

Towards the optimization of Ge micro-bridges

Dirk Peschka¹, M. Thomas¹, L. Adam^{1,2}, T. Surowiec², M. Hintermüller^{1,2}, A. Mielke^{1,2} N. Rotundo², T. Koprucki², A. Glitzky², G. Capellini³, T. Schröder³ M. Virgilio⁴, K. Gärtner⁵, R. Nürnberg¹ 1) WIAS, 2) Humboldt-University, 3) IHP Frankfurt (Oder), 4) Uni. Pisa, 5) USI Lugano **19TH EUROPEAN CONFERENCE FOR MATHEMATICS FOR INDUSTRY**

> **Research Center MATHEON** Mathematics for Key Technologies

www.wias-berlin.de · ECMI 2016 · June 13-17, 2016

ECMI 2016

Outline

- 1. Motivation
- 2. Heuristic Improvement
- 3. Doping Optimization
- 4. Topology Optimization

1. Motivation

Motivation

... which is why we want More than Moore, i.e., provide added value functionalities on Si-chip.

Our goal: Monolithically integrated photonics **Problem:** Bulk Si and Ge do not emit light!

Motivation

Motivation - germanium based approaches

		-armanium lase	51	
	solly numped §	Bermannes	1	
An electri	cany part	1 Lonothan T. Bess	ette,	
	¹ Van Cai, ¹ N	eil Patel, Jonathan Michel ^{1,*}		
. IC. E. Camao	ho-Aguilera, 1 an Cue	ing, ¹ and Jurgen 112-	VSA	
Rodolfo E. Culler	agnoli, ^{1,2} Lioner C. Ha	setts Ave., Cambridge, MA 021037		
Marco Ros	itute of Technology, 77 Massuchus	, Los Angeles, CA 90250, C2		
¹ Massachusetts Ins ² PhotonIC	Corporation, 5800 Uplander	du		
Filotona	Jinter	a manium-on-Silicon	pnn	
	med lasing fr	om Germannun e	ature	
Abstract: Ele	ctrically pumped is der	monstrated. Room	oping	
A ust a construction	diode structures	is measured. Theorem 19 m^{-3} is achieve	d. A	
neterojuli multimode las	er with 1mw output F	4×10^{-10} cm 15^{-10}		
Germaniu	n at a concentration f nearly 200n	m is observed.		
in Oermanium g	ain spectrum of fically 22		conductor	
Germanian	Society of America	Lager materials; (140.5960) Senio	,011dde i	
© 2012 Optica	(140.3380)	Laser mar		
OCIS codes: (1	40.2020) Died optics materials.			

short integration times to assure wide spectrum analyses. Measurement time for these large laser devices is ultimately limited by metal contact breakdown due to the high current flow. Figure 2(a) shows no spectral features above the noise floor. When the injection current

Motivation - germanium based approaches

www.wias-berlin.de/projects/ECMath-OT1

Recombination & equations of state in (vR)

Recombination & equations of state in (vR)

$R = v_{\mathbf{g}} g(\xi; \omega, e) \Theta ^2 S + \widetilde{R}$								
$n = n_c \mathcal{F}\left(rac{q(\psi-\phi_n)-E_c(e)}{k_BT} ight)$								
$p = n_v \mathcal{F}\left(\frac{q(\phi_p - \psi) + E_v(e)}{k_B T}\right)$ Permittivity in (H) $\varepsilon_r = \left(n_r + i\frac{c}{2\omega} \left[g - \ell\right]\right)^2$								
UIIKIIOWIIS	(vR)	(H)	(Ph)	(E)				
	$\xi = (\psi, \phi_n, \phi_p)$	(Θ, β)	S	u				

tight binding calculations: M. Virgilio

WIAS TeSCA

WIAS TeSCA

WIAS TeSCA

4x lower threshold current with aperture design

P, Thomas, Koprucki, Glitzky, Capellini, Guha, Schröder, Virgilio, Gärtner, Nürnberg; IEEE Photonics Journal 2015

- -----; IEEE Proceedings Int. Conf. Opt. Devices (NUSOD) 2015
- ——; Optical and Quantum Electronics 2016
- -----; Proceedings of "Advanced Solid State Lasers 2015"

References (non-extensive)

- Selberherr "Analysis and Simulation of Semiconductor devices"
- Markowich "The stationary semiconductor device equations"
- Burger & Pinnau "Fast optimal design of semiconductor devices"
- Hinze & Pinnau "Second-order approach to optimal semiconductor design",
- Naumann & Wolff "A uniqueness theorem for weak solutions of the stationary semiconductor equations"

