf{x}_L) = \eta_L \end{array}$$

with
$$\beta(\eta) = \frac{\mathcal{F}(\eta)}{e^{\eta}}$$
 leads to

$$j = -q\mu U_T N_c \beta_{KL} \left\{ e^{\eta_L} B\left(\frac{\sigma \varphi_{KL}}{U_T}\right) - e^{\eta_k} B\left(-\frac{\sigma \varphi_{KL}}{U_T}\right) \right\}$$

 $\delta \eta \to \tau$)

Inverse Activity Coefficients

Fuhrmann (2015):

$$\frac{d}{dx}j_n = \frac{d}{dx}\left(-q\mu N_c\beta(\eta)e^{\eta}\frac{d}{dx}\varphi_n\right) = 0 \quad \text{with} \quad \begin{array}{l} \eta(\mathbf{x}_K) = \eta_K\\ \eta(\mathbf{x}_L) = \eta_L \end{array}$$

with
$$\beta(\eta) = \frac{\mathcal{F}(\eta)}{e^{\eta}}$$
 leads to

consistent for any average!

$$j = -q\mu U_T N_c \beta_{KL} \left\{ e^{\eta_L} B\left(\frac{\delta\psi_{KL}}{U_T}\right) - e^{\eta_k} B\left(-\frac{\delta\psi_{KL}}{U_T}\right) \right\}$$

where

$$\beta_{KL} = \frac{\beta(\eta_K) + \beta(\eta_L)}{2} \in [\beta(\eta_K), \beta(\eta_L)]$$

Compare three schemes

General Scharfetter-Gummel

$$j_{\text{GENSG}} = j_0 \left\{ e^{\eta_L} B\left(\delta \psi_{KL} + \gamma \frac{j}{j_0} \right) - e^{\eta_K} B\left(-\delta \psi_{KL} - \gamma \frac{j}{j_0} \right) \right\}$$

Diffusion enhanced Scharfetter-Gummel $j_{\text{DESG}} = j_0 g_{KL} \left\{ \mathcal{F}(\eta_L) B\left(\frac{\delta\psi_{KL}}{g_{KL}}\right) - \mathcal{F}(\eta_K) B\left(-\frac{\delta\psi_{KL}}{g_{KL}}\right) \right\}$

Inverse activity based scheme $j_{IACT} = j_0 \beta_{KL} \left\{ e^{\eta_L} B \left(\delta \psi_{KL} \right) - e^{\eta_K} B \left(-\delta \psi_{KL} \right) \right\}$

How to design a benchmark?

Leave equilibrium!

 $\delta\varphi_{KL} = -\delta\eta_{KL} + \delta\psi_{KL}$

$$\nabla \varphi = -\nabla \eta + \nabla \psi$$

How to design a benchmark?

Leave equilibrium!

How to design a benchmark?

Leave equilibrium!

diffusion enhanced vs general SG

inverse act. vs general SG

diffusion enhanced vs general SG

inverse act. vs general SG

diffusion enhanced vs general SG

inverse act. vs general SG

How do schemes influence current and electrostatic potential?

IV curves

Results

- three thermodynamically consistent schemes (Blakemore)
- * all schemes converge to SG for large negative η
- pin benchmark useful to discriminate accuracy
- exact scheme yields best current approximation;
 diffusion enhanced scheme good for electrostatic field
- * other factors: computation times need to be considered

Outlook

- * prototype: ddfermi
- moderately-sized 2D/3D problems
- different variables: heterostructure
- * we welcome applications!

Muchas gracias por su atención!

Thank you for your attention!