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1 Introduction

We consider four-dimensional ordinary differential equations depending on a vector-valued
parameter λ in a neighborhood of the origin. For λ = 0 the origin is supposed to be an
equilibrium whose linearization has a fourfold non-semisimple eigenvalue 0. Moreover, we
assume that the vector fields are SO(2)-invariant and reversible. Such systems occur typ-
ically from spatial dynamical systems in physics where the evolution variable is obtained
from a one-dimensional axial direction. The reversibility is then associated to a reflection
symmetry and the SO(2)-invariance might arise for instance from an additional spatial
variable in which periodicity is assumed, see [2, 4, 9, 10] for such applications.

Our aim is to describe the generic unfoldings of such a singularity. It turns out that
there are two cases. In Case 1 the SO(2) action and the reversor commute, and in
Case 2 they do not commute. In both cases the lowest order terms which are derived
via quasihomogeneous truncation lead to the steady one-dimensional Ginzburg-Landau
equation

d2

dx2
A + a(λ)A + b(λ)

d

dx
A + d|A|2A = 0. (1)

In Case 1 the reversibility acts as (x, A) 7→ (−x, A); and we have b(λ) = 0 and general
coefficients a(λ), d ∈ C. Then, we call (1) the complex Ginzburg-Landau equation (cGL).
In Case 2 the reversibility is (x, A) 7→ (−x, A) which implies a(λ), ib(λ), d ∈ R. Then, (1)
is called the real Ginzburg-Landau equation (rGL).

We demonstrate that (rGL) is completely integrable while (cGL) in general has com-
plicated dynamics. For instance, there are cascades of n-homoclinic orbits in (cGL) while
in (rGL) only simple homoclinic orbits occur, see Section 4.
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2 A linear unfolding

We identify the space R4 with C2 in order to simplify notations. Throughout the action
of SO(2) is

Tα(y1, y2) = (eiαy1, e
iαy2), α ∈ S

1 def
= R/2πZ.

The differential equation has the form

ẏ = f(y, λ) with f(y, λ) = L(λ)y + O(|y|2),

and SO(2)-invariance means Tαf(y, λ) = f(Tαy, λ). The only possible non-semisimple

linearization L(0) commuting with the symmetry is L(0) = L0
def
=

(
0
0

I
0

)
∈ R4×4. We

additionally impose reversibility with the reversor R, that is R2 = I and Rf(y, λ) =
−f(Ry, λ).

Lemma 2.1

Assume RL0 = −L0R.

Case 1. If R commutes with all Tα, then we have R = ±Rcom with Rcom
def
=

(
I
0

0
−I

)
.

Case 2. If R does not commute with some Tα, then we have R = TβRncT−β for a suitable

β ∈ S1, where Rnc
def
=

(
K
0

0
−K

)
with K =

(
1
0

0
−1

)
.

This result follows easily by letting R =
(

R1

R3

R2

R4

)
. Then L0R = −RL0 gives R1 = −R4

and R2 = R3 = 0. Together with R2
1 = I the two cases arise if either both eigenvalues of

R1 are equal (both +1 or both −1) or if they are different (one +1 and one −1).
In Case 1 we may assume without loss of generality that R = Rcom, since by Tπ = −I

we automatically see that −R is also a reversor. In Case 2 we may assume R = Rnc after
rotating the coordinate system by Tβ. Before studying the nonlinear problem we study
parameter-dependent matrices with the given symmetries.

Lemma 2.2

Let L(λ) ∈ R
4×4 depend smoothly on λ such that L(0) = L0, RL(λ) = −L(λ)R and

TαL(λ) = L(λ)Tα for all α. Then there exists a smooth and SO(2)-invariant transforma-

tion M(λ) with RM(λ)R = M(λ) and M(0) = I such that L̃(λ) = M(λ)L(λ)M(λ)−1 has
the form

L̃(λ) =





(
0

µ(λ)I+ν(λ)J
I
0

)
for R = Rcom(

0
µ(λ)I

I
ν(λ)J

)
for R = Rnc,

where J =
(

0
−1

1
0

)
and µ(0) = ν(0) = 0.

