
Weierstraß-Institut
für Angewandte Analysis und Stochastik

Leibniz-Institut im Forschungsverbund Berlin e. V.

Preprint ISSN 0946 – 8633

Thermomechanical modeling of

energy-reaction-diffusion systems,

including bulk-interface interactions

Alexander Mielke1,2

submitted: November 12, 2011

Dedicated to Michel Frémond on the occasion of his seventieth birthday

1 Weierstraß-Institut

Mohrenstraße 39

10117 Berlin

Germany

E-Mail: alexander.mielke@wias-berlin.de

2 Institut für Mathematik

Humboldt-Universität zu Berlin

Rudower Chaussee 25

12489 Berlin

Germany

No. 1661

Berlin 2011

2010 Mathematics Subject Classification. 35K57, 80A17, 82B35, 35Q72, 74F25, 82B35.

Key words and phrases. Gradient flow, Onsager system, Onsager operator, dual dissipation potential, dual

entropy-production potential, thermionic emission, reversible reactions.

Research partially supported by DFG via the MATHEON project D22 and by the ERC via FP7-267802.



Edited by

Weierstraß-Institut für Angewandte Analysis und Stochastik (WIAS)

Leibniz-Institut im Forschungsverbund Berlin e. V.

Mohrenstraße 39

10117 Berlin

Germany

Fax: +49 30 2044975

E-Mail: preprint@wias-berlin.de

World Wide Web: http://www.wias-berlin.de/



Abstra
tWe show that many 
ouplings between paraboli
 systems for pro
esses in solids
an be formulated as a gradient system with respe
t to the total free energy orthe total entropy. This in
ludes Allen-Cahn, Cahn-Hilliard, and rea
tion-di�usionsystems and the heat equation. For this, we write the 
oupled system as an Onsagersystem (X,Φ,K) de�ning the evolution U̇ = −K(U)DΦ(U). Here Φ is the drivingfun
tional, while the Onsager operator K(U) is symmetri
 and positive semide�nite.If the inverse G = K−1 exists, the triple (X,Φ,G) de�nes a gradient system.Onsager systems are well suited to model bulk-interfa
e intera
tions by using thedual dissipation potential Ψ∗(U,Ξ) = 1
2〈Ξ,K(U)Ξ〉. Then, the two fun
tionals Φ and

Ψ∗ 
an be written as a sum of a volume integral and a surfa
e integral, respe
tively.The latter may 
ontain intera
tions of the driving for
es in the interfa
e as well as thetra
es of the driving for
es from the bulk. Thus, 
apture and es
ape me
hanisms likethermioni
 emission appear naturally in Onsager systems, namely simply throughintegration by parts.1 Introdu
tionThe aim of this work is to present a unifying thermome
hani
al framework for the mod-eling of dissipative e�e
ts in solids. In parti
ular, this will allow us to derive thermody-nami
ally 
onsistent 
ouplings between several e�e
ts usually 
onsidered separately. Thiswill in
lude Allen-Cahn and Cahn-Hilliard systems for ve
tors of phase indi
ators and thedissipative evolution of internal variables like vis
oplasti
ity or magnetization. Moreover,rea
tion-di�usion system of mass-a
tion type 
an also be handled. Most importantly, the
oupling to the energy balan
e (heat equation) is dis
ussed in detail to obtain a 
orre
tenergy balan
e and a positive entropy-produ
tion rate.The main idea of the paper is to formulate all these pro
esses in terms of a gradientsystem. For most of the individual systems the gradient stru
ture is well establishedand used in di�erent o

asions. For rea
tion-di�usion system a full gradient stru
turewas established only re
ently in [Mie11b℄, in
luding the non-isothermal 
ase with a heatequation. However, the 
oupling of di�erent gradient systems is nontrivial, and the mainobservation of this paper is that the 
oupling is largely simpli�ed if we 
onsider the dualformulations, whi
h we 
all Onsager systems.A gradient system is a triple (X,Φ,G), where X is the state spa
e, Φ : X → R is theenergy fun
tional driving the dynami
s, and G is a metri
 tensor, i.e. G(U) : TUX → T∗
UXis a symmetri
 and positive (semi)de�nite operator, whi
h is 
alled the Riemannian tensor(if X is a �nite-dimensional manifold). The evolution equation is given by

G(U)U̇ = −DΦ(U).In many 
ases an Onsager system (X,Φ,K) is equivalent to a gradient system, as itsequation is
U̇ = −K(U)DΦ(U), (1.1)and now K(U) : T∗

UX → TUX is a symmetri
 and positive semide�nite operator. Clearly,if G and K are invertible the two notions are equivalent by setting K(U) = G(U)−1. We
all the triple (X,Φ,K) an Onsager system, be
ause of Onsager's fundamental symmetry1



relations, meaning K = K∗, and the Onsager prin
iple. The latter states that the rate U̇of a ma
ros
opi
 variable U is given by the produ
t of a symmetri
 matrix (the a
tivities)and the thermodynami
ally 
onjugate driving for
e, namely −DΦ(U). The similar theoryfor �uxes (
f. [Ons31℄) states that the mobility tensor M in di�usive system must besymmetri
, see Se
tions 2.2 and 3.2.1.From the thermodynami
al point of view, we will 
onsider two distin
t 
ases, theisothermal and the non-isothermal 
ase. In the former 
ase the free energy F(y) =
E(y, θ∗) − θ∗S(y, θ∗) is the driving potential Φ. In the non-isothermal 
ase we will usethe state variable (y, r) where r is a s
alar temperature-like variable, whi
h is typi
ally
hosen to be the temperature θ, the internal energy density e, or the entropy density s.Sin
e we are dealing with a 
losed system, we have the total energy E(y, r) as a 
on-served fun
tional while the negative total entropy −S(y, r) serves as the driving fun
-tional Φ. Note that the 
orresponding Onsager operators Kisoth(y) and Knoniso(y, r)have di�erent physi
al dimensions, the former de�ning the dual dissipation potential
Ψ∗isoth(y; η) = 1

2
〈η,Kisoth(y)η〉 and the latter de�ning the dual entropy-produ
tion po-tential Ψ∗noniso(y, r; η, τ) = 1

2
〈
(

η

τ

)
,Knoniso(y, r)(ητ)〉.The advantages of the Onsager form over the gradient systems are manifold. First,we are used to write ordinary and partial di�erential equations as rate equations U̇ = ....,where the right-hand side is often a sum of di�erent terms relating to di�erent physi
ale�e
ts. Su
h a stru
ture 
an easily be mimi
ked in Onsager system, by writing

U̇ = −
(
K1(U) +K2(U) + · · ·+KN(U)

)
DΦ(U).Thus, we 
an add di�erent dissipation me
hanisms as long as we use the same drivingfun
tional, namely the physi
al free energy or the negative entropy. This provides anatural way to add di�usive and rea
tive e�e
ts of 
hemi
al spe
ies, thermal entropyprodu
tion, or dissipation through 
hanging phase indi
ators.A se
ond advantage of the Onsager systems is that di�erential operators for the Kj 
aneasily be handled, like in the 
ase of the Cahn-Hilliard equation, the heat equation, or indi�usion systems. Most e�
iently K is de�ned in terms of the dual dissipation potential

Ψ∗(U,Ξ) = 1
2
〈Ξ,K(U)Ξ〉 for the isothermal 
ase (and the dual entropy-produ
tion poten-tial for the non-isothermal 
ase), i.e. K is de�ned in terms of a nonnegative quadrati
form.Third, it is easy to handle linear and nonlinear 
onserved quantities su
h as thetotal energy E in the 
ase of 
losed non-isothermal systems. We simply have to ask

K(U)DE(U) ≡ 0 to obtain d
dt
E(U(t)) = 0 along solutions of U̇ = −K(U)DΦ(U).The stru
ture of the paper is the following. In Se
tion 2 we provide de�nitions andmotivations for gradient and Onsager systems and dis
uss their relation. In parti
ular,we address the isothermal 
ase and the non-isothermal 
ases. In Se
tion 3 we exhibit theOnsager stru
ture in a series of bulk models su
h as the Allen-Cahn equation, the Cahn-Hilliard equation, the heat equation, and the Penrose-Fife model. In Se
tion 2.4 we high-light that for energy-preserving and entropy-driven systems the free entropy (rather thanthe free energy) is the quantity de�ning the e�e
tive driving for
es. Se
tion 3.2 follows[Mie11b℄, where an Onsager stru
ture for rea
tion-di�usion systems is established for rea
-tion systems satisfying the detailed balan
e 
ondition. While Se
tion 3.3 treats isothermal
ouplings between several bulk e�e
ts, the Onsager stru
ture for non-isothermal 
ases isaddressed in Se
tion 3.4, in parti
ular for energy-rea
tion-di�usion systems.2



