

Exercise Sheet 14

Exercise 40. Quasiconvexity implies weak lower semicontinuity. For $p > q \ge 1$ consider a quasiconvex function $f : \mathbb{R}^{m \times d} \to \mathbb{R}$ such that

$$\exists \, C > 0 \; \forall \, A, B \in \mathbb{R}^{m \times d}: \quad |f(A) - f(B)| \leq C \big(1 + |A| + |B|)^{q-1} |A - B|.$$

Define the functional $I_A(u) = \int_{\Omega} f(A + \nabla u(x)) dx$.

- (a) Show that $I_A(u) \ge I_A(0)$ for all $u \in W_0^{1,q}(\Omega; \mathbb{R}^m)$ (which is the closure of $C_c^{\infty}(\Omega; \mathbb{R}^m)$).
- (b) It can be used without proof that the cut-off function

 $\chi_{\varepsilon}: \Omega \to [0,1]; \ x \mapsto \min\left\{1, \max\{0, (\operatorname{dist}(x, \partial \Omega) - \varepsilon) / \varepsilon\}\right\}$

lies in $W_0^{1,\infty}(\Omega; \mathbb{R}^m)$ and satisfies $\|\nabla \chi_{\varepsilon}\|_{L^{\infty}} = 1/\varepsilon$. Show that for all $u \in W^{1,p}(\Omega; \mathbb{R}^m)$ we have $\chi_{\varepsilon} u \in W_0^{1,p}(\Omega; \mathbb{R}^d)$ and

$$\|\nabla(\chi_{\varepsilon}u) - \nabla u\|_{\mathbf{L}^{q}} \le C\varepsilon^{1/r} \left(\|\nabla u\|_{\mathbf{L}^{p}} + \frac{1}{\varepsilon} \|u\|_{\mathbf{L}^{p}}\right)$$

for a suitable constant C, where $r \in [1, \infty)$ is given by 1/q = 1/p + 1/r.

(c) For $u_k \to 0$ in $W^{1,p}(\Omega; \mathbb{R}^m)$ show the estimate $\liminf_{k\to\infty} I_A(u_k) \ge I_A(0)$. (*Hint: Recall* p > q and consider $\chi_{\varepsilon_k} u_k$ for a good sequence $\varepsilon_k \to 0$.)

(d) Why is the assumption "p > q" bad for the direct method in the calculus of variations?

Exercise 41. Counterexample concerning Reshetnyak's theorem. Take m = d = p = 2 and $\Omega = \left]-1, 1\right[^2$ and the sequence

$$u^{k}(x_{1}, x_{2}) = \frac{1}{\sqrt{k}} (1 - |x_{2}|)^{k} (\sin(kx_{1}), \cos(kx_{1})).$$

We will show that $\nabla u^k \rightharpoonup 0$ in $L^2(\Omega)$ but $\det(\nabla u^k) \not\rightharpoonup 0$ in $L^1(\Omega)$.

(a) Show that $u^k \rightarrow 0$ in $H^1(\Omega; \mathbb{R}^2)$.

(b) Prove that $\int_{\Omega} \det(\nabla u^k) \varphi \, \mathrm{d}x \to 0$ for all $\varphi \in C_c(\Omega)$.

(c) Show that det(∇u^k) does not converge weakly to 0 in L¹(Ω). (*Hint: Consider suitable* $\varphi \in L^{\infty}(\Omega)$ in (b).)

Exercise 42. Cofactor matrix and adjugate matrix.

(Auf deutsch: Kofaktormatrix und adjunkte Matrix)

For a quadratic matrix $A \in \mathbb{R}^{d \times d}$ define $\operatorname{cof} A \in \mathbb{R}^{d \times d}$ such that $(\operatorname{cof} A)_{ij} = (-1)^{i+j} M_{ij}$, where M_{ij} is the determinant of the $(d-1) \times (d-1)$ matrix obtained after deleting column i and row j. Moreover, $\operatorname{adj}(A) = \operatorname{cof}(A)^{\top}$.

(a) For $f(A) = \det A$ show $Df(A)[B] = \operatorname{cof}(A): B = \operatorname{tr}(\operatorname{adj}(A)B)$.

(b) Prove the formula $\operatorname{cof}(A)A^{\top} = \operatorname{adj}(A)A = \det(A)I$. Relate this to Cramer's rule and to Euler's formula $qf(A) = \langle Df(A), A \rangle$ for q-homogeneous functions.

(c) For d = 2 and d = 3 show $\det(A+B) = \det A + \operatorname{cof}(A):B + \det B$ and $\det(A+B) = \det A + \operatorname{cof}(A):B + A: \operatorname{cof}(B) + \det B$, respectively.