This result again follows by writing L =
(

L1

L3

L2

L4

)
and setting M =

(
I

L1

0
L2

)
. This gives

the upper two block matrices of L̃. The special form of the lower blocks follows from
reversibility and SO(2) invariance.

With this lemma we have obtained the general unfolding of the matrix L0 under
the given symmetry, see [5]. In both cases we find that the unfolding depends on two
real parameters µ and ν. If λ ∈ R2, then we say that the family (L(λ))λ∈R2 is linearly

nondegenerate in λ = 0 if the matrix Dλ(µ, ν)|λ=0 is invertible.
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3 Unfolding the nonlinear problem

We now extract the lowest order terms in a generic unfolding of the linear part L0 under
the given SO(2) symmetry and the reversibility with respect to Rcom or Rnc. We write

(
ẏ1

ẏ2

)
= L̃(λ)

(
y1

y2

)
+

(
n1(y1, y1, y2, y2, λ)

n2(y1, y1, y2, y2, λ)

)
(2)

with nj(. . .) = O(|y|2), j = 1, 2. By SO(2) symmetry we have

nj(. . .) = y1pj(|y1|2, |y2|2, y1y2, λ)+y2qj(|y1|2, |y2|2, y1y2, λ), j = 1, 2

where the functions pj and qj vanish for y = 0. In Case 1 the reversibility gives that p1

and q2 are odd in y1y2 while p2 and q1 are even. In Case 2 the reversibility is (y1, y2) 7→
(y1,−y2) and we find

pj(r1, r2,−z, λ) = (−1)j−1pj(r1, r2, z, λ), qj(r1, r2,−z, λ) = (−1)jqj(r1, r2, z, λ).

Definition 3.1

Let λ ∈ R2 and Dyf(0, 0) = L0, then we say that the SO(2)-invariant and reversible
family ẏ = f(y, λ) is nondegenerate if the matrix family L(λ) is linearly nondegenerate
and if the coefficient d = ∂r1

p2(0, 0, 0, 0) is nonzero. We call such a family an unfolding

of ẏ = L0y.

In this situation we can use without loss of generality the parameter λ = (µ, ν) ∈ R2 with
µ and ν as defined in Lemma 2.2. Observe that d ∈ C for Case 1 but d ∈ R for Case 2.

!a!The dynamics in unfoldings of eigenvalues 0 is analyzed most efficiently using the
Newton-Brjuno polyhedron, see [6, 7]. To this end we study the six-dimensional system
obtained by adding the equations µ̇ = 0 and ν̇ = 0. Because of the SO(2)-invariance
the polyhedron lies in a five-dimensional subspace. It turns out that in both of our cases
there is only one hyperface with positive normal vector that gives a nontrivial truncation
of the problem (2). The corresponding truncation is quasihomogeneous (cf. [5]) and can
be found by the relevant scaling. ?a?

Theorem 3.2

In Case 1 we have the scaling (t, µ, ν, y1, y2) = (x/η, η2µ̂, η2ν̂, ηŷ1, η
2ŷ2) and the scaled

equation
d

dx

(
ŷ1

ŷ2

)
=

(
ŷ2

(µ̂+iν̂)ŷ1 + d|ŷ1|2ŷ1

)
+ O(η2) (3)

In Case 2 we have the scaling (t, µ, ν, y1, y2) = (x/η, η2µ̂, ην̂, ηŷ1, η
2ŷ2) and the scaled

equation
d

dx

(
ŷ1

ŷ2

)
=

(
ŷ2

µ̂ŷ1 + iν̂ŷ2 + d|ŷ1|2ŷ1

)
+ O(η2) (4)

(In both cases O(η2) is uniform in ŷ on any bounded set in C2.)

!a!Neglecting O(η2) and letting A = ŷ1 and (·)′ = d/dx we obtain the truncations ?a?