Finally, in Se
tion 4 we study the intera
tion between bulk e�e
ts and interfa
e e�e
ts,where the framework of Onsager systems proves to be very e�
ient. As in [Bed86, KjB08℄we use bulk �elds z : Ω → Rm and interfa
e �elds zΓ : Γ → Rk and de�ne the stateas Z = (z, zΓ). We de�ne fun
tionals Φ and Ψ∗ that 
onsist of a bulk integrals andinterfa
e integrals. Then, the Onsager system Ż = −DΞΨ∗(Z; DΦ(Z)) 
an be obtained bysimple variational derivative involving suitable integrations by part. We obtain 
onsistentsystems with interfa
e dynami
s 
oupled via boundary interfa
e 
onditions to the bulkdynami
s, 
f. [Bed86, KjB08℄ for the physi
al relevan
e of these systems. Se
tion 4.4presents an appli
ation in photovoltai
s, whi
h is treated in more detail in [GlM11℄.2 Gradient systems versus Onsager systemsIn this se
tion we give some general ba
kground about gradient systems and Onsagersystems. All our arguments are formal and assume su�
ient smoothness of the potentialsand the solutions, whi
h is the 
ommon approa
h in thermome
hani
al modeling.2.1 Gradient systemsA gradient system is a triple (X,Φ,G) where X is the state spa
e 
ontaining the states
U ∈ X. For simpli
ity we assume that X is a re�exive Bana
h spa
e with dual X∗.The driving fun
tional Φ : X → R∞ := R ∪ {∞} is assumed to be di�erentiable (in asuitable way) su
h that the potential restoring for
e is given by −DΦ(U) ∈ X∗. The thirdingredient is a metri
 tensor G, i.e. G(U) : X → X∗ is linear, symmetri
 and positive(semi-)de�nite.The gradient �ow asso
iated with (X,Φ,G) is the (abstra
t) for
e balan
e

G(U)U̇ = −DΦ(U) ⇐⇒ U̇ = −∇GΦ(U), (2.1)where we re
all that the �gradient� ∇GΦ of the fun
tional Φ is an element of X (in
ontrast to the di�erential DΦ(U) ∈ X∗) and is 
al
ulated via G(U)−1DΦ(U). We 
allthis equation an abstra
t for
e balan
e, sin
e G(U)U̇ 
an be seen as a vis
ous for
e arisingfrom the motion of U . In fa
t, the symmetry of G allows us to de�ne a dissipation potential
Ψ : X ×X → [0,∞] via

Ψ(U, V ) =
1

2
〈G(U)V, V 〉.The symmetry of G implies that DV Ψ(U, V ) = G(U)V .2.2 Onsager systemsThe importan
e of gradient systems has its major basis in thermodynami
s (TD), namelyin Onsager's symmetry relations or more general in Onsager's prin
iple, see [Ons31,DeM84℄. Stri
tly speaking, this prin
iple is only derived for systems 
lose to thermo-dynami
 equilibrium and has two forms, both of whi
h are relevant in the present work.In the �rst 
ase one 
onsiders a spatially homogeneous system des
ribed by a state ve
tor

z, whi
h is a small perturbation of the equilibrium. Then, its ma
ros
opi
 rate ż is givenin the form Kζ , where ζ = DS(z) is the thermodynami
ally 
onjugate driving for
e and3



S is the entropy. The symmetry relation states that the matrix K has to be symmetri
,while the entropy produ
tion prin
iple d
dt
S(z(t) = DS(z) · KDS(z) ≥ 0 implies that Khas to be positive semide�nite.In the se
ond 
ase one 
onsiders a spatially extended system with densities ui > 0de�ning a ve
tor u = (ui)i=1,...,I : Ω → ]0,∞[I and a total entropy S(u) =

∫
Ω
S(x,u(x))dx.If the total mi :=

∫
Ω
ui(x) dx is 
onserved, then the densities satisfy a balan
e equationin the form

u̇ + div ju = 0 with a �ux ve
tor ju = M∇µ,where the ve
tor µ of the 
hemi
al potentials is given by µ = DS(u), i.e. µi(x) =
∂ui
S(x, u(x)). Again the symmetry and entropy prin
iple state that M is a symmetri
and positive semide�nite tensor (of fourth order), see [Ons31℄.Note that in this work we will 
all µ = DS the thermodynami
 driving for
e (ratherthan a potential), while others 
all the 
omponents µi of µ the 
hemi
al potentials (for thegradients ∇µj). In this work a driving for
e is lying in the dual spa
e of the variable (here

u), while ∇µj relates to gradient in the physi
al domain Ω. However, more importantly,we will group the equation u̇ + div
(
M∇µ

)
= 0 with µ = DS in the form u̇ = K(u)DS,where K(u) = − div

(
M∇�

) is a symmetri
 operator.We 
ombine the thermodynami
 
onsiderations into an abstra
t form and use themeven further away from the thermodynami
 equilibrium, see [Ött05℄ for physi
al justi-�
ations to use these prin
iples beyond the range of linear irreversible TD. In 
on
lu-sion we 
all a triple (X,Φ,K) an Onsager system, if Φ : X → R∞ is a fun
tional and
K(U) : X∗ → X is a linear, symmetri
, and positive semide�nite operator. Of 
ourse, Kmay also be an unbounded operator de�ned on a suitable subset of X∗. The evolution ofthe states U is given via

U̇ = −K(U)DΦ(U). (2.2)In duality to the 
ase of gradient systems we de�ne a dual dissipation potential
Ψ∗(U,Ξ) =

1

2
〈Ξ,K(U)Ξ〉,su
h that (2.2) takes the form U̇ = DΞΨ∗(U,−DΦ(U)).Interpreting the metri
 G and the Onsager operator K in the appropriate way, thereis a one-to-one 
orresponden
e between gradient systems and Onsager systems. Thisequivalen
e is most easily seen by using the Legendre transform for relating the dissipa-tion potential Ψ(U, U̇) of the gradient system (X,Φ,G) to the dual dissipation potential

Ψ∗(U,Ξ) of the Onsager system (X,Φ,K). For this we extend Ψ and Ψ∗ by the value ∞wherever they are not de�ned and use the relations
Ψ∗(U,Ξ) = sup{ 〈Ξ, V 〉 −Ψ(U, V ) | V ∈ X } (i.e. � K(U) = G(U)−1 �),
Ψ(U, V ) = sup{ 〈Ξ, V 〉 −Ψ∗(U,Ξ) | Ξ ∈ X∗ } (i.e. � G(U) = K(U)−1 �).A major advantage of the Onsager form is its �exibility in modeling. Quite often dif-ferential equations are written in rate form where the ve
tor �eld is additively de
omposedinto di�erent physi
al phenomena. This additive split 
an be also used for the Onsageroperator, as long as all the di�erent e�e
ts are driven by the same fun
tional Φ. Belowwe will see that K takes the additive form

K = Kdiss +Kdi� +Krea
t +Kheat,4



su
h that the evolution equation reads
U̇ = −

(
KdissDΦ +Kdi�DΦ +Krea
tDΦ +KheatDΦ

)
= −KDΦ.A similar additive split is not possible for the metri
 G, as the inverse operator of a sumof operators is di�
ult to express, in parti
ular if the individual operators Kj may not beinvertible.2.3 Isothermal and non-isothermal Onsager systemsIn appli
ations to thermome
hani
s we have to distinguish two di�erent 
ases. In theisothermal 
ase the temperature is assumed to be 
onstant, and the driving fun
tional

Φ will be the free energy F . We will start with the non-isothermal 
ase, where thetemperature is an independent �eld that is 
oupled to the other �elds 
olle
ted into theve
tor y. For su
h systems we have two fun
tionals, namely the total energy, whi
his preserved during the evolution of the system, and the total entropy, whi
h a
ts as adriving for
e.In the non-isothermal 
ase the state spa
e X 
ontains states (y, θ), (y, e), or (y, s),where e is the internal energy density and s the entropy density. In fa
t, sin
e the physi
sis independent from our 
hoi
e of the variable, we follow [Mie11a, Se
t. 2.3℄ and preferto use an arbitrary s
alar variable r, whi
h 
an be one of the three variables θ, e, s, oranother suitable variable for des
ribing the heat distribution. With x = (y, r) we 
onsider
E(x) =

