

Exercise Sheet 10

Exercise 29. A fundamental lemma for Sobolev functions. Consider a bounded, Lipschitz domain $\Omega \subset \mathbb{R}^d$ and $u \in W^{1,p}(\Omega)$ for some $p \in [1, \infty]$. Assume that $\nabla u = 0$ in $L^p(\Omega)$. Show that there exists a constant $c \in \mathbb{R}$ such that u(x) = c a.e. in Ω . (*Hint: Smoothing might be needed and connecting curves between points in* Ω .)

Exercise 30. Coercivity of a degenerately convex functional. Consider $\Omega = B_1(0) \subset \mathbb{R}^d$, $\alpha > 0$, $q \in]1, \infty[$, and

$$I(u) = \int_{\Omega} |x|^{\alpha} |\nabla u(x)|^{q} \,\mathrm{d}x.$$

(a) For $p \in [1, q]$ show that $I : W_0^{1, p}(\Omega) \to [0, \infty]$ is strictly convex.

(b) Use a Hölder estimate to derive the coercivity of I on $W_0^{1,p}(\Omega)$ if $p\alpha < d(q-p)$ holds. (c) Finally consider the case d = 1 and the set $M = \{ u \in W^{1,p}(\Omega) \mid u(\pm 1) = \pm 1 \}$. Study the existence of a minimizer of I on M for all cases of α , p, and q. If possible, give the minimizer explicitly.

Exercise 31. Weak and strong continuity. Consider $f \in C^0(\overline{\Omega} \times \mathbb{R}^m)$ which satisfies

 $\exists C > 0, \ p \in [1, \infty[, \ h \in \mathcal{L}^1(\Omega) \ \forall (x, u) \in \Omega \times \mathbb{R}^m : \quad |f(x, u)| \le C(h(x) + |u|^p).$

(a) Show that the functional $I : L^p(\Omega; \mathbb{R}^m) \to \mathbb{R}; u \mapsto \int_{\Omega} f(x, u(x)) dx$ is strongly continuous.

(b) Show that weak continuity of I implies that $f(x, \cdot)$ is affine, i.e. there exist $a \in C^0(\overline{\Omega})$ and $b \in C^0(\overline{\Omega}; \mathbb{R}^m)$ such that $f(x, u) = a(x) + b(x) \cdot u$.

(*Hint: Look at functions u rapidly oscillating between two values* w_0 *and* w_1 *such that the weak limit takes the value* $w_{\theta} := (1-\theta)w_0 + \theta w_1$.)

Special Christmas Problem^{*}: For $N \in \mathbb{N}$ and $\gamma \in \mathbb{R}$ consider on $\mathrm{H}^{2}(\mathbb{S}) = \mathrm{W}^{2,2}(\mathbb{S})$ with $\mathbb{S} = \mathbb{R}/_{2\pi\mathbb{Z}}$ (unit circle of length 2π) the functional

$$J(u) = \int_{\mathbb{S}} \left\{ \frac{1}{2} \left(u''(x) + N^2 u(x) \right)^2 + \frac{N^2 \gamma}{3} u(x)^3 + \frac{1}{4} u(x)^4 \right\} \mathrm{d}x.$$

We extend J to a functional $I: H := L^2(\mathbb{S}) \to \mathbb{R}_{\infty}$ by setting it ∞ outside of $H^2(\mathbb{S})$.

(a) Show that I is weakly lower semicontinuous on H and coercive for each fixed N.

(b) We are interested in equicoercivity with respect to $N \in \mathbb{N}$. Construct $\gamma_1 > 0$ such that for $|\gamma| < \gamma_1$ there exists C_{γ} with the following property:

$$\forall N \in \mathbb{N} \ \forall u \in H : \quad I(u) \ge \frac{1}{C_{\gamma}} \|u\|^2 - C_{\gamma}. \qquad (**)$$

(c) Show that there exists $\gamma_2 > \gamma_1$ such that (**) does not hold for $\gamma > \gamma_2$.

(d)* Try find the optimal values for $\gamma_1 = \gamma_2$.

* The best reasonably complete solution will be rewarded with a book coupon of 50 Euro. Deadline for submission is February 9, 2020.