

Combining Asymptotic Analysis and Optimization in Semiconductor Design

René Pinnau

joint work with Claudia Totzeck & Oliver Tse

AG Technomathematik TU Kaiserslautern

ECMI 2016

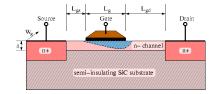
Once Upon a Time...

Optimal Semiconductor Design

- Miniaturization
- Switching-times
- Energy Consumption

The Design Problem

Higher/lower current density in the on/off state by changing the doping profile



(©T. Ayalew, TU Vienna)

(Selberherr, et al. 1998)

Classical Semiconductor Models

Model Hierarchy	
Boltzmann Equation	
Hydrodynamic Equations	
Energy Transport Model	
Lifergy Hansport Model	
Drift Diffusion Model	

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN

State of the Art

- Fang, Ito (1992): Identification of doping profiles from LBIC images
- Selberherr, Stockinger, et al. (1998 –): Optimization of MOSFET doping profiles using a black box gradient method
- Wang, et al. (1999): Optimization of doping profiles using finite dimensional least squares
- Burger, Engl, Markowich, Pietra (2001 –): Identification of doping profiles
- Hinze, Pinnau (2001 –): Optimal control approach to semiconductor design
- Burger, Pinnau (2002 –): Gummel–type algorithms
- Drago, Anile, Pinnau (2005 –):
 Optimization based on the energy-transport model, space mapping
- Unterreiter, Volkwein (2006): Optimal control for QDD
- Burger, Fuego, Pinnau, Rau (2011–): Optimal control of self-consistent classical and quantum particle systems
- Liu (2014): Optimization of solar cell performance
- Peschka, Rotundo, Thomas (2016): Doping optimization of semiconductor lasers

A Simple Design Problem

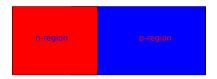


Figure: np-junction

$$\begin{split} \min_{(V,C)} J(V,C) &= \frac{1}{2} \|n(V) - n_d\|_{L^2} + \frac{1}{2} \|p(V) - p_d\|_{L^2} + \frac{\gamma}{2} \|\nabla(C - \bar{C})\|_{L^2} \\ \text{subject to the Drift Diffusion equations in Equilibrium} \\ e_\lambda(V,C) &:= -\lambda^2 \Delta V - n(V) + p(V) + C = 0 \\ \text{space charge } n(V) - p(V) - C \end{split}$$

Separate Blocks of Research

We can

optimize on different levels of the model hierarchy!

provide analysis for the different models!

can link the models via asymptotic analysis!

Can we

also find an asymptotic link for the different optimization problems?

E.g. Zero Space Charge Approximation $\lambda = 0$

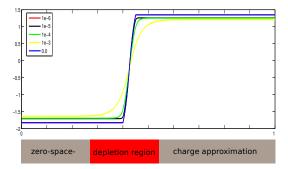


Figure: potential V for different λ

away from the junction, potential is linear and behaves like the zero space charge solution, different approximation in depletion region

Limit $\lambda \rightarrow 0$ combined with optimization

¹Andreas Unterreiter, "The Thermal Equilibrium Solution of a Generic Bipolar Quantum Hydrodynamic Model", Commun. Math. Phys.,1997

R. Pinnau

Combining Asymptotic Analysis and Optimization in Semiconduc

Limit $\lambda \rightarrow 0$ combined with optimization

$$\begin{split} (V_{\lambda},C_{\lambda}) &= \arg\min_{(V,C)} J(V,C) & \text{subject to} \ e_{\lambda}(V_{\lambda},C_{\lambda}) = 0 \\ & \prod_{(V,C)} \bigvee_{V \in [1,\infty)} \lambda \to 0 & \bigvee_{r \in [1,\infty)} L^{r} \\ (V_{0},C_{0}) &= \arg\min_{(V,C)} J(V,C) & \text{subject to} & e_{0}(V_{0},C_{0}) = 0 \end{split}$$

convergence of minima and minimizers

Forward problem - Drift Diffusion Equations

Considering a semiconductor in thermal equilibrium, without recombination and generation processes.

Optimization

The classical Drift Diffusion equations

div
$$J_n = 0$$
, $J_n = \nabla n + n\nabla V$,
div $J_p = 0$, $J_p = \nabla p - p\nabla V$,
 $-\lambda^2 \Delta V = n - p - C$.

with boundary conditions $\nu\cdot\nabla n=\nu\cdot\nabla p=\nu\cdot\nabla V=0$ on $\partial\Omega$ can be condensed to

$$-\lambda^2 \Delta V = n(V) - p(V) - C$$

where $n(V) = \alpha e^{-V}$, $p(V) = \beta e^{V}$ are written in Slotboom variables and the additional conditions

$$u \cdot \nabla V = 0 \text{ on } \partial \Omega, \int n = N, \int p = P, \int V = 0.$$

Variational Approach (dual to Unterreiter)

Let
$$\Sigma_0 = \{ V \in L^1(\Omega) \colon |V| \le K \text{ a.e., } \int_\Omega V = 0 \}$$
 with $K > 0$. Define

$$F(V) = \begin{cases} N \log(\int_{\Omega} e^{-V} dx) + P \log(\int_{\Omega} e^{V} dx) + \int_{\Omega} CV dx, & \text{if } V \in \Sigma_{0} \\ +\infty, & \text{otherwise} \end{cases}$$

and

$$F_\lambda(V) = rac{\lambda^2}{2} \int_\Omega |
abla V|^2 \, \mathrm{d} x + F(V) \quad ext{for } V \in \Sigma_0 \cap H^1 =: \Sigma_1.$$