∫

Ω

E(x,y(x),∇y(x), r(x))dx and S(x) =

∫

Ω

S(x,y(x),∇y(x), r(x))dx, (2.3)where the 
onstitutive fun
tions E and S are inter
onne
ted by the Gibbs relation, whi
hnow leads to a de�nition of the temperature, namely
θ = Θ(x,y,∇y, r) :=

∂rE(x,y,∇y, r)

∂rS(x,y,∇y, r)
,where we always assume (without loss of generality) that the partial derivatives ∂rE and

∂rS are positive.In the non-isothermal 
ase the total entropy S (with the physi
ally 
orre
t sign) isin
reasing, so stri
tly speaking −S is the driving potential for the gradient �ow, but wewill not make this distin
tion in the text, but will always use the 
orresponding 
orre
tsigns in the formulas. Our Onsager system (X,S,K) hen
e gives rise to the equation
ẋ = +K(x)DS(x). To have energy 
onservation we need

d

dt
E(x) = 〈DE(x), ẋ〉 = 〈E(x),K(x)DS(x)〉 = 〈S(x),K(x)DE(x)〉 ≡ 0,where we used the symmetry K = K∗ for the last identity. Hen
e, it is su�
ient (but notne
essary) to impose the 
ondition

K(x)DE(x) = 0 for all x ∈ X.5



2.4 Free entropy as driving fun
tionalWe also argue that physi
ally relevant driving for
es should not depend on the 
hoi
e of
r ∈ {θ, e, s}. Thus, introdu
ing the Helmholtz free energy ψ = e− θs and the Helmholtzfree entropy η = −ψ/θ = s− e/θ we have the formulas

ψ = F (x, Y, r) = E(x, Y, r)−Θ(x, Y, r)S(x, Y, r) and
η = −ψ/θ = H(x, Y, r) = S(x, Y, r)−

E(x, Y, r)

Θ(x, Y, r)
,where we use the shorthand Y = (y,∇y). The free entropy η is also 
alled Massieupotential [Massieu 1869℄ and was in fa
t introdu
ed before the free energies of Gibbs[1873℄ and Helmholtz [1882℄.At �rst sight, it seems that there is only a simple di�eren
e by a fa
tor −θ, whi
h 
anbe 
ompensated by the Onsager operator (thus turning the dual dissipation potential intoa dual entropy produ
tion potential, 
f. [Mie11a℄). However, if gradients ∇y o

ur, thedriving for
es are 
al
ulated via variational derivatives involving integrations by parts.Then, it is essential whether an x-dependent fa
tor is inside or outside an integration byparts. In fa
t, assume F(y, r) =

∫
Ω
F (x,y,∇y, r) dx and H(y, r) =

∫
Ω
H(x,y,∇y, r) dxwith F = −ΘH , then DyH(y, r) 
annot by repla
ed by −1

θ
DyF , sin
e

DyH(y, r) + 1
θ
DyF(y, r) = − div

(
∂∇yH) +

1

θ
div(θ∂∇yH

)
=

1

θ
∇θ · ∂∇yH 6≡ 0in general. This di�eren
e will be relevant in the Penrose-Fife model dis
ussed in Se
tion3.1.5. Using the ∗-multipli
ation of variational derivatives introdu
ed below we have

DyH(y, r) = −1
θ
∗DyF(y, r).In many appli
ations the Onsager operator for non-isothermal systems has a spe
ialstru
ture (
f. [Edw98, Ött05, Mie11a℄), namely

K(y, r) = ME

(
Ky 0

0 Kheat )M∗
E with (2.4a)

Kheatτ = − div
(
kheat(y, r)∇τ) and M∗

E =

(
I −

(
�

∂rE

)
∗DyE

0 1
∂rE

)
. (2.4b)The �∗� multipli
ation is a spe
ial operation for variational derivatives. If Φ(w) =∫

Ω
F (x, w(x),∇w(x))dx, then for a su�
iently smooth fun
tion α : Ω → R we de�ne

α∗DwΦ(w) := α∂wF (x, w,∇w)− div
(
α∂∇wF (x, w,∇w)

)
.The de�nition of ME is su
h that

M∗
EDE =

(
0

1

) and M∗
EDS =

(
DyS −

1
Θ
∗DyE

1/Θ

)
=

(
DyH(y, r)

1/Θ

)
,where H(y, θ) is the total free entropy. 6



Sin
e Kheat1 ≡ 0, we have the desired relation KDE ≡ 0 for energy 
onservation.Moreover, the 
oupled system 
an be rewritten in the form
ẏ = Ky(y, r)DyH(y, r),

ṙ =
1

∂rE

(
∂yE · ẏ + ∂∇yE : ∇ẏ +Kheat(y, r)(1/Θ(y,∇y, r)

))
.Thus, we 
on
lude that in the non-isothermal 
ase with 
onserved energy E the 
orre
tdriving potential for the non-temperature part y of the system is the free entropy H(y, θ).2.4.1 Isothermal 
aseThe isothermal 
ase is easily derived from the non-isothermal 
ase as follows. We assumethat the temperature is 
onstant as the system is embedded into a mu
h larger heat bath,whi
h absorbs or provides heat energy as needed. In this 
ase we 
an use the above theorywith r = θ and then set θ = θ∗. In parti
ular we set

F∗(y) := F(y, θ∗) = −θ∗H(y, θ∗) and K∗(y) =
1

θ∗
Ky(y, θ).Thus, the above Onsager system redu
es the triple (Y ,F∗,K∗). We refer to [Mie11a,Se
t. 2.6℄ for a slightly more elaborate dis
ussion of the isothermal limit in terms of anexpli
it 
oupling to a heat bath.2.5 Prin
iples of thermodynami
sWe �nally want to 
omment on the �rst and se
ond law of TD for the non-isothermalsystems dis
ussed above. Our point is that Onsager systems have en
oded these prin
iplesautomati
ally.The �rst law of TD states energy 
onservation. From our above 
onstru
tion we haveimmediately obtained that the total energy is 
onserved. For systems being de�ned interms of energy density E depending lo
ally on the �elds y, ∇y, and r as in (2.3) it isthen easy to derive lo
al energy balan
es, see [Mie11a, Se
t. 4℄.The se
ond law of TD states that the entropy has to in
rease. For the total en-tropy this follows dire
tly from the positive semide�niteness of K, namely d

dt
S(x) =

〈DS(x),K(x)DS(x)〉 ≥ 0. For systems being de�ned in terms of energy density S de-pending lo
ally on the �elds y, ∇y, and r as in (2.3) it is then easy to derive lo
al entropybalan
es with suitable entropy �ux and a positive entropy produ
tion rate, see [Mie11a,Se
t. 4℄.However, as the name �Onsager system� suggest, our systems are spe
ial dissipativesystems ful�lling not only the two fundamental laws but in addition the Onsager prin
iple:Onsager prin
iple: rate = sym.pos.semidef. operator × TD 
onjugate for
e.3 Bulk models for solidsIn this se
tion we dis
uss bulk models where the driving fun
tional and the dissipationpotential are given by pure volume integrals. We �rst 
olle
t a few 
lassi
al paraboli
7



equations used for modeling solids and re
all their gradient stru
tures. Some of thesegradient stru
tures are well-known, while in other 
ases they are only used rarely.3.1 Five 
lassi
al systems in gradient form3.1.1 Allen-Cahn equationThe Allen-Cahn equation is given in terms of the free energy FAC(z) =
∫
Ω

α
2
|∇z|2+f(z)dxand takes the form

ż = −kACDFAC(z) = −kAC(− div
(
α∇z

)
+ f ′(z)).In parti
ular, the dual dissipation potential has the form Ψ∗(z, ζ) =

∫
Ω

kAC
2
|ζ |2 dx, andthe Onsager operator is the multipli
ation operator KAC(z)ζ = kACζ .3.1.2 Dissipative materialsIn general dissipative material models, whi
h are also 
alled generalized standard mate-rials (
f. [HaN75, Ha
97℄), there is a set of internal variables z : Ω → R

m that mod-els mi
ros
opi
 material properties on the ma
ros
opi
 level. This may in
lude plas-ti
 strains, phase transformation, magnetization, polarization, or damage properties, see[Fré02, Mie06℄. For simpli
ity, we negle
t here the elasti
 deformation, whi
h is treatedin [Mie11a, Mie11
℄. We again 
onsider a free energy of the form
Fdiss(z) =