A′′ − (µ̂+iν̂)A − d|A|2A = 0, d ∈ C \ {0}, (cGL)
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A′′ − µ̂A − iν̂A′ − d|A|2A = 0, d ∈ R \ {0}, (rGL)

for Case 1 and 2, resp.
Since these equations are obtained via scaling and the limit η → 0 it is important to

note that now µ̂, ν̂ and A are not nessessarily small. Whenever we find any bounded solu-
tion of (cGL) or (rGL) for a given parameter value (µ̂, ν̂), this solution can be understood,
via the scaling, as a limit of small bounded solutions of (3) or (4), respectively, with λ ≈ 0.
Of course, existence of certain solution classes (like (quasi-) periodic, chaotic or homo-
clinic solutions) in the limit equations does not immediately imply the existence of such
solutions in the original problem (2). To this end one has to show that the corresponding
solution class is structurally stable under perturbations with the given symmetries.

The dynamics of (rGL) is much simpler than that of (cGL). In fact, (rGL) can be
understood as a completely integrable system for a(x) = e−ibνx/2A(x) with Hamiltonian
H = 1

2
|a′|2−( bµ

2
− bν2

8
)|a|2− d

4
|a|4 and the additional first integral K = Im (a′a). In particular,

for (rGL) the origin is a center for µ̂ ≤ ν̂2/4 and a saddle-focus else. If d < 0 all solutions
of (rGL) remain bounded, whereas for d > 0 nontrivial bounded solutions only exist for
µ̂ < ν̂2/4, and then they lie in the region |A| ≤

√
m/d, |A′| ≤ (

√
2m+|ν̂|)

√
m/d/2,

where m = ν̂2/4−µ̂ > 0.
For (cGL) a similarly simple estimate for the region of bounded solutions cannot be

given. A necessary condition for the existence of a bounded nontrivial solution is that
ν̂ Im d ≤ 0. Moreover, explicit bounds can be derived by taking the bounded solutions as
steady states of the time-dependent complex Ginzburg-Landau equation

∂tA = (1+iρ)
[
∂2

xA − (µ̂+iν̂)A − d|A|2A
]

with ρ ∈ R. If Im d 6= 0 then it is possible to choose ρ such that Re[(1+iρ)d] > 0. Hence
the general bounds for time-dependent solutions in [11] give explicit bounds for bounded
solutions of (cGL).

4 Homoclinic bifurcation

As one particular example, we show that in the unfolding (2) there are bifurcations of
homoclinic orbits. In both cases we know that if one homoclinic solution exists then the
SO(2)-orbit of this solution forms a two-dimensional manifold which in fact coincides with
the global stable as well as the global unstable manifold of the origin. If H : R → R4

is one of these homoclinic orbits then together with the reversibility we conclude H(t) =
RTβH(τ−t) for suitable β ∈ S1 and τ ∈ R. In Case 1 we have RTα = TαR implying
Tβ = ±I. In Case 2 we have RTα = T−αR such that RTβ always has the eigenvalue +1.

Lemma 4.1

In Case 1 each homoclinic orbit H is either reversible (s = 1) or antireversible (s = −1):

H(t) = sRH(τ−t) with s ∈ {−1, 1}.

The value s is called the parity of H, s = par(H).
If in Case 2 a homoclinic orbit exist, then there are exactly two reversible and two antire-
versible orbits.
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The parity in case 1 is only defined after the choice of R. Similarly we could have used
−R as the reversor, then all parities would be interchanged.

In both cases the associated limit equations admit explicit homoclinic solutions. For
(rGL) with d < 0 and µ̂ > ν̂2/4 we have the reversible homoclinic solution

ArGL(x) = ρη̂eibνx/2/ cosh(η̂x)

with ρ = (−d)−1/2 and η̂ = (µ̂−ν̂2/4)1/2.
The persistence of these homoclinic orbits follows easily by using y1 = reiφ such that

(4) reduces, after factoring out the SO(2)-symmetry, to a three-dimensional system for
(r, r′, Φ) where Φ = φ′. The reversibility reduces to Rred

nc : (r, r′, Φ) 7→ (r,−r′, Φ) and a
homoclinic orbits occurs as soon as the unstable manifold M red

s , which is one-dimensional
after reduction, intersects the plane Fix(Rred

nc ). As ArGL(x) has a transversal intersection
we arrive at the following result.