Numerics

1D FD with chem. potentials fully coupled Newton 2nd order optimization

> Rotundo, Thomas, P. ICTT Proc. 2015 (MATHEON preprint)

Numerics

1D FD with chem. potentials fully coupled Newton 2nd order optimization

> Rotundo, Thomas, P. ICTT Proc. 2015 (MATHEON preprint)

Numerics

1D FD with chem. potentials fully coupled Newton 2nd order optimization

> Rotundo, Thomas, P. ICTT Proc. 2015 (MATHEON preprint)

WI

Numerics

1D FD with chem. potentials fully coupled Newton 2nd order optimization

> Rotundo, Thomas, P. ICTT Proc. 2015 (MATHEON preprint)

Numerics

1D FD with chem. potentials fully coupled Newton 2nd order optimization

> Rotundo, Thomas, P. ICTT Proc. 2015 (MATHEON preprint)

Numerics

1D FD with chem. potentials fully coupled Newton 2nd order optimization

> Rotundo, Thomas, P. ICTT Proc. 2015 (MATHEON preprint)

$$\mathbf{C} \in \{L^2, H^1, H_0^1\}$$

Numerics

1D FD with chem. potentials fully coupled Newton 2nd order optimization

> Rotundo, Thomas, P. ICTT Proc. 2015 (MATHEON preprint)

WI

4. Topology Optimization

Elasticity:

$$\operatorname{div}\left(\mathbb{C}:\left(e(u)-e_{0}\right)+\sigma_{0}\right)=0$$

$$\mathbb{C}(x) = \sum_{\alpha \in \{\text{Ge,SiN,SiO}_2,\text{air}\}} \mathbb{C}_{\alpha} \varphi_{\alpha}(x)$$
$$e_0(x) = e_0^{\text{Ge}} \varphi_{\text{Ge}}(x)$$
$$\sigma_0(x) = \sigma_0^{SiN} \varphi_{\text{SiN}}(x)$$

Effect on band-edges:

$$F(e) = \int_D \left(\beta_1 e_{xx} + \beta_2 e_{yy}\right) dx$$

Design encoded in $\ \varphi$

Topology optimization

$$\min_{\varphi} F(e(\mathbf{u})) + \frac{\alpha}{2} \int_{\Omega} \frac{\epsilon}{2} |\nabla \varphi|^2 + \frac{1}{2\epsilon} W(\varphi) \, \mathrm{d}x$$

s.t.
$$\nabla \cdot \left[\mathbb{C}(\varphi) : \left(e(\mathbf{u}) - e_0(\varphi) \right) + \sigma_0(\varphi) \right] = 0$$
$$\varphi \in \mathcal{G} = \{ \varphi : \varphi \ge 0, \sum_i \varphi = 1 \text{ a.e.} \}$$

Goals

- maximize bi- and uniaxial strain in optical cavity D
- strain affects band edges via

$$F(e) = \int_D \left(\beta_1 e_{xx} + \beta_2 e_{yy}\right) dx$$

Method

- phase field [Blank,Garcke,Farshbaf-Shaker,Styles]
- Why? Flexible for modelling/optimization

Properties

non-convex & nonlinear

Topology optimization

Theoretical results

- Sensitivity of $\varphi \mapsto u$ (cont. Fréchet diff. $(H^1)^N \to (H^1_0)^2$)
- Existence of optimal topology $\bar{\varphi}$
- First-order optimality conditions (*p* solves adjoint equation):

$$\alpha \int \epsilon \nabla \varphi : \nabla(\hat{\varphi} - \varphi) + \frac{1}{2\epsilon} (1 - 2\varphi) : (\hat{\varphi} - \varphi) \, \mathrm{d}x \\ + \int \left[\mathbb{C}'(\varphi)(\hat{\varphi} - \varphi) \right] e(\mathbf{u}) : e(p) \, \mathrm{d}x - l'_{\varphi}(\varphi, p)(\hat{\varphi} - \varphi) \ge 0 \text{ for all } \hat{\varphi} \in \mathcal{G}$$

Algorithms

- First-order methods: gradient flow, projected gradients
- Second-order methods: full Newton method, interior point

projected gradients

- fast prototype development
- transfer to IHP

interior points

- fast second order method
- tuning mesh/reg./pen. parameter

Topology optimization

Topology optimization FEM

Summary

- heuristic optimization >>> overlap engineering
- doping optimization >>> dependence on regularization
- topology optimization >>> uniaxial vs biaxial

Outlook

- doping optimization (2D FEM/FVM on heterostructure with optics)
- topology optimization and optics (EVP+elasticity+phase fields)
- topology optimization and doping optimization in the loop

Thank you