∫

Ω

1

2
∇z:A:∇z + f(z)dx.Using the Onsager matrix Kdiss(z) ∈ Rm×msym ≥ 0, the equation takes the form

ż = −Kdiss(z)DFdiss(z) = Kdiss(z)( div
(
A∇z

)
− Df(z)

)
.In plasti
ity, the evolution equation for z is 
alled �ow rule, whereas in ferroele
tri
materials it is 
alled swit
hing rule. The Onsager relation ż = −Kdissζ is often generalizedto a nonlinear relation in the form ż = DζΨ

∗diss(z,−ζ), where ζ = DFdiss(z) and Ψ∗diss is anon-quadrati
 dual dissipation potential, e.g. in the form
Ψ∗diss(z, ζ) = σyield|ζ |+ ν

q
‖ζ‖q.For simpli
ity, we do not follow this generalization any further here.3.1.3 Cahn-Hilliard equationIn this 
ase the (ve
tor-valued) internal variable ϕ : Ω → R

m 
onsists of 
onserved phaseindi
ators with a free energy
FCH(ϕ) =

∫

Ω

α

2
|∇ϕ|2 + f(ϕ)dx.8



The equation is a paraboli
 system of fourth order given as
ϕ̇ = −KCH(ϕ)DFCH(ϕ) = − div

(
M(ϕ)∇

(
− div(α∇ϕ) + Df(ϕ)

))
.Hen
e, the Onsager operator KCH is a di�erential operator, namely

KCH(ϕ)ξ = − div
(
M(ϕ)∇ξ

)
.Note that the evolution leaves the averages ∫

Ω
ϕ(t, x)dx 
onstant in time t. This followsfrom the general property of KCH that for ξ = c ≡ 
onst we have KCHc ≡ 0.3.1.4 Heat equationThe heat equation c(θ)θ̇ = div

(
κ(θ)∇θ

) 
an also be written in Onsager form using thephysi
al entropy as the driving fun
tional, namely S(θ) =
∫
Ω
S(θ(x)) dx. The totalenergy E(θ) =

∫
Ω
E(θ(x)) dx has to be 
onserved along solutions, where c(θ) = E ′(θ) isthe spe
i�
 heat whi
h satis�es the Gibbs relation θS ′(θ) = E ′(θ). We de�ne the Onsageroperator

Kheat(θ)τ := −
1

E ′(θ)
div
(
k(θ)∇

τ

E ′(θ)

)
,whi
h gives Kheat(θ)DE(θ) ≡ 0. The Onsager stru
ture yields the equation

θ̇ = Kheat(θ)DS(θ) = −
1

E ′(θ)
div
(
k(θ)∇

(
S ′(θ)/E′(θ)

))

= −
1

E ′(θ)
div
(
k(θ)∇(1/θ)

)
=

1

E ′(θ)
div
(k(θ)
θ2

∇θ
)
.Hen
e, we obtain the original heat equation if we 
hoose k(θ) = θ2κ(θ).3.1.5 Penrose-Fife modelThis model 
ouples the Allen-Cahn equation for an internal variable z : Ω → Rm and theheat equation for the absolute temperature θ : Ω → ]0,∞[. Again the energy fun
tional

E is 
onserved along the solutions, while the entropy fun
tional S takes the role of thedriving fun
tional:
E(z, θ) =

∫

Ω

E(z, θ)dx and S(z, θ) =

∫

Ω

S(z, θ)−
α

2
|∇z|2 dx..We again assume the Gibbs relation ∂θE = θ∂θS. Using the mobility matrix M(z, θ) ∈

Rm×msym > 0 and the heat 
ondu
tion tensor κ(z, θ) = k(z, θ)/θ2 ∈ Rd×dsym > 0 we de�ne theOnsager operator KPF = KAC +Kheat with
KAC =

(
M − 1

∂θE
MDzE

− 1
∂θE

DzE·M
1

∂θE
DzE·MDzE

)
, Kheat =


0 0

0 − 1
∂θE

div
(
k∇
(

�

∂θE

))

 .Here KPF has the form (2.4a), where Ky = M . Hen
e, KPF(z, θ)DE(z, θ) ≡ 0, whi
hguarantees energy 
onservation. 9



Next we 
laim that the Onsager system (
ż

θ̇

)
= KPF(z, θ)DS(z, θ) gives exa
tly the
lassi
al Penrose-Fife system [PeF90, PeF93℄. The gradient stru
ture was already used,at least impli
itly, in [FeS05℄ and was highlighted expli
itly in [Mie11b℄. We have

(
ż

θ̇

)
= KPF(z, θ)

(
DzS

∂θS

)
=

(
M
(
DzS − α∆z − 1

θ
DzE

)

− 1
∂θE

DzE·M
(
DzS−α∆z−1

θ
DzE

)
− 1

∂θE
div
(
k∇1

θ

)
)

=

(
M
(
DzS − α∆z − 1

θ
DzE

)

− 1
∂θE

DzE·ż + 1
∂θE

div
(
κ∇θ

)
)Using the free-entropy fun
tional H de�ned in Se
tion 2.3 the Penrose-Fife assumes ashort and elegant form:

(
ż

θ̇

)
=

(
MDzH(z, θ)

− 1
∂θE

DzE ·MDzH(z, θ) + 1
∂θE

div
(
κ∇θ

)
)
,whi
h 
learly shows that the free entropy H drives the motion of the dissipative variable

z. In some works the term MDzH is repla
ed by −1
θ
MDzF . We emphasize that this isthermodynami
ally not 
orre
t, sin
e DzH + 1

θ
DzF = −α

θ
∇θ ·∇z 6≡ 0 in general.3.2 Rea
tion-di�usion systemsWhile the above gradient systems are well known, the gradient/Onsager stru
ture for awider 
lass of rea
tion-di�usion systems is less known. It was used in a few parti
ular 
ases(see e.g. [ÖtG97, Yon08, Ede09℄ and the dis
ussion in Se
tion 3.2.2) but only highlightedin its own right in [Mie11b℄. The 
entral point is that in the Onsager form we have anadditive splitting of the Onsager operator into a di�usive part and a rea
tion part, namely

u̇ = −
(
Kdi�(u) + Krea
t(u)

)
F
hem(u), where u : Ω → ]0,∞[I is the ve
tor of densities ofthe spe
ies X1, ..., XI . The free-energy fun
tional F
hem, whi
h is also 
alled the relativeentropy with respe
t to the referen
e density u∗, takes the form

F
hem(u) =

∫

Ω

I∑

i=1

u∗iλ(ui(x)/u
∗
i )dx where λ(ν) = ν(log ν − 1). (3.1)3.2.1 Di�usion systemsFor the gradient stru
ture of di�usion systems u̇ = div

(
M(u)∇u

) one might be temptedto use a fun
tional involving the gradient ∇u, however we have to use the relative entropyas a driving fun
tional, be
ause we have to use the same fun
tional for modeling therea
tions. Hen
e, we use the Wasserstein approa
h to di�usion introdu
ed by Otto in[JKO98, Ott01℄.The di�usion system will take the form u̇ = −Kdi�(u)DF(u) with an Onsager operator
Kdi� given via

Kdi�(u)µ = − div
(
M̃(u)∇µ

)
,where M̃(u) : Rm×d → Rm×d is a symmetri
 and positive semi-de�nite tensor of order 4.The Onsager operator 
an also be impli
itly de�ned via the dual dissipation potential,10



whi
h will be useful later:
Ψ∗Wass(u,µ) =

∫

Ω

1

2
∇µ:M̃(u):∇µdx,where µ = (µi)i=1,..,I is the ve
tor of 
hemi
al potentials, whi
h o

urs as the driving for
e

µ = DuF
hem(u) = logu− logu∗.Hen
e, if the referen
e densities µ∗ are spatially 
onstant (whi
h is usually not true inheterostru
tures like semi
ondu
tors) the Onsager system leads to the di�usion system
u̇ = div

(
M̃(u)∇(logu− logu∗)