Theorem 4.2

If the unfolding (2) in Case 2 satisfies d < 0 then for all sufficiently small λ = (µ, ν) with
µ > ν2/4 the stable and unstable manifold coincide and are obtained by SO(2) symmetry
from one homoclinic orbit Hλ which has the expansion

Hλ(t) =
ρη̃eiνt/(2

√
µ)

cosh(η̃t)

(
1

iν/2−η̃ tanh(η̃t)

)
+ O(e−eη|t|)

(O(η̃3/2)

O(η̃2)

)

where η̃ =
√

µ−ν2/4.

Case 1 yields a completely different picture, since the reduced reversibility is Rred
com :

(r, r′, Φ) 7→ (r,−r′,−Φ). Thus, Fix(Rred
com) is one-dimensional and we need one parameter

to intersect M red
s and Fix(Rred

com). The explicit solution of (cGL) is the so-called Hocking-
Stewartson pulse ([8])

AcGL(x) = ρη̃[ cosh(η̃x)]−(1+iω)

with ρ and ω defined via d = −ρ−2(1+iω)(2+iω) and µ̂+iν̂ = η̃2(1+iω)2. This family
occurs on a ray in the (µ̂, ν̂) plane, as d 6∈ [0,∞) fixes ω uniquely.

This homoclinic orbit is transversal with respect to parameter variations for all ω
which do not lie in an exceptional set

E = {0,±ω1,±ω2, . . .},

see [3]. The set E is the set of zeros of an integral of Melnikov type which depends
analytically on ω. Numerical calculations give ω1 ≈ 8.032 and ω2 ≈ 9.51.

Theorem 4.3

If the unfolding in Case 2 satisfies d = −ρ−2(1+iω)(2+iω) with ω 6∈ E , then there exists
a smooth curve C(1) : [0, ε0] 3 ε 7→ c(ε) ∈ R2 with c(0) = 0 and c′(0) = (1−ω2, 2ω) such

that (2) with λ = (µ, ν) = c(ε), ε ∈ (0, ε0], has a homoclinic solution H
(1)
ε with parity

s = +1 which satisfies the expansion

H(1)
ε (t) =

√
ε ρ

[cosh(
√

ε t)]1+iω

(
1

−(1+iω)
√

ε tanh(
√

ε t)

)
+ O(e−

√
ε|t|)

(O(ε3/2)

O(ε2)

)
.
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These homoclinic orbits are also called single-pulse solutions. However, they are not
the only homoclinic orbits. In every neighborhood of the curve ε 7→ c(ε) there are param-
eter values such that we have homoclinic orbits which are called multi-pulse solutions. A
solution H (n) is called n-pulse solution with respect to a single-pulse solution H (1) if it
can be written in the form

H(n)(t) =

n∑

j=1

Tαj
H(1)(t−tj) + h.o.t.

with suitable αj ∈ S1 and tj ∈ R, where tj+1−tj � 1. For a geometrical characterization
of n−pulses in terms of the factorized Poincaré map we refer to [3].

Theorem 4.4

Consider the case of Theorem 4.3. Then on any curve C ⊂ R2 which intersects the curve
C(1) transversally in a point c(ε) with ε ∈ (0, ε0) and for any n ∈ N \ {1} there exist

infinitely many points c
(n)
k ∈ C, k ∈ N, such that c

(n)
k → c(ε) for k → ∞ and that (2) has

an n-pulse solution H
(n)
k for the parameters λ = (µ, ν) = c

(n)
k .

If n is odd then par(H
(n)
k ) = 1 = par(H (1)). If n is even we may choose the points c

(n)
k

such that par(H
(n)
k ) = (−1)k.

In fact, the result can be strengthened by considering the obtained multi-pulses as new
single-pulses and studying multi-pulses with respect to these homoclinic orbits. Thus, we
obtain cascades of homoclinic orbits and the parameter set where homoclinic orbits exist
has a fractal structure, see [3].
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