Then one obtains the nonlocal(!) Euler-Lagrange equation $F'_{\lambda}(V)[\varphi] = 0$

$$\int_{\Omega} \lambda^2 \nabla V \cdot \nabla \varphi \, \mathrm{d}x - \int_{\Omega} \frac{N}{\int e^{-V} \, \mathrm{d}x} e^{-V} \varphi \, \mathrm{d}x + \int_{\Omega} \frac{P}{\int e^{V} \, \mathrm{d}x} e^{V} \varphi \, \mathrm{d}x + \int_{\Omega} C \varphi \, \mathrm{d}x = 0.$$

Theorem

The functional F_{λ} is strictly convex and possesses a unique minimizer V_{λ} .

Further, we get uniform bounds allowing for the extraction of convergent subsequences $V_{\lambda} \rightarrow V_0$, where V_0 is the unique minimizer of F_0 .

The dual approach also allows to consider weaker assumptions on the doping profile C.

Lemma

The constrained optimization problem Find(V, C) such that

$$j = \min_{(V,C)} J(V,C) \text{ s.t. } e_{\lambda}(V,C) = 0$$

is solvable for every given $C \in H^1(\Omega)$. In general, no uniqueness!

The adjoint system is given by

$$-\lambda^{2}\Delta\Psi_{V} = \alpha e^{-V}\Psi_{n} + \beta e^{V}\Psi_{p},$$

$$-\Psi_{V} + \Psi_{n} = (n - n_{d}),$$

$$\Psi_{V} + \Psi_{p} = (p - p_{d}),$$

with boundary conditions $\nu \cdot \nabla \Psi_i = 0$ and integral conditions $\int \Psi_i = 0$ for i = n, p, V and the optimality condition reads

$$\gamma \Delta (C - \bar{C}) = \Psi_V$$
$$\nu \cdot \nabla C = 0 \quad \text{on } \partial \Omega.$$

Proposition (Γ -convergence²)

Let X be a topological space, let $\{F_n\}$ be a sequence of functions from X into \overline{R} , then $\{F_n\}$ Γ -converges to F if and only if the following conditions are satisfied:

$$\begin{split} \lim \inf -inequality: \quad \forall x \in X \quad \forall x_n \to x \in X : F(x) \leq \liminf_{n \to \infty} F_n(x_n), \\ \lim \sup -inequality: \quad \forall x \in X \quad \exists x_n \to x \in X : F(x) \geq \lim_{n \to \infty} F_n(x_n). \end{split}$$

To obtain Γ -convergence we include the PDE constraint in the cost functional

$$J_{\lambda}(V,C)=J(V,C)+\chi_{\mathcal{E}_{\lambda}},$$

where

$$\chi_{\mathcal{E}_{\lambda}} = \left\{ egin{array}{cc} 0, & ext{if } (V, C) \in \mathcal{E}_{\lambda} \\ +\infty, & ext{else} \end{array}
ight.$$

and

$$\mathcal{E}_{\lambda} := \{ (V, C) \in \mathcal{V} \times U_{ad} : e_{\lambda}(V, C) = 0 \} \text{ with } U_{ad} = \{ u \in H^1 : |u| \leq K \}.$$

²Gianni Dal Maso, "An Introduction to Γ-convergence", Birkhäuser

vation Optim

Properties required to obtain the Γ -convergence

We use $X = H^1(\Omega) \times H^1(\Omega)$ endowed with its weak topology.

Lemma

• uniqueness of the solution of the forward problem for $\lambda \ge 0$

- strong L^2 convergence of the solutions $V_{\lambda} \to V_0$, $n(V_{\lambda}) \to n(V_0)$, $p(V_{\lambda}) \to p(V_0)$ as $\lambda \to 0$ and uniform boundedness of $\{V_{\lambda}\}$ in $H^1(\Omega)$ depending on $\|C\|_{H^1}$
- $J(V, C) = J_1(V) + J_2(C)$, J_1 weakly continuous, J_2 weakly lower semicontinuous and radially unbounded.

Definition

Let X be a metric space. A sequence of functionals $\{F_n\}$ is said to be equi-coercive on X, if for every $t \in \mathbb{R}$ there exists a compact subset K_t of X such that $\{F_n \leq t\} \subset K_t$ for every $n \in \mathbb{N}$.

Convergence of Minima and Minimizers

Theorem

 J_{λ} is an equi-coercive sequence of functionals.

Idea: Let $(V_t, C_t) \in \{J_{\lambda}(V_t, C_t) \le t\}$. Due to $\chi_{\mathcal{E}_{\lambda}}$ in the definition of J_{λ} , V_t is a solution of DD equations with doping C_t . $||C_t|| \le K$ since J_{λ} is radially unbounded w.r.t C, this yields uniform boundedness of V_t . Therefore $||V_t||_{H^1} + ||C_t||_{H^1}$ bounded.

Proposition

 Γ -convergence + equi-coercivity \Rightarrow convergence of minima and minimizers ³

³Gianni Dal Maso, "An Introduction to Γ-convergence", Birkhäuser

Numerical results