)
= div

(
M(u)∇u

)
, where M̃(u) = M(u)diag(u).We emphasize that M̃ has to be symmetri
 by Onsager's symmetry relations, whi
hleads to unsymmetri
 operators M, if there is 
ross-di�usion. E.g. assuming I = 2,

u∗ = (1, 1), and isotropy, we arrive at the 
oupled system
(
u̇1

u̇2

)
=

(
div
(

em1(u1,u2)
u1

∇u1 + em12(u1,u2)
u2

∇u2

)

div
(

em12(u1,u2)
u1

∇u1 + em2(u1,u2)
u2

∇u2

)
)
,where m̃1, m̃2 > 0 and m̃1m̃2−m̃

2
12 ≥ 0. Hen
e, m̃12 6= 0 means 
ross-di�usion and yieldsthe unsymmetry of M.3.2.2 Chemi
al rea
tion kineti
sChemi
al rea
tion systems are ODE systems u̇ = R(u), where often the right-hand sideis written in terms of polynomials asso
iated to the rea
tion kineti
s. It was observedin [Mie11b℄ that under the assumption of detailed balan
e (also 
alled reversibility) su
hsystems have a gradient stru
ture with the relative entropy as the driving fun
tional.We assume that there are R rea
tions of mass-a
tion type (
f. e.g. [DeM84, GiM04,KjB08℄) between the spe
ies X1, ..., XI denoted by

αr
1X1 + · · ·+ αr

IXI

kfwr⇀↽
kbwr

βr
1X1 + · · ·+ βr

IXI ,where kbwr and kfwr are the ba
kward and forward rea
tion rates, and the ve
tors αr, βr ∈
NI

0 
ontain the stoi
hiometri
 
oe�
ients. For the 
hemi
al rea
tion 2CO + 1O2 ⇀↽ 2CO2we have α = (2, 1, 0)T and β = (0, 0, 2)T.The asso
iated rea
tion system for the densities (in a spatially homogeneous system,where di�usion 
an be negle
ted) reads
u̇ = R(u) := −

R∑

r=1

(
kfwr uαr

−kbwr uβr)(
αr − βr

)
, (3.2)where we use the monomial notation uα = uα1

1 · · ·uαI

I .11



The main assumption to obtain a gradient stru
ture is that of detailed balan
e, whi
hmeans that there exists a referen
e density ve
tor u∗ su
h that allR rea
tions are balan
edindividually, namely
∃u∗ ∈ ]0,∞[I ∀ r = 1, ..., R ∀u ∈ ]0,∞[I : kfwr (u)uαr

∗ = kbwr (u)uβr

∗ =: k∗r(u). (3.3)Here we have used the freedom to allow for rea
tion 
oe�
ients depending on the densities(and later also on other material properties like temperature).As in [Mie11b℄ we now de�ne the Onsager matrix
H(u) =

R∑

r=1

k∗r(u)Λ
(

uαr

uαr
∗

, uβr

u
βr

∗

)(
αr−βr

)
⊗
(
αr−βr

) with Λ(a, b) =
a− b

log a− log b
(3.4)and �nd that the rea
tion system (3.2) takes the form

u̇ = R(u) = −H(u)DF
hem(u). (3.5)This follows easily by using the de�nition of Λ and the rules for logarithms, namely
(
αr−βr

)
·
(
µ−µ∗) = log

(
uαr

/uαr

∗

)
− log

(
uβr

/uβr

∗

)
.The quotient Λ(a, b) = a−b

log a−log b
(or variants of it) have o

urred o

asionally in themodeling of rea
tion kineti
s: In [ÖtG97, Eqn. (113)℄ the rea
tion N2+3H2⇀↽ 2NH3 iswritten in GENERIC, whi
h in
ludes the gradient stru
ture for the rea
tion. In [Ede09,Def. 3.22℄ the mapping (µ, η) 7→ 1/Λ(eµ, eη) is 
alled the ideal resistan
e fun
tion. In[Yon08, Se
t.VII℄ the de�nition of ∆j 
ontains ∫ 1

0
eσaj dσ = (eaj − 1)/aj = Λ(eaj , 1) toshow that the rea
tion terms have the Onsager stru
ture displayed in (3.5).3.2.3 Coupling di�usion and rea
tionWe summarize the previous two subse
tions by stating the following general result from[Mie11b℄ for Onsager stru
tures for rea
tion-di�usion system.Theorem 3.1 If the rea
tion di�usion system u̇ = div

(
M(u)∇u) + R(u) with R(u) =

−
∑R

r=1

(
kfwr (u)uαr

−kbwr (u)uβr)(
αr−βr

) satis�es the detailed balan
e 
ondition (3.3) andif M̃(u) = M(u)diag(u) is symmetri
 and positive semide�nite, then it is an Onsagersystem u̇ = −KRD(u)DFchem with
Fchem(u) =

∫

Ω

I∑
i=1

u∗iλ(ui(x)/u
∗
i )dx, Ψ

∗
RD(u,µ) =

1

2

∫

Ω

∇µ:M̃(u):∇µ + µ·H(u)·µdx.We mention that many rea
tion-di�usion systems studied in the literature (in
ludingsemi
ondu
tor models involving an ellipti
 equation for the ele
trostati
 potential), seee.g. [GlH05, DeF06, DeF07, Gli09, BoP11℄, have the stru
ture developed above. So far,the gradient stru
ture was not used expli
itly, only the Liapunov property of the freeenergy F
hem was exploited for deriving a priori estimates.12



3.3 Consistent isothermal 
oupling to general bulk systemsWe �rst dis
uss the isothermal 
ase, where the driving fun
tional is the free energy.Using the above Onsager stru
tures for the internal variables z (non-
onserved) and ϕ(
onserved) and the 
hemi
al densities u we are now able to write 
onsistent bulk systemsby simply adding the free energies and the dual dissipation fun
tionals:
F(z, ϕ,u) = Fdiss(z) + FCH(ϕ) + FRD(u) + F
oupl(z, ϕ,u),

Ψ∗(z, ϕ,u; ζ, ξ,µ) = Ψ∗diss(z; ζ) + Ψ∗CH(ϕ; ξ) + Ψ∗RD(u; µ) + Ψ∗
oupl(z, ϕ,u; ζ, ξ,µ).Negle
ting the 
oupling term Ψ∗
oupl in the dual dissipation potential we are led to



ż

ϕ̇

u̇


 = −




Kdiss(z) 0 0

0 KCH(ϕ) 0

0 0 KRD(u)







DFdiss(z) + DzF
oupl(z, ϕ,u)

DFCH(ϕ) + DϕF
oupl(z, ϕ,u)

DF
hem(u) + DuF
oupl(z, ϕ,u)


 . (3.6)Of 
ourse, the Onsager operatorKmay be mu
h more general than indi
ated here. Stayingin the diagonal form of (3.6) we may allow that ea
h of the diagonal entries Kdiss, KCH, and

KRD may depend on (z, ϕ,u). Moreover, we may introdu
e o�-diagonal terms through
Ψ∗
oupl.For the full generality, one should not think about adding three terms with a small
oupling. One should rather take one free energy like

F(z, ϕ,u) =

∫

Ω

F (x, z(x), ϕ(x),u(x)) +
γ

2
|∇z(x)|2 +

δ

2
|∇ϕ(x)|2 dx.In parti
ular, we may 
onsider the 
ase where the referen
e density ve
tor u∗ in thedetailed-balan
e 
ondition (3.3) depends on (z, ϕ). As an example 
onsider the 
asewithout 
onserved phase-�eld variables and u = (u1, u2) and let

F(z,u) =

∫

Ω

f(z) +
γ

2
|∇z|2 + w1(z)λ

(
u1/w1(z)

)
+ w2(z)λ

(
u2/w2(z)

)
dx,where the fun
tions wj : z 7→ wj(z) > 0 are given and λ(ν) = ν(log ν−1) as above.Together with the dual dissipation potential

Ψ∗(z,u; ζ,µ) =
1

2

∫

Ω

ζ ·kAC(z,u)ζ +m1(z,u)|∇µ1|
2 +m2(z,u)|∇µ2|

2

+ krea
t(z,u)
(
(α−β) · µ

)2
dxwe �nd the following 
oupled system:

ż = kAC(z,u)
(

div
(
γ∇z

)
− f ′(z) +

u1

w1(z)
Dzw1(z) +

u2

w2(z)
Dzw2(z)

)
,

(
u̇1

u̇2

)
=

(
div
(
m1(z,u)∇(log u1− logw1(z))

)

div
(
m2(z,u)∇(log u2− logw2(z))

)
)

− krea
t(z,u)Λ
(

uα

w(z)α ,
uβ

w(z)β

)
(α−β)⊗ (α−β) · (logu− logw(z)).13



Using the fun
tions Wj(z) = logwj(z) and employing the de�nition of Λ we 
anreformulate the system in the form
ż = kAC(z,u)

(
div
(
γ∇z

)
− f ′(z) + u1DzW1(z) + u2DzW2(z)

)
,

(
u̇1

u̇2

)
=

(
div
(

m1(z,u)
u1

∇u1 −m1(z,u)DzW1(z)∇z
)

div
(

m2(z,u)
u2

∇u2 −m2(z,u)DW2(z)∇z
)
)

− krea
t(z,u)
(
uαe−α·W(z) − uβe−β·W(z)

)
(α−β).Thus, even without assuming any 
oupling inside the Onsager stru
ture, we still obtain akind of 
ross-di�usion arising from the z-dependen
e of the referen
e densities wj(z).3.4 Non-isothermal 
oupled systemsWe now add to the variables y := (z, ϕ,u) the absolute temperature θ > 0 and useOnsager operators in the form (2.4), following the derivation of Se
tion 2.3, where now

Ky(y) =



Kdiss

KCH
KRD .As in the Penrose-Fife model (
f. Se
tion 3.1.5) we again treat a 
losed systems in whi
hthe total energy E is 
onserved while the total entropy in
reases and serves as a drivingfun
tional. Now the Onsager operator K is given in terms of an entropy-produ
tionpotential

Ψ∗(y, θ; η, τ) =
1

2

〈(
η

τ

)
,K(y, θ)

(
η

τ

)〉
.3.4.1 Rea
tion-di�usion systems with temperatureWe now restri
t to a system des
ribed by (u, θ) with fun
tionals

E(u, θ) =

∫

Ω

E(x,u(x), θ(x))dx and S(u, θ) =

∫

Ω

S(x,u(x), θ(x))dx,where the integrands are stri
tly lo
al, i.e. they do not depend on ∇u and ∇θ. Asthroughout the paper, the densities may expli
itly depend on the material point, but wewill omit this dependen
e in the sequel. The energy density E and the entropy density Ssatisfy the Gibbs relation ∂θE = θ∂θS and the positivity of the spe
i�
 heat ∂θE > 0.The dual entropy-produ
tion potential Ψ∗ will depend on the state (u, θ) and thethermodynami
ally 
onjugate variables (µ, τ). In prin
iple, Ψ∗ will 
ontain three parts,namely a di�usion, a rea
tion, and a heat 
ondu
tion part. However, the heat 
ondu
tionand the di�usion 
an be joined into one quadrati
 form on (∇µ,∇τ), thus allowing for�
ross-di�usion� e�e
ts between 
hemi
al di�usion and heat transfer, whi
h is needed tomodel thermophili
 or thermophobi
 rea
tions o

urring e.g. in polymers, see [AWR12℄.
14



To guarantee energy 
onservation, we mimi
 the de�nition of ME in (2.4b) (see also[Mie11b, Se
t. 3.6℄) and 
onsider
Ψ∗(u, θ; µ, τ) = Ψ̃∗(u, θ; µ− τ

∂θE
∂uE,

τ
∂θE

) (3.7a)with Ψ̃∗(u, θ; µ̃, τ̃) =
1

2

∫

Ω

(∇µ̃,∇τ̃):M(u, θ)(∇µ̃,∇τ̃) + µ̃ · H(u, θ)µ̃dx, (3.7b)where H is given as in (3.4). The mobility tensor M(u, θ) : RI×d × Rd → RI×d × Rd issymmetri
 and positive semide�nite and has the blo
k stru
ture
M(u, θ) =

(
Muu(u, θ) Muθ(u, θ)

M∗
uθ(u, θ) Mθθ(u, θ)

)
.The 
onstru
tion of Ψ∗ is su
h that Ψ∗(u, θ; µ, τ) = Ψ∗(u, θ; (µ, τ)+λDE(u, θ)) for all

λ ∈ R. Hen
e, the asso
iated Onsager operator K satis�es KDE ≡ 0. Moreover, we seethat Ψ∗ only depends on
DuS −

1

θ
DuE = ∂uS −

1

θ
∂uE = ∂uH and ∂θS

∂θE
=

1

θ
,where H = −ψ/θ = S − E/θ is the free entropy.The Onsager system d

dt

(
u

θ

)
= KDS for the evolution of (u, θ) is the 
oupled PDE

u̇ = − div ju + H(u, θ)
(
∂uS(u, θ)−1

θ
∂uE(u, θ)

)
,

θ̇ = − 1
∂θE

div jθ + 1
∂θE

∂uE·

(
div ju −H(u, θ)

(
∂uS(u, θ)−1

θ
∂uE(u, θ)

)
,where ju = Muu(u, θ)∇

(
∂uS(u, θ)−1

θ
∂uE(u, θ)

)
+ Muθ(u, θ)∇(1/θ)

) and
jθ = M∗

uθ(u, θ)∇
(
∂uS(u, θ)−1

θ
∂uE(u, θ)

)
+ Mθθ(u, θ)∇(1/θ)

). In the simplest isotropi

ase one 
hooses Muu(u, θ)∇µ = (miui∇µi)j=1,...,I, Muθ = 0, and Mθθ(u, θ) = θ2κ.We refer to [GiM04, Se
t. 2.5℄ and [Yon08, Se
t.VII℄ for useful representations of
s = S(u, θ), e = E(u, θ), and u∗ = w(θ).3.4.2 Rea
tion-di�usion systems with internal energyA major advantage of gradient and Onsager systems is that it is very easy to 
hange
oordinates. For energy-preserving non-isothermal rea
tion-di�usion systems it is ofteneasier to formulate the theory in terms of the density ve
tor u : Ω → ]0,∞[I and theinternal energy e : Ω → R. Thus, the fun
tionals are

Ê(u, u) =

∫

Ω

e(x)dx and Ŝ(u, e) =

∫

Ω

Ŝ(x,u(x), e(x))dx.Now the Gibbs relation leads to the de�nition of temperature as θ = Θ(u, e) := 1/∂eS(u, e),where the relation ∂eŜ(u, e) > 0 is imposed.The major advantage of the formulation in terms of (u, e) is that energy 
onservationis a linear 
onstraint. Moreover, following [AGH02℄ it is reasonable to assume that Ŝ is15



a 
on
ave fun
tion in (u, e). Finally, the driving for
e through the free entropy is mostsimple, as ∂uH = ∂uŜ, sin
e using Ê(u, e) := e we have ∂uÊ ≡ 0, 
f. [Mie11a, Se
t. 2.3℄.Thus, the equations in Se
tion 3.4.1 
an be equivalently written in (u, e) using thedual entropy-produ
tion potential
Ψ̂∗(u, e; µ, ε) =

1

2

∫

Ω

(∇µ,∇ε):M̂(u, e)(∇µ,∇ε) + µ·Ĥ(u, e)µ dx,where M̂ and Ĥ are obtained from M and H, respe
tively, by substituting θ = Θ̂(u, e).As a 
onsequen
e of the simple form of Ê , and hen
e of Ψ̂∗, the evolution equations for
(u, e) take the simpler form

u̇ = − div
(
M̂uu(u, e)∇

(
∂uŜ(u, e)

)
+ M̂ue(u, e)∇

(
∂eŜ(u, e)

))
+ Ĥ(u, e)∂uS(u, e),

ė = − div
(
M̂

∗
ue(u, e)∇

(
∂uS(u, e)

)
+ M̂ee(u, e)∇

(
∂eŜ(u, e)

))
.This form has the major advantage that we 
an read of �paraboli
ity� in the sense ofPetrovsky (
f. [LSU68, Se
t.VII.8℄) for the full 
oupled system by assuming that M̂ ispositive de�nite and that D2S is negative de�nite. Hen
e, lo
al existen
e results 
an beobtained from [Ama93℄.Moreover, we are able to postulate suitable strongly 
oupled models by assuming that

Ŝ has the form
Ŝ(u, e) = s(e)− u ·

( logu− logw(e)
)
, (3.8)where u∗ = w(e) are now the referen
e densities in the detailed balan
e 
ondition (3.3),whi
h may now depend on the internal energy (i.e. on the temperature). The 
on
avity
an be 
he
ked by using

−
(

µ

ε

)
· D2Ŝ(u, e)

(
µ

ε

)
=
∑I

i=1 ui

(
µi

ui
− ε

w′
i(e)

wi(e)

)2
+ ε2

(
− s′′(e)−

∑I

i=1 ui
w′′

i (e)

wi(e)

)
.Thus, we have stri
t 
onvexity on the whole domain ]0,∞[I×]e0,∞[ if and only if s′′(e) < 0and w′′

i (e) ≤ 0 for all i. Hen
e, good 
hoi
es for s(e) and w(e) are given in the form
s(e) = c log e or s(e) = c eσ with c > 0 and σ ∈ ]0, 1[,

wi(e) = aie
bi for some ai > 0 and bi ∈ [0, 1].

(3.9)In the 
ase s(e) = c log e we �nd the simple relation 1/θ = ∂eŜ(u, e) =
(
c+b·u)/e, where

b = (bi)i=1,...,I. Hen
e, we obtain the simple linear relation e = E(u, θ) =
(
c+b·u) θ.4 Bulk-interfa
e intera
tion4.1 General setup for interfa
esWe now 
onsider a domain Ω 
ontaining an interfa
e Γ separating Ω into an upper part Ω+and a lower part Ω−, i.e. Ω is the disjoint union of Ω+, Γ, and Ω−. For later 
onvenien
ewe denote that part of the surfa
e of Ω± that 
oin
ides with Γ by Γ± (see Figure 1), su
hthat for fun
tions z : Ω → Rm we 
an de�ne one-sided limits z± = z|Γ±. However, we16



Ω+

Γ+

Γ−

Ω−

Γ

Figure 1: Body Ω = Ω+ ∪ Ω− with interfa
e Γ.also allow for extra �elds zΓ : Γ → Rk des
ribing new spe
ies or some of the spe
ies on
Ω, i.e. we allow for k 6= m.The full state is Z = (z, zΓ) 
ontaining bulk fun
tions as well as interfa
e fun
tions.We derive our 
oupled system again in the Onsager form Ż = −K(Z)DΦ(Z), where nowthe driving fun
tional Φ as well as the dual dissipation potential Ψ∗, whi
h de�nes K, aregiven in terms of a bulk integral and an interfa
e integral:

Φ(Z) = ΦΩ(z) + ΦΓ(ẑ) with ẑ := (zΓ, z+, z−) and
Ψ∗(z, zΓ; ξ, ξΓ) = Ψ∗

Ω(z; ξ) + Ψ∗
Γ(ẑ; ξ̂) with ξ̂ = (ξΓ, ξ+, ξ−).While the bulk integrals ΦΩ and Ψ∗

Ω only depend on the bulk �elds z and the bulk for
es
ξ, respe
tively, the interfa
e integrals ΦΓ and Ψ∗

Γ depend on the interfa
e �elds zΓ and ξΓas well as on the one-sided interfa
e limits z± and ξ±.The general Onsager system is now de�ned as
(

ż

żΓ

)
= D(ξ,ξΓ)Ψ

∗
(
z, zΓ , −Dz,zΓ

Φ(z, zΓ)
)
,where the derivative D(ξ,ξΓ)Ψ

∗ involves integrations by part whi
h give rise to nontrivial
oupling 
onditions on Γ. We will �rst display this in a s
alar heat equation and thentreat a more general 
ase.We refer to [Bed86, KjB08℄ for 
areful treatments of thermo
hemi
al e�e
ts at inter-fa
es. The works also provide eviden
e for the physi
al ne
essity to introdu
e own spe
iesand temperature �elds on the interfa
e.4.2 Coupled bulk and interfa
e heat 
ondu
tionWe assume that the only relevant variable is the temperature, but there is a temperature
θ : Ω → ]0,∞[ in the bulk and another independent temperature θΓ : Γ → ]0,∞[ in theinterfa
e. This may model for instan
e a thin steel plate Γ inside a rubber material. Thetotal entropy and total energy are given via

S(θ, θΓ) =

∫

Ω

c log θdx+

∫

Γ

cΓ log θΓ da and E(θ, θΓ) =

∫

Ω

c θdx+

∫

Γ

cΓθΓ da,17



where c > 0 is the spe
i�
 heat of the bulk material (per unit volume) and cΓ > 0 is thespe
i�
 heat of the interfa
e material (per unit surfa
e area). These spe
i�
 heats mayalso depend on x ∈ Ω or y ∈ Γ.For the dissipation potential we assume the simplest quadrati
 form
Ψ∗(θ, θΓ, τ, τΓ) =

∫

Ω

k

2
|∇(

τ

c
)|2 dx+ Ψ∗

Γ(θ̂, τ̂) with
Ψ∗

Γ(θ̂, τ̂) =
∫
Γ

kΓ

2
|∇Γ( τΓ

cΓ
)|2 + mΓ

2

(
τ+
c+
− τ−

c−

)2
+ m+

2

(
τ+
c+
− τΓ

cΓ

)2
+ m−

2

(
τ−
c−
− τΓ

cΓ

)2
da,where k may depend on x ∈ Ω and θ and kΓ, mΓ, and m± may depend on y ∈ Γ and

θ̂ := (θΓ, θ+, θ−). Here kΓ denotes the heat 
ondu
tion 
oe�
ient in the interfa
e, mΓgives a 
ondition for heat transmission through the interfa
e, whereas m± gives heat �owfrom the bulk into the interfa
e.With Θ = (θ, θΓ) the Onsager system Θ̇ = K(Θ)DS(Θ) takes the formin Ω : θ̇ = −
1

c
div
(
k∇

1

θ

)
,in Γ : θ̇Γ = − 1

cΓ
divΓ

(
kΓ∇Γ

1
θΓ

)
+m+

(
1
θΓ
− 1

θ+

)
+m−

(
1
θΓ
− 1

θ−

)
,in Γ+ : 0 = 1

c+
k+∇

1
θ
· ν+ −m+

(
1
θΓ
− 1

θ+

)
−mΓ

(
1

θ−
− 1

θ+

)
,in Γ− : 0 = 1

c−
k−∇

1
θ
· ν− −m−

(
1
θΓ
− 1

θ−

)
−mΓ

(
1

θ+
− 1

θ−

)
.Re
all that we are dealing with 
losed systems, hen
e we also have the no-�ux 
ondition

k∇(1/θ) · ν = 0 on the outer boundary ∂(Ω∪Γ). This 
oupled system 
ontains the usualbulk equation whi
h is 
oupled to the interfa
e by Robin-type boundary 
onditions thatdepend on the temperatures inside the interfa
e Γ and on the limit of the bulk temperatureon the other side of the interfa
e. Moreover, there is an own heat equation on the interfa
ewhere the �ux terms from the boundary appear as sour
e terms.The above general nonlinear system also in
ludes a linear system if we 
hoose
k(θ) = θ2κΩ, kΓ(θ̂) = θ2

Γκ
Γ, m±(θ̂) = µ±θ±θΓ, mΓ(θ̂) = µΓθ+θ−.We obtain the linear systemin Ω : cθ̇ = div
(
κΩ∇θ

)
,in Γ : cΓθ̇Γ = divΓ

(
κΓ∇ΓθΓ

)
+ cΓµ+(θ+−θΓ) + cΓµ−(θ−−θΓ),in Γ+ : 0 = 1

c+
κΩ

+∇θ · ν+ + µ+(θ+−θΓ) + µΓ(θ+−θ−),in Γ− : 0 = 1
c−
κΓ
−∇θ · ν− + µ−(θ−−θΓ) + µΓ(θ−−θ+).4.3 General stru
ture of bulk-interfa
e intera
tionWe now return to the general 
ase of bulk-interfa
e systems with the state Z = (z, zΓ)and a driving fun
tional spe
i�ed in the form

F(Z) = FΩ(z) + FΓ(ẑ) =

∫

Ω

FΩ(z,∇z)dx +

∫

Γ

FΓ(ẑ,∇ΓzΓ)da,where as before ẑ = (zΓ, z+, z−). To in
lude Allen-Cahn and Cahn-Hilliard systems weallow F to depend on the gradients ∇z and ∇ΓzΓ as well.18



For the dual dissipation potential we also spe
ify the stru
ture more expli
itly, namely
Ψ∗(Z; Ξ) = Ψ∗

Ω(z; ξ) + Ψ∗
Γ(ẑ; ξ̂) with ξ̂ = (ξΓ, ξ+, ξ−),

Ψ∗
Ω(z; ξ) =

∫

Ω

1

2
∇ξ:M(z):∇ξ +

1

2
ξ·H(z)ξdx, and

Ψ∗
Γ(ẑ, ξ̂) =

∫

Γ

1

2
∇ΓξΓ:MΓ(ẑ):∇ΓξΓ +

1

2
ξ̂·T(ẑ)ξ̂da.To write the Onsager system Ż = −DΞΨ∗(Z; DF(Z)) more expli
ity, we use thenatural proje
tions QΓ, Q+, Q− asso
iated with the 
omponents of ẑ = (zΓ, z+, z−).Using the variational derivatives

δzFΩ := ∂zFΩ − div
(
∂∇zFΩ

) and δzΓ
FΓ := ∂zΓ

FΓ − divΓ

(
∂∇ΓzΓ

FΓ

)and suitable integrations by part the general bulk-interfa
e system in Onsager form readsin Ω : ż = − div
(
MΩ(z)∇

(
δzFΩ

))
−H(z)

(
δzFΩ

)
,in Γ : żΓ = − divΓ

(
MΓ(ẑ)∇

(
δzΓ

FΓ

))
−QΓT(ẑ)

(
δbzFΓ, δzFΩ|Γ+

, δzFΩ|Γ−
)
,in Γ+ : 0 = MΩ(z)∇

(
δzFΩ

)
· ν+ +Q+T(ẑ)

(
δbzFΓ, δzFΩ|Γ+

, δzFΩ|Γ−
)
,in Γ+ : 0 = MΩ(z)∇

(
δzFΩ

)
· ν− +Q−T(ẑ)

(
δbzFΓ, δzFΩ|Γ+

, δzFΩ|Γ−
)
.

(4.1)
We refer to [GlM11, Thm. 3.1℄ for a proof of the equivalen
e of (4.1) and the Onsagersystem Ż = −DΞΨ∗(Z; DF(Z)) with the potentials F and Ψ∗ as de�ned above.4.4 Semi
ondu
tors with interfa
es for photovoltai
sIn thin-�lm solar 
ells the interfa
es strongly in�uen
e the overall 
urrents of the wholesolar 
ell. Hen
e a proper modeling of the intera
tion between the bulk and the interfa
ee�e
ts is ne
essary. In addition to the previous analysis, we also need to take into a

ountthe ele
tri
al 
harges of the spe
ies, namely the free ele
trons with density n and the holeswith density p.In the simplest 
ase the bulk model is the so-
alled van Roosbroe
k system, whi
h
ouples an equation for the ele
trostati
 potential φ = φu with the drift-di�usion-rea
tionequations for u = (n, p):(vRS) 




− div(ε∇φu) = dΩ(x)− n+ p,

ṅ = div
(
mn

(
∇n− n∇φu

))
− k (np− 1),

ṗ = div
(
mp

(
∇p + p∇φu

))
− k (np− 1).

(4.2)The di�erent signs in �−n� and �+p� in the Poisson equation for φu and in front of thedrift term ∇φu denote the negative 
harge of the ele
trons and the positive 
harge of theholes. Here ε is the ele
tri
 permittivity, and dΩ is a pres
ribed doping pro�le of 
harges.The 
oe�
ients mp and mn are the mobilities of the ele
trons and holes, respe
tively, and
k is the rea
tion strength. Without loss of generality, we have normalized the densities19



su
h that the intrinsi
 density equals nin = 1. On the boundary we add no-�ux 
onditionsfor the 
harges and Diri
hlet 
onditions for the ele
trostati
 potential φu.It is shown in [Mie11b, Se
t. 4.1℄ that (4.2) forms an Onsager system for the total freeenergy FΩ and the dual dissipation potential Ψ∗
Ω given by

FΩ(n, p) =

∫

Ω

ε

2
|∇φn,p|

2 + λ(n) + λ(p)dx, (4.3a)
Ψ∗

Ω(u,µ) =
1

2

∫

Ω

mn n|∇µn|
2+mp p|∇µp|

2+kΛ(np, 1)(µn+µp)
2 dx, (4.3b)where Λ is de�ned in (3.4).Following [GlM11℄ we now 
onsider a domain Ω with one or several interfa
es denotedby Γ ⊂ Ω. Thin-�lm solar 
ells have a thi
kness of a few hundred nanometers and 
ontainseveral interfa
es. These are treated in parti
ular ways in order to make them a
tive inthe sense that they 
arry own interfa
ial spe
ies whi
h may di�use and rea
t inside theinterfa
e or with spe
ies from the adja
ent sides Γ± from the bulk. A parti
ular rea
tionis the simple 
apture and es
ape of spe
ies from the interfa
e into the bulk, whi
h is then
alled thermioni
 emission.For notational simpli
ity we assume here that the interfa
e spe
ies are simply uΓ =

(nΓ, pΓ) : Γ → ]0,∞[2 and hasten to say that uΓ is in general di�erent from the one-sidedlimits u+ = u|Γ+
. We will write U = (u,uΓ) for the full state of the bulk-interfa
esystem. Moreover, the interfa
e may 
arry its own doping pro�le dΓ su
h that the jointele
trostati
 potential φ = φU satis�es the Poisson equation
− div(ε∇φU) = dΩ − n + p+ (δΓ − nΓ + pΓ)δΓ,where δΓ denotes the two-dimensional Hausdor� measure restri
ted to the interfa
e Γ.Thus, the potential φU depends on the bulk and the interfa
e 
harges in a linear way.The total free energy now 
onsists of the bulk part FΩ from (4.3a) and an interfa
epart, namely

F(u,uΓ) =

∫

Ω

ε

2
|∇φu,uΓ

|2 + λ(n) + λ(p)dx+

∫

Γ

λ(nΓ) + λ(pΓ)da.The 
orresponding di�erential DF takes the form
(

µ

µΓ

)
:= DF(u,uΓ) =

(
DuF(u,uΓ)

DuΓ
F(u,uΓ)

)
=

( logu +
(
−1
1

)
φUloguΓ +

(
−1
1

)
φU |Γ

)
.To de�ne a su�
iently general dual dissipation potential Ψ∗, whi
h 
ontains the bulkpart Ψ∗

Ω from (4.3b) as well as an interfa
ial terms, we use again the abbreviations û :=
(uΓ,u+,u−) and µ̂ := (µΓ,µ+,µ−) and set

Ψ∗(u,uΓ; µ,µΓ) = Ψ∗
Ω(u,µ) + Ψ∗

Γ(û; µ̂) with
Ψ∗

Γ(û; µ̂) = Ψ∗in-plane(û; µ̂) + Ψ∗transfer(û; µ̂),

Ψ∗in-plane(û; µ̂) =
1

2

∫

Γ

mΓ
nnΓ|∇ΓµΓ n

|2 +mΓ
ppΓ|∇ΓµΓ p

|2 + µΓ·H
Γ(û)·µΓ da,

Ψ∗transfer(û; µ̂) =
1

2

∫

Γ

T (û)|µ+−µ−|
2 +B+(û)|µ+−µΓ|

2 +B−(û)|µ−−µΓ|
2 da.20



Here Ψ∗in-plane 
ontains all dissipative e�e
ts that solely o

ur inside of Γ, while Ψ∗transferprovides the 
oe�
ients for movements between Γ, Γ+, and Γ−. In parti
ular, T is theintensity of the transmissions between Γ+ and Γ−, and B± is the intensity for motionsbetween Γ± and Γ.As was indi
ated in Se
tion 4.3 the 
oupled system has the formin Ω : 0 = − div(ε∇φu,uΓ
)− (dΩ−n+p)− (dΓ−nΓ+pΓ)δΓ,in Ω : u̇ = div

(
M(u)∇µ)−H(u)µ (= van Roosbroe
k system)in Γ+: 0 = M+∇µ+ · ν+ − T (û)(µ+−µ−)−B+(û)(µ+−µΓ),in Γ : u̇Γ = divΓ

(
MΓ∇ΓµΓ

)
︸ ︷︷ ︸interfa
ial drift-di�usion− H

Γ(û)µΓ︸ ︷︷ ︸interfa
ial rea
tion − B+(µΓ−µ+)−B−(µΓ−µ−)︸ ︷︷ ︸transfer between Γ and Γ+∪Γ−in Γ− : 0 = M−∇µ− · ν− − T (û)(µ−−µ+)−B−(û)(µ−−µΓ).We 
on
lude by summarizing this se
tion. The stru
ture of Onsager system is suf-�
iently ri
h to derive energy-rea
tion-di�usion system in
luding possible bulk-interfa
eintera
tions. Using the abstra
t form of Onsager systems spe
i�ed in terms of bulk andinterfa
e integrals it is straight forward to derive thermome
hani
ally 
onsistent 
oupledsystems. The derived equations are in general nonlinear 
oupled systems, the analysis ofwhi
h still needs to be developed.A
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